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Chapter 1

Introduction

Constraint logic programming (CLP) [21] is a generalization of logic programming where
unification is replaced by constraint solving over a suitable domain, as the basic oper-
ation of the language. Many CLP languages have been defined in the last decade on
computation domains such linear real constraints (e.g., [22, 47, 8]), integers (e.g., [46]),
Booleans (e.g., [6, 8]), and nonlinear real constraints (e.g., [42]). CLP languages preserve
some of the traditional advantages of logic programming such as declarative semantics,
nondeterminism and multi-directionality, while adding the expressive power of constraint
solving over a suitable domain. These features make CLP languages especially suitable
for expressing combinatorial search problems. CLP languages have been used to solve
problems in diverse areas such as hardware design (eg. circuit verification), finance (eg.
options trading), biology (eg. DNA sequencing) and operations research (eg. cutting
stock problems). The development time of such programs may be reduced significantly
when compared to imperative languages, though perhaps at the expense of some run-time
efficiency. The run-time efficiency is reduced because constraint solving is an expensive

operation in most constraint systems.

In this thesis, efficient execution of a CLP program corresponds to mimicking the
corresponding imperative implementation, wherever possible. This means thai program-
mers need pay the overhead of using a CLP language only when their program actually
needs constraint solving. When the constraint program (solving a set of constraints si-
multaneously) can be reimplemented as an imperative program (sequence of tests and
assignments), it is our aim to perform this reimplementation automatically. This pre-
serves the productivity benefits of using CLP languages while not degrading runtime

performance.



The thesis fits in the broad area of program optimization for special purpose lan-
guages, of which CLP is a specific instance (higher order concurrent programming and
database languages being others). There are several similarities between such languages,
one of which is that they are all highly declarative, making them amenable to optimiza-
tion. Moreover these languages have a high potential for optimization since programmers
typically specify what is to be computed and cannot express how the computation is to
be performed efficiently. While this improves programmer productivity, it negatively im-
pacts program performance, suggesting that automatic optimization of these languages is
an area with practical application. Even though the thesis addresses the optimization of
CLP(RLin), the principles and results in the thesis can be used as a foundation to design

optimizations for other CLP languages and other types of special purpose languages.

The techniques used in the thesis are sophisticated static analyses that collect global
information about the program. The optimizations are structured as source to source
transformations, and the most important optimization performed is reordering the source
the program. The analyses are used to guarantee that the asymptotic complexity of

programs is not changed by the reordering.

The main theoretical contributions of the thesis are the design of static analyses for
collecting “interesting” information about CLP(R;,) programs, and the statement of an
admissibility criterion and test for reordering CLP(Ry;,) programs. These theoretical
results enable us to design and implement an optimizing compiler for CLP (R;;,), which
performs provably correct optimizations and which shows that substantial performance

improvements may be obtained by performing optimizations.

The rest of this chapter is organized as follows. Section 1.1 gives an overview of con-
straint logic programming and the language CLP(R;;,) in particular. Section 1.2 gives
two examples that illustrate the basic principles underlying the use of CLP languages.
The CLP(RL;,) runtime system is presented in Section 1.3. Section 1.4 motivates the
optimization of CLP programs, while Section 1.5 presents the proposed optimizations
for CLP(R;;n) by means of a complete worked example. Section 1.6 gives an informal
review of the components used to achieve the program analysis necessary to automate
the optimizations. Section 1.7 contains an informal review of how the compiler performs
the optimizations automatically, given the results of program analysis. Section 1.8 sum-
marizes the contributions of this thesis. The road map for the rest of the thesis is laid

out in Section 1.9.

N



Program ::= Clauses

Clauses ::= ¢ |Clause Clauses
Clause ::= Head :- Body.

Head $:=  Atom

Goal 1:=  Atom

Body ::=  true | OneBody, Body
OneBody ::= Goal | Constraint

Figure 1.1: Outline of the Syntax of CLP Ririn).
1.1 Overview of Constraint Logic Programming

In this section, we give an overview of constraint logic programmming, and of CLP (R.;,,)
in particular. The presentation is kept as informal as possible. Greater details can be

found in [21, 22].

Syntax CLP(Rp;,) programs have essentially the same syntax as Prolog, the main
difference being that CLP(R;,) programs also allow linear constraints over real numbers
to appear in the bodies of clauses.  Figure 1.1 shows an outline of the syntax of a

CLP(RLin) program.

A CLP(Rpin) program is a (possibly empty) sequence of clauses in which each clause
has a head and a body. A head is an atom, i.e. an expression of the form p(t,,...,t,)
where t;,...,t, are terms. A term is a variable (e.g. X) or a function symbol of arity
n applied to n terms (e.g. £(X,g(Y))). A body is either true (the empty body), a
goal (procedure call), a constraint (constraint solving) or a sequence of these. In the
following, variables are denoted by uppercase letters, constraints by the letter ¢, terms
by letters t, s, atoms by letters H, B and goals by the letter G, all possibly subscripted

or superscripted. The constraints of CLP(R.;,) can be specified as follows:

Definition 1 Let ¢; and ¢, be two linear expressions constructed with variables, rational
numbers, and the operations +, *, — and /- A constraint is a relation ¢; & £, with
66 {>721=7¢1S1<}'

CLP(RLin) is similar to the numerical part of Prolog IIT [8] and is closely related to
CLP(R) [22]. To illustrate the semantics of CLP (RLin), we use the simple program
depicted in Figure 1.2.



p(X,Y) :- q(X,Y,2) :- r(X,Y) :-

X >2Z+ 3, r(X,Y). X<Y+ 2.
Y < 2, q(X,Y,2) :-
q(X,Y,2). Z>Y+ 2.

Figure 1.2: A Simple CLP(R;;,) Program.

Declarative Semantics CLP programs can be read both declaratively and opera-
tionally. Consider a clause Head :- Body. such that the elements of Body (goals and

constraints) are by,...,b,. Read declaratively, this clause is an implication
“H is true if b, is true &...& b,, is true”

where all the variables of the clause are universally quantified. For example, the declar-

ative reading of the clause for p in the above program would be

“P(X,Y) is trueif X > Z + 3 is true & Y < Z istrue & q(X,Y,2) is true.”

A query is a clause without a head (i-e. just a body). Consider a query :- Body.
such that the elements of Body (goals and constraints) are by, ..., b,. This query has an
answer if

“by is true &...& b, is true”

where all the variables of the query are existentially quantified. For example, the query
- Y < Z, o(X,Y).

has an answer if there exist X,Y,Z such that
“Y¥ < Z is true & r(X,Y)is true.”

An answer to a query is an assigment of values to the variables that verifies the above
existential formula. For example, X = 2, Y = 3, Z = 4 is an answer to the above
query. Clearly, there are more answers to the above query, in fact there are infinitely
many answers. To represent these answers finitely, a CLP query produces a satisfiable
constraint store as the answer to a query. For example, the above query would produce

the answer Y < Z, X < Y + 2.

Operational Semantics The operational semantics of the CLP scheme is a simple
generalization of the semantics of logic programming, at least from a conceptual stand-

point. It can be described as a goal-directed derivation procedure from the initial goal




using the program clauses. A computation state is best described by

L. a goal part (i.e., the conjunction of goals to be solved)

2. a constraint store (i.e., the set of constraints accumulated so far).

Initially the constraint store is empty and the goal part is the initial goal. In the following,
computation states are denoted by pairs ( G O ), where G is the goal part and 6 the
constraint store. € denotes an empty goal part or constraint store. An example of a

computation state occurring in the above program is
(q(X,Y,2) OX>Z+3 & ¥<Z).

A computation step (i.e., the transition from one computation state to another) can be
of two types depending upon the selection of an atom or of a constraint in the goal part.

In the first case, a computation step amounts to

1. selecting an atom in the goal part;

[oV]

- finding a clause that can be used to resolve the atom; this clause must have the
same predicate symbol as the atom, and the equality constraints between the goal

and head arguments must be consistent with the constraint store;

3. defining the new computation state as the old one, where the selected atom has
been replaced by the body of the clause and the equality constraints have been

added to the constraint store.
In the second case, a computation step amounts to

L. selecting a constraint in the goal part which is consistent with the constraint store;

2. defining the new computation state as the old one where the selected constraint

has been removed from the goal part and added to the constraint store.

For instance, given a computation state
(q(X,Y,2) 0 X>2+3 & Y<2Z)

a computation step can be performed using clause 2 of q to obtain a new computation

state

(2>Y+20X>Z2+3 & Y<2Z ).



Another computation step leads to the configuration
(€OX2Z4+3 & Y<Z & Z>Y+2 ),
since the resulting constraint store is satisfiable.

As should be clear, the basic operation of the language amounts to deciding the
satisfiability of a conjunction of constraints. Note also that each computation state has
a satisfiable constraint store. This property is exploited inside CLP languages to avoid
solving the satisfiability problem from scratch at each step. Instead, CLP languages
keep a solved form of the constraints and transform the existing solution into a solution

including the new constraints. Hence the constraint solver is made incremental.

A computation state is terminal if the goal part is empty or no clause can be applied
to the selected atom to produce a new computation state or if the selected constraint
cannot be satisfied with the constraint store. A computation is simply a sequence of
computation steps that either ends in a terminal computation state or diverges. A finite
computation is successful if the final computation state has an empty goal, and fails

otherwise.

To illustrate computations in a CLP language, consider our simple program again.

The program has only one successful computation, namely

(p(X,Y,2)0¢)

{ (selecting the first constraint)

d (selecting the last constraint)
(q(X,Y,2) OX>Z+3 & Y<Z)

! (using clause 2 of ¢q)
(Z2Y+20X>2+3 & Y<Z )

{ (selecting the constraint)

(€O X2Z24+3 & YLZ & Z>Y+2 )
The program also has one failed computation:

(pX,Y,2) O¢)

d (selecting the first constraint)

l (selecting the last constraint)
(q(X,Y,2) OX>Z4+3 & ¥<Z)



l (using clause 1 of q)
(r(X,Y) OX>Z43 & Y<Z)
| (using clause 1 of r)

v

(X<Y+2 0 X>243 & Y<2Z )

The last computation state is terminal since the conjunction of constraints
X>74+3 & Y<Z & X<Y+2
is not satisfiable.

Note that the results of the computation are the constraint stores of the successful
computations (possibly projected on the query variables). For example, an answer to

the query
:- p(X,Y).

is the projection of X>Z+3 & Y<Z & Z>Y+2 on the variables X and Y, giving the
constraint store X>Y-5.

Also, nothing has been said so far on the strategy used to explore the space of
computations. Most CLP languages use a computation model similar to Prolog: atoms
are selected from left to right in the clauses; clauses are tried in textual order; and the
search space is explored in a depth-first manner with chronological backtracking in case
of failures. For instance, on the simple program, a CLP language typically uses clause
(1) for p, then clause (1) for q, and finally encounters a failure when trying to solve r.

Execution then backtracks to clause (2) of q, giving a successful computation.

In order to summarize the information given in this section informally, it is useful
to refer to the computation tree for the query :- p(X,Y) which is given in Figure 1.3.
The nodes of the computation tree represent various computation states (with the root
node representing the query), while the edges of the tree represent computation steps.
Leaf nodes of the tree represent terminal computation states, while paths beginning
at the root node represent computations. The strategy used to explore the space of
computations is reflected in the left to right ordering of the children of a node. The tree

is also annotated to indicate the various clauses used and the results of the computations.

Useful Features of CLP Languages As mentioned previously, CLP languages are
useful for developing solutions to a variety of combinatorial search problems. In par-

ticular, multi-directionality of programs and nondeterminism combined with constraint

~1



(pX,Y)Oe€)

|

(X>2+3 & Y<Z & q(X,Y,2) O ¢)
clause 1 of p

(Y<Z & q(X,Y,2) O X>Z+3)

(q(X,Y,2) OX>Z+3 & Y<Z)
clause 1 of q clause 2 of q

(r(X,Y) OX>Z+3 & Y<Z ) (Z>Y+20X>243 & Y<Z)

clause 1 of rl l
(X<Y+2 D0 X>Z2+3 & Y<2Z) (€O X>Z4+3 & Y<Z & 2>Y+2)

Fails Successful, answer X > Y + 5

Figure 1.3: Sample Computation Tree

solving are features that enable rapid development of solutions to many problems. Multi-
directionality is a feature borrowed from logic programming. Informally, it means that
an argument to a predicate may be either input or output depending upon the context
of its use. As a result, the same program can be used in a variety of ways without any
modifications. The mortgage example in the next section exemplifies the advantages
of multi-directionality. Nondeterminism is also borrowed from logic programming and
is manifested by multiple clauses in the definition of predicates. As described in the
previous section, it is simulated by systematically searching the space of computations.
For the programmer, nondeterminism removes the burden of programming a search for
the solution. Incremental constraint solving is the basic operation of CLP, and is a
generalization of unification in logic programming, which can be seen as a special case
of constraint solving. For programmers, having constraint solving as a basic operation
of the language removes the burden of programming constraint-solving techniques, and
enables them to focus on modeling the problem with appropriate constraints. The com-
bination of nondeterminism and constraint solving is a useful programming tool and is

well illustrated by the periodic sequence example in the next section.



mg(P,0,R,P).
mg(P,T,R,B) :- T > 0, P >0, mg(P*1.01 - R,T-1,R,B).

Figure 1.4: Mortgage Program.
1.2 Motivating Examples

In order to illustrate the basic principles underlying the use of CLP languages, we shall

present a couple of more complicated CLP(R.;,) programs.

Mortgage The first program is the mortgage example [22], which relates various pa-
rameters in a mortgage computation. Figure 1.4 presents a CLP prograimn for the mort-
gage example. The predicate mg relates the principal (P), number of monthly installments
(T), monthly repayment (R) and final balance (B) of a mortgage that has a monthly in-
terest rate of 1%. The most interesting feature of this progam is its multi-directionality.

For example, the query
:~ mg(P,4,200,0).

attempts to compute the principal of a mortgage having 4 installments of 200 units each,
with a final balance of 0. The answer is P = 780.39. The program can also be used to

compute the monthly repayment given the principal. For example, the query
:- mg(800,4,R,0).

gives the answer R = 205.02. An even more interesting query is to find out the re-
payments such that each repayment is less than 200 units and there are at most 6

installments. This is given by
:- R <200, T L 6, mg(800,T,R,0).

and gives the answers T = 5, R = 164.83 and T = 6, R = 138.04. In general, the
predicate can be used to compute the (complicated) relations between any of the pa-
rameters in the mortgage computation. The predicate mg can be used in a multitude of

ways because of the general constraint solver embedded in the language.



invalidate :-
[X1,X2] # [X10,X11], sequence([X11,X10,X9,X8,X7,X6,X5,X4,X3,X2,X1]).

sequence([X2,X1]).

sequence([XiPlus2,XiPlus1,Xi{Xs]) :-
abs(XiPlus1,XiPlusia), XiPlus2 = XiPlusia - Xi,
sequence([XiPlus1,XilXs]).

abs(X,X) :- X > 0.
abs(X,-X) :- X < 0.

Figure 1.5: Periodic Sequence Program.

Periodic Sequence The second program (S] is a mathematical problem which high-
lights many of the functionalities of CLP (Rrin). The problem involves an infinite se-

quence of numbers r,.z,.... defined by
Tivz ={Tis1 | —2; (i>1)

where r, and z, are arbitrary real numbers. The problem consists of showing that
the sequence is always periodic and has a period of 9 or. in other words. that the se
quences ry.ra....and Ijg.Iy;.... are alwavs identical. The problem can be solved
indirectly by using the following idea: since the two sequences are completely deter-
mined as soon as their first two elements are fixed. it is sufficient to show that any
sequence ry,Ia.....Iyg. Iy implies ry = ryg and ry = ry;. The program then consists
in searching for a solution such that (z1.I2) # {(z10.211). The absence of solutions proves
the conjecture. The complete program is shown in Figure 1.5. The predicate sequence
defines the sequence in reverse order. It is defined recursively and uses the predicate
abs to compute the absolute value. abs is nondeterministic (since the values are not
known) and first enforces the constraint that its argument is positive. On backrtracking.
abs enforces the constraint that its argument is strictly negarive. Note that the program
never assigns any value to the variables. Yet the program fails in all branches of the
search tree thanks to the complete constraint solver and its ability to deal exactly with

strict inequalities.
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1.3 The CLP(R;;,) Runtime System

The implementation of CLP(Ry;,) is organized around three modules, the engine, the
interface, and the constraint system, with a top-down communication pattern. The en-
gine is responsible for the control part of the system {e.g. clause and goal selection) and
is a traditional WAM based Prolog system. The constraint system is responsible for con-
straint solving. The interface is responsible for communication between the engine and
constraint solver. It converts the constraints encountered by the engine during execution
from the engine representation (i.e. using tagged values to represent variables) into their
solver representation (i.e. using natural numbers to identify variables), and sends them
to the constraint solver. It receives a Boolean return value from the constraint solver
that indicates the success or failure of the constraint solving, and communicates the re-
turn value back to the engine. In addition, the interface solves the simplest constraints
by itself, without communicating with the solver, and returns a Boolean value to the
engine. The interface also receives choice point instructions from the engine (try, retry,
and trust) which it communicates to the constraint solver in order that the constraint
solver can maintain its own data structures and choice point stacks for supporting back-
tracking. Design decisions similar in spirit were adopted in CLP(R) [22]. More details
about the CLP(R.;,) runtime system are available in [49]. The overall organization of

the runtime system into various modules is illustrated in F igure 1.6.

1.3.1 The Engine

In the following, we assume that linear constraints t1 6 ty where § € {<,<,=,#,2>,>)
are rewritten into the form 0 § ¢t by an earlier phase of the compiler. In the engine,
the code for executing a linear constraint 0 § ¢ is a sequence of instructions that gives
the structure of the term ¢ (i.e. the coefficients of the variables and the constant term),
followed by an instruction that gives the type of constraint §. For example, the sequence
of instructions generated for the constraint 4X: +5X; = 3X, +2X3 + 4 in the source

program is

ADD_VARIABLE -1 X
ADD_VARIABLE -5 X,
ADD_VARIABLE 2 X3
ADD_CONSTANT 4
CONSTRAINT._EQUAL

11
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Figure 1.6: The CLP(R;,) Runtime System.

The variables in the engine are tagged to indicate whether they occur in the constraint

solver or not.

1.3.2 The Interface

The interface receives the linear term constructed by the engine (using ADD_VARIABLE and
ADD_CONSTANT), converts it into a representation suitable for the solver and sends it to
the solver along with the type of constraint (eg. CONSTRAINT EQUAL). The interface first
simplifies some of the constraints using the variable binding information of the engine.
For example, when executing ADD_VARIABLE -5 Xo, if the tag of X, indicates that it is
an integer or rational, the value of X, (eg. 1) is used by the interface to simplify the
term to —1X; 42X, — 1. In addition, if after receiving the linear term from the engine,

it is found to consist entirely of constants and ground variables, a simple test can be

12



performed in the interface itself to see if the constraint is satisfiable. For example in
the above linear term, if Xy, X, and X3 are bound to 2,1 and 3 respecively, then the
interface only needs to check if (-1 x2-5X1+2x34+4 = 0). In the case of equations,
they can also be simplified to assignments if one of the variables is unconstrained (does
not occur in the constraint solver) and all the other variables are ground. For example, if
X2 and X3 have ground values and X] is a free variable (i.e. not constrained), then the
equation above becomes an assignment X; := ~5X, +2X3+4. i.e. the linear expression

on the R.H.S. can be evaluated and assigned to X.

1.3.3 The Constraint Solver

The constraint solver and solved form are described in detail in [49]. The constraint
solver receives constraints from the interface and updates its accumulated constraint
store. Each time a constraint is added to the solver, it returns a Boolean value indi-
cating whether the constraint was satisfiable in conjunction with the accumulated store.
The constraint solver is organized into two modules, the Gauss (G) subsystem, and the
Simplex (S) subsystem. Briefly, the Gauss subsystem is used for solving equations, while
the Simplex subsystem is used for solving inequalities. The solved form in the Gauss
subsystem consists of isolating one variable per equation (called the basic variable) and
eliminating it from the rest of the store. The solved form in the Simplex subsystem is
similar, but it also imposes a lexicographic requirement [47] on the equations. In both
subsystems disequations are fully dereferenced (i.e the basic variables are eliminated
from them) and required to be different from 0 # 0. It can be proved that a system of
constraints over R;;, is satisfiable if and only if it can be expressed in a solved form.
Therefore, the constraint solving algorithms for CLP(R[;.) consist of maintaining the
accumulated store in a solved form incrementally. The organization of the constraint
solver into two modules is illustrated in Figure 1.7. More details about the constraint

solver are available in [49].

1.4 The Challenge of CLP Optimization

While CLP languages greatly reduce the development time of several classes of programs
(especially programs for combinatorial search problems), this reduction in development
time may come at the expense of some run-time efficiency. This is because constraint

solving is an expensive operation in general and the generic constraint solver used in a
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Figure 1.7: The CLP(R.;,) Constraint Solver.

CLP language may be unable to exploit the features of a specific program, unlike an
imperative program with custom constraint-handling code. The main challenge of CLP
optimization is to bridge the gap in efficiency between CLP and imperative language
implementations. Improving the efficiency of CLP programs should encourage more

widespread use of CLP in the real world.

Our approach to CLP optimization is similar to the 3R’s methodology proposed by
Marriott and Stuckey [36] for CLP(R). The approach which generalizes similar method-
ologies for logic programming, consists of refining constraints into tests and assignments,
removing redundant constraints (i.e., constraints which are implied by the constraint
store), and reordering constraints to maximize refinements and removals. The optimiza-
tions are specific to the domain ® of real constraints but similar optimizations can be
applied to other domains as well. Reordering is the most delicate optimization, since
the compiler must make sure that the resulting program preserves the same search tree
for the programs. This in turn guarantees to preserve the termination of the resulting
program and makes sure that the “optimized” program can never be significantly slower

than the unoptimized program.
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The aim of this thesis is to present the design and implementation of the first op-
timizing compiler for CLP (Rz;,) implementing refinements, reordering, and removal of
redundant constraints. The optimizations are global in nature, and require information
about the macro properties of the program in order to be automated successfully. The
compiler (40,000 lines of C, including about 10,000 lines only for the optimizations), uses
abstract interpretation [10] to collect the information necessary to perform the optimiza-
tions safely. In particular, it uses abstract interpretation algorithms derived from the
generic abstract interpretation system GAIA, [29] instantiated to the following abstract
domains: Prop [34, 52] to deduce information on fixed variables, and LSign [37, 43]
(or LInt) to deduce unconstrained variables, redundant constraints, and satisfiable con-

straint stores.

1.5 Overview of the Compiler Optimizations

The high-level optimizations performed by our compiler may be viewed as source to
source transformations, transforming the source program into another (richer) source
program which may contain, not only constraints, but also assignments and tests as
basic operations. An assignment is of the form Var := Exp which, when executed,
assumes that Var is an unconstrained variable (i.e., it does not occur in the accumulated
constraint store) while Exp is a fixed expression (i.e., an expression whose variables are
fixed to a value). In the runtime model of the language, we must have for assignments
that Var does not occur in the constraint store, and all variables in the linear expression
Exp must be bound to a value in the WAM engine.! This means that the right side
expression can be evaluated without using the constraint solver and the evaulated value
can be bound to the left side variable. A test is of the form Expl 7?6 Exp2, where
d € {=,<,<,>,2,#} and where Expl and Exp2 are fixed expressions. The compiler is

organized in four main phases: normalizing, reordering, removal, and refinement.

To illustrate the various phases, we consider the mortgage example presented ear-
lier. This program shall constitute the running example to illustrate various concepts
throughout the thesis. The predicate mg(P,T,R,B) relates a mortgage’s principal (P),
number of installments (T), monthly repayment (R) and final balance (B) as follows:

' Our implementation does not do this exactly. [t is possible for variables that have their value fixed
in the constraint solver to appear on the right side of assignments. This requires us to look up the fixed
value from the constraint solver in that case. It is possible to eliminate this requirement by doing a more
accurate analysis for assignments.

15



mg(P,0,R,P).
mg(P,T,R,B) :- T > 0, P > 0, mg(P*1.01 - R,T-1,R,B).

The program is multi-directional and can be used in various modes. We illustrate the
optimizations when mg is used with P and R fixed (i.e., they are constrained to take
a value) and T and B are unconstrained. Note that the various uses of a predicate in
a program can be obtained automatically by abstract interpretation? and that several

versions of the program can be generated when the predicate is used in multiple ways.

The first phase of our compiler consists of normalizing the program to make con-
straints explicit in order to ease analysis and optimization. On our running example,

this phase produces the program

mg(P,T,R,B) :- T =0, B = P.
mg(P,T,R,B) -T>0,P >0, P1 = Px1.01 - R, T1=T-1, mg(Pl,Tl,R,B).

The second phase of our compiler tries to move constraints to a place in the clause
where, roughly speaking, they can be specialized into tests or into assignments (a test or
assignment can be implemented so that only variable bindings in the interface or WAM
are utilized, rather than the constraint solver). More precisely, an inequality is moved to
a place where all its variables are fixed at runtime, while an equation is moved to a place
where all its variables or all its variables but one are fixed at runtime. In reordering goals
in a clause, the compiler should make sure that the search space explored by the program
is preserved in order to guarantee termination and to avoid significant slowdowns.3 On
our running example, our compiler postpones T > 0 in the second clause until after the
recursive call. Informally speaking, this is possible due to the fact that T > 0 is always
consistent with the input constraint store for mg and every intermediate constraint store
that occurs in the execution of the program until after the recursive call to mg. Hence,
T > 0 cannot prune the search space. Our compiler proves this automatically by the
LSign analysis. Note also that, when postponed until after the recursive cal, T > 0
may be specialized into a test, since T is fixed. Similarly, Tt = T - 1 can be moved
until after the recursive call, since T is now unconstrained before the recursive call and

hence it cannot prune the search space. The resulting program becomes:

2This assumes of course that users specify the top-level input pattern which, roughly speaking, spec-
ifies which arguments are results and which are data.

*It is extremely difficult to guarantee that the “optimized” program is at least as efficient as the

unoptimized program, sirce the constraint solver (based on the simplex algorithm) may be sensitive to
the ordering of the constraints. No case of slowdowns was observed on our benchmarks however.
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mg(P,T,R,B) :~ T =0, B = P.
mg(P,T,R,B) :- P > 0, P1 = P#1.01 - R, mg(P1,T1,R,B), TL =T -1, T > 0.

It is important to note that there may be several places where a constraint can be moved.

Our compiler uses simple heuristics to decide where to attempt to move a constraint.

The third phase of the compiler consists of detecting redundant constraints (i.e.,
constraints implied by the constraint store each time they are selected). These constraints
can be removed, since they do not add information to the constraint store. In our
running example, this is the case of T > 0 after reordering, since informally speaking,
the second argument is assigned to zero in the first clause and incremented by one in the
recursive clause.® Once again, this fact can be proven automatically through abstract

interpretation using the domain LSign. The resulting program is as follows:

mg(P,T,R,B) :- T =0, B = P.
mg(P,T,R,B) :- P > 0, P1 = P*1.01 - R, mg(P1,T1,R,B), TL = T - 1.

The fourth phase of the compiler specializes constraints into tests and assignments
whenever possible. A constraint can be specialized into a test if the compiler shows that,
at runtime, all its variables are fixed. An equation Var = Exp can be transformed into
an assignment if the compiler shows that, at runtime, Var is unconstrained and Exp is
a fixed expression. In our running example, it can be shown that, after reordering and
removal, T and B are unconstrained in all calls to mg. Also P and R are constrained to take
a value in all calls to mg. As a consequence, the constraints in the first clause becomes

assignments, while the second clause has two assignments and a test.

mg(P,T,R,B) :- T := 0, B := P.
mg(P,T,R,B) = P ?> 0, P1 := P¥1.01 - R, mg(Pi,Tl,R,B), T :=T1 + 1.

It is interesting to observe at this point that the resulting program does not invoke the
constraint solver. It is essentially a Prolog program enhanced with a rational arithmetic
component. As a consequence, traditional Prolog transformations and optimizations can
now be applied. For instance, in our running example, the techniques of [12] can be used
to transform our final program into a tail-recursive program. Similarly, efficient instruc-
tions can be generated for the tests and assignments [23]. These additional optimizations

are orthogonal to the contents of this thesis and are not discussed here.

“Note that this constraint is useful for other uses of the program.
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The overall organization of the compiler into various phases is illustrated in Fig-

ure 1.8.

1.6 Program Analysis

Our compiler performs a series of analyses to infer the runtime properties necessary to
carry out the optimizations. It uses abstract interpretation [10], a systematic method to
develop static analyses. In particular, the compiler uses algorithms based on the generic
abstract interpretation system GAIA [29], instantiated to the following domains: Prop
to determine fixed variables and LSign (or LInt) to determine unconstrained variables,
redundant constraints and satisfiable constraint stores. This section contains an informal

review of these components.

1.6.1 The Abstract Interpretation Framework

The abstract interpretation framework used by the compiler is a natural extension to
CLP of the logic programming framework in [29]. It follows the traditional approach to

abstract interpretation [10].

As is traditional in abstract interpretation, the starting point of the analysis is a col-
lecting semantics for the programming language. The concrete semantics is a collecting
fixpoint semantics which captures the top-down execution of constraint logic programs
using a left-to-right computation rule and which ignores the clause selection rule. The
semantics manipulates sets of constraint stores, i.e. multisets of linear constraints. Two
main operations are performed on constraint stores: addition of a constraint to a. con-
straint store and variable elimination. The semantics associates with each predicate
symbol p in the program a set of tuples of the form (Oiny P, (Oout, Oint)) which can be

interpreted as follows:

for every computation beginning at (p(zy, .. -yZn) O 6;,), where 6;, € O;,,:

1. for every terminal computation state (€ O bope): bout f{z1,...cn} € Oout;

2. for every intermediate computation state (G O i) i Hztronzn} €
@int-

Intuitively, @,y is the set of all possible output constraint stores (projected on the initial

query variables) when p is executed with any store from Oin as the input. O, is the set
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of all possible intermediate constraint stores (projected on the initial query variables), i.e.
accumulated constraint store for any intermediate computation state, when p is executed
with any store from ©;, as the input. The concrete semantics is similar to that for logic
programs in [29], except that it has a component for the intermediate descriptions in

addition to the output descriptions.

The second step of the methodology is the abstraction of the concrete semantics. The
abstract semantics consists in abstracting a set of constraint stores by a single abstract
store, i.e. an abstract store represents a set of constraint stores. As a consequence, the
abstract semantics associates with each predicate symbol p a set of tuples of the form

(Bins Py {Bout, Bint)) which can be read informally as follows:

for every computation beginning at (p(z;,...,z,) O 0in), where 6;, is a

constraint store satisfying the property expressed by Bin:

1. for every terminal computation state (€ O Oout): oue /{1, nzn} 1S 2 CON-

straint store that satisfies the property expressed by Bout;

2. for every intermediate computation state (G O bine): Oine /{z1,emzn} 1S 2

constraint store that satisfies the property expressed by Bin;.

Intuitively, fou: represents all the constraint stores that can be the output, and B;p,
represents all the intermediate constraint stores. when p is executed with any store
satisfying (i, as the input. fS;, is called an input store of p while £, is called an
output store and B;y; is called an intermediate store. In this approach, the link between
the abstract and the concrete domain is given by a monotone concretization function.
The abstract semantics assumes a number of operations on abstract stores, in particular
addition of a constraint, projection, and upper bound. The first two operations are
consistent approximations of the corresponding concrete operations. The upper bound

operation is a consistent abstraction of union of sets of constraint stores.

The last step of the methodology consists of computing the least fixpoint or a post-
fixpoint of the abstract semantics using an algorithm such as GAIA [29] or PLAT [40].
Both of these are top-down algorithms computing a small, but sufficient, subset of least

fixpoint (or of a postfixpoint) necessary to answer a user query.

From the abstract interpretation results, our optimizing compiler uses basically three
pieces of information for each predicate p in the program. First, it uses the output store
Bout describing the constraint stores obtained by running p on an empty constraint

store. This output store is called the output description of p. Second, it collects all the

20



input abstract stores §;, encountered when analyzing the program for the query. These
abstract stores, which describe all possible constraint stores than can be encountered
when p is called, are summarized into a single abstract store that we call the input
description of p. This input description of course characterizes all input stores for p
encountered at runtime. Finally, it uses the intermediate store Bine describing all the
intermediate constraint stores that can occur during the execution of p on an empty
constraint store. This store is called the intermediate description of p. The fact that
these three descriptions suffice to produce good results comes from the nature of the

abstract domains.

1.6.2 The Domains LSign and LInt

The domain LSign [37, 43] is fundamental for the reordering and redundancy phases
and for detecting unconstrained variables in the refinement phase. Its two critical ideas
are the replacement of coefficients by their signs and the association of multiplicity
information with constraints. A sign is an element of {0,8.8, T}, where @ denotes the
(strictly) positive real numbers, © denotes the (strictly) negative real numbers, 0 denotes
zero, and T denotes all real numbers. An abstract constraint is an expression of the form
So op Y- siz; where s; is a sign and op is a relational operator (eg., <). An abstract
constraint denotes the set of constraints obtained by replacing the signs by coefficients

in their denotations.

Example 1 The abstract constraint @& = ©z, + Tz, represents both the constraint

3= —z1 4+ 1, and 3 = —z; — z, but not the constraint 3 = Ty — z9.

The second key concept is the notion of an abstract constraint with multiplicity which
represents a multiset of constraints. The multiplicity information specifies the size of
the multiset. We consider three multiplicities, One, ZeroOrOne, and Any, which are
used respectively to represent a multiset of size 1, a multiset of size 0 or 1, or a mul-
tiset of arbitrary size. An abstract constraint with multiplicity is the association of an
abstract constraint and a multiplicity. It denotes sets of abstract stores (i-e., multiset of

constraints).

Example 2 The abstract constraint with multiplicity (@ = 6z, + Tz,, One) represents
only multisets of size 1, e.g., {3 = —z, +z2}. (B =06z,+Tz,, Any) represents multisets

of any size, e.g., 0, {3 = —z; +z,} and 8=-z14+22,3= -z, —z,}.
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An abstract store is a set of abstract constraints with multiplicities. An abstract store
obviously denotes a set of constraint stores. An LSign description is a finite set of ab-
stract stores. Note that it would be sufficient to use abstract stores as LSign descriptions
but the use of their powerset as abstract domain enhances precision significantly in many

examples.

Example 3 The abstract store {(® = Sz, + Tzy,0ne) , (& = Sz, + FzJ, Any)}
represents constraint stores with at least one constraint, e.g., {3 = —z; + 1z, , 2 =

-z + 3.’22}.

Note that abstract operations on this domain are non-trivial and use abstract versions of
Fourier and Gaussian elimination. The details are presented later in this thesis and also
in [37, 43]. We now illustrate the domain LSign on our running example. The top-level

query, where P and R are fixed, is associated with the abstract store
{(T = ©P,0ne), (T = @R, One)}

stating that P and R are fixed to a real number. The output description for program mg

is as follows:

{
{(0 = @©T, One), (0 = &P + B, One)},
{(0 < @T, One), (& = T, One), (0 < §P, One), (0 = SP + SR + OB, One)},
{(0 < ©T, One), (& = T, One), (0 < &P, One),
(0 = ®P 4+ SR + OB, One), (0 < SR + @B, One), (0 < @R + BB, Any)}

}

The first abstract store represents the results of the first clause. It requires the time
period to be zero and it imposes the constraint linking the remaining variables. The
second abstract store is the result of the second clause, when the recursive call uses the
first clause once. The third abstract store is the result of the second clause when the
recursive call uses the second clause at least once (and finitely often) and the first clause

once. The input description for mg, which captures all constraint stores used as input
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for mg, is as follows:

{

{{T = @P, One), (T = &R, One)},

{(T = @R, One), (& < @T, One), (T = @GP + SR, One)},

{(T = ©R,One), (& < @T, One), (© < PT, Any),

(T < ©R,0ne), (T < &R, Any), (T = P + @R, One)}
}

It contains of course the query but also many other abstract stores which characterize
constraint stores occurring at runtime as input to mg. For instance, the second abstract
store captures the stores encountered for the first recursive call to mg. The intermediate
description for mg, which captures all the stores that can occur during a computation

beginning with the initial computation state (mg(P, T,R,B) O ¢) is as follows:

{

{}

{(0 = &T, One)},

{(0 < ®T, One)}

{(0 < ©T, 0ne), (0 < ®P,One)}

{{0 < @T, One), (® < ST, One), (0 < &P, One)}

{(0 < &T, One), (& = ST, One), (0 < GP, One), (0 < GP + SR, One), (0 < &P + SR, Any)}

{(0 < &©T, One), (@ < T, One), (G < ST, Any),

(0 < @P,One), (0 < &P + SR, One), (0 < ®P + SR, Any)}

{(0 = @T, One), (0 = &P + ©B, One)},

{{(0 < ©T, One), (® = @T, One), (0 < GP, One), (0 = GP + SR + SB, One)},

{{0 < &T, One), (& = ST, One), (0 < &P, One),

(0 = ®P + SR + ©B, One), (0 < SR + ©B, One), (0 < GR + @B, Any)}
}

The first abstract store represents the state when entering the predicate mg, i.e. with no
accumulated constraints. The last three abstract stores represent the state when leaving
the predicate mg, i.e. the output description. The other stores represent various paossible
intermediate states. The second and third stores represent the state after executing the
first constraint of the first and second clause respectively. The fourth store represents
the state after executing the first two constraints of the second clause. The fifth, sixth
and seventh abstract stores represent intermediate stores that can occur inside various
recursive calls to the predicate mg. As can be seen, even a fairly simple program can

have a very complicated description of all its intermediate states.
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The domain LInt generalizes LSign by abstracting coefficients by intervals instead
of signs. This enables a more precise analysis of programs in many cases. This will be
discussed in greater detail later in the thesis. In general, we continue the presentation

only with the domain LSign, for simplicity.

1.6.3 The Domain Prop

The domain Prop [35, 52] is an effective domain to compute groundness information for
Prolog. It can be extended easily to infer fixed variables in CLP (e.g. [17]). Its key idea is
to represent the information through a Boolean formula. Informally speaking, a formula
Z ¢ y means that, whenever z is fixed, y is fixed and vice-versa. A formula z Ay — 2
means that, whenever z and y are fixed, z is fixed as well. A formula z means that z is
fixed. An equation z = y is abstracted by a formula z ¢ Y, and an equation ag = a;z,
is abstracted by a formula z;, while an equation ag = a1z +...+a,z, is abstracted by

a set of formulas
Ty A...AZp| = T,

IN. .. ANZp 2 AT = Tpy,

2 A AT, = 2.
Inequalities are abstracted by 1, i.e., they are not used to infer fixed variables. We now
illustrate the domain Prop on our running example. The output description for mg is the
Boolean formula

TA(RAB—P)A(PAR —B)
It states that T has a fixed value and specifies the relationship between the other variables.

The input description for mg is the Boolean formula
PAR

stating that all calls to mg have fixed values for P and R. The intermediate description
for mg is just the Boolean formula 1, indicating that it cannot be deduced by Prop
as to whether any of the variables take a fixed value for any arbitrary intermediate

computation state while executing mg with an initially empty constraint store.

1.7 Program Transformations

In this section, we discuss informally how the compiler performs the reordering, removal,

and refinement optimizations, given the availability of the program analysis information
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discussed in the previous section.

1.7.1 Reordering

Reordering is the most complicated phase of the compiler. This phase performs LSign
and Prop analyses on the normalized program. The Prop analysis is necessary to identify
where to move constraints, while the LSign analysis is needed to determine if the move is
acceptable. First of all, note that declaratively, reordering does not pose any problems,
because the original and reordered programs return the same answers. Therefore, to
understand when a reordering is possible, it is necessary to consider the operational

semantics. Consider a clause

P = g1y---1 95, ’\791'-1-11--'

and assume that the compiler is interested in moving constraint A after goal gi;+;. Con-
sider an execution of the clause, and let § be the accumulated constraint store at the
point just before the constraint A. Intuitively, it is acceptable to move A after g;4; if we
can guarantee that doing so does not increase the execution time substantially, as com-
pared to the original program. Qur approach is to guarantee that the original program
and the reordered programs have the same search space. This is true if the following two

criteria are met:

1. A does not prune the search space at the program point just after g;; and

2. A does not prune the search space inside the execution of Gis1

More precisely, if § is the accumulated constraint store at the program point just after

gi, it is acceptable to move A after g;;, if

1. 8 U {A} is satisfiable; and

2. for any intermediate computation state (G O 8;) of a computation starting at
(gi+1 0 8), 6; U {1} is satisfiable.

The second criterion subsumes the first, and so it is sufficient to verify the second criterion
alone. The reordering algorithm attempts to carry out the above proof obligation using
the LSign analysis. The analysis produces an LSign description that captures all the

constraint stores that can occur in the computation starting at (gi+; O 6), call this
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description ;. In order to understand how the proof obligation is verified in LSign, it is
instructive to first see how the corresponding property is verified in the concrete domain.

If 0; is a constraint store, checking if §; U {\} is satisfiable consists of the following steps:

1. Add A to ¢; in order to obtain §';

[

. Eliminate all variables from 6’ to produce 6, ;

3. Test if 6, is always satisfiable, i.e., if it contains only trivially satisfiable constraints

eg. 0 =0, ¢ < 0 where c is a non-positive number etc.
g ) p

If so, then 6; U {A} is satisfiable. Verifying the property in LSign is similar. The
only difference is that it is advantageous to first express the LSign description «; on
the variables of the constraint A, in order to make the information more explicit. This
increases the precision of the abstract test. Also it is only necessary to consider the
satisfiable stores in ;. As a consequence, it is useful to eliminate obvious sources of
inconsistencies from @, (e.g., all constraints without variables) to increase the precision

of the abstract test. The proof obligation in LSign is as follows.
0. Project a; on the variables of A and remove constraints without variables to obtain
Qp;

1. Add the abstraction of A (i.e., the constraint where the coefficients have been

replaced by signs) to «, in order to obtain «';

[SV]

. Eliminate all variables from &’ to produce a,:

3. Test if o, is always satisfiable, i.e., if it contains only constraints of the form & <0,

& < 0 etc.

We now illustrate this on our running example. Consider the normalized program

mg(P,T,R,B)

-T=0, B =P.
mg(P,T,R,B) :- T > 0, P

20, P1=P*1.01 -R, T1 =T - 1, mg(P1,T1,R,B).

and assume that the compiler tries to move constraint T > 0 after the recursive call.
This actually consists of a sequence of reorderings, the first of which attempts to move T
> 0 after the constraint P > 0. The first proof obligation consists of checking whether T

> 0 is always consistent with all the stores that can occur in a computation beginning
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at (P > 0 O 6), where 6 is any computation state that can occur just before T > 0.
These computation states can be captured by the abstract description ¢;, where a; =
@in U a2, aj, is the input store of mg depicted in Section 1.6.2, and a, is the abstract
description obtained by adding the constraint P > 0 to «in. When «; is projected on T,

and constraints without variables are removed, o; gives Qp:
{{ }, {{& < 8T, 0ne)}, {(6 < ©T,0ne), (6 < &T, Any)}}.

Adding the abstraction of the constraint T > 0 produces o'

{

{(0 < ®T, 0ne)},

{{© < ©T,0ne), (0 < ST, One)},

{(& < ©T, 0ne), (& < @T, Any), (0 < &T, One)}
}

All the stores in the concretization are obviously satisfiable, since the projection gives
us the empty set of constraints (i.e. & = { }). The next two reordering steps involve
moving T > O after the constraints P1L = P+1.01 - R and Tt = T - 1 and similar
proof obligations can be carried out. The final reordering step consists of moving T >
0 after the recursive call to mg. We demonstrate the proof obligation which verifies
that T > 0 does not prune the search space inside the recursive call to mg. The store
' in the proof obligation (representing all possible satisfiable intermediate computation

states that can occur in the recursive call to mg, projected on T) is

{
{},
{(© < ©T, 0ne), (& < &T, Any)},
{{® < @T, One), (& < &T, Any)},
{(& < ©T,0ne), (& < ST, Any), (D < T, One), (& < &T, Any)},
{(& = ©T, One)}
}

which can easily be seen to be consistent with T > 0.

1.7.2 Constraint Removal

This phase receives the reordered program and performs the LSign analysis on the re-
ordered program. Each constraint in each clause is then considered for constraint re-

moval. To understand when a constraint can be removed from the program, it is useful
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to review the runtime system of the language. Consider a clause

Db - 911"')gi3’\79i+11'-'

and assume that the compiler is interested in determining whether the constraint A can
be removed from the body of the clause. Consider an execution of the clause, and let 4
be the accumulated constraint store at the point just before . Before trying to add A
to the constraint store, the constraint solver first seeks to determine if A is redundant
w.r.t. the store 6; in that case, the constraint does not supply any new information and
so it need not be added to the store at all. The following actions are taken to determine

if A is redundant w.r.t. 4.

1. Simplify A using the equations of 6, i.e. project the non-basic variables of the store

from the constraint.

2. Test if the simplified constraint is trivially satisfiable (e.g. 0=0,c < 0 where cis

a negative number, etc.)

If so,then the constraint is redundant w.r.t. the store.

The constraint removal phase attempts to mimic this at compile time, using the LSign
analysis. The analysis produces an LSign description that represents all the constraint
stores § that can occur at the program point just before A; call this description a. As
before, it is advantageous to first express a on the variables of A so as increase the
precision of the abstract test. The following actions are taken to determine if \ is

redundant.

0. Project @ on the variables of A to obtain o;

1. Simplify the abstraction of A w.r.t. &/ by using the equations of o ;

o

Test if the simplified abstraction of A is trivially satisfiable (eg. 0=0,2 <0,

etc.).
Consider the running example again. The program at this stage is as follows:

mg(P,T,R,B) :- T =0, B = P.
mg(P,T,R,B) := P >0, P1 = Px1.01 - R, mg(Pl,Ti,R,B), T1 =T-1, T > 0.



The LSign analysis produces the description {{(® = @T, One)}} (when projected on the
variable T) for the program point just before the constraint T > 0. Using the equation
® = ©T to simplify the constraint T > 0 gives @ > 0 which is trivially satisfiable. This

shows that the constraint is redundant and can therefore be removed from the program.

1.7.3 Refinement Phase

After constraint removal, the refinement phase considers all constraints in all clauses
and specializes them whenever possible. It perform both a Prop analysis and an LSign
analysis on the program obtained after reordering and removal. The specialization of
inequalities only uses the results of Prop and produces a test whenever all variables
are fixed. The specialization of equations also uses the results of LSign to determine

unconstrained variables. Consider the running example during this phase:

mg(P,T,R,B) :~ T =0, B = P.
mg(P,T,R,B) := P > 0, P1 = P*1.01 - R, mg(P1,T1,R,B), T1 =T - 1.

Given the top level input pattern, the input description for all calls to mg can be computed

and it is given by P AR in the Prop domain and

{
{{T = ©P,0ne), (T = &R, 0ne)},
{{T = ®R, One), (T = GP + SR, One)},
{(T = @R, One), (T < OR,0ne), (T < &R, Any), (T = &P + @R, One) }
}
in the LSign domain. In the second clause, the first inequality is transformed into a
test, since P is fixed in the input description of mg. Since R is also fixed and since P1
is unconstrained, the second constraint can be transformed into an assignment. Similar

reasoning can be applied for the remaining constraints to obtain the final program:
mg(P,T,R,B) := T := 0, B := P.

mg(P,T,R,B) := P ?> 0, P1 := P%1.01 - R, mg(P1,T1,R,B), T := T1 + 1.

1.8 Summary of Contributions

The contributions of this thesis may be broadly divided into four categories. The first

two sets of results pertain to the theory underlying the abstract domains LSign and
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LInt, which are used in the analyses for reordering, refinement and removal. The third
set of results deals with the theory underlying the reordering optimization. The final set
of results is experimental, indicating that our approach to CLP optimization is promising

and can yield substantial speedups in program execution.

The Domain LSign The thesis contributes to the theory underlying the abstract
domain LSign [37, 43]. LSign is an elegant domain for analyzing CLP languages over
linear real constraints. Its key conceptual ideas are the abstraction of linear constraints
by replacing coefficients by signs and the use of annotations for preserving multiplicity
information on the constraints. Unfortunately, the original paper on LSign by Marriott
and Stuckey [37] has a number of theoretical drawbacks. In particular, the ordering
of abstract constraint stores given in [37] does not capture the intended meaning and
makes it imposssible to prove the consistency of the abstract operations of LSign. This
thesis reconsiders the domain LSign, and corrects and completes the results of (37]. Our
main contributions in this respect are summarized here. The thesis gives the definition
of ordering and a polynomial time algorithm for its implementation. It also gives an
upper bound operation for the domain, proposes a simpler and more precise algorithm
for abstract projection. and gives algorithms for satisfiability, redundancy and freeness
analyses using the domain. The thesis reports the first implementation of the domain

LSign.

The Domain LInt The thesis also proposes the domain LInt which is a generalization
of LSign, abstracting coefficients by intervals instead of signs. This enables a more
accurate analysis of programs in many cases. The main technical difficulty is that LInt
is an infinite domain unlike LSign, and therefore requires the definition of a widening
operator to guarantee the termination of analyses. The implementation of LInt indicates
that the domain can provide a practical analysis of programs and does not pay too much

penalty in time of analysis as compared to LSign.

The Reordering Optimization The thesis is the first work to formally specify what
it means for a reordering optimization on CLP programs to be correct and it is also the
first to present (with proof of correctness), a sufficient condition for performing correct
reordering optimizations of CLP(R ;) programs. The correctness criterion essentially
guarantees that for any finite execution of the original program, the reordered program

must mimic it. The thesis also shows how the correctness criterion may be reduced to a
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satisfiability problem on constraint stores which can then be answered (in a conservative

fashion) using the domains LSign or LInt.

Optimizing Compiler for CLP(R;;,) The primary aim of this thesis is to imple-
ment an optimizing compiler for CLP(R;,), and we have succeeded in doing so. The
experimental results obtained (summarized in Table 1.1) indicate the promise of our ap-
proach. Our main contributions in this respect are summarized here. The thesis presents
the first provably correct implementation of reordering as well as the first implementa-
tion of constraint removal for CLP(R;,) programs. Along with the implementation of
constraint refinement, this produces the first CLP(Ry;,) compiler integrating all these
source to source transformations. Table 1.1 gives the speedup (ratio of execution time
for unoptimized program to execution time for optimized program) observed for a va-
riety of benchmarks. The experimental results show that sophisticated static analyses
and source to source transformations can produce dramatic speedups for CLP(R:n)
programs, indicating the promise of our approach. In particular, as evidenced by the
example Triangular, the speedups can increase as the size of the inputs increases. Also,
a / in the reordering column indicates that the optimized program was reordered w.r.t.
the original program. Reordering is seen to be the most powerful optimization, produc-
ing the most dramatic speedups. This is because reordering a program often leads to a
complete bypass of the constraint solver (indicated by a / in the bypass column). In
other words, the unoptimized program utilizes the constraint solver, while the optimized
program does not. In that case, the unoptimized program performs costly constraint
solving, while the optimized program performs only tests and assignments which are
cheaper to implement. While there are several issues open in making the implementation
of the optimizations fast, the optimization times for benchmarks (given in milliseconds)

indicate that the analyses used are practical.

1.9 Organization of the Thesis

The rest of this thesis is organized in the following way. Chapter 2 gives a brief intro-
duction to abstract interpretation, as well as the abstract interpretation algorithms and
framework used in the compiler. The next three chapters present the various abstract
domains used in the compiler. Chapters 3 and 4 give a detailed presentation of our

work on the domains LSign and LInt, while chapter 5 reviews the domain Prop, used in
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|| Program | Description | Speedup | Reorders? | Bypass? | Opt. Time

Integer Is 25000 an integer? 1.08 X x 150
Generate 0...250 17.18 Vv v 420
Exp Compute 2% 1.00 v Vv 530
Compute Ig 2?° 10.00 Vv Vv 710
Generate (0,1)...(25,2%) 12.00 v v 1010
Sum Compute 0+ 1+ ... + 500 5.00 v v 1220
Find Ns.t. 041 +...+ N = 125250 1.11 v x 1510
Generate (0,0) .. . (500, 125250) 14.44 Vi v 1550
Fibonacci Compute 15*” Fibonacci number 3.00 4 v 4330
N s.t. 987 is N** Fibonacci number 4.39 v x 8070
Generate (0, 1) ... (15, 987) 9.73 v x 6270
Mortgage P =100, T = 50; find B 1.05 x x 1460
(Linear) P =200, T = 100; find B 1.50 X x 1460
P =100, T=0...50; find B 2.10 v v 3100
P=200,T=0...100; find B 12.43 4 v 3100
Mortgage P=100,T=2350; find B 1.16 x x 3440
(Nenlinear) | P = 200, T = 100; find B 1.25 x x 3440
P=100,T=0...50; find B 1.59 Vv v 9560
P =200, T=0...100; find B 11.36 v Vv 9560
Ode-Euler Compute final y value 1.13 x x 1730
Compute initial y value 1.07 v x 1700
Relate inital and final y values 1.10 v x 1180
Triangular | Solve 2000 equations 4.00 v v 390
Solve 4000 equations 7.90 v v 520
Solve 8000 equations 15.48 v v 2450
Ar. Mean 5.68

Table 1.1: Experimental Results: Optimizing Compiler for CLP(R;,.).

groundness analysis. Chapter 6 presents the program transformations (refinement, re-
moval and reordering) in greater detail, and formalizes the reordering optimization and
its proof of correctness. Our experimental results and some details of the implementation
are covered in chapter 7. We discuss the related research in chapter 8. We conclude in
chapter 9 by reviewing our contributions and indicating some of the open issues in the

area. Appendix A contains the details of various proofs in the thesis.




Chapter 2

Abstract Interpretation

In this chapter, we give an introduction to abstract interpretation and review the abstract
interpretation framework used in the thesis. The presentation closely follows that of [29].
The chapter is organized in the following way. Section 2.1 introduces the basic ideas
of abstract interpretation by means of an example. Section 2.2 presents the concrete

semantics of CLP, while section 2.3 presents the abstract semantics of CLP.

2.1 Introduction

Abstract interpretation [10] is a general methodology to design static analyses of pro-
grams in a systematic way. The basic intuition behind abstract interpretation is to infer
some properties of a program, not by executing it on its traditional computation domain
(say integers), but rather on an abstract domain (say signs of integers). The abstract
domain should of course be designed to approximate the properties of interest with rea-
sonable precision and with reasonable computer resources. Traditionally, an abstract

interpretation is constructed in four steps:

L. a semantics of the language is defined, called the standard semantics:

the standard semantics is transformed into a collecting semantics (or concrete

!\D

semantics);
3. the collecting semantics is abstracted into an abstract semantics;

4. the abstract semantics (or a subset of it) is computed.
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The second step is needed in general because abstract interpretation aims at giving some
information about the results of a computation for a set of input values, not a single
input value.

To illustrate these concepts, we use a small language of expressions built from the
digits 0 to 9, juxtaposiiton of digits to obtain natural numbers, the operations 4+ and —
and a single variable whose name is z. The presentation is informal, but readers should

have no difficulty in formalizing the concepts precisely.

A semantics for the language could be defined by a function S : Expression —

Integer — Integer as follows.

S [E1+E2] v=S[E’1] v+ S [Ez]v
S[El—Ez]U=S[E1]U—S [E2]U

S[0v=o0
S[l]v=1
:5[9]v=9
S[DNlv=10xS [D]v+ S [N]v
Sklv=v

The semantics applied to an expression z +3 — z and a value 4 produces the value 3, i.e

S[z+3—-z]4=3.

The semantics can be generalized to a collecting (or concrete) semantics to produce
results for a collection of inputs. The collecting semantics can be defined with various
degrees of accuracy: it may contain only the correct results or it may contain the correct
results and some additional elements. As a consequence, the collecting semantics may
already make some approximation. For instance, a simple but not precise approximation
of the semantics is given by the function S, : Expression — 2I8teger _, oInteger j.g. .4

as follows.
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Sc[B1+ B V=S [E]|V+S[E]V
Sc [y~ By V=S [E]V-5:[E]V
Se [0] V = {0}
Se [1] V = {1}

;s; [9] V = {9}

Sc [DN]V ={10} x S. [D] V + S. [N]V
Sc[z] V=V

In this semantics, the operators +, —, x have been overloaded to work on sets, i.e.
{ah-"san}'{"{bl‘---ybm} = {ai+bj l 1<i<n A IS]Sm}

The collecting semantics applied to an expression z + 3 — z and value {4} produces the
value {3}, i.e

Se [z +3 - =] {4} = {3}.

but the collecting semantics applied to z +3 — z and the value {4,5} produces the value
{2,3,4} since

Se[z+3 2] {4,5}) =S.[c+3]{4,5} - S [z] {4,5)
= Se [z] {4,5} + Sc [3] {4,5} - S [2] {4,5}
={4,5}+ {3} - {4,5}
={7,8} - {4,5}
= {2,3,4}

The collecting semantics can then be transformed into an abstract semantics by replacing
the collecting domain by an abstract domain and by replacing each collecting operation
by an abstract operation. The link between the abstract domain and the collecting
domain is usually expressed by a monotone concretization function which maps abstract
objects into collecting objects (i.e. sets of concrete ob jects). In the case of our simple
language, one may want to approximate integers by their signs and to use an abstract
domain consisting of the elements {#,6,0, T}. The meaning of the abstract objects is

given by
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Cc(®) = {n | n is an integer greater than 0}
Cc(©) = {n | n is an integer smaller than 0}
Ce(0) = {0}

Cc(T) = {n| n is an integer}

This concretization is monotone if the abstract objects are ordered by using the rule
s <sp if sy =383 V s9=T.

The next step of the abstraction process consists of defining abstract operations which
safely approximate the collection operations. In our example, the operation + must be

approximated by an abstract operation + which must satisfy the consistency condition

Cels1) + Ce(sz) C Celsy + )
or equivalently
Vny € Ce(sy) Yng € Ce(ss) : ny + n2 € Ce(s) + s3).

The abstract semantics can then be defined simply by replacing the collecting objects by
their abstraction and the collecting operations by their abstract counterparts to obtain

a function S, : Expression — Sign — Sign as follows:

Sa [El + Eg] s=5, [E1] s+ S, [Eg] s

Sa[0]s=0
Sa [l]s:@
Se[9]s=@
Sa [DN]s=@x S, [D] s+ S, [N]s
Sa[z] s=s

The evaluation of the abstract semantics on expression z + 3 — z and sign @ produces

Salz+3-z]® =S.[z+3] & — S.[z] ®
=Sc[z] ® +S.B] ® - S:[z] @

=+ -8
=6—-@
=T

36



which is not particularly accurate.

The last step of the methodology consists in applying an algorithm to compute the
abstract semantics (or a sufficient subset of the abstract semantics to answer the orig-
inal query). Since the semantic equations are generally mutually recursive, a fixpoint

algorithm must be used for this purpose.

It is important to point out that there are many issues in designing an abstraction,

some of which should be clear from our example. These issues include

L. how to define the semantics to capture the appropriate properties ?

!\’J

how to define the collecting semantics ?

3. how to define an abstraction of the collecting semantics which is a good tradeoff

between accuracy and efficiency ?

4. how to implement the fixpoint algorithm ?

Most of the results on abstract interpretation in this thesis deal with the third issue, and
we use standard results for (1), (2) and (4). Note also that there are other approaches
to abstract interpretation, e.g. using abstraction functions instead of concretization
functions. Note finally that in this thesis we use the terms concrete and collecting

semantics interchangeably.

2.2 Concrete Semantics

In this section, we give the concrete semantics for CLP, which is a collecting fixpoint
semantics for the programming language. The concrete semantics is a natural extension
to CLP of the logic programming semantics presented in [29]. It captures the top-down
execution of CLP programs using a left-to-right computation rule, and ignores the clause
selection rule. The concrete semantics is defined for normalized CLP programs and it
manipulates sets of constraint stores, where constraint stores are multisets of linear

constraints.

The rest of the section is organized as follows. Section 2.2.1 defines normalized

the operations of the concrete semantics in Section 2.2.3. The transformation that gives

us the concrete semantics is presented in Section 2.2.4.
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2.2.1 Normalized Programs

It is convenient to restrict the syntax of CLP(Rr;,) programs in order to simplify the
analysis. The syntax of programs can be restricted by requiring that all programs be
normalized. In order to define normalized programs, we assume the existence of sets P;
(¢ > 0) representing the set of predicate symbols of arity 7, and an infinite sequence of
variables z1,z,.... Also, in the rest of the thesis, we do not permit functors to occur

in CLP(Rr;,) programs.

A normalized program is a (possibly empty) sequence of clauses, in which each clause
has a head and a body. The head of a clause has the form p(zy,...,z,) where p € P,.
The body of a clause is a (possibly empty) sequence of literals where each literal is either
a predicate call or a linear constraint. A predicate call has the form p(zi,,-..,Ti,) where
p € P, and the variables z;,,...,z;,, are all distinct. A linear constraint has the form

co 6 1z, + ...+ cmTi,, where § € {=, <, <,>,>,#} and each ¢; is a rational number.

It is not a difficult matter to transform any given CLP(Ry;,) program into an equiv-
alent normalized program by simple rewriting rules. The use of normalized programs,

first proposed for logic programs in [4], simplifies the semantics.

2.2.2 Concrete Objects

The concrete objects manipulated by our concrete semantics are linear constraints and
multisets of linear constraints. Consider a set of variables D = {z{,...,z,}. A linear
constraint over D is an expression of the form ¢y § Y In| c;z;, where ¢; are rational
numbers and § € {=, <, <, >, >,#}. The set of linear constraints over D is denoted by
Cp. A constraint store over D is simply a multiset of linear constraints over D. The
set of constraint stores over D is denoted by CSp and is ordered by standard multiset
inclusion. We denote multiset union by U. In the following, we denote linear constraints
by the letter A, constraint stores by the letter 6 and sets of constraint stores by the letter
©, all possibly subscripted. If A is a linear constraint cg § 3% ; c;z;, AZ] denotes the
coefficient c¢;. We denote the set of variables {zi,...,z,} by D, for any n. If f is a
constraint store over the set of variables D, we denote D as dom(#). The projection of

a constraint store # on the set of variables D is denoted 4 /D-
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2.2.3 Concrete Operations

The following operations are necessary to define the concrete semantics. The operations

are described informally, followed by a formal specificaton.

Upper bound Let Oy,...,0,, be sets of constraint stores on D,,. UNION(Oy,...,0,,)
returns a set of constraint stores that represents all the constraint stores represented by
any ©; (1 <7 < m). Operation UNION is used to compute the result of a predicate, given

the results of its individual clauses. It is specified as follows.

Specification 1 Let ©,,...,0,, be sets of constraint stores on D,,. Then

UNIDN(@l,..;,@m) = @1 u...u @m'

Addition of a constraint Let © be a set of constraint stores on D,, and )\ be a
constraint on D,. AI_ADD(A, ®) returns an set of constraint stores that represents the
result of adding the constraint A to each of the constraint stores in ©. Operation AI_ADD

is used when a constraint is encountered in the program. It is specified as follows.

Specification 2 Let O be a set of constraint stores on D, and A be a constraint on D,,.
Then
AI_ADD(A,©) = {0 U {\} | 6 € O}.

Restriction of a clause substitution Let © be a set of constraint stores on the
clause variables D,, of a clause ¢ and let Dy, be the head variables of the clause (n < m).
RESTRC(c, ©) returns the set of constraint stores obtained by projecting © on the head
variables. Operation RESTRC is used at the end of a clause execution to restrict the stores

to the head variables. It is specified as follows.

Specification 3 Let © be a set of constraint on Dy (the variables of clause ¢) and let
Dn be the head variables of ¢ (n < m). Then

RESTRC(C, @) = {6/Dn l f e @}.
Extension of a clause substitution Let © be a set of constraint stores on the

head variables D, of a clause ¢, and let ¢ contain the variables Dy, (n < m). EXTC(c, ©)

returns the set of constraint stores obtained by extending © to accomodate the additional
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new variables {z.41,...,Zm} in the body of the clause. Operation EXTC is used at the
beginning of a clause execution to express the input stores on all the clause variables

and not just the head variables. It is specified as follows.

Specification 4 Let © be a set of constraint stores on D,, (the head variables of clause

c) and let D,, be the clause variables of ¢ (n £ m). Then

EXTC(c, ) = {8 | dom(8) = D A 6/p, €© A YA €8 Vz; € Dy \ Dy : A[{] = 0}

Restriction of a substitution before a literal Let © be a set of constraint stores
on the variables D,, and let [ be a literal on the variables {ziyy---yzi,} (where the
variables appear in the literal in that order). RESTRG(!, ©) returns the set of constraint

stores obtained by

L. projecting © on {z;,...,z;,} obtaining O,;

2. expressing ©; on {z1,...,z,,} by mapping z;, to zj.

Operation RESTRG is used before the execution of a literal in the body of a clause. Before
specifying it formally, it is necessary to assume a renaming operation called the normal-
ization. norm [z;,...,z;,] © is a set of constraint stores obtained by simultaneously

replacing each z;; by z; in ©. Operation RESTRG is specified as follows.

Specification 5 Let © be a set of constraint stores on D,, and let [ be a literal on the
variables Dy = {z;,...,z;, } (where the variables appear in the literal in that order).
Let D; C Dy,. Then RESTRG(/, ©) = norm (i, ..., 2i,] ©) where

@1 = {0/{""'1 yeenrTi } l g e @}

Extension of a substitution after a literal Let © be a set of constraint stores on
D,,, and let ©' be a set of constraint stores on D,,, representing the result of executing the
literal [ (in which the variables z;,,...,z;_ occur in that order) with input RESTRG(I, ©).
EXTG(!, ©, ©') returns a set of constraint stores which instantiates © to take into account
the result ©’ of the literal I. It does this by

1. expressing ©' on {z;,,...,z;_,} by mapping z;j to z;;;

2. combining the above with © to reflect the result of executing /.
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Operation EXTG is used after the execution of a literal in a clause to extend its result
to the clause’s store. Before specifying it formally, it is necessary to assume a renaming
operation called the denormalization. denorm [z;,,..., ;] © is a set of constraint stores
obtained by simultaneously replacing each z; by z;; in ©. Operation EXTG is specified

as follows.

Specification 6 Let O be a set of constraint stores on D,, and let @' be a set of
constraint stores on D,,. Let [ be a literal on the variables Dy ={z;,...,z;,}, in which

the variables appear exactly in that order, and let D; C D,,. Then

EXTG(/,0,0) ={0U6,|0€O A 6, €0, A ©, =denorn [z;,,...,z;,] ©'}.

2.2.4 Concrete Transformation

We are now in position to present the concrete semantics. The concrete semantics
is defined in terms of tuples of the form (©in, P, (Oout, Oin:)) where p is a predicate
symbol of arity n and ©;,, 0,y and ©;,, are sets of constraint stores on the variables

{z1,...,za}. The informal reading of a tuple (O, p, (Oous, Oint)) is as follows:

for every computation beginning at (p(z1,...,z,) O 6;,), where 6;, € O;,:

1. for every terminal computation state (€ O Goue): 0out/{x|,...,rn} € Ouut:

2. for every intermediate computation state (G O bint): Oiry /{z1rnzn} €
eint-

Intuitively, @,y is the set of all possible output constraint stores (projected on the initial
query variables) when p is executed with any store from Oin as the input. O, is the set
of all possible intermediate constraint stores (projected on the initial query variables), i.e.
accumulated constraint store for any intermediate computation state, when p is executed
with any store from ©;, as the input. The concrete semantics is similar to that for logic
programs in [29], except that it has a component for the intermediate descriptions in

addition to the output descriptions.

We now present the transformation that gives us the concrete semantics. To simplify
the presentation, the transformation is presented in two stages. First we present a
transformation for a simplified concrete semantics with only the output descriptions. Its

augmentation to include the intermediate descriptions is presented later.
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TSCT(SCt) = {(@invpv eout) l (@inyp) eUD A G)out = rp(eim D, SCt)}

[p(Qin, p, sct) = UNION(OL,,. ..., 0%,
where O}, = [c(Oin, i, sct) ¢y, ..., cn are the clauses of D

I'e(Oin, ¢, sct) = RESTRC(c, Oout)
where Qour = Ty (EXTC(c, Oin), b, sct) b is the body of ¢

[y (Oin, < >, sct) = Oy,

Fb(einy l-gr SCt) = Fb(e31 g, SCt)

where @3 = EXTG(I, ©;,,, O,),
©2 = AI_ADD(\,0;) if lis A, a constraint
©1 = RESTRG(!, O;,,)

Fb(eina l’g1 SCt) = Pb(@31 g, SCt)
where  ©3 = EXTG(l, O;y, ©,),
O2 = sct(O1,p) if lis p(...), a predicate
©, = RESTRG(/, O;,,)

Figure 2.1: Simplified Concrete Semantics

We denote by UD the underlying domain of the program, i.e. the set of pairs (Q;y, p)
where p is a predicate symbol of arity n and ©;, is a set of constraint stores on the vari-
ables {z,,...,z,}. Thesimplified concrete semantics (without intermediate descriptions)
is defined as the least fixpoint of the transformation TSCT given in Figure 2.1. In the
construction, sct is a set of concrete tuples and is functional, i.e. there exists at most
one set of constraint stores @,y for each pair (©in, p) such that (0;,,p,Opu) € sct. We
denote that set of constraint stores by sct(Q;y, p).

Informally, the function ['p(Oin, p, sct) executes all the clauses in the definition of
the predicate p for the input ©;, and takes the upper bound of the results. Its result
represents the output stores of the predicate. The function ['¢(Oin, ¢, sct) executes a
clause by extending the store to all the variables of the clause, executing the body, and
restricting the stores to the head variables. It returns a set of stores representing the
output for the clause. The function I'4(0;,, G, sct) executes the body of a clause by
considering each literal in turn. For each literal, the set of stores is first expressed on the
literal variables, then the literal is executed and then the result extended to the clause
variables. If the literal is a predicate, the result is looked up in sct. Otherwise the literal

is a constraint and operation AI_ADD is used.
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TSCT(SCt) = {(@irnpa (eouh eint) l (einy P) eUD A (eouh eint) = Fp(einv Y SCt)}

FP (efn‘ pv_ SCt) = (UNIDN(GJ;UU ctte egut)v UNION(O}nU cey e:lnt))

where (0} ,,0%.,) = [c(Oin, ci, sct) ¢y, .. -y Cn are the clauses of p

Le(®in, ¢, sct) = (RESTRC(c, Opue), RESTRC(c, Oine))
where (Ooy¢, Oine) = I's (EXTC(c, ©in),EXTC(c, ©in), b, sct) b is the body of ¢

Fb (einy einh < >, SCt) = (@iny @x'nt>
Pb(@frn @inh l-y, SCt) =T, (931 UNIDN(@{nh 63)1 g, SCt)
where O3 = EXTG(/, ©;y,, ©,),
©2 = AI_ADD(A,@,) if [ is A, a constraint
©, = RESTRG(/, Oin)

Ly (eina eintv l-gv SCt) = Fb(@;;, UNION(einh 931 @é) + 9, SCt)
where O3 = EXTG(/, Oy, 0.),
3 = EXTG(l, O;n, ©%),
(02,03) = sct(©1,p) if lis p(...), a predicate
©1 = RESTRG((, ©;,)

Figure 2.2: Concrete Semantics

We now indicate how to augment the simplified concrete semantics to compute the
intermediate stores as well. The key idea is to accumulate the intermediate stores while
traversing the body of the clause. The concrete semantics is defined as the least fixpoint
of the transformation TSCT given in Figure 2.2. In the construction, sct is a set of
concrete tuples and is functional, i.e. there exists at most one pair (Oous, O;re) for each

pair (Oin,p) such that (O, p, (Qoyt, Oint)) € sct. We denote that pair by sct(Q;n, p).

Informally, the function [p(©;n, p, sct) executes all the clauses in the definition of the
predicate p for the input ©;, and takes the upper bound of the results. It returns a pair,
whose first element represents the output stores and whose second element represents
the intermediate stores. The function Le(Oin, ¢, sct) executes a clause by extending the
store to all the variables of the clause, executing the body, and restricting the stores
to the head variables. It also returns a (output, intermediate) set of stores pair. The
function Ty(Oin, Oine, G, sct) executes the body of a clause by considering each literal
in turn. For each literal, the set of stores is first expressed on the literal variables,
then the literal is executed and then the result extended to the clause variables. If the

literal is a predicate, the result is looked up in sct. Otherwise the literal is a constraint
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and operation AI_ADD is used. The function [y also accumulates the intermediate stores
of the computation. Initially the intermediate substitution is the same as the input
substitution. As the body is traversed, the succeeding inputs (represented by O3) are
used to update the accumulated intermediate substitution by using the operation UNION.
In the case of predicate calls in the body, the intermediate substitutions that can occur
inside the predicate call (represented by 03) also need to be added to the accumulated

intermediate substitution.

2.3 Abstract Semantics

The abstract semantics is a natural extension to CLP of the logic programming abstract
semantics in [29], and is close to the works of [54] and [33]. The abstract semantics
consists of approximating the concrete semantics by replacing a set of constraint stores by
a single abstract substitution, i.e. an abstract substitution represents a set of constraint
stores. Therefore, the abstract semantics is defined in terms of abstract tuples of the
form (Bin, p, (Bout, Bint)) Where p is a predicate symbol of arity n and Sin, Bou: and Bin
are abstract substitutions on the variables {z1,-..,zn}. The informal reading of an

abstract tuple (Bin, P, {Bout, Bint)) is as follows:

for every computation beginning at (p(zi,...,z,) O 0in), where 6;, is a

constraint store satisfying the property expressed by f;,:

L. for every terminal computation state (€ O o ): 6oul/{rx,....zn} is a con-

straint store that satisfies the property expressed by fous;

[S]

. for every intermediate computation state (G O bine): bing J{Z1,emzn} IS @

constraint store that satisfies the property expressed by 8;.,.

Intuitively, B,4 represents all the constraint stores that can be the output, and B,

represents all the intermediate constraint stores. when p is executed with any store

satisfying [, as the input.

The section is organized as follows. First we present the abstract operations in
Section 2.3.1, followed by the transformation for the abstract semantics in Section 2.3.2.

Section 2.3.3 describes how the fixpoint of the abstract semantics may be computed.
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2.3.1 Abstract Operations

The following operations are necessary to define the abstract semantics. The operations

are described informally, followed by a formal specificaton.

Upper bound Let §,...,8,, be abstract substitutions on D,. UNION(f:,--.,0Bm)
returns an abstract substitution that represents all the constraint stores represented by
any G; (1 £ 1 < m). Operation UNION is used to compute the result of a predicate, given

the results of its individual clauses. It is specified as follows.

Specification 7 Let 3y, ..., 5, be abstract substitutions on D,. Let ©; = Cc(5,),-..,
Om = Cc¢(Bm) and ©' = UNION(Oy,...,O0,,). Then §' = UNION(Gy,....0Om) is an abstract
substitution on D, s.t. ©' C Ce(8').

Addition of a constraint Let 8 be an abstract substitution on D, and A be a con-
straint on Dp. AI_ADD(A, 8) returns an abstract substitution that represents the result
of adding the constraint \ to any constraint store represented by 3. Operation AI_ADD

is used when a constraint is encountered in the program. [t is specified as follows.

Specification 8 Let B be an abstract substitution on D,, and A be a constraint on
D,. Let © = Cc¢(8) and ©' = AI_ADD(A,©). Then 8’ = AI_ADD(A, 3) is an abstract
substitution on D, s.t. ©' C Cc(8').

Restriction of a clause substitution Let 8 be an abstract substitution on the
clause variables D,, of a clause ¢ and let D,, be the head variables of the clause (n < m).
RESTRC(c, §) returns the abstract substitution obtained by projecting 8 on the head
variables. Operation RESTRC is used at the end of a clause execution to restrict the

substitution to the head variables. It is specified as follows.

Specification 9 Let 3 be an abstract substitution on D,, (the variables of clause c)
and let Dy, be the head variables of ¢ (n < m). Let © = Cc(f) and ©' = RESTRC(c, ©).
Then 8’ = RESTRC(c, 3) is an abstract substitution on D, s.t. ©' C Ce(8').

Extension of a clause substitution Let B be an abstract substitution on the head
variables D,, of a clause ¢, and let ¢ contain the variables Dm (n £ m). EXTC(c, 8)

returns the abstract substitution obtained by extending 3 to accomodate the additional
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new variables {z.4;,...,2,,} in the body of the clause. Operation EXTC is used at
the beginning of a clause execution to express the input substitution on all the clause

variables and not just the head variables. It is specified as follows.

Specification 10 Let 8 be an abstract substitution on D,, (the head variables of clause
c) and let D,,, be the clause variables of ¢ (n £ m). Let © = Ce(f) and ©' = EXTC(c, O).
Then 8’ = EXTC(c, B) is an abstract substitution on D,, s.t. ©' = Ce(4').

Restriction of a substitution before a literal Let B be an abstract substitution
on the variables D,,, and let [ be a literal on the variables {ziys--.,zi,} (where the vari-
ables appear in the literal in that order). RESTRG(!, B) returns the abstract substitution
obtained by

1. projecting 8 on {z;,,..., z;, } obtaining 3;;

2. expressing g on {z1,...,z,} by mapping z;, to zj.

Operation RESTRG is used before the execution of a literal in the body of a clause.

Operation RESTRG is specified as follows.

Specification 11 Let 3 be an abstract substituion on D, and let [ be a literal on the
variables D; = {zy,,...,%;,} (where the variables appear in the literal in that order).

Let D; C Dy. Let © = Cc(3) and O’ = RESTRG(/,©). Then 8’ = RESTRG(/,3) is an
abstract substitution on D,, s.t. ©' C Ce(3").

Extension of a substitution after a literal Let 3 be an abstract substitution on
D,,, and let 3’ be an abstract substitution on D,,, representing the result of executing the
literal / (in which the variables z;,. ..., z;_ occur, in that order) with input RESTRG(. 3).
EXTG(!, 8, 8') returns an abstract substitution which instantiates B abstractly to take into

account the result 3’ of the literal I. It does this by

1. expressing 8’ on {z;,...,%;,} by mapping z; to zi;;

2. combining the above with 8 to reflect the result of executing [.

Operation EXTG is used after the execution of a literal in a clause to extend its result to

the clause substitution. Operation EXTG is specified as follows.
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Specification 12 Let § be an abstract substitution on Dy, and let ' be an abstract
substitution on D,,. Let [ be a literal on the variables D; = {zi,...,zi, }, in which the
variables appear exactly in that order, and let D; C D,,. Let O = Cc(B), ©' = Cc(8")
and ©" =EXTG(/,0, ©’). Then 8" = EXTG(!, 3, 8") is an abstract substitution on D, s.t.
0" C Cc(B").

2.3.2 Abstract Transformation

We are now in position to present the abstract semantics. Once again, it is convenient
to present the semantics in two steps. First we present the semantics without the inter-
medijate descriptions. In the second step, the semantics is augmented to compute the

intermediate descriptions as well.

We denote by UD the underlying domain of the program, i.e. the set of pairs (Bin, p)
where p is a predicate symbol of arity n and §;, is an abstract substitution on the
variables {z1,...,z,}. The abstract semantics is defined as the least fixpoint of the
transformation TSAT given in Figure 2.3. In the construction, sat is a set of abstract
tuples and is functional, i.e. there exists at most abstract substitution Boue for each pair

(Bin, p) such that (Bin, p, Bout) € sat. We denote that abstract substitution by sat(fFin, p)-

Informally, the function 7,(B:n, p, sat) executes all the clauses in the definition of the
predicate p for the input §;, and takes the upper bound of the results. It returns an
abstract substitution representing the output of the predicate. The function 7.(B:n, c, sat)
executes a clause by extending the substitution to all the variables of the clause, executing
the body, and restricting the substitution to the head variables. It also returns an
abstract substitution. The function 7(Bin, G, sat) executes the body of a clause by
considering each literal in turn. For each literal, the substitution is first expressed on the
literal variables, then the literal is executed and then the result extended to the clause
variables. If the literal is a predicate, the result is looked up in sat. Otherwise the literal

is a constraint and operation AI_ADD is used.

We now indicate how to augment the simplified abstract semantics to compute the
intermediate substitution as well.! The key idea is to accumulate the intermediate sub-

stitution while traversing the body of the clause. The abstract semantics is defined as the

'It may be possible to compute the intermediate stores using only the input and output stores and a
post-processing step. However it is not obvious that the intermediate stores as computed by such a step
would correspond with the intermediate stores of the concrete semantics.



TSAT(sat) = {(ﬂirnpy ﬂoul) I (:Hl'ny P) eUD A ﬁout = Tp(ﬂ,‘n,p, sat)}

Tp(ﬂfmpg sa't) = UNIUN(ﬂ;utv sy gut)
where 8}, = 7c(Bin,ci, sat) cy,...,c, are the clauses of p

Te(Bin, ¢, sat) = RESTRC(c, Bout)
where Bour = 7,(EXTC(c, Bin), b, sat) b is the body of ¢

75 (Bin, < >, sat) = fin
T (ﬂiny l-gy sat) = Tb(ﬂfiy 9, Sat)
where (83 = EXTG(!, Bin, B2),
B2 = AI_ADD(A, B;) if [is A, a constraint
B1 = RESTRG(, Bin)

Tb(ﬂim l.g, sat) = Tb(ﬂSa g, Sat)
where B3 = EXTG({, Bin, 52),
B2 = sat(By,p) if lis p(...), a predicate
B1 = RESTRG(!, Bin)

Figure 2.3: Simplified Abstract Semantics

least fixpoint of the transformation TSAT given in Figure 2.4. In the construction, sat is
a set of abstract tuples and is functional, i.e. there exists at most one pair (Bout; Bint) for
each pair (Bn, p) such that (Bin, p, (Bout, Bint)) € sat. We denote that pair by sat(fBin,p).

Informally, the function 7,(8;n, p, sat) executes all the clauses in the definition of the
predicate p for the input B, and takes the upper bound of the results. It returns a
pair, whose first element represents the output substitution and whose second element
represents the intermediate substitution. The function Te(Bin, ¢, sat) executes a clause
by extending the substitution to all the variables of the clause, executing the body, and
restricting the substitution to the head variables. It also returns a. (output, intermediate)
abstract substitution pair. The function T5(Bin, Bine, G, sat) executes the body of a clause
by considering each literal in turn. For each literal, the substitution is first expressed
on the literal variables, then the literal is executed and then the result extended to the
clause variables. If the literal is a predicate, the result is looked up in sat. Otherwise the
literal is a constraint and operation AI_ADD is used. The function Ty also accumulates
the intermediate stores of the computation. Initially the intermediate substitution is

the same as the input substitution. As the body is traversed, the succeeding inputs
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TSAT(sat) = {(ﬁin? D, (ﬂouta ﬂint) I (ﬂfm P) eUD A (ﬂouh ﬂint) = Tp(ﬂiny D, sat)}

7p(Bin, P, sat) = (UNION(BR,, - - -, Be), UNION(BL,,, ..., BZ,))
where (8} ,,, Bt = 7c(Bin, ciy sat) ¢, ..., cpn are the clauses of p

7e(Bin, ¢, sat) = (RESTRC(c, Bout), RESTRC(c, fint))
where (Bout, Bint) = T (EXTC(c, Bin), EXTC(c, fBin), b,sat) b is the body of ¢

76 (Bin; Bints < >, sat) = (Bin, Bine)
76 (Bin, Bint, 1.9, sat) = 1y(B3, UNION(Bine, B3), g, sat)
where ﬂ3 = EXTG(la ﬂiny ﬁ2))
B2 = AI_ADD(A, B;) if [ is A, a constraint
B1 = RESTRG(/, fin)

Tb(ﬂl’nz .Bint) l-gy sat) = Tb(ﬂ31 UNION(ﬂintv ,331 ﬂé) v 4, sat)
where ﬂ3 = EXTG(I1 ﬂim ﬁ2) H
II3 = EXTG(I1 ﬂina ﬂé)a
(B2, B5) = sat(Br,p) if Lis p(...), a predicate
5= RESTRG(!, Bin)

Figure 2.4: Abstract Semantics

(represented by f3) are used to update the accumulated intermediate substituion by
using the operation UNION. In the case of predicate calls in the body, the intermediate
substitutions that can occur inside the predicate call (represented by B3%) also need to be

added to the accumulated intermediate substitution.

2.3.3 Fixpoint

The final step of the abstract interpretation methodology consists of computing a least
fixpoint or post-fixpoint of the abstract semantics. This can be computed in a top-
down or a bottom-up fashion. Generic abstract interpretation algorithms from logic

programming, such as GAIA [29] or PLAI [40] can be adapted for the purpose.

From the abstract interpretation results, our optimizing compiler uses basically three
abstract substitutions for each predicate p in the program. It uses the pair (Bout, Bint) =
sat(@, p) which represent the output and intermediate substitutions when the predicate
p is called with an empty constraint store. These are called the goal independent (or

online) output description and intermediate description of p respectively. The analysis
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also collects all the inputs seen during the abstract interpretation for the given query and

produces an abstract substitution f;, that summarizes these. This is called the input

description of p for the given query.
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Chapter 3
Abstract Domain LSign

In this chapter, we present the abstract domain LSign which is useful to deduce a variety
of interesting properties of programs, including satisfiability of constraint stores and
redundancy of constraints. The chapter is organized as follows. Section 3.1 present the
concrete objects whose properties are sought to be abstracted. Section 3.2 presents the
abstract domain used to approximate the concrete ob jects. Sections 3.3 and 3.4 contain
the operations and applications of the domain. This is followed by a brief presentation
of the power domain in Section 3.5. The definition of the operations of the abstract
interpretation framework in terms of the domain operations is presented in Section 3.6.
Section 3.7 presents a complete worked example of the information collected during
program analysis with the domain LSign. The chapter concludes with a discussion of
the differences between the domain presented here with the original domain LSign as
presented by Marriott and Stuckey [37]. The proofs of most of the results in this chapter
can be found in Appendix A, although we sometimes include a sketch of the proof for

the main results in the text.

3.1 Concrete Objects

We review some of the concepts from the concrete semantics here. The concrete objects
manipulated by our concrete semantics are linear constraints and multisets of linear
constraints. Consider a set of variables D = {z,, ..., Tn}. Alinear constraint over D is an
expression of the form ¢ § >_%i cizi, where ¢; are rational numbers and § € {<, &=}
In this chapter we assume that constraints with operators > and > have been rewritten

in terms of < and <. Also we do not consider disequations (constraints with operator #)
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initially. We show how to extend the domain to accomodate disequations in Section 3.5.
The set of linear constraints over D is denoted by Cp. A constraint store over D is
simply a multiset of linear constraints over D.! The set of constraint stores over D is
denoted by CSp and is ordered by standard multiset inclusion. We denote multiset
union by U. In the following, we denote linear constraints by the letter A and constraint
stores by the letter 6, both possibly subscripted. If A is a linear constraint co b YL ez,
Al7] denotes the coefficient ¢; and op(\) denotes the operator 4. If § is a constraint store
over D = {zy,...,z,} and z € D, 6}, 67 and 69 represent all constraints A in 8 whose
coefficient for variable z is respectively strictly positive, strictly negative, and zero. We
use Var(#) to denote the set of variables with non-zero coefficients in §. We also denote
by R the set {i | z; € D}.

3.2 Abstract Objects and Concretization

In this section, we introduce the domain LSign. Although the presentation differs con-
siderably from [37], the domain is in fact a slight generalization of the original domain,
which clearly separates multiplicity information from the abstract constraints.? The
presentation is motivated by the fact that it makes it easy to define the concretization
function compositionally by identifying the semantic objects clearly. In contrast, [37]

uses an approach based on an abstraction function and approximation relations.

The first key idea is the notion of an abstract constraint which abstracts a con-
crete constraint by replacing each coefficient by its sign. Our definitions assume D =
{z1,...,zn}. Note however, that in our examples, we may use other variable names

(from the mortgage example presented earlier).

Definition 2 [Signs] A sign is an element of Sign = {0,8,8, T}. Sign is ordered by
S1Esa e (s1=s2)V(s2=T).
The concretization function Ce:Sign — 2% is defined as

Cc(0) ={0}; Cec(®)={c| ceRACc>0};
Ce(©) ={c | ceRAc<0}; Cc(T)=%R

! Using multisets instead of sets simplifies a2 number of technical details in the proofs of our results.

2This was motivated by previous work on sequences [28, 3] which separates properties of the elements
of the sequences from properties of the sequence.

[$))
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From the definition, it is easy to see that the concretization function is monotone, i.e.

51 & s2 = Ce(s1) C Ce(sz).

Definition 3 [Operators] An operator is an element of Op = {<,<,=}. Operators are

denoted by the letter 6.

Definition 4 [Abstract Constraints] An abstract constraint over D is an expression of
the form sp § Y7, s;z; where s; is a sign and 4 is an operator. The set of abstract
constraints over D is denoted by Ap and is partially ordered by
n n n
s06 ) siziCsyd Y szt e A (si Csf).
=1 i=1 =0

The concretization function Cc: Ap — Cp is defined as
Ce(sod iy sizi) ={cod Th,cizi|ci€Celsi) (1<i< n) }.

Abstract constraints are denoted by the letter o, possibly subscripted.

Example 4 The abstract constraint T = @P + @R represents both the constraint 3 =
P+R and —3 = 2P + 5R but not the constraint 3 = —P +R.

The monotonicity of the concretization function w.r.t. the ordering for abstract con-

straints follows easily from the definitions.
Lemma 1 If oy and o, are abstract constraints then o1 E g2 = Cc(o,) C Ce(ay).

The second key concept is the notion of an abstract constraint with multiplicity which
represents a multiset of constraints. The multiplicity information specifies the size of the
multiset. We consider three multiplicities, One, ZeroOrOne, and Any, which are used
respectively to represent a multiset of size 1, a multiset of size 0 or 1, or a multiset of

arbitrary size.3

Definition 5 [Multiplicities] A multiplicity is an element of Mult = {One, ZeroOrOne,
Any}. Mult is ordered by One C ZeroOrOne C Any. Multiplicities are denoted by the
letter u, possibly subscripted.

*[37] contains one other multiplicity OneOrMore which is obtained easily in our domain by includ-
ing one constraint with multiplicity One and one constraint with multiplicity Any. Note also that all
inequalities are defined with a multiplicity Anyin [37].
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We now turn to abstract constraint with multiplicities. Recall that elements of CS p are

multisets of linear constraints.

Definition 6 [Abstract Constraints with Multiplicity] An abstract constraint with mul-
tiplicity over D is an expression of the form (o, ), where o is an abstract constraint over
D and p is a multiplicity. The set of abstract constraints with multiplicity over D is
denoted by AMp and is ordered by

(o1, 1) E (02, pt2) € 01 C 02 A g T po.

The concretization function Cec: AM p = CSp is defined as

Ce((o,0mne)) = { {A} [ A € Ce(o) }
Ce((o, ZeroOrOne)) = {B} U { {A} | A € Ce(o) }
Ce({o, Any)) = {(BYU{ {A1, .., Am} [m D> 1AM € Ce(o) (1<i<m)}.

Abstract constraints with multiplicities are denoted by the letter v, possibly subscripted.

Moreover, if v is (o, ), cons(7y) denotes o and mult(y) denotes 7

Example 5 The abstract constraint with multiplicity (T = &P + &R, One) represents
only multisets of size 1, e.g., {3 =P +R}. (0 < &P + OR, Any) represents multisets of
any size, e.g., §, {0 <3P —R} and {0 <3P —R,0 < 2P — 3R}.

It follows easily from the definition of abstract constraints with multiplicity that the

concretization is monotone w.r.t. the ordering.

Lemma 2 If v; and v, are abstract constraints with multiplicity then v, T v» =
Ce(v1) C Ce(a).

We are now in position to define the abstract stores of the domain, which abstract the

constraint stores in the concrete domain.

Definition 7 [Abstract Stores] An abstract store over D is a set B of abstract constraints
with multiplicities. The set of abstract stores is denoted by ASp. The concretization
function Cc : ASp — CSp is defined in two stages. The first captures the syntactic

form of the abstract store.

Ce;(0) = {0}
Cei({v}upB) ={61Ub, |6, € Cc(y) N B, € Cei(B) } v¢8.
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The second captures the extension to equivalence classes in the concrete domain.
Ce(B)={616<6:A6; € Cc;(B) }

Abstract stores are denoted by the letter B, possibly subscripted.

Example 6 The abstract store § = {(T = &P + 4R, One), (0 < ¢P + SR, Any)} rep-
resents constraint stores with at least one constraint, and their equivalence classes. For
example {3 = P+ R} € Cci(8) and {3 =P +R, 0 < 2P — 3R} € Cci(8). Further,
B=P+m955ﬂeckw)mmmem=P+&955N~H{3=p+mogzp—m}

It remains to define the ordering on abstract stores. Our goal is to make sure that
B1 C B, implies that Cc(B1) € Cc(B2) to obtain a monotone concretization function.

The ordering relation is non-trivial and requires the following concepts.

Definition 8 [Definite, Possible, and Indefinite Constraints] Let v be an abstract con-
straint with multiplicity. v is a definite abstract constraint iff mult(y) = One. v is a
possible abstract constraint iff mult(y) = ZeroOrOne. It is an indefinite abstract con-
straint otherwise. The definite portion of 3, denoted by Def(f), is the set of definite
constraints of 8. The possible portion of 3, denoted by Pos(f), is the set of possible con-
straints of 8. The indefinite portion of 3, denoted by Indef(f), is the set of indefinite

constraints of 3.

Definition 9 [Ordering Function] Let §; and B2 be two abstract stores. An ordering

function of 8; to B, is a function f : By — B, satisfying

LVYyeh: yC f(v).

[

Vrmebu: n#Fr2= f(M) # flr2)V fln) € Indef(f,).

o

- Def(8;) C range(f).

Definition 10 [Ordering on Abstract Stores] Let 8; and S, be two abstract stores.
B1 C [ if there exists an ordering function f of 3, to f,.

This definition of ordering indicates that we reason only on the syntactic form of the
abstract stores. The first condition simply states that, for each abstract constraint with

multiplicity in 8y, say v, there exists an abstract constraint with multiplicity in 8,, say
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f(7), that approximates it. The next two conditions concern the number of constraints.
The second condition requires that each definite constraint and each possible constraint
in A, be used at most once. The third condition requires that each definite constraint in

B2 be used at least once.

Example 7 Consider the following abstract constraints with multiplicity.

71 = (& = &P + &R, One)

Y2 = (@& =6EP + &R, 0ne)
73 = (& =6P+ R, Any)
Y4+ = (@ = &P+ ©R,0ne)
¥s = (@ =6P+ TR, Any)
Y6 = (& =6P+ TR, One)

{71, 72} C {74, 75} and the ordering function is defined by f(v;) = 74 and fly2) = vs.

{71:72,718} © {74,7s} and the function is defined by f(1) = 74, f(72) = 7s, and
f(r3) = 7s.
{73, 74} Z {71, 7s, 76}, since there is no function that can cover both v and g with only

{731 74}

It can be proved that the ordering on abstract stores is transitive and reflexive, leading

to the following theorem.
Theorem 1 [Ordering Relation] C: ASp x ASp is a pre-order.

We now turn to the first main result of this chapter: the monotonicity of the concretiza-
tion function for abstract stores. The proof uses several lemmas, one of them (i-e., the
lifting function lemma) being fundamental in all consistency proofs. Note that we some-
times abuse notation by writing expressions like A; # A, to mean that At and A, are
two different constraints or two different occurrences of the same constraint in a mul-
tiset. These abuses should be clear from the context. We also write |S| to denote the
cardinality of a set or of a multiset. We define the notion of lifting function which is
the counterpart of the ordering function for a pair (concrete store, abstract store). The
lifting function is related to, but not exactly the same as the abstraction function used

in the abstract interpretation literature.

Definition 11 [Lifting Function] Let 4 be an abstract store and 8 a concrete constraint

store. A lifting function of 8 to f is a function f:6 — S satisfying
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L. VA €6: X € Ce(cons(f(N))).

2. VAL A2 € 6: Av# A2 = (f(A1) # f(A2) V f(M1) € Indef(8)).

w

. Def(B) C range(f).
As mentioned, the following lemma is the cornerstone of most proofs in this chapter.

Lemma 3 [Lifting Function Lemma] Let 8 be an abstract store and # a concrete con-

straint store. 6 € Cc;(f) if and only if there exists a lifting function f of 8 to 8.

Sketch of Proof: The proof proceeds by induction on [B]- The basic case is obvious.
For the induction step, assume that the hypothesis holds for all abstract stores whose
cardinality is not greater than n. We show that it holds for abstract stores of cardinality
n + 1. Consider an abstract store g satisfying |3] = n + 1 and let B be {v}U g, where
v € §' and || = n. By Definition 7,

Cei(B) = Cei({v}upB)={6,Ub |6, € Cc(v)AO € Cei(8) }.

(=) Let 6 € Cc;(B). Hence § = 6, U ¢', where 6, € Ce(v) A6 € Cci(B'). By hypothesis,
there exists a lifting function f’ of 6’ to #’. Define a function f:0—> 3 as

F(A) ifreg
A) =
) {7 if Aeé,.

The proof consists of showing that f is a lifting function of 8 to 8.

(<) Let f be an lifting function of § to 8 = {y}UF'. Let 8, = {A[Aebd Af(A) =7},
Then VA € 8; : A € Ce(cons(y)) by Definition 11 and 6; € Cc(7v) by Definition 6. Let
=61 U 0’ and consider the function f': 6’ — B’ defined by fi(A)=f(A) forall A e ¢'.
The proof consists of showing that f’ is a lifting function of 8’ to B’. Then, by hypothesis,

' € Ce;(B') and, by Definition 7,6, U ¢ ¢ Cei({~}u g).
a

Example 8 Consider the following abstract constraints with multiplicity

N = (© =&P + &R, One)
Y2 = (@ = &P+ &R, One)
73 = (@ = 6P + TR, Any)
Y4 = (© =@&P+ TR,0One)
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and concrete constraints

At 2=2P+3R
A = 3=_2P+2R
Az = 1=-3P+2R
Ay = 4=4P+3R

{AM, A2} € Cci({v2, 73}) and the lifting function is defined by f(A1) = v2and f(A2) = 73.
{A1, A2, A3} € Cci({72,73}) and the function is defined by f(A1) =72, f(A2) = 73, and
f(A3) = 7s.

{3, A4} € Cei({71, 72, Y4}), since there is no function that can cover all three of Y1 T2

and y4 with only A3 and A,.
We are now in position to state the first main result of this chapter.

Theorem 2 [Monotonicity of Concretization Function w.r.t. Ordering Relation] If §;

and [, are two abstract stores then
(i) B1 E B2 = Cci(B1) C Cci(Ba).
(i) 1 € B2 = Cc(B1) C Ce(Bs).

Sketch of Proof: (i) Let 5, £ 8, and § € Cci(f1). We need to show that 8 € Cc;(82)-
By Lemma 3, there exists a lifting function f of 8 to ;. By Definition 10, there exists
an ordering function g of 8; to #;. Consider the function go f. The proof consists of

showing that go f is a lifting function of 8 to 3,.

(if) Now let 8 C B, and 8 € Cc(B1). By definition of Cc, there exists §; € Cci(3) s.t.
0 <+ 6;. By part (i), 6; € Cc;(3;). Hence, by definition of Cc, § € Cc(f2). o

For subsequent sketches of proof where the result is stated in two parts, the first part
relating to Cc; and the second part relating to Ce, we only give the sketch of proof for

the first part. The extension for Cc follows the outline of the proof above.

3.3 Abstract Operations

We now study the implementation of the abstract operations of LSign. We start by the
implementation of the ordering relation, continue with the addition of a constraint and

the upper bound operation, and conclude with projection.
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3.3.1 Ordering

The problem of ordering abstract stores, i.e. of deciding whether 8, C f,, could be
solved simply by enumerating all functions from B1 to B2 to determine whether one of
them is an ordering function. However, this would lead to an exponential algorithm in
the size of the stores. In this section, we show that we can do much better by reducing

the ordering problem to a maximum weighted bipartite graph matching problem.

Definition 12 [Bipartite Graph] A graph G = (V, E) is bipartite if V' can be partitioned
into two sets V] and V5 such that (u,v) € E implies either u € ViAv € Vo oru € VaAv €
Vi.

Definition 138 [Maximum Weighted Bipartite Graph Matching Problem] Let G = (V, E)
be a weighted bipartite graph (with weights associated with the edges). A matching M
on G is a set of edges no two of which have a common vertex. The weight of M is the
sum of its edge weights. The mazimum weighted bipartite graph matching problem is

that of finding a matching of maximum weight.

The key ideas behind the reduction are as follows. The first set of vertices corresponds
to the constraints of §,. The second set of vertices contains a vertex for each constraint
in Def(f,), a vertex for each constraint in Pos(f,), and |8;| vertices for each constraint in
Indef(f;), since these constraints can be used several times and the matching problem
requires that each vertex appears at most once in a solution. The edges connect vertices
from the first set to vertices of the second set only if the constraint in the first set is
smaller or equal to the constraint in the second set. This requirement makes sure that
the first property of ordering is guaranteed. To ensure the third property, we specify the
weights in a special way to encourage the covering of the definite constraints in #;. The

second property will follow from the definition of a matching.
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Definition 14 Let §, and f§; be two abstract stores. The matching graph of §; to B, is
a (weighted bipartite) graph G = (V, E) such that

4 = ViUV, UWzuV,
i = {nlm€pb}
V2 = {712 |72 €Def(f2)}
Vs = {72| 72 €Pos(fa)}
Vi = {72" | 72 € Indef(B2) Ay € 1}
E = E,UE3UE;
E, = {1 I MEVIARLEVa AN C 7}
E3 = {7 InmeViAnneVzan Ty}
Ey = {(v:r2) M EVIAR €ViA1 C 72}
weight(e) = { 2 Meck Yec E
1 ifeec E3UE;

Implementation 1 [Ordering] Let $; and f#; be two abstract stores. Let (& be the
matching graph §; to 5. By T B, returns true iff the maximum matching of G has
weight |G1| + [Def(8s)|.

We now prove the correctness of the implementation.

Lemma 4 [Reduction of Ordering over ASp to Weighted Bipartite Graph Matching]
Let #; and B2 be two abstract stores and G be a matching graph of 8 to 85. 8; C 3, if
and only if G has a matching of weight |3;| 4 |Def(6,)|.

Sketch of Proof: (=) Let 8; C f,. By Definition 10, there exists an ordering function
f of By to Ba. Consider the set given by M = M, U M3 U M, where,

My = {(n,72) [ meEViARR€eVaAT: = f(m)}
My = {(v;72) I EViA € VaAT = f(m)}
My = {(r7) I mMeEVIATR €eViAr = f(1)}
The proof consists of proving that M is a matching of the appropriate weight.

(<) Let G have a matching M of weight |8,| + [Def(B,)|. Then M = M, U Mz U M,

where

My = {(vur)lm eViAy €Va}
Mz = {(vu7v)lmeViny: € V3}
My = {(m,72)Im eViAy™ € Vi)
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We define f by f(11) = v2 if (11,72) € Ma, or (71,72) € Ms, or (71, 7:™) € M; and
f(m) = undefined otherwise. The proof consists of showing that f is a total function

from 8, to B2, and that fis an ordering function of 3, to Bs. 0

Theorem 3 The implementation of ordering satisfies its definition.

Proof: This follows from Lemma 4 and the fact that there cannot exist a matching of

cost greater than |8;] + [Def(f;)| when testing 8, C fs. o

Example 9 Consider the abstract stores 4; = {71, 72} and B2 = {v3,v4}, where

71 = (€& = GP + TR, One)
T2 = (® = ©P + SR, Any)
3 = (@ = TP + TR, One)
Ta = (& = ©P + TR, Any).

The matching graph G of §; to 3, is given below:

2

4 73
1
¥
1
72 74

We have that 8; C 8, because the maximum matching of G has weight 3.
The following result gives the complexity of the ordering implementation.

Theorem 4 Let §; and 8, be two abstract stores. The complexity of checking if 8, C 3,
is not more than O(Iﬂllzl,@glzlog 1B11182])-

Proof: This follows from [16] which proved that the weighted bipartite matching prob-
lem can be solved in time O(|V|log |V| + [VIIE]) i.e O(I61]%|82)* log [B11|B2]) and the
definition of the matching graph. a
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3.3.2 Addition

We now turn to the basic operation of CLP languages: adding a constraint to the store.
We make the operation slightly more general than needed to simplify the rest of the

chapter. The operation is specified as follows.

Specification 13 [Adding an Abstract Constraint with Multiplicity] W : ASpxAMp —
ASp should satisfy the following consistency condition. ¥6,,8, € CSp,V3 € AS p,Vv €
AMp :

61 € Cc(B) A 2 €Ce(v)=01Ub, € Ce(B & 7).

Definition 15 Let § be an abstract store and v be an abstract constraint with mul-

tiplicity. The operation to add an abstract constraint to an abstract store is defined

by

By = BuU {r} ff*r‘i.‘ﬂ
BU {{o, Any)} if v=(o,pu) € B.

Informally speaking, the operation adds v to B if yis not in A. Otherwise, the multiplicity
needs to be adjusted to take into account the new constraint. This is done by setting the
multiplicity to Any. Although the operation is very simple, the proof of its consistency
is non-trivial and indicates why it is convenient to consider multisets (and not sets) of

constraints in the concrete semantics.*

Example 10 Let § = {(§ = @T,0ne),(0 < ©P,0ne)}. Adding the abstraction of
0 < 2R+ 3B, i.e. (0 < @R+ BB,0ne), to B gives the abstract store

8" = {(& = T, One), (0 < ®P,0ne), (0 < GR + SB, One)}.
Adding the abstraction of 0 < 3R + 4B, i.e. (0 < @R + @B, One), to F gives the store
{(® = ®T, One), (0 < @P,One), (0 < @R + @B, One), (0 < BR + &B, Any)}.
Theorem 5 Let § be an abstract store and 7 be an abstract constraint with multiplicity.

(i) If 8, € Cc;(B) and 6, € Cc(7), then 8; U 6, € Ce; (B 7).
(i) If 6, € Cc(B) and 6, € Cc(7), then 6, U 6, € Cc(Bw ¥).

‘It is in fact possible to be more precise in certain cases by using multiplicity ZeroOrOne when
{0, ZeroOrOne) is not in B. We gave the above definition for simplicity.
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Sketch of Proof: Let v = (o, u). If 8; € Cc;(8), then there exists a lifting function f
of 6; to B by Lemma 3. Consider the function f':6; U 8, — B v given by

f'(A) = F(A) forall A €4,.
if
Fay=<{" I TP for all A € 6,.
(o, Any) if v = (o,p) € B.
The proof consists of showing that f' is a lifting function of ; U 6, to S . a

Example 11 ;From the definition of the concretization,
{1=P+R} € Cci({(®=6P +@R,0ne)}) A 5=2P+3R € Cc({& = &P + &R, One)).
By Definition 15 and Theorem 5 (i), we have that
{L=P+R,5=2P +3R} € Cc;({(® = GP + &R, One), (& = OP + GR. Any)})..

Operation o is useful for the implementation of other operations. In fact, it is convenient

to generalize it further.

Definition 16 Let § and 4’ be abstract stores.
ﬂwﬁz{ﬁ i£6'=0
(BYr)WB" if f'={y}up",v¢pB".

Lemma 5 Let 8 and 3’ be abstract stores.

(i) If 8 € Cc;i(B) and 6’ € Cc;(B') then § U ¢’ € Cei(BlH 0.

(ii) If 6 € Cc(B) and ¢’ € Cc(B') then § U ¢’ € Ce(Bl45).
Example 12 The following example is based on the mortgage program mg/4. We have
that § € Cc;(8) where

§={0<T,0<P, 0=P*101-R—P1, 1=T—T1 }

and
B = {(0 < &T,0ne), (0 < &P,0ne), (0 = BP + SR+ SP1, One), (& = @T + 6T1,0ne)}.

Also 6’ € Cc;(f') where
¢ ={0=T1, 0=B-P1}

and
A’ = {{0 = ©T1,0ne), (0 = &B + SP1, One)}.

This gives by Lemma 5 that 8 U 8’ € Cc(8ly 4').
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3.3.3 Upper Bound

We now turn to the upper bound operation UNION: ASp x ASp — ASp.

Specification 14 UNION: ASp x ASp — ASp should satisfy the following consistency
condition. V8 € CSp, VB, € ASp,VB, € ASp :

8 € Cc(B1) v 6 € Cc(f2) = 6 € Cc(UNION(B,, B)).
We first define the upper bound of signs and multiplicities.

Definition 17 [Upper Bound on Signs] The upper bound operationonsignsU: Signx
Sign — Sign is defined as

s1 if s =39
stUsy = .
T otherwise.

Definition 18 [Upper Bound on Multiplicities] The upper bound operation on multi-
plicities LI:  Mult X Mult — Mult is defined as i, U pp = maz (py, 1o).

We now turn to the upper bound operation on abstract stores. Note first that LSign
has no least upper bound operation. If 8; is {(® = @&z, + ©z2,0ne)} and B, is {(® =
@z, + ©z2,0ne)}, both

B3z = {(® = &z + @z2, ZeroOrOne), (& = &z, + ©z2, ZeroOrOne)}

and
Bs = {(® =Dz + Tz,, One)}

are upper bounds of §; and §; but they are incomparable. This problem cannot be
avoided and indicates the inherent tradeoff between the accuracy of the signs and the
accuracy of the multiplicity. In practice, one should choose an upper bound appropriate
tc the application at hand. For this reason, we design a general scheme to generate

upper bound operations. Any operation built along the scheme is an upper bound.

Implementation 2 [Upper Bound on Abstract Stores] An upper bound operation on

abstract stores UNION: ASp x ASp — ASp is any operation obtained by applying in a
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nondeterministic way the following set of rules.

1  UNION(G,0)=0
21 UNION({(c,One)}U f7,8;) = UNION(G},8,) ¥ (o, ZeroOrOne)  if (5,0ne) ¢ 3,
1 UNION(Bi, {{o,Ome)} U 83) = UNION(G,, 55) & (o, ZeroOrOne)  if (o,One) ¢ 55
3i UNION({(a )} U 5, B) = UNTON(B,, B) & (0,) i (0s) & B, At £ Ome
i UNION(Gy, {(o, )} U B3) = UNION(By, B5) & (o, p) if (o, 1) & By A # One

4 UNION({(s0 6 3" sizis i} UG, {(sh 6 3 slaes )} U L) =

=1 i=1

UNTON(B], B5) & ((s0Ush) & S (s; U st)as, U ')

i=1

if (s06 Y sizip) ¢ 6, and (sh § > stz u) ¢ 6,
- .

=1

=

Rules 2 and 2ii trade the precision of the multiplicity information for the precision
of the coefficients, since the constraint is no longer required but its coefficients remain
the same. Rules 3¢ and 3ii do not lose information. Rule 4 trades the precision of the
coefficients for the precision of the multiplicity. It is appropriate whenever y and u' are
not Any, since they preserve the information that at most one constraint (or possibly

exactly one) is represented.

Example 13 Given the abstract stores {(0 = ST, One)} and {(&¢ = &T.0ne), (0 <
©T,0ne)}, both {(0 = &T, ZeroOrOne), (& = 4T, ZeroOrOne), (0 < ST, ZeroOrOne)}
(applying rule 2 thrice) and {(T = §T,0ne), (0 < ST, ZeroOrOne)} (applying rule 4 and

rule 2) are upper bounds.

The following theorem states that the implementation of the upper bound operation

satisfies its specification.

Theorem 6 Let 8; and 3, be abstract stores and 6 be a constraint store.
(i) 6 € Cei(B) VO € Cci(B2) = O € Cc;(UNION(B,, 32)).
(i) 0 € Cc(Br) VO E Ce(B) = b€ Cc(UNION(B,, 32)).

3.3.4 Projection

We now turn to the projection operation. Figure 3.1 describes a simple projection

algorithm based on the traditional Gaussian and Fourier eliminations which are standard
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Cproject.set(d, V) {

if V =0 return 6;

elselet V ={v} U V' A v¢gV'in
return Cproject_set(Cproject(d, v), V’);

}

Cproject(d, v) {
if 8 = § return 0;
elseletd ={A\} U@ in
case op(A) is ‘=" A A[v] > 0:
return Cgauss(8',\,v);
case op(A) is ‘=" A A[v] < 0:
return Cgauss(@’,Cneg(}A),v);
otherwise:
return Cfourier(d, v);
}

Cgauss(,A, v) {
if 6 = @ return §;
elseletd = {\}U @ in
return Cgauss(§’,A,v) U
{Celiminate(N,\,v)};
}

Cfourier(8,v) {
if 6 = ) return 0;
elselet 0 = {A\} U6 in
(89,6%,07) = Csplit({A}, v);
(62,6F,67) := csplit(d', v);
return 6} U Cfourier_step(d},0; ,v)
U Cfourier step(6F,0],v)
U Cfourier(d,v);

}
Cfourier_step(6%,0-,v) {
0:=0;

for each AT € 0+ and A~ €6~
6 := 0 U {Ccombine(A~,A+,v)};
return 6;

}

Csplit(d,v) {
return Csplit_basic(4, v)

}

Cneg(A) {
fori=0,...,n

N[ == - Alil;

op(A') :="=7
return \’;
}
Celiminate(A,A%,v) {
fori:=0,...,n
Al == AX[v] x Aufi] — Aq[v] x AE[d];
Alv] := 0;
op(A) := op(Ay);
return A;
}
Ccombine(A~,A%,v) {
fori:=0,...,n
Ald] == M o] x A= [i] = A~ [v] x A+[i];

Alv] == 0;
op(A) := op(A~) ba op(At);
return J;
}

b < < =

1 < < <

<< £ £

=< < =

Csplit basic(d,v) {
if 0 = @ return (@, 0, 0);
elselet §={\}Uf in
(6°,6%,67) := Csplit basic(d’, v);
case A[v] =0:
return (8° U {)},0%,0");
case op(A) is '=" A Afv] > 0:
return (8%,6+ U {A},0~ U {Cneg(\)});
case op(A) is '=" A AJv] < 0:
return (8%,6% U {Cneg(A)},0~ U {A});
case op(J) is not ’=" A Alv] > 0:
return (6%,6% U {A},6~);
case op(A) is not '=’ A Afv] < 0:
return (8°,0%,0~ U {)\});

Figure 3.1: Concrete Projection Algorithms
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Aproject set(f, V) { Aneg(o) {

if V =0 return g; fori=0,.
elselet V. ={v} U V' A vgV'in i) := - 0’[1]
return Aproject_set(Aproject(g,v), V'); op(¢’) :=’="; returnc’;
}
Aproject(f,v) { Aeliminate(oy,0f,v) {
if 8 = 0 return 0; fori:=0,...,n
elselet § = {(vy}UB A vy=(o,u)¢ in oli] := cr’*_'[v] x o1[i] — o1[v] x o£[i];
case p = One Aop(c) is ‘=" A afv] =@:  ofv] :=0; op(o) := op(ay);
return Agauss(8',0,v); return o;

case u = One Aop(g) is ‘=" A ofv] = &: }
return Agauss(f’,Aneg(c),v);

otherwise: Acombine(o~,0%,v) {
return Afourier(f8,v); fori:=0,...,n
} ofi] ;== ot[v] x o7 [i] — 0~ [v] x oF[i];
ofo] := 0;  op(a) := op(c™) 0a op(a*);
Agauss(B,0,v) { return o;
if 8 = return 0; }
elselet 3={y}US8,v =(c',p/) &8 in
return Agauss(f’,o,v) & Asplit_top(B,v) {
(Aeliminate(d’,o,v), u'); if 8 =@ return 0;
} elselet S={} UB A v=(o,u) ¢

(o0, Ul ZeroOrOne)
(o"", © U ZeroOrOne)
(o=, pU ZeroOrOne)
o except that ¢%[v] = 0

¥0 =
Afourier(8,v) { 7+
if 3 =@ return §; v~
elselet 3 ={y'}UB v = (o', 1) €4 in o0

+

(80, 8F,87) = ASpllt({‘y'}, ot = o except that o¥[v] = @
(63, B, B7) == Asplit (8’ v); o~ =0 except that o~ [v] = & in
if ' = Any then return case ofv] = T:
I lC) Afou:r:ier:_s?:ep(,6l B U By ) return Asplit_top(8',v) I {7°,v*,v"};
¢ Afourierstep(8F ¥ BF.87,v) otherwise:
¥ Afourier(f,v); return Asplit_top(f',v) & v;
else return }
B 14 Afourier step(8f,5; .v)
) Afourier_step(Ss,B; ,v) Asplit basic(B,v) {
¥} Afourier(#,v); if 8 = 0 return (8, 8, 0);
} elselet S={y} UB Avy=(o,u)¢ A in
(8°, 8%, ™) := Asplit basic(f',v);
Afourier_step(8%,87,v) { case ov] = 0:
B :=0; return (8° @ v, 8+, 57);
for each (o, u*) € g+ and (a' JETYEBT case op(o) is '=" A ov] = @:
8:= f ¢ (Acombine(c™, 0¥ v), u~ Upu*); return (6°, 8% W v,8~ W (Aneg(c), u));
return g; case op(o) is ’=" A ofv] =
} return (8% % @ (Aneg(c), u), B~ W v);
case op(c) is not =" A ofv] =
Asplit(B,v) { return (8%, 8% W v,87);
return Asplit_basic(Asplit_top(S,v),v); case op(a) is not '=" A ofv] = &:
} return (8°, 8+, 8~ W 4);
}

Figure 3.2: Abstract Projection Algorithms
67



in this area. Figure 3.2 presents the abstract algorithm. The algorithms are close to
those in [37] but they are simplified thanks to the introduction of operations Csplit and
Asplit which avoids much of the tedious case analysis. The algorithms are also more

precise.

The intuition behind the concrete version is as follows. Cproject nondeterministi-
cally chooses a constraint in the store. If the constraint is an equation whose coefficient
for z, is non-zero, Gaussian elimination is performed. Otherwise, Fourier elimination is
used. Gaussian elimination uses the equation or its negation to eliminate z, from each of
the other constraints in the store. The elimination is achieved by applying Celiminate
on a pair of constraints. Fourier elimination considers each constraint in turn, partitions
the store once again, and uses Fourier elimination on the compatible pairs. The pre-
sentation is slightly more detailed than required in order to make the abstract version

simpler.

The abstract version mimics almost line by line the concrete version showing the
benefits of using operations Csplit and Asplit. The only place where we deal with T
is precisely in Asplit_top. This keeps the rest of the abstract Fourier algorithm as close
as possible to the concrete version. Of course, in the abstract algorithm, operations and
relations on signs replace operations and relations on coefficients. We need to assume
operations like +, —, X on signs; these operations must be consistent approximations of

the corresponding operations on R. More formally,

cr € Ce(s1) Acz € Ce(sz) = ¢1 + ¢c3 € Ce(sy + s3)

c1 € Ce(s1) Aca € Ce(sy) ¢ —cy € Cc(sy — s2)

c1 € Ce(s1) Acz € Ce(sz) = ¢; X ¢3 € Ce(sy X S2)

c € Cc(s) = —c € Ce(—s)

The correctness of the abstract version can be proven by showing the consistency of
the various operations. Operations Aneg, Aeliminate, and Acombine mimic Cneg,
Celiminate, and Ccombine respectively, by performing operations on signs instead of
on coefficients. They satisfy the following consistency conditions, which follow directly

from the consistency of the operations on signs.

Lemma 6 [Negate] Let o be an abstract constraint such that op(c) is '="and A be a

constraint.
VA € Cc(o) : Cneg(A) € Cc(Aneg(o)).

Lemma 7 [Eliminate] Let o;,0% be abstract constraints such that otlv] = @& A
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op(ot) is ' =", A, At be constraints and v € X.

VA1 € Ce(a1), At € Ce(o) : Celiminate(A;, AX,v) € Ce(Aeliminate(oy, o2, v)).

Lemma 8 [Combine] Let 0™, o+ be abstract constraints such that ctiyl=@ Ao [v]=

8, A~, A% be constraints and v € X.

VAT € Ce(o™), AT € Ce(o™) : Ccombine(A™, A*,v) € Ce(Acombine(c™, o™, v)).

Operation Agauss mimics operation Cgauss line by line. Contrary to the algorithm in
(37], the abstract Gaussian elimination algorithm does not split the T coefficients of the
variable being eliminated into 0, @ and ©. As shown in Section 3.8, this enables it to

be more precise in some cases. Its consistency condition is as follows.

Lemma 9 [Gauss] Let v € R, o be an abstract constraint such that ofv] = @ and op(o)

is '="and B be an abstract store. We have

6 € Cci(B) N A € Cc(s) = Cgauss(d, A, v) € Cc;(Agauss(B, o, v)).

Example 14 Consider the mortgage example mg/4 when called with the top level input
pattern {{T = @P,0ne), (T = @R, One)}. For the first execution of the second clause,
the abstract store describing the computation at the point just before the recursive call
to mg is

{(T = ©P,0ne), (T = @R, 0ne), (0 < BT, One),

(0 < &P,0ne), (0 = QP + SR + ©P1,0ne), (¢ = &T + ST1,0ne)}

Projecting T from the above store corresponds to computing Agauss(f, § = @T+6TL, T)

where § is
{(T = @P,One), (T = &R, One), (0 < &T, One),

(0 < ©P,0ne), (0 =GP + OR + SP1,0ne)}

The resulting abstract store is

{(T = &P, One), (T = @R, 0ne), (S < ST1,One),
(0 < ®P,0ne), (0 = @GP + SR + OP1, One)}

Projecting T from the above store corresponds to computing Agauss(8’, 0 = &P -+ SR+
©P1, P) where #' is

{{T = ®P,0ne), (T = @R, 0ne), (6 < BT, One), (0 < &P, One)}
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The resulting abstract store (which represents the input to the recursive call to mg) is
{(T = @R + @P1,0ne), (T = @R,0ne), (6 < GT1, One), (0 < ©R + @P1,0ne)}

Note that the equation T = &P could have been used instead to eliminate P from &',

giving a different result.

Operation Asplit_top is used in the abstract version in order to simplify the handling
of T coeflicients in Fourier elimination. Before eliminating variable z, through Fourier
elimination, Asplit_top is used to change the T coefficients of z,, in the store to 0, & or S.
The multiplicity of the abstract constraints is adjusted so that Asplit_top satisfies the

following consistency condition.

Lemma 10 [Split Top] Let 4 be a constraint store, let 8 be an abstract store, and v € X.
We have
€ Cci(B) = 8 € Cc;i(Asplit_top(B,v))

CSplit.basic and ASplit.basic split a (concrete or abstract) store into three partitions

with the coefficient of z, positive, negative or zero.

Lemma 11 [Split Basic] Let § be a constraint store, let § be an abstract store, and

v € N. Let ofv] € {0,9,0} for all constraints (o, u) € B. We have
Csplit basic(f,v) = (§9,6%,6-)
0 € Cci(B) = 6% € Cci(B°) AOT € Cei(BTY A0~ € Cei(57).
Asplit basic(g,v) = (8° 8%, 57)

Operation Csplit partitions the store into three sets depending upon the coefficient of
zy. The concrete version is made more complicated than necessary in order to simplify
the presentation of the abstract version. Its abstract version needs to deal with the case
where the coefficient of the abstract constraint is T. This is handled in Asplit_top
whereby, Asplit_basic mimics Csplit_basic almost line by line. Operation Csplit

satisfies the following consistency condition.

Lemma 12 [Split] Let § be a constraint store, let B be an abstract store, and v € X.
We have
Csplit(d,v) = (6°,6%,67)
8 € Ce;(B) = 6% € Cci(B%) A 6% € Cei(8T) A 6™ € Cei(87).
Asplit(B,v) = (8°, 6+, 57)
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We now come to the operation Cfourier_step and its abstract counterpart Afourier_step.

Lemma 13 [Fourier Step] Let v € R, let §* be an abstract store such that for all
v € 8%, v = (o, 1) and ofv] = @, let §~ be an abstract store such that for all AN
Y = (o, 1) and o[v] = 8. We have

g% € Cci(B*) A 6~ € Cci(87)

= Cfourier.step(8%,6~,v) € Cc;(Afourier step(8t, 3, v)).

Similarly, operation Afourier closely mimics operation Cfourier. The main difference
comes from the fact that we avoid combining a constraint with multiplicity One or
ZeroOrQOne with itself, contrary to the algorithm in [37]. This is achieved by testing the

multiplicity of the constraint.

Lemma 14 [Fourier] Let v € &, 6 be a store, and 3 be an abstract store. We have
8 € Cc;(B) = Cfourier(d,v) € Cc;(Afourier(f,v)).
Example 15 Let v; = (0 < ®R + ©B,0ne), v, = (0 = @P + TR + &B,0ne) and § =
{1, 72}. Then
Asplit({v1},R) = (ﬂ?v ﬂif‘v B1) = (0, {<0 < @R + @B, One) }, )

Asplit({y2},R) = (83,67 ,87) = ( {(0 = &P + SB, ZeroOrQOne)},
{{0 = &P + ®R + SB, ZeroOrOne)},
{(0 = &P + SR + 6B, ZeroOrOne)})

According to the algorithm,

Afourier(f,R) = f{ Y Afourierstep(f{,B;,R)
Afourier step(87,H7,R) Y Afourier({v:},R)
= 0 W {(0 < @®P + TB, ZeroOrOne)} |4
0 ¢ Afourier({y2},R)

By similar reasoning, we have that
Afourier({v:},R) = {(0 = &P + ©B, ZeroOrOne)}
This gives

Afourier(S,R) = {(0 < @P + TB, ZeroOz0One), (0 = P + SB, ZeroOrOne)}
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We now state the main result of this section: the consistency of projection.

Theorem 7 [Projeci} Let v € R, 6 be a store and § be an abstract store.

8 € Cc(B) = Cproject(d,v) € Cc(Aproject(s,v)).

Finally, Cproject_set and Aproject_set merely extend the projection operation to
project a set of variables from a store, rather than just one variable. They satisfy a

similar consistency condition, obtained by repeated application of Theorem 7.

Corollary 1 [Project Set] Let V' € 2%, 4 be a store and 8 be an abstract store.

6 € Cc(B) = Cproject.set(f,V) € Cc(Aproject_set(f, V)).

3.4 Applications

We now present the application of the domain LSign to answer questions about satis-
fiability and unsatisfiability of constraint stores, conditional satisfiability of constraint

stores, redundancy of constraints, and freeness of variables.

3.4.1 Satisfiability of Constraint Stores

The first application of the LSign domain that we consider is the problem of determining
whether a constraint store is satisfiable. In the concrete domain, the function Cis_sat :
CSp — Boolean takes a constraint store § and returns a Boolean value which is true if
8 is satisfiable, and false otherwise. The definition of Cis_sat is given in Figure 3.3. It
consists of the well known technique of projecting all the variables from the store and
checking if the resulting ground constraints (i.e. constraints with zero coefficients for
all variables) are all trivially satisfiable. Its abstract counterpart Ais_sat, also given in

Figure 3.3, makes a conservative approximation to Cis_sat that satisfies the following

specification.

Specification 15 Ais_sat : ASp — Boolean should satisfy the following consistency
condition. V8 € CSp,VB € ASp :

0 € Cc(B) => (Ais_sat(f) = Cis_sat(d))



Cis_sat(f) { Ais_sat(B) {

0, = Cproject set(d, R); Bp = Aproject_set(B,R);
return Cis_triv_sat(f,); return Ais_triv_sat(B,);
} }
Cis_trivsat(f) { Ais_triv_sat(g) {
if § = 0 return true ; if 3 = 0 return true ;
elseletd = {A}U# in elselet § = {vy}UB Ay=(o,u) ¢4 in
case Aisco < 31, 0z; A co < O0: case o is 5o < )i, 0z; A sp=6:
case Aisco=3;_,0z; A co =0: case ris so =Y ., 0z; A so =0:
case Aisco < D1, 0z; A co < O0: case o is 5o < Y0, 0z A (so=0Vsg=6):
return Cis_triv_sat(6'); return Ais_triv_sat(8');
otherwise: otherwise:
return false; return false;
} }

Figure 3.3: Satisfiability Algorithms

Example 16 Projecting all the variables from {0 <R+B, 0 =B, 3 =R} gives the

constraint store {—~3 < 0}, indicating that the original coustraint store is satisfiable.

Example 17 Projecting all the variables from {( 0 < GR+@B, One ), (0 =@&B, One),
( @ = @R, One )} gives the abstract store {{ & < 0, One )}, indicating that all the

constraint stores in its concretization are satisfiable.

Example 18 Projecting all the variables from {( T < ©R+@B, One ), (0 =&B, One ),
( © = @R, One )} gives the abstract store {{ T < 0, One )}, indicating that some of the

constraint stores in its concretization may not be satisfiable.
The following theorem proves the correctness of Ais_sat.

Theorem 8 [Is Satisfiable] Let 6 be a store and 8 be an abstract store.

8 € Cc(B) = (Ais_sat(B) = Cis_sat(f))

3.4.2 Unsatisfiability of Constraint Stores

The second application of the LSign domain that we consider is the problem of deter-
mining whether a constraint store is unsatisfiable. In the concrete domain, the function

Cis_unsat : CSp — Boolean takes a constraint store § and returns a Boolean value
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Cis_unsat(f) { Ais_unsat(f) {

6, = Cproject_set(d, N); B, = Aproject set(f, R);
return Cis_triv_unsat(f,); return Ais_triv_unsat(gG,);
} }
Cis_triv_unsat(f) { Ais_triv_unsat(8) {
if = ) return true ; if 3 =0 return true ;
elseletd = (A} U@ in elselet 8 = {(y}UBF Avy=(o,pu)¢ B in
case Aisco < Y ..., 0z; A co>0: case ris so <Y ;- 0z; A (so=0Vsp= 8)
case Aisco =3 " 0z; A co #0: A p = One:
case Aiscg <3 0z; A co>0: case cisso =3 7_, 0z; A (so =@ Vso=6)
return true; A p = One:
otherwise: case o is sg < Z?:I 0z; A so=9&
return Cis_triv_unsat(¢’); A u = One:
} return true;
otherwise:

return Ais_triv_unsat(g');

Figure 3.4: Unsatisfiability Algorithms

which is true if 6 is unsatisfiable, and false otherwise. The function Cis_unsat is exactly
the logical negation of the function Cis_sat. In order to simplify the presentation of
the abstract algorithm, it is useful to give the definition of Cis_unsat explicitly in Fig-
ure 3.4. It consists of the well known technique of projecting all the variables from the
store and checking if any of the resulting ground constraints (i.e. constraints with zero
coefficients for all variables) is trivially unsatisfiable. Its abstract counterpart Ais_unsat,
also given in Figure 3.4, makes a conservative approximation to Cis_unsat that satisfies

the following specification.

Specification 16 Ais_unsat : ASp — Boolean should satisfy the following consistency
condition. V8 € CSp,VB € ASp :

§ € Cc(B) = (Ais.unsat(B) = Cis_unsat(4))

Note that Ais_unsat is not the logical negation of Ais_sat unlike the case in the

concrete domain.

Example 19 Projecting all the variables from {0 < R+B, 0 = B, —3 = R} gives the

constraint store {3 < 0}, indicating that the original constraint store is unsatisfiable.

Example 20 Projecting all the variables from {{0 < &R+B, One ), (0= @B, One Y,
( © = @R, One )} gives the abstract store {{ & < 0, One )}, indicating that all the
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constraint stores in its concretization are unsatisfiable.

Example 21 Projecting all the variables from {{ T < ®R+@B, One ); (0 =@B, One),
( ® = @R, One )} gives the abstract store {( T <0, One )}, indicating that some of the

constraint stores in its concretization may not be unsatisfiable.
The following theorem proves the correctness of Ais_unsat.

Theorem 9 [Is Unsatisfiable] Let 8 be a store and 4 be an abstract store.

6 € Cc(f) = (Ais.unsat(f) = Cis_unsat(d))

3.4.3 Conditional Satisfiability of Constraint Stores

The next application of LSign that we consider is the problem of conditional satisfiability
of constraint stores. In the concrete domain, the function Cis_cond_sat : CSp x CSp —
Boolean takes two constraint stores 8, and 6, and returns true if the conjunction 8; U 6,

is satisfiable whenever 6, is satisfiable. In other words,

Cis_cond sat(fy,62) = Cis_sat(f;)=>Cis_sat(f; U 6,)
= Cis_unsat(f,) V Cis_sat(f; U 6,).

Its abstract counterpart Ais_cond_sat is specified as follows.

Specification 17 Ais_cond_sat : ASp x ASp — Boolean should satisfy the following
consistency condition. V6,6, € CSp,V8;, 8, € ASp :

6, € Cc(B1) A 82 € Ce(B2) = (Ais_cond sat(fy, Bs) = Cis_cond_sat(#;, 6,))

The need for such an operation arises when it is necessary to verify (in a conservative
manner) that adding any constraint store in the concretization of B2 to any satisfiable
constraint store in the concretization of 3; does not cause the resulting constraint store to
become unsatisfiable. The operation is the cornerstone of the analysis for reordering con-
straints in CLP(R;,) programs. While the definition of Cis_cond_sat is straightforward,
it does not lend itself to a straightforward abstraction. The obvious implementation of

Ais_cond_sat is

Ais_cond sat(fy, f2) = Aisunsat(f,) V Ais_sat(f; &Jﬂg).
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The correctness of this implementation w.r.t. the specification is an easy consequence
of the correctness of Ais_sat, Ais_unsat and the {t operator. However, as we shall see
below, this implementation may not be sufficiently accurate. In the rest of this section,
we examine why the obvious implementation of Ais_cond_sat is not sufficiently accurate,

and how it may be improved.

The basic source of inaccuracy in the abstraction of Cis_cond_sat is the fact that the
satisfiability of §; U 6, only needs to be checked if 8, is satisfiable. In other words, if 4,
is known to be unsatisfiable, then there is no need to check the satisfiability of 6; U 6,.
In the concrete domain, this poses no problems as Cis_sat and Cis_unsat are logical
negations of one another. However, in the abstract domain the fact that Ais_unsat and
Ais_sat are not logical negations of each other may lead to inaccuracy. Intuitively, it is
necessary to check the satisfiability of 8; |4} 8, only for the stores in the concretization of
B1 that are satisfiable. The approach taken is to remove as many unsatisfiable stores as
possible from the concretization of 8y, before computing Ais_sat(f; ([ B2). Intuitively,
this approach leads to a more precise approximation of Cis._cond_sat(#;,6,) because we
only need to check the satisfiability of 6, U 6, if 6, is known to be satisfiable. There
are four distinct but inter-related ways to remove sources of unsatisfiability from ;. We

now examine each of these in detail, with the aid of 2 motivating example.

Removing Ground Constraints In the concrete domain, the transformation Cred_gnd
(Figure 3.5) removes all ground constraints (i.e. constraints with zero coefficients for all
variables) from a constraint store. Cred_gnd only removes sources of trivial unsatisfia-
bility from constraint stores, and so it is an equivalence transformation for satisfiable

constraint stores, i.e., the following proposition holds.

Proposition 1 Let 6 be a constraint store. Then

0 satisfiable = (6 «» Cred_gnd(4)).

While Cred_gnd is not a very useful transformation for constraint stores, the following
example indicates why its abstraction Ared_gnd (also given in Figure 3.5) is important

to improve the accuracy of conditional satisfiability in the abstract domain.

Example 22 Let 8; = {(T = @X,0ne), (T < 0,0ne)} and §; = {(0 = ®X + &Y, One).

Because f§; only represents stores that have a simple linear relation between X and

76



Y, and B; represents stores that do not involve Y at all, it can be seen that for any
satisfiable constraint store §; € Cc(f;) and constraint store 02 € Cc(f2), we have that
Cis_sat(f; U ;) is true. We expect therefore that Ais_cond_sat(f, 82) returns true.

However we see that

Ais_cond_sat(f;, ;) =Ais_unsat(f;) V Ais_sat(f, ¥ 52)
= false V Ais trivsat({(T < 0,0ne)})
= false.

This inaccuracy arises because of the possibly unsatisfiable ground constraint (T <
0,0ne) in f;. It can be observed however that there is another abstract store B =
{{T = ®X,0ne)} which includes all the satisfiable constraint stores of Ce(f1) in its
concretization and such that Ais_sat (8]l 8,) is true. Moreover, g} = Ared gnd(8,).

An improved implementation of Ais_cond_sat, may therefore be given by

Ais_cond_sat(f;, ;) = Ais_unsat(f;) V Ais_sat(Ared_gnd(f;) L—ijﬂz).

Eliminating Equations In the concrete domain, the transformation Cred_eqn (Fig-
ure 3.5) looks for an equation for each variable, and if possible, uses the equation to
Gauss eliminate the variable from the rest of the store (operation Cred_egn.step). This
corresponds to substituting the value of the variable in the rest of the store, but not
removing the equation used to perform the substitution. Cred_eqn is an equivalence

transformation on stores, i.e., the following proposition holds.

Proposition 2 Let v € X,V € 2% and 6 be a store. Then

6 <> Cred_eqn_step(f, v) «» Cred_eqn_set(f, V) «+ Cred_eqn(6).

The following example indicates why the abstraction of Cred_eqn, i.e. Ared_eqn (given
in Figure 3.5) is important to improve the accuracy of conditional satisfiability in the

abstract domain.
Example 23 Let §; = {(® = ©X,0ne),(T < ®X,0ne)} and §, = {(0 = X +

@Y,0ne)}. It can be seen that for any satisfiable constraint store 6, € Cc(B) and

constraint store 62 € Cc(f2), we have that Cis_sat(8, U 6,) is true. We expect therefore
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that Ais_cond_sat(f, B2) returns true. However we see that

Ais_cond_sat(8,4;) = Ais_unsat(f;) Vv Ais_sat(f 4 52)
=false V Ais_triv_sat({(T < 0,0ne)})
= false.

This inaccuracy arises because the two abstract constraints in B1 may be potentially
unsatisfiable together (combining to produce T < 0). It can be observed however that
there is another abstract store §] = {(® = ®X, One)} which includes all the satisfable
constraint stores of Cc(f;) in its concretization (under equivalence closure) and such

that Ais_sat(B]F,) is true. Moreover, g} = Ared gnd(Ared_eqn(f;)).

It is important to first use the equations to simplify the store and then use Ared_gnd to
remove ground constraints. This is because Ared_eqn may introduce ground constraints
when it eliminates with equations. An improved implementation of Ais_cond_sat, may

therefore be given as

Ais_cond_sat(f;, §2) = Ais_unsat(f;) V Ais_sat(Ared _gnd(Ared_eqn(G;)) E"J,Bz).

Reducing Top Coefficients The third transformation does not have any counterpart
in the concrete domain. It consists of reducing the number of top coefficients in the
abstract store 8 so as to improve its accuracy. The following example motivates the

transformation.

Example 24 Let 8; = {(T = @X,0ne),(0 < ®X,0ne)} and f, = {(0 = 66X +
@Y, 0ne)}. Again it can be seen that for any satisfiable constraint store 61 € Ce(5h)
and constraint store 8, € Cc(B,), we have that Cis.sat(f, U 6;) is true. We expect

therefore that Ais_cond_sat(4, B2) returns true. However we see that

Ais_cond sat(f,f;) = Ais.unsat(B;) V Ais_sat(f |4 B2)
= false V Ais_triv_sat({(T < 0,0ne)})
= false.

This inaccuracy arises because of the top coefficient in §;. It can be observed that there
is another abstract store 5] = {(§ = @X,One), (0 < &X,0ne)} which includes all the
satisfiable constraint stores of Cc(;) in its concretization and such that Ais_sat (8114 52)

is true.



The basic idea is to consider the cases 0, & and S for each T coefficient in the
store §; and see if any two of them make the store unsatisfiable (using Ais_unsat). In
that case, the T coefficient can be replaced by the third sign. To do this in general
for a store would be a very expensive operation. We therefore present a more specific
version of the transformation which captures most of the cases that occur in practice.
The transformation Ared_top (Figure 3.5) uses any inequality that restricts the sign of a
variable, to refine any equation that assigns T to that variable. It isimportant to perform
Ared_top before performing Ared_eqn, in order that any sign restricting inequality be

used to make an equation more accurate before eliminating with that equation.

Reduction Operation The above transformations can all be put together in a trans-
formation called the definite satisfiability reduction (Figure 3.5). In the concrete do-
main, the operation Creduce : CSp — CSp consists of the composition of Cred_eqn
and Cred_gnd. In the abstract domain, the operation Areduce : AS p — ASp consists
of the composition of Ared_top, Ared_eqn and Ared_gnd. The definition of Areduce is
such that, while it retains all the satisfiable stores in the concretization, it removes as
many unsatisfiable stores as possible. Note however that while the definition of Areduce
is such that the concretization of AReduce(d) contain all the satisfiable stores from the
concretization of 3, it does not preclude the introduction of stores into Cc(Areduce(0))

that are not in Ce(f). The following theorem states this more formally.

Theorem 10 [Reduce] Let 6 be a store and 8 be an abstract store. Then

8 € Cc(B) A 6 satisfiable = 6 € Cc(Areduce(4))

Using Areduce, the operation Ais_cond_sat can be implemented in a more accurate

fashion as follows:

Ais_cond.sat(f;, f2) = Ais_unsat(8,) v Ais_sat(Areduce(d;) wﬂz).

Projecting Irrelevant Variables Even the above implementation of Ais_cond_sat

is not sufficiently accurate, as can be seen by the following example.
Example 25 Let 81 = {(T < TX,0ne)} and §; = {(0 = ©X + &Y, One)}. It is obvious

that for any satisfiable constraint store 6, € Cc(B1) and constraint store 8, € Cc(fs),
we have that Cis_sat(f; U 6,). We expect therefore that Ais_cond_sat(f, ;) returns
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Creduce(f) {
return Cred_gnd(Cred_eqn(f));

Cred_gnd(4) {
if 6 = @ return §;
elseletd = {A\}U¥# in
case Aisco d Y7, Oz;:
return Cred_gnd(6');
otherwise:
return Cred.gnd(6') U {A};

}

Cred_eqn(f) {
return Cred_eqn set(6, R);

}

Cred_eqn.set(6, V) {

if V =0 return 6;

elselet V. ={v} U V' A vgV'in
6, := Cred_eqn_step(d, v);
return Cred_eqn.set(,, V');

}

Cred_eqn.step(d, v) {
if = @ return 0;
elseletd = (A} U@ in
case op(}) is ‘=" A A[v] > 0:
return Cgauss(6’,A,v) U {A};
case op(A} is ‘=" A A[v] < 0:
return Cgauss(¢',Cneg(A),v) U {A};
otherwise:
return 6;

Ared_top(B) {
if 8 = 0 return §;
else if || = | return 3;

Areduce(f) {
return Ared_gnd(Ared_eqn(Ared_top(8)));

}

Ared.gnd(fF) {
if 8 =@ return 0;
elselet § = {1}UF A 7=(o,u) €8 in
case o is sg & Z?zl O0zx;:
return Ared_gnd(8');
otherwise:
return Ared_gnd(8') & v;

}

Ared_eqn(8) {
return Ared_eqn_set(f, R);

}

Ared_eqn.set(f8, V) {

if V =0 return g;

elseletV ={v} UV AvgV'in
By = Ared_eqn_step(f, v);
return Ared_eqn_set(g,, V');

}

Ared_eqn_step(f,v) {
if 8 =0 return §;
elselet 3 = {y}UB A y=(o,u) ¢ 8 in
case i = One A op(o) is ‘=" A ofv] = @:
return Agauss(f3',o,v) & 7;
case p = One Aop(g) is ‘=" A ov] = &:
return Agauss(f’,Aneg(c),v) & 7;
otherwise:
return j;

elselet 8 = {y,%}UB A7 = (o) €68 A v2=(o2,p2) ¢ 8 in

case uy =One A (01 is® <Dz, V o1 is0< Dz V 0y is & < ©zy)
Ao2is T=@z, V 02is T = 6z,):
return Ared_top(8' W) ¥ (@ = @z, p2);

case yy =One A (0, is®< 6z, V o1 is0< 8z, V 0y is & < 6z,)
ANozis T=z, V apis T =0z,):
return Ared_top(f’' W 1) ¥ (€ = ®zy, u2);

otherwise:
return g;

Figure 3.5: Reduction Algorithms
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true. However we see that

Ais_cond sat(f;,f2) = Ais_unsat(8;) Vv Ais_sat(Areduce(d;) 4 3,)
=false V Ais_triv.sat({(T < 0,Zero0r0One)})
= false

Intuitively, the inaccuracy is caused because 81 contains unsatisfiable stores in its con-
cretization, however the transformations performed by Areduce are not able to remove

these unsatisfiable stores.

To understand how to overcome this limitation it is instructive to look at the concrete
domain. If §; € Cc(B;) and 6, € Cc(3a).

Cis_sat(f; U 6,)

= Cis_triv_sat(Cproject_set(f; U 6., RN))

= Cis_trivsat(Cproject_set(Cproject_set(f;.Var(d;) \ Var(f.)) U .. R))
= Cis_sat(Cproject_set(fy, Var(f,) \ Var(d,)) U 6-)

This suggests the following implementation for conditional satisfiability.
Implementation 3 [Is Conditionally Satisfiable] The abstract conditional satisfiability

operation Ais_cond-sat: ASp X ASp — Boolean is given as

Ais_cond_sat(F,. 3)
= Ais_unsat(8;) V Ais_sat(Areduce(Aproject_set(d;,Var(d) \ Var(Jds))) 4 3-).

where Var(3) denotes the set of variables of 3 that have a nonzero coefficient in J.

Note that Areduce is applied to 3, after projecting the variables of J; that do not occur
in G>. This is because the projection may make explicit sources of inconsistency (eg.
ground unsatisfiable constraints) that can then be removed by Areduce. The above

implementation of conditional satisfiability satisfies its specification.

Theorem 11 [Conditional Satisfiability] Let 6,,62 be stores and J;.J> be abstract

stores. Then
61 € Cec(B1) A 62 € Ce(ds) = (Ais_cond sat(dy, 3a) = Cis_cond_sat(#f,.6.))
Summary The naive implementation of Ais_cond_sat(J;. J») is not sufficiently accu-

rate in practice because the operations Ais_sat and Ais_unsat are not logical negations
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of one another. It becomes necessary to transform the store B to remove sources of un-
satisfiability before checking the satisfiability of 8, 4 B2. There are four transformations
to remove sources of unsatisfiability. Two of these, i.e., eliminating with equations and
projecting irrelevant variables, correspond closely to the concrete domain. They serve
to make the information available on the constraint store more explicit. The third, i.e.,
reducing top coefficients, corresponds to making the signs of the abstract store more
accurate. It is to be performed before eliminating with equations so that the sign in-
formation in inequalities is not lost. The final transformation, i.e., removing ground
constraints is to be applied last as the previous transformations may introduce ground

constraints.

3.4.4 Redundancy of Constraints

The next application of the LSign domain is the problem of determining whether a
given constraint is redundant in the context of a given constraint store. It is convenient
to generalize this problem to the problem of determining whether a constraint store is
redundant in the context of another given constraint store®. In the concrete domain, the
function Cis_redundant : CSp x CSp — Boolean takes a constraint store 6, and returns
true if it can be determined to be redundant in the context of the constraint store 6.

The function is conservative even in the concrete domain in the following manner:
Cis_redundant(f,,8) = 0, is redundant in the context of 8

Cis.redundant performs the following conservative check for redundancy. First it ex-
presses § on the variables of 6, by eliminating the variables not in 0-. It then applies
Creduce on the resulting store in order to make the information available on the subsys-
tem consisting of the variables of 6, more explicit. The next step is to call Csimplify
which simplifies 6, using the equations of . For each variable v, it checks whether v
occurs with a nonzero coefficient in an equation in the store 8 and if such an equation is
found, it can be used to substitute the value of v into 6, by Gauss elimination. The final
step is to check if the resulting simplified store is trivially satisfiable. The algorithm for
Cis.redundant is given in Figure 3.6. Its abstract counterpart Ais_redundant is also

defined in Figure 3.6 and can be specified as follows.

5By definition, 6, is redundant in the context of 8 if 8 & 8 U 4,



Cis_redundant(f,,6) {

0p := Creduce(Cproject_set(d, N \ Var(d,)));
fs := Csimplify(6,,06p, R);

return Cis_triv_sat(f,);

}

Csimplify(6,,6,V) {

if V=0 return 4,;

elselet V ={v} U V' A v¢gV'in
6, := Csimplify step(6,,0, v);
return Csimplify(f,, V');

}

Csimplify step(6,,6,v) {
if 6 = @ return 4,;
elseletd, = {A\}Ué in
case op(A) is ‘=" A A[v] > 0:
return Cgauss(f,,A,v);
case op(\) is ‘=" A Afv] < 0:
return Cgauss(f.,Cneg(\),v);
otherwise:
return 6,;

Ais_redundant(G., 8) {

Bp := Areduce(Aproject_set(B, R \ Var(s,)));
Bs = Asimplify(B,, By, N);

return Ais_triv_sat(g8,);

}

Asimplify(6., 6, V) {

if V =0 return §,;

elselet V ={v} U V' A végV'in
By := Asimplify step(S., B, v);
returnAsimplify(5,, V');

}

Asimplify step(f,, 5,v) {
if 8 =0 return S§;;
elselet 8, = {v} U B A y=(op)¢F in
case u = One A op(o) is ‘=" A ov] = &:
return Agauss(S,,o,v);
case u = One A op(o) is ‘=" A ofr] = &:
return Agauss(fS-,Aneg(o),v);
otherwise:
return G.;

Figure 3.6: Redundancy Algorithms

Specification 18 Ais_redundant : ASp x ASp — Boolean should satisfy the following
consistency condition. V8 € CSp,V8, € ASp,VG € ASp :

br € Cc(By) A 6 € Cc(B) A 6 satisfiable
= (Ais_redundant(f,,8) = Cis_redundant(6,,6)).

Example 26 Let 8 be the abstract store

{{ T=@&R, One ), ( T <=GSR, One ) { T<=ER, Any ), ( T = &P + &R, One ),
(0 <=@P, One ), (0 <=@P1, One ), (0= &P + OR+ SP1, One ),

(0 < @T1, One ), (@ =@TL, One ), ( ® = ST +OSTL, One ),
(0=©@R+ @B+ OPL, One ), (0 <= GR+ @B, One ), (0 <=@®R+ @B, Any )}

and f, be the abstract store
{(0 < @T, One)}.

Areduce(Aproject_set(s, {P,R,B,P1,T1})) is
{{ & = @T, One )}.
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Cis_free(6,v) { Ais_free(,v) {

if & = 0 return true; if 8 =0 return true;
elseletd = {A\} U@ in elselet 3 = {y}UB A y=(o,pu)¢f in
case A[v] =0: case o'[v] =0:
return Cis_free(f',v); return Ais_free(§',v);
otherwise: otherwise:
return false; return false;
} }

Figure 3.7: Freeness Algorithms

The simplified value of 4, is therefore just {( © < 0, One )} which is seen to be trivially
satisfiable. So Ais_redundant(f,, ) is true. Hence for any 6§ € Cec(f) and 6, € Cc(B,),

we have that Cis_redundant(4,,4).

The following theorem proves that Ais_redundant is a conservative approximation of

Cis_redundant.

Theorem 12 [Is Redundant] Let 6,, 8 be stores and Br, B be abstract stores.

6, € Cc(B,) A 8 € Cc(B) A 8 satisfiable
= (Ais_redundant(f,, 8) => Cis_redundant(f,, 4)).

3.4.5 Freeness of Variables

The final application of the LSign domain that we consider, is the problem of determining
whether a given variable is “free” i.e. it does not occur in a given constraint store with a
non-zero coeflicient. In the concrete domain, the function Cis_free : CS p XN — Boolean
takes a constraint store § and a variable v and returns a Boolean value which is true if
the variable does not occur in the constraint store and false otherwise. The definition
of Cis_free is very straightforward and is given in Figure 3.7. Its abstract counterpart
Ais_free, also given in Figure 3.7, makes a conservative approximation to Cis_free and

can be specified as follows.

Specification 19 Ais_free : ASp x X — Boolean should satisfy the following consis-
tency condition. V6 € CSp,V8 € ASp,Vv e R :

8 € Cc(B) A 0 satisfiable = (Ais_free(f,v) = Cis_free(d,v))
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Example 27 Ais_free({(T = &P, One),(T = &R, One), (0 < @P, One)},P1) is true,
indicating that when mg/4 is called with the top level input pattern {(T =@P, One),(T =
©R, One)}, for the first execution of the second clause, the variable P1 is free at the

program point just after the inequality P > 0 and just before the equation P1 = P+1.01—R.

It can be proved that the definition of Ais_free satisfies its specification, giving rise to

the following theorem.

Theorem 13 [Is Free] Let v € R, 6 be a constraint store and 8 be an abstract store.
(i) 6 € Cci(B) = (Ais_free(B,v) = Cis_free(d, v)).

(ii) 0 € Cc(B) A 6 satisfiable = (Ais_free(f,v) = Cis_free(6, v)).

3.5 The Power Domain 2LSign

In practice, the LSign domain is not always sufficiently accurate to perform a practical
analysis of CLP programs. In particular, the upper bound operation may lose too much
information to be of practical use. It may therefore be necessary to move to the power
domain 2-51€" ip order to get the required accuracy. This is a fairly standard construction
in abstract interpretation [15]. We briefly introduce the domain 2LS38® and its abstract

operations.

Definition 19 [Abstract Multistores] An abstract multistore over D is a set « of abstract

stores. The set of multistores over D is denoted by AMSp and is ordered by
arCaeVhi€a Ire€ar: 51 C 5
The concretization function Cc: AMSp — CSp is defined as

Ce(e) = |J Ce(8)

BEa

Abstract multistores are denoted by the letter «, possibly subscripted.
Example 28 Constraint stores such as {0 =T}, {2=3T,0 < T} and {3 =T,0 < 2T}

all belong to the concretization of the abstract multistore {{{ 0 = ®T, One Lh{(e =
@T, One ),( 0 < &T, One )}}
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aWy=Uge BWY

0l o = Upeq grea S

Aproject(a,v) = (g, Aproject(8, v)

Aprojectset(a, V) = e, Aproject_set(G, V)
Ais_sat(a) = AgeqohAis_sat(f)

Ais_unsat(a) = AgeqAis_unsat(f)

Ais_cond sat{aj, @) = Ag ga, 3,€a;,Als_cond sat(f, B32)
Ais_redundant(ar, @) = Ag,ca, secalbis_redundant(G,, B)
Ais_free(a, v) = Ageqhis_free(B,v)

Figure 3.8: Abstract Operations and Applications for 2LSign

It is quite easy to extend the definition of the abstract operations and applications of
LSign to abstract multistores and to prove their consistency. In particular, the ordering
function C: AMSp x AMSp is a pre-order and is monotonic w.r.t. the concretization
function. Figure 3.8 contains the definitions of various algorithms for 2LS382 iy terms of

the corresponding algorithms for LSign.

The only operation that is not a direct application of the corresponding operation
for LSign is that for the upper bound operation. Unlike LSign, the UNION operation in

2LSign is not defined as a scheme. Rather, the domain lends itself to a very simple and

precise formulation of the upper bound.

Definition 20 [Upper Bound on Abstract Multistores] Let & and o' be abstract multi-

stores.
UNION(o, @) = a U o’

Example 29 The abstract multistore {{( 0 = @T, One )}, {{ & = &T, One »(0 <
@T, One )}} is the upper bound of the abstract multistores {{{® =T, 0ne ),(0 <

©T, One )}} and {{{ 0 = &T, One )}}.

The following theorem follows easily from the definition of the concretization for abstract

multistores.
Theorem 14 Let a; and @, be abstract multistores and 6 be a constraint store.

6 € Ce(ar) VO € Ce(ay) = 6 € Ce(UNION(ay, as)).

Note that it may be possible to avoid the coefficient T altogether in the power domain

oLSign thys removing a large source of imprecision. This is because for any T coefficient
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in an abstract store, it can be split into three abstract stores. However, this may cause
an explosion in the number of abstract stores that compose a typical abstract multistore.

This remains an open area of investigation.

We would also like to mention here that 215182 enables the abstraction of disequations
in the domain in an accurate manner. This is done by extending the definition of the

addition operator as follows.

Definition 21 [Addition of a Disequation] Let & be an abstract multistore and v be

the abstract constraint with multiplicity (so # 3%, sizi, u). Then

ad v=(aW¥ (sp< is;z,—,u)) U (¢ ¥ (s < Z(—s;):c;,;z)).
3 =1

=1
3.6 Relation to Abstract Interpretation Framework

As mentioned in Chapter 2, any abstract domain that is used in our abstract interpreta-
tion framework needs to provide definitions of operations such as RESTRC, EXTG etc. We

now indicate how these operations can be defined in terms of the operations for 2L51gn,

UNION (Upper bound) Operation UNION is used to compute the result of a predicate,
given the result of its individual clauses. Its abstract version is just the upper bound for

abstract multistores.

Qaq fn=1
UNION(aq,...,0n) = ]
UNION(...UNION(ay,@2)...,@,) otherwise
AI_ADD (Addition of a constraint) Operation AI_ADD is used when a constraint is
encountered in the program. Its abstract version adds the abstraction of the constraint
to the input abstract substitution. Let A be the concrete constraint cod YL, ciz; in

the program. Then

AIADD(Ma)=a ¥ (59 & Es,-:z:,-, One) where ¢; € Ce(s;) (0 < i< n)

=1

RESTRC (Restriction of a clause substitution) Operation RESTRC is used at the end
of a clause execution to restrict the substitution expressed on all the clause variables to

a substitution expressed on only the head variables of the clause. Its abstract version
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projects out the variables that occur in the clause body but not in the clause head. Let

Zm41,--.,Zy be the variables that occur only in the body of ¢. Then

RESTRC(c, @) = Aproject set(a, {Tms1,-- -, Zn})

EXTC (Extension of a clause substitution) Operation EXTC is used to is used at
the beginning of a clause’s execution to express the input substitution on all the clause
variables and not just the head variables. Its abstract version for a clause c is a trivial
operation.

EXTC(c,a) =

RESTRG (Restriction of a substitution before a literal) Operation RESTRG is used
before the execution of a literal in the body of a clause to compute the input substitution
for the execution of the literal. Its abstract version first projects out the variables of
the clause that do not appear in the literal from the abstract substitution, and then
normalizes the resulting abstract substitution. Let Zi,...,Zi, be the variables that
occur in the literal / and let zy,..., z, be the variables of the clause in which the literal

occurs. Then

RESTRG(l, @) = norm (z;,, ..., z;,] Aproject.set(a, {z,...,z.} \ {Zipyo.yzi})
EXTG (Extension of a substitution after a literal) Operation EXTG is used after
the execution of a literal to extend its result to the clause substitution. Its abstract
version first denormalizes the abstract subsitution o for the output of the literal [ and

then adds it to the clause abstract substitution «. Let Zi,...,Zi, be the variables that

appear in the literal /, in that order. Then

EXTG(l, o, &) = tl-J denornm [z;,,...,z;,.] o

3.7 Complete Example
We now present a complete example indicating how to compute the output and input

descriptions in the 215182 domain, for the mortgage program mg/4. First we show the

computation of the goal independent (or online) output.

88



Example 30 [Computation of LSign Output Description for mg/4] The abstract mul-

tistore describing the output of the first clause is
{{(0 = ®T, One), (0 = &P + SB, One)}}

The abstract multistore describing the constraint store Jjust before the recursive call in

the second clause is
{{{0 < &T, One), (0 < ©P, One), (0 = &P + SR + SP1, One), (§ = §T + &T1,0ne)}}

Extending this with the denormalized output of the recursive call (when the recursive
call returns the previous output) gives the abstract substitution
{{{0 < @T, 0ne), (0 < P, One), (0 = GP + SR + SP1, One),
(& = ©T + ©T1,0ne), (0 = T1, One), (0 = SP1 + CB, One)}}
Restricting this to the head variables gives the following abstract substitution as the

output of the second clause
{{{0 < &T,0ne), (& = ©T, One), (0 < &P, One), (0 = GP + SR + SB, One) }}

The union of this with the previously computed output of the first clause gives the

following abstract substitution as the updated output of the predicate mg.

{
{{(0 = ©T,0ne), (0 = &P + ©B, One)},
{(0 < ®T,0ne), (¢ = &T, One), (0 < &P, One), (0 = &P + SR + OB, One)}
}
This new output can be used as the output of the recursive call to mg, in order to

recompute the output of the second clause of mg. This gives

{{(0 < ©T,0ne), (0 < &P, One), (0 = SP + SR + SP1, One), (& = @T + ST1,0ne) }}
¥
{
{(0 = ©T1,0ne), (0 = GP1 + ©B, One)},
{(0 < &T1,0ne), (@ = ST1,0ne), (0 < GP1,0ne), (0 = GP1 + SR + SB, One)}
}

for the program point after the recursive call. Restricting this to the head variables gives

{
{{0 < &T,0ne), (& = ®T, One), (0 < GP, One), (0 = @P + SR + SB, One)}
{{0 < &T,0ne), (& = T, One), (0 < GP, One),
(0 = &P + SR + 6B, One), (0 < BR + @B, One)}
}
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The union of this with the previously computed output of mg gives the updated output

{
{(0 = ®T, One), (0 = &P + ©B, One)},
{(0 < @T, One), (@ = @T, One), (0 < GP, One), (0 = GP + SR + OB, One)}
{(0 < @T,0ne), (® = BT, One), (0 < @P, One),
(0 = @®P + OR + OB, One), (0 < GR + @B, One)}
}

The process can be repeated until it gives the following multistore as the fixpoint for the

computation of the output of mg.

{
{{0 = ®T, One), (0 = ®P + ©B, One)},
{(0 < ©T,One), (& = ®T, One), (0 < &P, One), (0 = P + SR + OB, One) }
{{0 < &T, One), (® = ST, One), (0 < &P, One),
(0 = &P + OR + B, One), (0 < GR + @B, One)}
{(0 < @T,0ne), (& = OT, One), (0 < &P, One),
(0 = @®P + R + SB, One), (0 < GR + &B, One), (0 < SR + @B, Any)}
}

As the fourth abstract store in the above multistore subsumes the third store, we can

simplify the output description of mg to

{
{(0 = &T, One), (0 = P + ©B, One)},
{(0 < ©T, 0ne), (® = &T, One), (0 < GP, One), (0 = GP + OR + SB, One)}
{{0 < @T,0ne), (® = BT, One), (0 < &P, One),
(0 = ®P + SR + ©B, One), (0 < R + GB, One), (0 < @R + ®B, Any) }
}

We now show the computation of the input description, when the top level query is such
that both P and R are fixed.

Example 81 [Computation of LSign Input Description for mg/4] The abstract substi-

tution describing a top level query such that P and R are fixed, is given as

{{(T = @P, One), (T = @R, One)}}
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When the second clause is executed with this input, the abstract substitution for the

program point just before the recursive call to mg is

{{{T = @P,0ne), (T = @R, One), (0 < T, One),
(0 < ®P,One), (0 = @GP + SR + OP1,0ne), (§ = T + OT1, One)}}

When restricted to the variables of the literal mg(P1,T1,R,B), this gives the abstract

substitution
{{(& < @T1,0ne), (T = &R, One), (T = SP1 + GR, One) }}
which on normalization gives the following input substitution for the recursive call to mg
{{{e < oT, One), (T = &R, One), (T = &P + @R, One)}}

The union of this with the previous input gives the following abstract substitution as

the updated input to mg

{
{(T = @P, One), (T = @R, One)},

{(6 < 9T, 0ne), (T = @R, One), (T = GP + BR, One)}
}

Reexecuting the second clause with the updated input leads to the following abstract

substitution just before the recursive call to mg

{
{{T = @P,0ne), (T = @R, One)},

{(6 < &T, 0ne), (T = &R, One), (T = @P + &R, One)}
}
U}
{{(0 < &T,0ne), (0 < &P, One), (0 = @P + SR + OP1, One), (§ = BT + ST1, One)}}

When restricted to the variables of the literal and normalized, this gives

{
{{(6 < @T, One), (T = @R, One), (T = GP + @R, One)}
{(& < @T,0ne), (& < @T, Any), (T = @R, One), (T < SR, One), (T = &P + &R, One)}

}
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Taking the union with the old input gives the updated input

{
{{T = @P, One), (T = @R, One)},
{(& < @T, 0ne), (T = @R, One), (T = GP + BR, One)}
{(© < @T, 0ne), (6 < T, Any), (T = @R, One), (T < SR, One), (T = ©P + &R, One)}
}
The process can be repeated until it gives the following substitution as the fixpoint for

the input of mg.

{
{{T = @P, One), (T = @R, One)},
{(& < @T, 0ne), (T = @R, One), (T = &P + GR, One)}
{(& < @T,0ne), (6 < BT, Any), (T = @R, One), (T < SR, One), (T = &P + @R, One)}
{(© < @T,0ne), (6 < BT, Any), (T = @R, One),
(T < OR,0ne), (T < OR, Any), (T = @P + &R, One)}

}
which can be simplified to

{
{{T = @®P, One), (T = @R, One)},
{(& < ®T,0ne), (T = &R, One), (T = @GP + &R, One)}
{(6 < @T,0ne), (& < BT, Any), (T = @R, One),

(T < ©R,0ne), (T < OR, Any), (T = §P + &R, One)}
}

by removing the third store which is subsumed by the fourth store.

3.8 Discussion

The LSign domain was introduced by Marriott and Stuckey [37] as an elegant domain
for analyzing constraint logic programming languages over linear real constraints. Its
key conceptual idea is the abstraction of linear constraints by replacing coefficients by

their signs. Unfortunately, the ordering given in [37], i.e.,

BLEfreoVneBiIneh: Ny

does not capture the intended meaning, since it would conclude that the set 8, = {® =
D1+ S22, ® = Oz +Sz2} is smaller than §; = {® =&z, + Tz,}, where @ represents
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a strictly positive coefficient, © a strictly negative coefficient, and T any coefficient. The
intended meaning of [37] is that fB; represents exactly two constraints while (B2 represents
exactly one constraint. We observed this problem when trying to define an upper bound
operation for LSign which was not given in [37]. Obviously, if two distinct clauses return
{® =&z, + D22} and {@ = Bz, + ©z2}, we were tempted to return {@ = @z, + Tz,}
as an upper bound but noticed that ) = {@ = ®z,+Dz2, = @z +6z2} was smaller
w.r.t. the defined ordering. This ordering problem obviously made it impossible to prove

the correctness of the abstract operations of LSign.

The first purpose of this chapter® is to reconsider the domain LSign and to correct
and complete the results of [37]. In this respect, our first contribution is to define an
ordering on this domain and to capture the intended meaning of the domain through
2 monotone concretization function from abstract constraint stores to sets of constraint
stores, where a constraint store is a multiset of constraints.” Our second contribution
is show that ordering two abstract constraint stores reduces to a matching problem,
which can be solved in polynomial time. Our third contribution is to reconsider the
other abstract operations of LSign, i.e., projection, upper bound, and addition of a
constraint, and to prove their consistency. In particular, we propose a simpler algorithm
for abstract projection which factorizes the case analysis in a single procedure and a

schema for generating consistent upper bound operations.

The second purpose of this chapter is to present improvements to the projection
algorithm. Improving the accuracy of the projection algorithm can be very important
in practice. The first improvement is to make abstract Fourier elimination much more
precise.  In [37], when Fourier eliminating z from a constraint that contains z with
coefficient T, that constraint is always combined with itself (as it may represent two
concrete constraints with opposite coefficients for z). This is avoided in our domain by
explicitly checking the multiplicity of the constraint and combining it with itself only if
its multiplicity is Any. For example, projecting z from {(T = Tz + @y, ZeroOrOne)}
leads to the store {(T = @y, ZeroOrOne), (T = @y, Any)} using the algorithm of [37).
The first abstract constraint in this store comes from taking the T coefficient of z to
be 0, while the second constraint comes from taking the T coefficient of z to be @ and
© and combining the two. This store cannot be deduced to be definitely satisfiable by

®A preliminary version of this chapter titled “LSign Reordered” appeared in Static Analysis Sympo-
sium, Glasgow, 1995.

"Note that Marriott and Stuckey use an abstraction function for constraints and an approximation
relation for the remaining semantic objects.
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projecting y as it potentially contains more than one different assignment of a value
to y. Our improved algorithm would lead to the store {(T = @y, ZeroOrOne)}, which
can be easily seen to be definitely satisfiable. The second improvement is to make
abstract Gauss elimination much more precise. Consider the following example. Using
the algorithms of [37], projecting = from {(® = @z, One), (T = Tz +@y, One)} involves
considering the cases 0, @ and © for the T coefficient of z in the second constraint,
leading to {(T = @y, ZeroOrOne), (T = @y, Any)} which may or may not be satisfiable.
However, by directly substituting (® = @z, One) into the second constraint, we get a
simpler abstract store {(T = @y, One)} that accurately describes the result of projecting
z and which can be deduced to be definitely satisfiable. Our abstract Gauss elimination

algorithm produces this store by avoiding the imprecise splitting of the coefficient T.

The third purpose of this chapter is to present formally the applications of the domain
LSign for a variety of analyses including satisfiability analysis, unsatisfiability analysis,
conditional satisfiability analysis, redundancy analysis and freeness analysis. We give
abstract algorithms that answer a variety of interesting questions about satisfiability
of constraint stores, redundancy of constraints and freeness of variables. While the
utilization of LSign for satisfiability analysis had been mentioned earlier [37], there
was no detailed presentation of conditional satisfiability. Also, redundancy and freeness

analysis are novel applications of the domain, presented for the first time in this chapter.

To conclude the chapter, it is instructive to point out a limitation of the domain
LSign. On the one hand, consider the constraint store 8, = {3 = 2,0 < z} and its
LSign abstraction f1 = {(& = &z, One), (0 < @z, One)}. It is easy to see that that
0, is satisfiable (i.e. Cis_sat(f,) is true). Also we have that Ais_sat(f;) is true, and
so we can make the same conclusion from the abstract domain. On the other hand,
consider the constraint store §, = {3 = 2,2 < z} and its LSign abstraction G, =
{(®& = @z, One), (® < @z, One)}. It is easy to see that Cis_sat(f,) is true, however
Ais_sat(f,) is false. While this does not violate the specification of Ais_sat, it means
that the LSign domain is not able to approximate the store 0, sufficiently accurately
for applications that need to reason about satisfiability in the abstract domain. Similar
examples can be constructed to show loss of accuracy for conditional satisfiability and
redundancy. Intuitively, the domain is unable to remain accurate in the second example
because grouping all the positive numbers into one equivalence set is too coarse an
abstraction. This suggests the need for a finer analysis than signs and the natural
solution is to use intervals instead of signs to approximate numbers. This is explored

further in the next chapter.
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Chapter 4

Abstract Domain LInt

The abstract domain LInt, generalizes the domain LSign by using intervals instead of
signs to abstract coefficients. The domain LInt closely resembles the domain LSign,
however as will be seen, the use of intervals enables it to be more accurate in a number
of cases. Technically, the main difficulty arises because LInt is an infinite domain unlike
LSign. This requires the definition of one more abstract operation, viz. the widening
operation. The chapter is organized as follows. Section 4.1 introduces the abstract
objects of the domain LInt and their concretization. Section 4.2 briefly presents the
operations and applications of the domain. The power domain and the widening are
presented in Section 4.3. The chapter then presents a complete worked example in
Section 4.4. The chapter concludes in Section 4.5 by discussing how LInt addresses
the limitations of LSign. The proofs of the results in this chapter can be found in

Appendix A.

4.1 Abstract Objects and Concretization

We consider the set of real numbers R and its extension R® = RuU {-oc,c}. The

ordering on R is extended to R*°, as usual, by
VreR: -0 < r < +oc0.

We also consider a finite subset F of R containing 0 and the extension of F viz. F® =
FU{—o00,0}. In practice, F is a set of floating point numbers or rational numbers used

in the implementation.

The first key idea is the notion of an abstract constraint which abstracts a concrete
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constraint by replacing each coefficient by an interval over F°. We now define the

intervals more formally, as well as what they represent.

Definition 22 [Intervals] An intervalis an element of

Intv = {[ac,a;] | apa, €F A ar<a} U
{(ac,a;] | a€eFU{~0} Aa,€F A ar<a}U
{lacar) | a€eF Aa, € FU{+x} A ar<a} U
{(ae,ar) | ac€FU{-oc} A a- € FU{+0} A ar<a}.
The monotone concretization function Cc : Intv — 2% is defined as
Ce(lag,ar]) = {c | c€ER A ar<c<La,}
Ce((agar]) = {c| c€ER A ar<c<a}
Ce(lac,ar)) = {c| ceR A ar<c<a,}
Ce((a,ar)) = {c| c€ER A ar<c<a,}

Intervals are denoted by the letter s, possible subscripted.

We assume the existence of functions left : Intv — F* and right : Intv — F°°
which return the left and right endpoint respectively, of an interval. We also assume the
existence of Boolean functions open.left and open_right which indicate if an interval
is open to the left or right respectively. Further, it is convenient to define two relations

increase : Intv X Intv and decrease: Intv X Intv as follows:

increase(s, s2) & ey € Ce(sy) Voo € Ce(sy) 1 ¢y > ¢

decrease(sy,s3) < Jc; € Ce(sy) Ve € Ce(sy) 1 ¢; < 2
The ordering C: Intv X Intv is defined by

s1 £ 52 & —increase(sy, s3) A ~decrease(sy, s2)
and satisfies the monotonicity criterion
s1 E s3 = Cc(s1) C Ce(sz).

We also assume operations like +, —, X, U, M on intervals, that are consistent approxima-
tions of the corresponding operations on R*. More formally,

c1 € Cc(sy) Acy € Ce(sz) = ¢y +¢2 € Ce(sy + s2)
c1 € Ce(s1) Aca € Ce(sz) = ¢1 —cp € Ce(sy — s2)
c1 € Ce(s1) Aca € Ce(sq) = ¢ X c2 € Ce(sy X s3)
c € Cc(s) = —c € Ce(—s)
¢ € Ce(s1) Ac e Cc(sy) = c€ Ce(sy M sy)
c € Cc(s1) Ve € Ce(sy) = c € Ce(sy U sy)
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We say that an interval is positive (negative, resp.) if it contains only positive (negative,
resp.) real numbers. Moreover, we say that an interval s is zero if s = [0,0]. These
properties are represented by the boolean functions pos, neg, zer, and satisfy the

consistency conditions

pos(s) & VeeCe(s):c>0
neg(s) & Vece Ce(s):c<0
zer(s) <« Cc(s) = {0}

We also define the boolean function contains_pos (contains neg, resp.) to indicate
whether an interval contains at least one positive (negative resp.) number. Moreover,
we define the boolean function contains_zer to indicate whether an interval contains

the number zero. These functions satisfy the consistency conditions

contains_pos(s) <« 3Jec€ Ce(s):¢c>0
containsneg(s) <« 3c€ Ce(s):c<0

contains_zer(s) <« 0€ Cc(s)

The definitions of operators, abstract constraints, multiplicities, abstract constraints
with multiplicities, and abstract stores of the domain are completely parallel to those
in the domain LSign. The only difference is that signs are replaced by intervals in the
abstract constraints. We limit ourselves to some examples to explain these concepts in

the domain LInt.

Example 32 The abstract constraint (—oco, +00) = [1, 1]P +[1, 1]R represents both the
constraint 3 =P + R and —3 =P + R but not the constraint 3 = 2P + 3R.

Example 33 The abstract constraint with multiplicity ( (o0, +00) = (1, 1]JP+(1, 1]R, One )
represents only multisets of size 1, e.g., {3 = P+R}. (0 < [1.01, +00)P+(—o00, ~1]R, Any)
represents multisets of any size, e.g., §, {0 <3P —R} and {0 <3P —R,0 < 2P — 3R}.

Example 34 The abstract store § = {( (~o0,+00) = [1,1]P + [1,1]R, One ), (0 <
[1.01, 4+-00)P+(~00, —1]R, Any )} represents constraint stores with at least one constraint,
and their equivalence classes. For example {3 = P + R} € Cc;(8) and {3=P+R,0<
2P — 3R} € Cci(B). Further, {3=P+R, 9 < 5P} € Cc(B) because {3=P+R,9<
5P} & {3=P+R,0< 2P — 3R}.



Asplit_top(B, v) {

if 3 = 0 return §;

elselet B={v} U B Av=(ou)¢ps
7° = (0%, p U ZeroOrOne)

vt = (oF, pU ZeroOrOne)
Y~ ={0~, pU ZeroOrOne)
0® = o except that ¢°[v] = [0, 0]
ot = o except that o+[v] = o] N (0, +o0)
0~ = o except that ¢~ [v] = ov] M (—00,0) in
case not (pos(a[v]) V neg(c[v]) V zer(c{v])):

ﬂ/l = @

if contains_zer(o[v])

ﬂ” = ﬂ" W ,70;

if contains_pos(cfv])
B'=p" o 7%
if contains neg(c[v])
B = 8" v s
return Asplit_top(f',v) 4 §”;
otherwise:
return Asplit_top(4',v) & ¥;

Figure 4.1: Modified Asplit_top Algorithm for LInt
4.2 Operations and Applications

The algorithms for various operations (ordering, addition of a constraint, upper bound
and projection) as well as the applications (satisfiability, conditional satisfiability, re-
dundancy and freeness) of LInt are for the most part identical to the corresponding
algorithms in LSign. The only difference is that the various operations on signs are re-
placed by the corresponding operations on intervals. For example, a test ov] = & would
be replaced by the test pos(c[v]), while an assigment o[v] := 0 would be replaced by the
assignment o[v] := [0, 0]. The only algorithm that undergoes a non-trivial change is the
algorithm for operation Asplit_top. It can be more precise due to the more precise in-
formation available about the coefficient of the variable being eliminated. The algorithm

for Asplit._top in LInt is given in Figure 4.1.

4.3 The Power Domain 2118t and Widening

Just like LSign, the upper bound operation in LInt may not be sufficiently accurate to

perform a practical analysis of CLP programs. It may become necessary to move to the

2LInt

power domain in order to get the required accuracy.
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The definition of the various concepts (such as abstract multistore, concretization
ordering and upper bound) in the domain 2LInt completely parallel the corresponding
definitions in the domain 2!53€%. However, as 2LI2% is ap infinite domain, it becomes
necessary to introduce a widening operator!. The use of widening operators was proposed

in [10] and has been previously used in domains such as type graphs for Prolog [50, 51].

The design of a widening operator is both experimental and theoretical in nature.
One the one hand, a widening operator should lead to efficient and accurate analyses; on
the other hand, it should be possible to prove the termination and correctness of anal-
yses using a widening operator. We begin by presenting the ideas behind the widening

operator informally, and then present the operator in a more formal setting.

4.3.1 Informal Presentation

In our abstract interpretation framework for CLP, widening needs to be applied in the

following three situations:

=

when updating the output description of a predicate;

(S

. when updating the input description of a predicate;

3. when updating the intermediate description of a predicate.

This makes sure that there is no infinite sequence of refinements of any description. [t
should be clear from the above situations that the widening operator is applied to an
old multistore aq (e.g., the previous output of a predicate) and a new multistore q.y
(e.g., the new output of a clause of the predicate) to give a new multistore ey, (e.g.,

the updated output of the predicate).

In the domain 25518 o _ s just the upper bound, i.e. set union of the abstract
multistores aoid and ayey. Therefore, e is either exactly the same as a,q or a superset
of apg- In the former case, the sequence of refinements of the description reaches a
stationary point. In the latter case, the number of LSign stores that arein the description
increases. As the number of possible LSign stores for a given domain of variables is finite
(the constant and each variable’s coefficient can be assigned in four ways and there are

exactly three multiplicities), the sequence must reach a stationary point.

'In fact, it is necessary to define a widening for the LInt domain as well, but we shall focus on the
oLInt domain, as it is used in practice.
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The situation is not so simple in the domain 2%18t. Ag the number of possible LInt
stores for a given domain of variables is infinite (due to infinitely many intervals), the
sequence of descriptions can be refined infinitely often by the upper bound (adding more
and more LInt stores to the multistore). The intuition is to curtail the growth in the
number of abstract stores in the description by placing some restrictions. The restrictions
should be such that the domain does not lose information that is “interesting” to the

application. The approach taken is to require that

1. replacing intervals by the corresponding signs in an LInt store produces a a valid

LSign store (i.e. no duplicate constraints); and

2. replacing intervals by signs in a 2FT2% multistore produces a valid LSign multistore
P g y sig p gn

(i-e. no duplicate stores).

This enables a natural mapping of LInt abstract ob jects to LSign abstract objects and
automatically restricts the cardinality of an 2LI%t myltistore to a finite number, because
there are only a finite number of LSign stores over a given domain of variables. Placing
these restrictions on 2LI2% abstract objects guarantees that a 2LI°% abstract description
cannot keep increasing in size (i.e. having more and more LInt stores in it). This is the

first component of the widening.

However there is one more way in which a. sequence of 2LT8% abstract multistores can
grow indefinitely. Even if the number of LInt stores in the description becomes fixed,
the intervals of those stores can be refined infinitely often. The intuition behind the
solution to this problem is to accelerate the refinements of the intervals such that the
acceleration reflects the way in which the intervals are changing and the acceleration
causes the number of refinements to be finite. The approach taken is to guarantee that if
the number of LInt stores in the description is not increasing, then the number of zero or
infinity symbols in the description increases. As there can only be a finite number of zero
or infinity symbols in the description, the sequence of refinements must terminate. This is
the second component of the widening. In order to simplify the widening, it is necessary
to require that the second component (i.e. accelerating the change of the intervals of
the LInt stores), be applied only to stores that are the same (modulo replacement of

intervals by signs).

We now explain the above with the help of an example. In order to keep the informal
presentation simple, we shall consider the widening only for abstract stores - the formal

presentation shows how to extend the definition to abstract multistores. In other words,
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we primarily concern ourselves with the second component of the widening and leave
the first component for the formal presentation. Consider the mortgage example mg/4.
After six iterations, the fixpoint algorithm to compute the output of mg has produced

the following abstract store as a possible output of mg.

{{[0,0] < [1,1]T, 0me), ([0,0] < [1,1]P,One), ([3,5] = [1,1]T, One),
([0, 0] = [1.030301, 10510.100480]P + [—51010.048, —3.0301]R + [~10000, —1]B, One),

([0,0] < [1,201]R + [1, 100]B, One), ([0, 0] < [1, 201]R + [1, 100]B, Any),
([0,0] < [1.01,102.01]P + [—201, —1]R, One),
([0,0] < [1.01,102.01]P + [—201, —1]R, Any)}

The seventh iteration produces the following abstract store as a possible output of mg.

{([0,0] < [1,1]T, One), ([0,0] < [1,1]P,0ne), {[3,6] =L, 1]T, One),
([0, 0] = [1.030301, 1061520.146432]P + [—6152015.314944, —3.0301]R
+[—999999.995904, —1]B, One),
([0,0] < [1,201]R + [1, 100]8, One), ([0, 0] < [1, 201]R+ [1, 100]B, Any),
([0,0] < [1.01,10303.01]P + [—30301, —1]R, One),
([0,0] < [1.01,10303.01]P + [—30301, —1]R, Any)}

We observe that there is a very close correspondence between the abstract constraints
of the two stores. In particular, if the intervals in the constraints are replaced by their
corresponding signs, then the two stores are identical. Hence the only difference in
the two stores is that the coefficients of some constraints are different. As the two
stores are the same (modulo replacement of intervals by signs), we need to guarantee
that their intervals do not get refined infinitely often, while keeping the same signs.
The basic idea of the widening is to take a pair of similar constraints from the two
stores, see in what manner an interval coefficient in that constraint is changing, and
accelerate that change. We illustrate this by considering the pair of similar constraints
(13,5] = [1,1]T,0ne) and {[3,6] = [1,1]T,One). The change in the constraint is that
the right endpoint of the constant term is increasing. A constraint that approximates
both these constraints and accelerates the direction in which the constraint is growing
can be given by ([3,+00) = [1,1]T,One). This is the result of widening the pair of
similar constraints. This widening can be performed on other pairs of similar constraints

as well, giving the following widened abstract store after the seventh iteration of the
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fixpoint algorithm.

{([0,0] < [1, 1]T,0ne), ([0,0] < [1,1]P,One), ([3,+o0) = [1, 1]T, One),

([0, 0] = [1.030301, +00)P + (00, —3.0301]R + (—o0, —1]B, G},
([0, 0] < [1,201]R + [L, 100]8, One), ([0, 0] < [1, 201]R + [L, 100]B, Any),

((0,0] < [1.01, +00)P + (~0c0, —1]R, One),

([0,0] £ [1.01, +00)P + (—o0, ~1]R, Any)}

The widening for constraint stores is therefore applied only on stores that are the same

b

(modulo replacement of intervals by signs) and it consists of widening the intervals of

similar constraints in those stores.

4.3.2 Formal Presentation

We now formally present the widening operator for the domain 212t The definition of
the widening operator proceeds systematically at each level of abstract ob jects. For each
abstract object, it is convenient to define the shape of that ob ject, which is obtained by

replacing intervals in that object by the corresponding signs.

Definition 23 [Shape and Widening of Intervals] The shape of an interval s is defined

as
@ if pos(s)
© if neg(s)
0 if zer(s)

T otherwise

shape(s) =

Let So1q and spey be intervals s.t. shape(snew) = shape(seg). Then

Snew VSold = §' such that
0 if decrease(Snew; Sold) A Pos(Sotq)
left(s') = ¢ -0 if decrease(snew; Sold) A “POS(Soid)
left(soq) otherwise
open_left(s’) = decrease(snew, Sold) V open_left(syq)
0 if increase(snew, Sold) A neg(soiq)
right(s') =< oo if increase(Snew, Sold) A “neg(Sord)
right(s,g) otherwise

open.right(s’) = increase(spew, Soid) V open-right(syq)



The widening is defined only for intervals that have the same shape. We discuss how
the left endpoint of the intervals is widened. The right endpoint is similar. If the new
interval sp.,, is growing at the left endpoint relative to the old interval Sold, the widened
left endpoint is set to the minimum possible value that does not alter the shape of the
interval. This means that if a positive interval is growing at the left endpoint, its widened
left endpoint is set to 0 and made open.2 If a non-positive interval is growing at the
left endpoint, its widened left endpoint is set to —co. Otherwise the left endpoint is not
changed. The reason for distinguishing between positive and non-positive intervals is to
make sure that the widened interval has the same shape as the original intervals. Also

the intervals are not made smaller by the widening and so the following lemma applies.

Lemma 15 Let syq and s,y be intervals s.t. shape(Snew) = shape(ssq). Then
(i) shape(soy) = shape(Snew Vsold)-

(ii) c € Ce(sota) V ¢ € Ce(Spew) = c € Ce(Snew VSold)-

The shape and widening for abstract constraints with multiplicity are natural extensions

of the definition for intervals.

Definition 24 [Shape and Widening of Abstract Constraints With Multiplicity] The

shape of an abstract constraint with multiplicity (so 6 Yoy sizi, ) is defined as
n n
shape(({so & Zs;z,—,p)) = (shape(sg) ¢ Zshape(s;):z:;,u).
=1 =1
Let Yoiq = (sg? § 0, %9z, 1) and Ynew = (s§ & T, sP¥z;, ) be abstract

constraints with multiplicity s.t. shape(vpew) = shape(7otg). Then

Ynew VYold = ((SSE"’VSSM) ] Z}’:I(S?e"’Vs:?’d):z:;, ;L)

Once again, the widening is defined only for abstract objects that have the same shape.
The following lemma is an easy consequence of the definition and the lemma for interval

widening.

Lemma 16 Let v4q and Yney, be abstract constraints with multiplicity s.t. shape(vnew) =

shape(voq). Then

%[t is possible to be more accurate and instead use the largest positive constant in the program that
is smaller than the left endpoint.

103



(i) shape(Yotq) = shape(YnewVYold)-
(ii) 8 € Ce(Yotd) V8 € Ce(Ynew) = 0 € Cc(YnewVYold)-

Before defining the widening for abstract stores, it is necessary to define the notion of a

normalized abstract store.

Definition 25 [Normalized Abstract Store] An abstract store £ is said to be normalized
if

V71,72 € B : shape(11) # shape(y,).
Given an abstract store J, it is possible to transform it into a normalized abstract store

normal(f) such that
§ € Cc(B) = 6 € Cc(normal(B)).

Working with normalized abstract stores makes the correspondence between abstract

stores and their shapes more easy to define.

Definition 26 [Shape and Widening of Abstract Stores] The shape of an normalized

abstract store 8 is defined as
shape() = {shape(7) | v € 8}.

Let Botq and fpey be normalized abstract stores s.t. shape(fnew) = shape(foiq). Then

,Bnewvﬂold = {7newv')’old I Tnew € ﬁnewa Yold € ﬂoldy Shape(7new) = Shape('Yold)}

Once again, the widening is only defined for abstract stores that have the same shape.
The widening consists of applying widening over constraints to the pairs of constraints

that have the same shape. The following lemma holds:

Lemma 17 Let 8,4 and By, be normalized abstract stores s.t. shape(Bnew) = shape(Bolq).
Then

(i) shape(Botd) = shape(Bnew VBoid) and Frew,VBoig is normalized.

(ii) 8 € Cc(Bota) VO € Ce(Brew) = 0 € Ce(BrewVBold)-
Before defining the widening for abstract multistores, we need to define the notion of a
normalized abstract multistore. In the following, we use the notation 8; = f, to mean
that f; and f; are syntactically identical. This is different from the equality on abstract

stores (1 = [3;) because the ordering on abstract stores is not a partial order, only a

pre-order.
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Definition 27 [Normalized Abstract Multistore] An abstract multistore « is said to be

normalized if

e V3 € a: fis normalized

® V1,82 € a : shape(f;) # shape(f,)

Given an abstract multistore «, it is possible to transform it into a corresponding nor-

malized multistore normal(a) such that
8 € Cec(a) = 0 € Cc(normal(a)).

Working with normalized abstract multistores simplifies the definition of the shape and

widening.

Definition 28 [Shape and Widening of Abstract Multistores] The shape of an normal-

ized abstract multistore « is defined as
shape(a) = {shape(f) | § € a}.

Let aor4 and ey be normalized abstract multistores. Then

CYnewva'olcl
GQold if Qnew ; GQold
{Botd | Bold € old, shape(fo1q) € shape(apnew)} U otherwise

{,Bncw I ﬁncw € Qpew, Shape(ﬂnew) ¢ Shape(aold} U
{ﬂnewvﬂold l ;Bnew € Qnew: Pold € Qold, Shape(ﬂncw) = Shape(ﬂold)}

Intuitively, the widening for abstract multistores is a generalization of the upper bound
operation. The abstract stores belonging to ag and cpey, need to be added to Cnew V Qold,
however if there are two abstract stores with the same shape, their widening needs to be
computed first. The following lemma states that the widening for abstract multistores
preserves the normalized form and that the widened multistore’s concretization includes

the concretizations of aorq and apey.

Lemma 18 Let tog and apey, be normalized abstract multistores. Then
(1} @nVaeig is normalized.

(ii) 8 € Ce(aotd) V 0 € Ce(tnew) = 0 € Ce(tnew Vold)-
The following theorem states the correctness of the operator V.
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Theorem 15 [Widening] Operation V is a widening operator.

Sketch of Proof: The proof has two parts. The first part is to prove that the widened
store does not decrease the concretization as compared to the concretizations of the old

and new stores. This follows by Lemma 18 (ii):
8 € Ce(aod) VO € Ccanew) = 0 € Ce(anew Vaord)-

The second part of the proof is to show that given a sequence of normalized abstract
multistores such that each element of the sequence is produced by widening the previous
element with another store, the sequence is finite. This corresponds to not refining a
description infinitely often. Let ag, ..., 0, ... be a sequence of abstract multistores and

g, ..., & ... a sequence of normalized abstract multistores defined as

ap = normal(af)

@iy1 = normal(al) Vo; (i >0)
The proof consists of showing that ag, ..., ¢, ... is stationary. The proof proceeds by
defining a mapping from abstract multistores to a finite set of measures and proving that
if the sequence is not at a stationary point, the measure of ¢; increases monotonically

with ¢. As there is only a finite number of measures, the sequence must reach a stationary

point. |

4.4 Complete Example

We now present a complete example indicating how to compute the output and input
descriptions in the 2LI%% domain, for the mortgage program mg/4. First we show the

computation of the goal independent (or online) output.

Example 35 [Computation of LInt Output Description for mg/4] The abstract substi-

tution describing the output of the first clause is
{{[0,0] = [1, 1]T, One), ([0, 0] = [1, 1]P + [~1, —1]B, One) } }

The abstract substitution describing the constraint store just before the recursive call in
the second clause is
{{{[0,0] < [1,1]T, 0ne}, ([0, 0] < [1, 1]P, One),
([0,0] = [1.01,1.01]P + [-1, ~1]R + [~1, ~1]P1, One),
([1,1]=[1,1]T+ [-1, —1]T1,0ne)}}

106



Extending this with the denormalized output of the recursive call (when the recursive

call returns the previous output) gives the abstract substitution

{{{[0,0] < [1,1]T, One), ([0, 0] < [1, 1]P, One),
([0,0] =[1.01,1.01]P + [-1, —1]R + [~1, ~1]P1, One), ([1, 1] = [1, 1JT + [~1, —1]T1, One),
([0,0] = [1,1]T1, One), ([0, 0] = [1,1]P1 + [—1, ~1]B, One)}}

Restricting this to the head variables gives the following abstract substitution as the

output of the second clause

{{([0,0] < [1,1]T, One), ([1, 1] = [1, 1]T, One),
([0,0] < [1,1]P, One), ([0, 0] = [1.01, 1.01]P + [-1, —1]R + [-1, —1]B,0One)}}

The widening of this with the previously computed output of the first clause gives the

following abstract substitution as the updated output of the predicate mg.

{
{([0,0] = [1, 1]T, One), ([0, 0} = [1, 1]P + [~1, ~1]B, One)},
{<[01 0] < [lv l]Tv Dne), <[11 l] = [l, l]T, One),
([0,0] < [1,1]P, One), ([0, 0] = [1.01, 1.01]P + [~1, —1]R + [—1, —1]B, One)}
}

In this case, the widening is just the union of multistores because there are no stores in
the old output that have the same shape as a store in the new output. The process can
be iterated with the updated output of mg. After a few steps, the following multistore

emerges as the output for mg (aoa):

{
{([0,0] = [1,1]T, One), ([0, 0] = [L, 1]P + [~1, —1]B, One)},
{([0,0] < [1,1]T, One), ([1, 1] = [1, 1]T, One),
([0,0] < [1,1]p, One), ([0, 0] = [1.01, 1.01]P + [~1, —1]R + [—1, —1]B, One)}
{{[0,0] < [1,1]T, One), ([0, 0] < [1, 1]P, One), {[2, 3] = [1, 1]T, One),

([0,0] = [1.0201, 103.0301]P + [~303.01, —2.01]R + [— 100, —1]B, One),
(0,0] < [1,201]R + [1, 100]B, One), { [0,0] < [1,201]R+ [1, 100]B, Any)},
{([0,0] < [1,1]T, One), ([0, 0] < [1, 1]P, One), ([3, 5] = [1, 1]T, One),
([0, 0] = [1.030301, 10510.100480]P + [—51010.048, —3.0301]R + [—10000, —1]B, One),
([0,0] < [1,201]R + (1, 100]B, One), { [0,0] < [1,201]R + [1,100]B, Any),
([0,0] £[1.01,102.01]P + [—201, —1]R, One),

<
([0,0] <[1.01,102.01]P + [—~201, —1]R, Any)}



Using this in the second clause produces the following multistore as a new output for mg

(Onew):

{
{([0,0] = [1, 1]T, One), ([0, 0] = [1, 1]P + [-1, —1]B, One) },
{([0,0] < [1, 1]T, One), ([1, 1] = [1, 1]T, One),
([0,0] < [1,1]P, One), ([0, 0] = [1.01,1.00]P + [—1, —1]R + [—1, —1]B, One)}
{{[0,0] < [1, 1], Ome), ([0, 0] < [1, 1]P, One), ([2, 3] = [1, 1]T, One),
([0,0] = [1.0201, 103.0301]P + [—303.01, —2.01]R + [~100, —1]B, One),
([0,0] < [1,201]R + [1, 100]8, One), { [0,0] < [1, 201]R+ [1, 100]8, Any)},
{([0,0] < {1,1]T, One), ([0, 0] < [1, 1]P, One), ([3, 6] = [1, 1]T, One),
([0,0] = [1.030301, 1061520.146432]P + [~6152015.314944, —3.0301]R
+[—999999.995904, —1]B, One),
([0,0] < [1,201]R + [1, 100]B, Gne}, { [0,0] < [L,201]R+ [1, 100]B, Any),
([0,0] < [1.01,10303.01]P + [-30301, —1]R, One),
([0,0] < [1.01,10303.01]P + [-30301, —1]R, Any)}
}

At this point the widening needs to be applied and produces the following multistore as

the updated output of mg (new Vavora):

{
{([0,0] = [1, 1]T, One), ([0, 0] = [1, 1]P + [-1, —1]B, One) },
{{[0,0] < [1,1]T, One), ([1, 1] = [1, 1]T, One),
([0,0] < [1, 1]p, One), ([0, 0] = [1.01, 1.01]P + [—1, —1]R + [~1, —1]B, One)}
{([0,0] < [1, 1]T, One), ([0, 0] < [1, 1]P, One), ([2, 3] = [1, 1]T, One),
([0, 0] = [1.0201, 103.0301]P + [—-303.01, —2.01]R + [— 100, —1]B, One),
([0,0] < [1,201]R + [1, 100]B, One), { [0, 0] < [1,201]R + [1, 100]B, Any)},
{([0,0] < 1, 1]T, One), ([0, 0] < [1, 1]P, One), ([3, +o0) = [1, 1]T, One),
([0, 0] = [1.030301, +00)P + (—00, —3.0301]R + (—o0, —1]B, One),
([0,0] < [1,201]R + [1, 100]B, One), { [0, 0] < [1, 201]R + [1, 100]B, Any),
([0,0] < [1.01, +00)P + (—00, —1]R, One),
([0,0] £ [1.01, +00)P + (—0c0, —1]R, Any)}
}

Iterating the output computation once more produces the same abstract substitution
indicating that this abstract multistore is the fixpoint of the computation and represents

the output of the predicate mg.
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We now illustrate the computation of the input description, when the top level query

is such that both P and R are fixed.

Example 36 [Computation of LInt Input Description for mg/4] The abstract substitu-

tion describing a top level query such that P and R are fixed, is given as
{{{(—o0, +00) = [1, 1]P, One), {(—o00, +00) = [1, 1]R, One)}}

When the second clause is executed with this input, the abstract substitution for the

program point just before the recursive call to mg is

{{{(—=00, +00) = [1,1]P, One), {(~o0, +00) = [1, 1]R, One),
([0,0] < [1, 1]T, One}, ([0, 0] < [1, 1]P, One),
([0,0] = [1.01,1.01]P + [-1, —1]R + [—1, —1]P1, One),
([1,1]=[1,1]T + [-1,-1]T1,0ne)}}

When restricted to the variables of the literal mg(P1,T1,R,B), this gives the abstract

substitution

{{{[-1, —1] < [1,1]T1, One), {(—o0, +00) = [L, 1]R, One), ;
(=00, +00) = [1,1]P1+ [1, 1]R,One)} }

which on normalization gives the following input substitution for the recursive call to mg

{{{[-1, =1] < [1,1]T, One), {(—o0, +00) = [1, 1]R, One),
((—00, +00) =[1,1]P +[L, 1]R, One) } }

The widening of this with the previous input gives the following abstract substitution as

the updated input to mg

{
{((—00, +00) = [1,1]P, One), {(—o0, +00) = [1, 1]R, One)},
{{[-1, -1] < [1, 1]T, One}, ((~o0, +c0) = [1, 1]R, One),
(=00, +00) =[1,1]P + [1, 1]R, One)}

}

In this case, the widening of the multistores just corresponds to their union because none
of the stores have the same shape. The second clause can now be reexecuted with the

updated input to continue the process of computing the input description. After some
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stages of the computation, the following emerges as the input description to mg (wrq):

{
{{(=0c0, +00) =[1, 1]P, One), ((—00, +o0) = [1, 1]R, One)},
{{[-1,~1] < [1, 1]T, One), (00, +00) = [1, 1JR, One),
((~00,400) =[1,1]P + [1, 1]R, One)}
{([=3,~1] < [1, 1]T, One), ([-3, —1] < [1, 1]T, Any), ((—oo, +o0) = [1, 1]R, One),
(=00, +00) < [-201, —1]R, One), ((—o0, +00) < [-201, —1]R, Any),
((~o00, +00) = [1, 100]P + [2.01, 303.01]R, One) }
{{[-5, ~1] < [1, 1T, One), ([~5, ~1] < [1, 1]T, Any), ((~o0, +00) = [1, 1]R, One),
(=00, +00) < [—201, —1]R, One), {(~o0, +o0) < [-201, —1]R, Any),
(10,0] < [1, 100]P + [1, 201]R, Ona), ([0, 0] < [1, 100]P + [1, 201]R, Any),
(00, +00) = [1, 10000} + [3.0301, 51010.048]R, One)}
}

Using this as the input to the second clause and recomputing the input for the recursive

clause gives the following new input (enew):

{
{{[-1,-1] < [1, 1]T, One), ((—o0, +00) = [1, 1]R, One),
((—00,+00) = [1,1]P + [1, 1]R, One)}
{{[-2, -1] < [1, 1]1, One), (-2, —1] < [, 1]T, Any), ((—oo, +00) = [1, 1]R, One),
(=00, +00) < [~1, —1]R, One), ((—o0, +co0) < [~201, —1]R, Any),
(=00, +00) = [1,1]P + [2.01,2.01]R, One) }
{{{-6,—1] < [1,1]T, One), ([~6, —1] < [1, 1], Any), ((~o00, +00) = [L, 1]R, Ons),
((—o0, 4+00) < [-201, —1]R, One), {(—oo, +o0) < [-201, —1]R, Any),
([0, 0] < [1, 10000] + [1, 30301]R, One), ([0, 0] < [1, 10000]P + [1, 30301]. Any),
((~o00, +00) = [1,999999.995904]P + [3.0301, 6152014.790656]R, Cne) }
}
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The updated input (newVaor4) becomes

{
{{(=00, +00) = [1, 1]P, One), ((—o0, +00) = [1, 1]R, One)},
{{[-1, 1] < [1,1]T, One), {(—o0, +0oc) = [1, 1]R, One),
(=00, +00) = [1,1]P + [1, 1]R, One)}
{([=3, 1] < [1,1]T, One), ([-3, —1] < [1, 1]T, Any), {(—c0, +oo0) = [1, 1]R, One),
((—00, +00) < [-201, ~1]R, One), {(—o0, +o0) < [—201, —1]R, Any),
((~c0, +00) = [1,100]P + [2.01, 303.01]R, One) }
{{(~00, =1] < [1,1]T, One), {(—o0, —1] < [1, 1]T, Any), {(—oe, +00) = [1, 1]R, One),
(=00, +00) < [-201, ~1]R, One), ((—oo0, +c0) < [—201, —1]R, Any),
([0,0] < [1, +00)P + [1, +00)R, One), ([0, 0] < [1, +00)P + (1, +oo)R, Any),
((—00, +-00) = [1,+00)P + [3.0301, +-00)R, One) }
}

This is the fixpoint of the computation and represents all the possible inputs to mg when

the top level query is such that P and R are fixed.

4.5 Discussion

We now illustrate how the domain LInt enables us to overcome the limitation of the do-
main LSign that was pointed out in the previous chapter. Consider the constraint store
6 = {3 ==z,2 < z}. Its LSign abstraction is § = {(& = &z, Orne), (& < &z, One)}.
While 6 is satisfiable, Ais_sat(f) is false because the abstract store obtained by project-
ing all the variables is {(T < 0, One)}. Moving to the domain LInt, the abstraction of
8is ' = {{[3,3] = [1, 1]z, One), ([2,2] < [1, 1]z, One)}. Projecting all the variables gives
the abstract store {([~1, —1] < 0, One)} and so Ais_sat(8') is true, which represents the
concrete operation more accurately. Similar examples can be constructed for the other

abstract applications such as redundancy and conditional satisfiability.
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Chapter 5

Abstract Domain Prop

In this chapter, we present the abstract domain Prop [35, 52] which is useful to deduce
groundness information in Prolog programs. It can also be extended easily to infer
fixed variables in CLP(eg. [17]). The presentation is basically a review of material
already presented in [52], along with the extension of Prop to handle the constraints
of CLP(RL:n). Section 5.1 defines the abstract objects and their concretization. The
abstract operations of the domain are presented in Section 5.2. The application of the
domain to deduce fixed variables is discussed in Section 5.3. The chapter concludes with

a complete worked example in Section 5.4.

5.1 Abstract Objects and Concretization

The key idea of Prop is the abstraction of the objects in the concrete domain by appro-
priate Boolean formulas. The domain and its ordering can be defined more formally as

follows.

Definition 29 [Abstract Domain] The domain Prop over D = {z1,..-,zn}, denoted
Propp, is the poset of Boolean functions represented by propositional formulas con-
structed from D, the Boolean truth values (true and false) and the logical connectives.

The domain is ordered by implication. Boolean functions are denoted by the letter f.

In order to define the concretization, it is necessary to define the following concepts.

Definition 30 [Truth Assignment] A truth assignment over D is as a function I : D —

Boolean. The value of a Boolean function f w.r.t. a truth assignment I is denoted I(f).
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When I(f) is true, we say that I satisfies f.

The intuition behind the domain Prop is that a concrete constraint store 8 is abstracted

by a Boolean function f over D if and only if the truth assignment I defined by
I(z;) = true < z;isfixedin § (1<i<n)

satisfies f. For example z; < z, abstracts the stores {ri=z2+1}and {z; = 1,2, = 4}

but not the store {z; = 3,z < z;}.

Definition 31 [Concretization Function] The concretization function Ce¢ : Propp —
CSp is defined as
Ce(f) = {8 | (assign(0))(f) = true}

where assign : CSp — D — Boolean is defined by assign 6 z; = true < z; is fixed in 6.

Propp is a finite lattice, where the greatest lower bound is given by the conjunction and

the least upper bound is given by the disjunction.

Definition 32 [Valuation] The valuation of a Boolean function f w.r.t. a variable z;
and a Boolean truth value b is the function obtained by replacing z; by b in f, and is

denoted as f|z;=.

5.2 Abstract Operations

We now show how the operations of the abstract framework such as RESTRC, AI_VAR,
EXTG etc. can be defined for the domain Prop.

UNION (Upper bound) Operation UNION is used to compute the result of a predicate,
given the result of its individual clauses. Its abstract version is Jjust the disjunction for
Boolear formulas.

UNION(fiy.--vfa)=fHi V...V f,

AI_ADD (Addition of a constraint) Operation AI_ADD is used when a constraint is
encountered in the program. Its abstract version adds the abstraction of the constraint

to the input abstract substitution. Let the concrete constraint A in the program be

113



co & Y, ciz; (where ¢; #0for 1 <i<n). Then

Wi if 6 € {<, <, #)
f Az ifdis’'="andn=1
f AN Az = zy,)

AT_ADD(), f) = {
) A(z2A ... ATy = Z0g)

ifdis’="andn > 1

L /\(.’22/\.../\2!,,—)1'1)

RESTRC (Restriction of a clause substitution) Operation RESTRC is used at the end
of a clause execution to restrict the substitution expressed on all the clause variables to
a substitution expressed on only the head variables of the clause. Its abstract version
eliminates the variables that occur in the clause body but not in the clause head. Let

Tm+1, - - -, Tn be the variables that occur only in the body of c. Then
RESTRC(c, f) = elim_all {zm41,.-.,Zn} f

where

elimallQ f=f
elimall {z;,...,z,} f=
elim.all {xj'f'l) sy .’Bn} (fl:z:;:true \4 f'l‘j=f013€) (m < j S TI.)

EXTC (Extension of a clause substitution) Operation EXTC is used to is used at
the beginning of a clause’s execution to express the input substitution on all the clause
variables and not just the head variables. Its abstract version for a clause c is a trivial
operation.

EXTC(c, f) = f

RESTRG (Restriction of a substitution before a literal) Operation RESTRG is used
before the execution of a literal in the body of a clause to compute the input substitution
for the execution of the literal. Its abstract version first projects out the variables of
the clause that do not appear in the literal from the abstract substitution, and then
normalizes the resulting abstract substitution. Let Zi,...,Z;, be the variables that
occur in the literal / and let zy,...,z, be the variables of the clause in which the literal

occurs. Then

RESTRG(L, f) = norm [z;,...,z;,] (elimall ({zy,...,zn}\ {ziyovzin}) )
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EXTG (Extension of a substitution after a literal) Operation EXTG is used after
the execution of a literal to extend its result to the clause substitution. Its abstract
version first denormalizes the abstract subsitution f' for the output of the literal / and
then adds it to the clause abstract substitution f- Let z;,...,z;_ be the variables that

appear in the literal /, in that order. Then

EXTG(L f, f) = f A denorm [zq,..., 2] f

5.3 Application

The only application of the domain Prop that is of interest to us is its use to determine
fixed or ground variables. The function Ais_fixed : Propp X D — Boolean takes a Prop
description f over the domain D and a variable z € D and returns true if the variable
can be deduced to be fixed in every constraint store in the concretization of 5. The

implementation of Ais_fixed is straightforward:
Ais fixed(f,z) = (f — z)
and it satisfies the following specification:
Specification 20 Ais_fixed: Propp X D — Boolean should satisfy the following con-
sistency condition.

V8 € CSp,VYf € Propp,Vz €D :0 € Ce(f) = (Ais_fixed(f,z) = z is fixed in )
Example 37 Consider a call to the predicate mg/4 whose input can be described in the
Prop domain by the following abstract substitution

PAR

We have that
Ais fixed(PAR,P) = (PAR — P) = true

indicating that P is always fixed before the execution of P > 0.

5.4 Complete Example

We now present a complete example that shows the computation of the output and input
descriptions in the domain Prop, for the mortage program mg/4. First we present the

computation of the goal independent (or online) output.
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Example 38 [Computation of Prop Output Description for mg/4] The abstract substi-

tution describing the output of the first clause is
TA (B & P)

The abstract substitution describing the constraint store just before the recursive call in

the second clause is
(PLAP - R)A(PAR—P1)A (PLAR = P) A (T < T1)

Extending this with the denormalized output of the recursive call (when the recursive

call returns the previous output) gives the abstract substitution
(PLAP +R)A(PAR—=P1)A(PLAR—P)A (T & Ti1) ATLA (B « P1)

Restricting this to the head variables gives the following abstract substitution as the

output of the second clause
TA(BAP—R)A(PAR—B)A (BAR—P)

The union of this with the previously computed output of the first clause gives following

the abstract substitution as the updated output of the predicate mg.
TA(PAR—B)A(BAR — P)

This new output can be used as the output of the recursive call to mg, in order to

recompute the output of the second clause of mg. This gives

(PLAP 5 R)A(PAR—P1)A(PLAR—+P)A(T ¢ T1) ATIA (PLAR = B)A (BAR — P1)

for the program point after the recursive call. Restricting this to the head variables gives
TA(PAR—=B)A(BAR—P)

which is the fixpoint for the computation of the output of mg.

We now show the computation of the input description, when the top level query is such
that both P and R are fixed.

Example 39 [Computation of Prop Input Description for mg/4] The abstract substitu-

tion describing a top level query such that P and R are fixed, is given as

PAR
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When the second clause is executed with this input, the abstract substitution for the

program point just before the recursive call to mg is
PARA(PLAP —+R)A(PAR—=P1)A (PLAR — P) A (T ¢ T1)

When restricted to the variables of the literal mg(P1,T1,R,B), this gives the abstract
substitution
P1AR

which on normalization gives the following input substitution for the recursive call to mg
PAR

This is the fixpoint of the input computation for mg, indicating that P and R are fixed
not only for the top level query, but also for all recursive calls to mg.



Chapter 6

Program Transformations

In this chapter, we present the various program transformations (or optimizations) pro-
posed for CLP(R[;,) programs. The chapter is organized as follows. Section 6.1 gives
a formal presentation for the reordering optimization including a proof of correctness.
Sections 6.2 and 6.3 discuss removal and refinement informally. Section 6.4 describes
how the optimizations are integrated in the optimizing compiler. The detailed proofs of

the results in this chapter may be found in Appendix A.

6.1 Reordering Optimization

As mentioned previously in Section 1.5, the purpose of reordering is to move constraints
towards the end of the clauses so that they can be specialized into assignments and tests.
However, reordering can take place only if it preserves the same search space which pro-
vides guarantees that the reordered program will be at least as efficient (asymptotically)
as the original program. In general in the literature (see for example [37]), this issue
is only discussed informally. It is typically mentioned that two goals ¢g; and g, can be
reordered in the context of a constraint store 6 if, for any satisfiable store §; occurring
during the execution of g; with input store 6§ and any satisfiable store 8, occurring during
the execution of g, with input store 6, 8; A 0, is satisfiable. However, this leaves open a
number of delicate issues such as whether to use the original or the reordered program
when computing the intermediate stores of g; and g,. It turns out that answers to these

questions are in fact more complicated than expected and really deserve to be addressed

properly.
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The purpose of this section is to describe the reordering algorithm in detail and to
prove its correctness. It is organized as follows. Section 6.1.1 gives a modified syntax for
CLP(RLin) programs that we shall use in this chapter to simplify the proofs. Section 6.1.2
presents an operational semantics of the language which is similar to the standard se-
mantics based on SLD-Resolution with a left-to-right selection rule [30] but adapted to
simplify our proofs. Section 6.1.3 formulates the reordering problem and defines formally
which reorderings are admissible, i.e., which reorderings preserve the search space. The
definition of admissible reorderings is not easy to approximate; Section 6.1.4 defines the
notion of failure-free reorderings and shows that failure-free reorderings are admissible,
the main result of this section. Failure-free reorderings are based on a condition which is
much more amenable to abstraction and is the basis of our transformations. Section 6.1.5
describes how failure-free reorderings may be abstracted. Section 6.1.6 gives a complete

example of the reordering optimization.

6.1.1 Modified Syntax

The syntax of CLP(Rr;,.) programs that we use in this section is a slightly modified and
simplified version of the standard syntax given in Chapter 1. As mentioned, the modified
syntax simplifies the presentation and proofs in the rest of the section. The modified
syntax for CLP(R.;,) programs is essentially the same as the original syntax, the only

differences being

1. a sequence of adjacent constraints in the body of a clause that are not separated
by a predicate are grouped together into a (possibly empty) multiset (akin to a

constraint store);

2. the constraint store before a predicate in the body of the clause is paired together

with the predicate in a tuple.

Figure 6.1 shows an outline of the modified syntax of a CLP (Rp;,) program. A CLP(RL;,)
program is a (possibly empty) sequence of clauses in which each clause has a head and a
body. A head is an atom, i.e. an expression of the form p(ty,...,t,) where t(,...,t,
are terms. A term is a variable (e.g. X). Note that the language is restricted to not
allow functors. A body is either € (the empty body) or a sequence of goals. Each goal
is a tuple that contains a store as the first element and an atom as the second element.
In order to accomodate trailing constraints in the body, we assume that every program

contains a trivially satisfiable clause (true : — €) whose head can be used as a dummy
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Program ::= (Clauses

Clauses ::= ¢ |Clause Clauses
Clause ::= Head :~ Body.
Head ::=  Atom

Body ::=  €]|Goal :: Body
Goal ::=  (Store, Atom)

Store ::= (| Store U {Constraint}

Figure 6.1: Qutline of the Modified Syntax of CLP(Rj;).

atom in the goal for the trailing constraints. Sometimes, the body b; =: ... :: b, may be
rewritten as by, ...b,. in order to simplify the notation. Also clauses of the form H : — ¢
(i.e with an empty body) may be rewritten as H.. These are merely syntactic sugar.
A store is a (possibly empty) multiset of constraints. The constraints of CLP (Rprin) are

real linear constraints.

Example 40 The clause
tOp c - ’\11 ’\21 b q, ’\31 r, ’\4'

when rewritten in the modified syntax appears as

top : ~ ({A, ’\2}1 P (@, ), <{’\3}1 ™, ({’\4}v true).

6.1.2 Concepts from Operational Semantics

This section defines the necessary concepts from operational semantics to justify the
optimizations. As mentioned before, most of these concepts are variations of standard
concepts in the theory of constraint logic programming. A computation state represents
a snapshot of the execution and contains the constraints accumulated so far and the

goals which remain to execute.

Definition 33 [Computation State] A computation state is syntactically a tuple whose

first element is a Body and whose second element is a Store.
State ::= (Body O Store).

Computation states are denoted by the letter S possibly subscripted. The shape of a
computation state (G O ) is its goal part, i.e,

shape((G < 8)) = G.

120



The store of the computation state is simply its constraint store

stores((G < 6)) = {6}.

As usual, computation steps are moves from a computation state to another. We now
define a notion of similarity between computation states which ignores constraint stores.
This is the first of a series of definitions formalizing what it means to preserve the search

space.

Definition 34 [Similar Computation States] Two states are said to be similar (denoted

by =) if they have the same shape, i.e.

S1 = S, if shape(S;) = shape(S,).

The notion of a computation tree is used to represent the search space. A computation
tree should be visualized as a tree labelled with a computation state and whose children
are all the computation trees of the computation states obtained by applying a computa-
tion step. The definition below is purely syntactical. The operational semantics defined

subsequently shows how to build a computation tree for a given program and query.

Definition 35 [Computation Tree] A computation tree is a record whose first element
(the root of the tree) is a computation state and whose second element (the children of

the root) is a list of trees.
Tree ::= tree(State, ListTree)
ListTree ::=[] | [Tree | ListTree]

Computation trees are denoted by the letter T" possibly subscripted, while lists of trees
are denoted by the letter L. If T is the tree tree(S, L), then S is called the label of the
tree, while L is called the child list of the tree.

The shape of a computation tree is fundamental in comparing the search space of two
programs.
Definition 36 [Shape of a Computation Tree] The shape of a tree is defined as follows:
shape(tree(S, L)) = tree(shape(S), shape(L)).
shape([]) =[]

shape([T" | L]) = [shape(T’) | shape(L)].
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The stores of a computation are fundamental in defining our main criterion to decide

whether a reordering preserves the same search tree.

Definition 37 [Stores of a Computation Tree] The stores of a tree are defined as follows.
stores(tree(S, L)) = stores(S) U stores(L).
stores([]) = 0.

stores([T' | L]) = stores(T) U stores(L).
We now define what it means for two trees to be similar up to a certain depth.

Definition 38 [Similar Trees| Let T} and T’ be the trees tree(Sy, L) and tree(S,, L,)
respectively. Ty and T are similar up to depth d, denoted by T} =4 T3, when the following

conditions are satisfied.

51 =~ 52 fd=1
=g o = X
S1= S2 ALy =4_; L, otherwise
where
true ifL]_:Lz:[]
LimgLy=q Ti =g T2 A L3 =4 Ly if Ly = [T1|L3) and L, = [T}|L4]
false otherwise

Moreover, two trees are similar (denoted T; = T3) if, for any finite depth d,

Tl ~q Tg.
We are now ready to define the operational semantics used in this chapter to prove the
correctness of reordering. The semantics receives as input a computation state and a

program and constructs a computation tree representing all the computations that starts

at that state using a left-to-right selection rule.

Definition 39 [Operational Semantics 7p : State ~+ Tree] The operational semantics

of a program P is a mapping 7p : State — Tree defined as follows:

P((G © 6)) = tree((G © 6), L)

122



where

[ [] ifG=e¢
ifG=(0,q):: Band
6 U ¢’ is inconsistent or no clause in P has head q
[T1,...,Tn] £G=(8,q)::Band 8 U ¢ is consistent and
T;=mp({(Bi::B O U U (qg=H;))) where H; : —B; is the ith of
the n clauses of P with head ¢ (renamed with all new variables)

and ¢ = H; adds the equality constraints between the actual

parameters of ¢ and formal parameters of H;

Note that if § U 6" is known to be consistent, then 6 U §' U (¢ = H;) is also consistent be-
cause ¢ = H; only introduces simple equality constraints between the actual parameters

of ¢ and the formal parameters of H; which are all new variables.
Example 41 Consider the mortgage example

mg(P,T,R,B) :- ({T = 0,B = P}, true ).
mg(P,T,R,B) :~ ({T > 0,P > 0,P1 = P%1.01 - R,TL = T - 1}, mg(P1,T1,R,B)).

Given a query S = ((, mg(P, T,R,B)) O {P = 1,R = 0.01}), the computation tree for this
query is given by 7,4(S) = tree(S, [T, Ty]), where

1 = mmg({(({T'=0,B' =P'}, true) O {P=1,R=0.01,P =P T=T,R=R,B= B'}))
T2 = Tmg((({T" > 0,P' 2 0,PL =P'* 1.01 - R, T1 = T' — 1}, mg(P1, T1, R, B)) O
{P=1,R=0.0L,P=P,T=T,R=FR,B =B'}))

6.1.3 Admissible Reorderings

As mentioned previously, only reorderings preserving the search space should be per-
formed by an optimizing compiler. The purpose of this section is to formalize this notion
by defining admissible reorderings. We start by defining the reorderings considered in

our optimizer.

Definition 40 [Simple Reordering] Let P be a program consisting of the sequence of

clauses cy,...,c¢;, ..., cn, where the clause ¢; is
b: —<011 Ql)v ey <0L V) {/\}1 Qk>, <9k+17 ‘Ik+1>, ceey (amy Qm>-

123



Let P’ be the program consisting of the sequence of clauses cy, ..., Chy ..., Cpn, where the

clause ¢} is

b: _(911 41)7 sy <0k1 ‘Ik), (ok'i-l ) {’\}1 Qk+1)1 ceey (HYT‘U qm)'

Then P’ is a simple reordering of P.

A simple reordering is obtained by moving one constraint over exactly one predicate
call. The reordering relation between programs is just the transitive closure of the

simple reordering relation.
Definition 41 [Reordering] P’ is a reordering of P if

1. P'is a simple reordering of P; or
2. there is a program P” such that P” is a reordering of P and P’ is a reordering of
P,
The next step is to specify what it means for a reordering to be admissible. Intuitively,

only reorderings that preserve the search space of the query are considered admissible.

Definition 42 [Admissibility of Simple Reorderings] Let P be a program consisting of

the sequence of clauses ¢y ...c;...c,, where the clause ¢ is

p:—- (617 ql>1 sy <0k U {’\}~ Qk)y <0k+11 q&+l>1 seey <6m7 (Im>-

Let P’ be a simple reordering of P, i.e. a program consisting of the sequence of clauses

C1...Ci...Cq, Where the clause ¢! is

b:— (011 q1)1 ) (9‘:: Qk>7 (9k+l U {’\}7 Qk-{-l)’ ey <9m7 Qm>—

Let S be a query (i.e., a computation state) to program P. P’ is a correct (admissible
p prog

simple reordering of P in the context of the query S if

Tp(S) = 1p/(S).

Definition 43 [Admissibility of Reorderings] P’ is a correct (admissible) reordering of
P if

1. P'is a correct simple reordering of P; or
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2. there is a program P” such that P is a correct reordering of P and P’ is a correct

reordering of P".

Consider the programs P and P’ in the definition of simple reordering. The program P

can be modified in such a way that clause ¢; becomes

p:- (911 ql)v sy (ek Y {’\}?qk)7 <0k+1 Yy {/\}1Qk+l>1 LS| (0m1qm>'

This program has the same search space as the original program since the second occur-
rence of A is redundant. As a consequence, it is sufficient to show that this new program
has the same search space as P’. Now observe that the new program and P’ only differ
by the fact that they add or do not add the constraint \ at program point & in clause c;.
With this observation in mind, it is convenient to reformulate the definition of the re-
ordering problem and its admissibility by introducing a syntactic construct ? that can be
applied to a constraint store and a constraint and whose semantics will be given by two
different mapping functions, one corresponding to the original program (after addition of
the redundant constraint) and the other corresponding to the reordered program. This

simplifies the proofs significantly. The next definition captures this informal description.

Definition 44 [Revised Admissibility of Simple Reordering] Let P be a program con-

sisting of the sequence of clauses c; .. .c;...c,, where the clause ¢ Is

b:— (911Q1>! R <0k yU {’\}7 qk)a <0k+11Qk+1>v ceey <9m1Qm)-

Let P’ be a simple reordering of P, i.e. the program consisting of the sequence of clauses

CL-.-Ci...Cn, where the clause ¢! is

p:—- (011 41)7 vy (gk’ qk)v (ok-i-l U {’\}‘ Qk-i-l)a ey <0m7 Qm>'

Further, let R be a program consisting of the sequence of clauses c; .. .c!...cn, where

the clause ¢ is

p:—- (011QI): sy (01\: ? {’\}7 ‘Jk), (ak-{»l yu {’\}7Qk+l)1 ceey <9mqu>-

We denote by 74(S) the computation tree with root node S where 8 ? {A}=60u {)}
and call it the “inclusive” execution of R. We also denote by 7%(S) the computation
tree with root node S where # ? {A} = 6§ and call it the “exclusive” execution of R. Let
S be a query to the program P. Then P’ is an admissible simple reordering of P in the

context of the query S if
Th(S) = 75(S).
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Intuitively, the inclusive execution of a query corresponds to the execution in the original
program, while the exclusive execution corresponds to the execution in the reordered

program.

6.1.4 Failure-Free Reorderings

The characterization of admissible reorderings is not easily amenable to abstraction. This
section presents failure-free reorderings which are based on a condition which guarantees
admissibility and which is much more amenable to abstraction. The intuition is as follows
for the reordering problem as stated in the previous definition. Informally speaking,
the reordering is failure-free if we can prove that A does not cause any failure of the
goal (fk ,qx) in the reordered program when executed with any input store of the goal
(0 U {A}, gr) occurring in the original program. We now formalize this notion and prove

the correctness results.

We first introduce the concept of failure freedom. Essentially, a constraint is failure-
free w.r.t. a (satisfiable) store if adding the constraint to the store does not cause the
resulting store to become unsatisfiable. The concept can be extended to failure freedom
over computation trees. A constraint is failure-free with respect to a computation tree

if it is failure-free with respect to all constraint stores in that tree. More formally:

Definition 45 [Failure Freedom] The constraint A is said to be failure-free with respect

to the constraint store § (denoted A\ FF ) if
f satisfiable = 8 U {A} satisfiable .

Also, the constraint A is said to be failure-free w.r.t. the computation tree T (denoted

by A FF T) if for every constraint store 8 in stores(T), A is failure-free w.r.t. 6.
We are now in position to define failure-free reorderings of programs.

Definition 46 [Failure-Free Reorderings] Let P be a program consisting of the sequence

of clauses c; ...c;...cn, where the clause ¢; is

p:—- (011 q1>1 sy (ek 6] {’\}1 Qk)a (6k+l1Qk+l)1 sy <0m1 Qm>

Let P’ be a simple reordering of P, i.e. the program consisting of the sequence of clauses

€1...C;-..Cn, Where the clause ¢! is
b:— (911 ql)v sy <6k1 Qk>; <0k+1 u {’\}1 Qk+l>1 sy (en‘u Qm>-
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Further, let R be a program consisting of the sequence of clauses c; .. .c!...cp, where

the clause ¢/ is

b:- (011 QI>1'--7 <0k ? {’\}1 qk)v(gk-i-l u {’\}’ Qk+1)7 sy (gmy Qm)-

Denote by program point A the point in the clause c; just before (6x ? {A}, gr). Denote
by © the set of all constraint stores that can occur as the accumulated constraint store
at the program point A in the inclusive execution of program R for the query S. Then

P’ is a failure-free reordering of P for S if

VO € ©: X FF rE(((6k 7 (A}, qx) © 6)).

We now prove that failure-free reorderings are admissible. The following lemma. pertain-

ing to failure freedom is a simple consequence of the definition.

Lemma 19 If ) is failure-free in a computation tree T, it is failure-free in any subtree

thereof.

The next lemma gives a strong relation between failure freedom and similarity of trees.

Lemma 20 Let P be a program. Then for every satisfiable constraint store 6, every

constraint A and every body G,

A FF p((G 0 0)) = mp((G O 6)) =~ mp({(G O § U {A})).

Sketch of Proof: The proof consists of proving that for any satisfiable constraint store
8, constraint A, body G and finite depth ds.t. A FF 7p((G © 0)):

P((G O 6)) =¢4 Tp({G © 6 U {A})).

The proof proceeds by induction on d. o

The next lemma. enables us to strengthen a failure freedom hypothesis for programs that

have a structure similar to our reorderings.

Lemma 21 Let § be a satisfiable constraint store, P be a program, G and G’ be a

bodies, g be an atom, and 6, be a store. Then
A FF 7p((G O 60)) = X FF 7p((G = (6, U {A\},q) = G" O 6)).
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Proof: For any store 8’ € stores(p({G :: (0, U {A}, q) :: G' © 8))), we have that either
0’ € stores(rp({G © 6))) or ¢ = {A\} U 6”. The first case applies to the computation
states that occur during the execution of the prefix G, while the second case applies
to the computation states that occur during the execution after G. In the first case A
is failure-free w.r.t. ¢’ by the hypothesis. In the second case ) is failure-free w.r.c. &'

trivially. The desired result follows. o

We now turn to the main result of this section which gives a sufficient condition for

admissible reorderings.

Theorem 16 [Failure-Free Reorderings are Admissible] Let R be a program consisting

of the sequence of clauses c; .. .c;... Cn, Where the clause c; is

p:— (617q1>7 SRR <€k ? {’\}1 Qk)’ <0k+1 y {’\}1Qk+1>7 LRES (gm’qm>-

Denote by program point A the point in the clause c; Jjust before (8 ? {A}, gx). Denote
by O the set of all constraint stores that can occur as the accumulated constraint store

at the program point A in the inclusive execution of program R for the query S. Let
V8 € ©: A FF r5(((6c 7 {A}, &) © 6)).

Then
TR(S) = 7E(S).

Sketch of Proof: The proof considers a hybrid tree T8(S, d) which for any depth d
corresponds to the inclusive execution of S upto depth d, and the exclusive execution
thereafter. The definition of the tree is such that for any d, T8(S, d) is identical to H(S)
upto depth d. The proof consists of showing (by induction) that for any d,

T8H(S,d) = r5(S).
It follows trivially that for any depth d:
R(S) =4 TE(S)
which is the desired result. O

We would like to mention here that due to the technical details of the proof, it is necessary
to compute the set of stores © in the inclusive execution of the query (i.e. the program

before reordering); however the test for failure freedom of A is performed w.r.t. an
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exclusive computation tree (i.e. the program after reordering). This subtlety in the test
for reordering was never mentioned previously in the literature, and it was discovered
only because of formally defining the criterion for admissible reorderings and rigorously

proving a sufficient condition for admissible reorderings.

Note that the admissibility of reorderings and the sufficient condition for admissible
reorderings presented in this chaper have been given in terms of a modified operational
semantics, that differs from the standard semantics because at each computation step,
it adds all the adjacent constraints simultaneously to the accumulated constraint store
rather than add them individually in multiple computation steps. However it is not a
difficult matter to model the standard operational semantics and search space of CLP
programs in terms of the operational semantics and search space given in this chapter.
All that needs to be done is to force all constraints to be considered as singleton stores and
to impose the restriction that the search space cannot be modified even when reordering

among constraints.

Capturing the ideas of the previous paragraph, the following procedure may be used
to decide whether A; can be reordered to the point just after ¢ (where ¢ may be a

predicate or a constraint) in the clause

while preserving the search space of the standard operational semantics:

L. Replace every constraint A of the program except A, by a new predicate symbol

Dx;

o

. Add the clauses py : —\. to the program;
3. Rewrite the program in terms of the modified syntax;

4. Decide if moving A; after g (a sequence of simple reordering steps) is admissible as

per Theorem 16.

As a special case of the above, the following procedure may be used to decide whether

A1 can be reordered after the constraint A in the clause
p:—...,/\l,/\,...

while preserving the search space of the standard operational semantics. Let © be the

set of all constraint stores that can occur at the point in the clause Jjust before A; in the
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execution of the original program. Then it is admissible to move A, after A if

VHEG):/\I FF 8 A /\1 FF Gg{/\}

6.1.5 Abstract Test for Reordering

The aim of this section is to show how the main result of the previous section (failure-
free reorderings are admissible) may be abstracted safely to give an abstract test for
reordering to be used in an optimizing compiler. The key idea is to recognize that failure
freedom of a constraint w.r.t. a store is exactly the same as the conditional satisfiability

operation introduced in Section 3.4.3, i.e.
A FF § & Cis_cond sat(f, {\}).
This suggests that the domains LSign and LInt can be used to obtain an abstract test

for deciding admissible reorderings.

Corollary 2 Let R be a program consisting of the sequence of clauses ¢;...c;...cp,

where the clause ¢; is

p:- <011q1>v cey (01\’ 7 {’\}1qk)v (9k+1 V] {’\}1Qk+1>1 veey <0ma ‘Im>-

Denote by program point A the point in the clause ¢; just before (0 7 {1}, q.). Denote
the set of all constraint stores that can occur as the accumulated constraint store at
the program point A in the inclusive execution of program R for the query S by © and
denote stores(tE(((6x 7 {A}, qx) © 0))) by ©'. Let & and o' be abstract descriptions

and v be an abstract constraint with multiplicity s.t.
e/Var(c;) - CC(CY), @;Var(c;) c CC(CY,), AE CC(’)/),

and
Ais_cond sat(a |4 o, {{7}}).

Then

Proof: By the consistency of the |} operator and the conditional satisfiability operation,

we have that
V8 € O yar(c;) V0’ € eI/Vu(c.-) : Cis_cond sat(6 U 6, {\}),
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Since the conditional satisfiability of A w.r.t. 8 U 6’ depends only on the projection of

8 U 6’ on the variables of A, we have that
V9 € © V¢ € © : Cis_condsat(d U &, {)\}),

Using the commutativity of constraint addition in the domain of real linear contraints,

this can be rewritten as
V8 € © V8’ € stores(E(((6r 7 {A}, @) © 6))) : Cis_cond_sat(f, {A}).
By using the definition of failure freedom for trees and the fact that
A FF 6 & Cis_cond sat(d, {A}).

it follows that
VO e©: A FF 75({(6r 7 {A}ae) © 8)).

The desired result follows by Theorem 16. 0

In order to determine the admissibility of a reordering in terms of the standard opera-
tional semantics, the abstract test should be used to approximate the fourth step of the
four step procedure in the previous subsection. In that case, « can be computed given
the input description of p for the query S in the original program, and the goal inde-
pendent output descriptions of q;, . .., qx_1. ¢ is just the goal independent intermediate

description of ¢ in the reordered program (as 6 is empty).

As a special case of the above, the following procedure may be used to decide whether

A1 can be reordered after the constraint A in the clause
p:—...,/\l,/\,...

while preserving the search space of the standard operational semantics. Let © be the
set of all constraint stores that can occur at the point in the clause just before Ay in the
execution of the original program. Let o be an abstract description s.t. © C Ce(a); 1
and v be abstract constraints s.t. Ay € Cc(7;) and A € Cc(y). Then it is admissible to

move A; after A if
Ais_cond sat(e, {{71}}) A Ais_condsat(aWv, {{11}}).

« may be computed using the abstract interpretation framework described in Chapter 2
from the input description of p for the query and the goal independent output descriptions

of the intervening predicate calls before A in the clause.
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6.1.6 Complete Example
Consider the normalized mortgage program

P.

ng(P,T,R,B) :- T = B =
P>0,PL=P+1.0L~R, TL=T-1, mg(P1,T1,R,B).

0,
mg(P,T,R,B) :- T > O,
and assume that the compiler tries to move constraint T > 0 after the recursive call.

This actually consists of a sequence of reordering steps, the first of which attempts
tomoveT > O after the constraint P > 0. The proof obligation (abstract test) consists
of checking whether T > 0 is failure-free w.r.t. the input store of mg in the original

program (c;,) which is given by

{(T = @P,One), (T = @R, One)},
{{T = @R, One), (& < @T, One), (T = &P + HR, One)},
{{T = @R, 0ne), (6 < GT, One), (S < @T, Any),
(T < &R, 0ne), (T < SR, Any), (T = &P + &R, One)}
}

and also if T > 0 is failure-free w.r.t. a;, 4 (0 < P,0ne). The method used to check
failure freedom is of course the conditional satisfiability in the domain LSign. The

abstract test consists of checking whether
Ais_cond.sat(ain, {{(0 < @T,0ne)}}) A Ais_cond_sat(e;,¥(0 < P,0ne), {{(0 < &T, One)}})

is true and it succeeds.

The next two reordering steps involve moving T > 0 after the constraints P1 =
P*1.01 - RandT1 = T - 1 and similar proof obligations can be carried out by check-
ing the failure freedom of T > 0 w.r.t. a;n, & (0 < @P, One), ain ¥ (0 < GP,0ne) W (0 =
©P + OR + ©P1,0ne) and ajn ¥ (0 < OP,0ne) ¥ (0 = GP + SR + SP1,0ne) Y (&=
®T + ©T1, One).

The final reordering step consists of moving T > 0 after the recursive call to mg. Itis

now necessary to carry out the proof obligation of Theorem 16 by means of the abstract
test in Section 6.1.5. The store « in the abstract test is ain & (0 < @P,0ne) & (0 =




©P + OR + ©P1,0ne) ¥ (@ = @T + ST1,0ne). The store o' is

{
{}
{(0 = ©T1,0ne)},
{(0 < &P1,0ne)}
{(0 < ®P1,0ne), (® = ST1, One)}
{{0 < @P1,0ne), (& = BTL,0ne), (0 = HP1 + OR + SB, One)}
{(0 < ®P1,0ne), (® = @T1,0ne), (0 = P1 + SR + OB, One), (0 < GTL, One)}
{{(0 < @P1, One), (& = &T1,0ne), (0 < GP1 + SR, One), (0 < GP1 + SR, Any)}
{(0 < &P1, One), (® = GT1,0ne), (0 = §P1 + SR + OB, One),
(0 £ ®P1 + SR, 0ne), (0 < ®P1 + SR, Any)}
{(0 < ®P1,0ne), (0 < GP1 + R, One), (0 < GPL + OR, Any)}
{(0 = ®T1, One), (0 = @P1 + OB, One)},
{(0 < ®T1,0ne), (& = &T1, One), (0 < GP1, One),
(0 = &P1 + SR 4 SB, One), (0 < &R + &B, One), (0 < SR + BB, Any) }
}

The abstract test consists of verifying that the constraint T > 0 is failure-free w.r.t. the
complicated abstract description « |4 @' consisting of 33 abstract stores. This is verified
by checking the truth of Ais_cond sat(a [ ¢, {{(0 < &T)}}), and hence the reordering

is admissible.

6.2 Removal Optimization

The removal optimization phase receives the reordered program and performs the LSign
or LInt analysis on the reordered program. The optimizer then systematically considers
each constraint in each clause for constraint removal. To understand when a constraint

can be removed from the program, consider a clause

D = G1y---1 G0 ’\1yi+ly--'

and assume that the compiler is interested in determining whether the constraint \ can be
removed from the body of the clause. A sufficient condition for removing A is that for all
accumulated constraint stores § that can occur at the program point before A during the
execution of the program for a given query, Cis_redundant({A},6) is true. The abstract

interpretation of the program enables us to obtain a LSign or LInt representation of
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all such accumulated constraint stores, call this abstract description «. The condition
can then be verified in a conservative manner by checking if Ais_redundant({{y}},a)is
true, where v is an abstraction of A. Consider the running example again. The program

at this stage is as follows:

[}
o]
1}
lav]

mg(P,T,R,B) :- T = 0,
mg(P,T,R,B) :- P > 0, P1 = P+1.01 - R, mg(P1,T1,R,B), T = T1 + i, T>o0.

The LSign analysis produces the description o =

{
{(T = &P, 0One), (T = @R, One)},
{(T = @R, 0ne), (T = @GP + @R, One)},
{(T = @R, One), (T = GP + @R, One), (T < ©R,0ne), (T < OR, Any)}
}
G
{{(0 < ®P,0ne), (0 = ©P + SR + ©P1, One), (® = ST + &T1, O0ne)}}
V)

{(0 = @T1, One), (0 = &P1 + OB, One)},
{(0 < @T1, One), (@ = @T1, One), (0 < GP1, One), (0 = HP1 + SR + SB, One)},
{(0 < &T1, One), (§ = @T1, One), (0 < GP1, One),
(0 = @P1 + OR + ©B, One), (0 < @R + GB, One), (0 < GR + &B, Any)}
}

for the program point just before the constraint T > 0. The first abstract multistore rep-
resents the input to the clause, the second abstract multistore represents the constraints
in the clause before T > 0 and the third abstract multistore represents the output ot
the recursive call. This is a fairly complex abstract description containing nine abstract
stores. The optimizer verifies that Ais_redundant({{(0 < &T, One)}}, ) is true, and so

the constraint is redundant and can be removed from the program.

6.3 Refinement Optimization

After constraint removal, the refinement phase considers all constraints in all clauses and
specializes them whenever possible. It performs both a Prop analysis and an LSign or

LInt analysis on the program obtained after reordering and removal. The specialization
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of inequalities only uses the results of Prop and produces a test whenever all variables
are fixed. The specialization of equations also uses the results of LSign to determine
unconstrained variables. An equation is specialized into a test if all its variables are fixed
and into an assignment if all but one of its variables are fixed, and the non-fixed variable

is free. Consider the running example during this phase:

mg(P,T,R,B) :- T =0, B = P.
mg(P,T,R,B) :- P > 0, P1 = P*1.01 - R, mg(P1,T1,R,B), T = T1 + 1.

Given the top level input pattern, the abstract description for all the constraint stores
that can occur before the constraint P > 0 is just the input description for all calls to mg

and it is given by f =P AR in the Prop domain and a =

{
{(T = &P, 0ne), (T = &R, One)},

{(T = @R, 0ne), (T = ®P + &R, One)},
{{T = @R, One), (T = &P + R, One), (T < SR, 0ne), (T < &R, Any)}

}

in the LSign domain. In the second clause, the first inequality is transformed into a
test, since Ais_fixed(f,P) i.e. P is fixed in the input description of mg. The abstract
description before the second constraint is the same in the Prop domain and is o' =
« ¥ (0 < @P,0ne) in the LSign domain. Since Ais fixed(f,R) and Ais_free(c’,P1)
i.e. Ris also fixed and P1 is unconstrained, the second constraint can be transformed
into an assignment. Similar reasoning can be applied for the remaining constraints to

obtain the refined program:

mg(P,T,R,B) :- T :=0, B := P.
mg(P,T,R,B) :- P ?> 0, P1 := P*1.01 - R, mg(Pi,Tl,R,B), T :=T1 + 1.

6.4 Integration

Finally, we would like to mention that the compiler is organized in three passes for
optimization, viz. reordering, removal and refinement, as indicated in Figure 6.2. There
is also a normalization phase before the optimization phases. Note that the removal
and refinement passes may be interchanged with little effect on the overall optimization.

However it is important to reorder first because the reordering is designed to increase
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the amount of refinement and redundancy removal. The program structure is passed
between the phases through intermediate data structures!. An abstract interpretation
system based on GAIA is adapted to CLP for the purposes of computing the various

abstract descriptions needed by the optimizer.

In the reordering phase, the abstract interpretation system is used to recompute the
abstract descriptions after each reordering step. This is because the abstract descrip-
tions of interest (input and intermediate descriptions) may change when the program is
reordered. Presently, the recomputation is not incremental, i.e. the descriptions are re-
computed from scratch after each simple reordering step. There is no need to recompute

descriptions in the removal and refinement phases.

We have not discussed how potential target sites to reorder constraints are deter-
mined. Typically it is sought to move constraints to points in the program where they
become tests or assignments or where they become redundant. The analyses for refine-
ment (Prop and LSign) and redundancy (LSign) are thus used to guide the reordering
stage to attempt profitable reorderings. The present compiler does not use any sophisti-
cated strategy to select among reorderings. Any reordering that could move a constraint

to a point where it becomes a test or assignment is considered for analysis.

' An earlier version of the compiler used intermediate files containing the transformed program.
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Chapter 7

Experimental Results

The purpose of this chapter is to evaluate the effect of the optimizations on a number of
typical benchmarks. The chapter quantifies the benefit of applying the optimizations by
comparing the execution time for optimized and unoptimized versions of the benchmarks.
It also gives the optimization times for the benchmarks and compares the optimization
times of the LSign analysis and LInt analysis. The chapter is organized as follows.
Section 7.1 presents the benchmarks used in the experimental results. The execution time
for optimized and unoptimized versions of the benchmarks is compared in Section 7.2.

The optimization time for LSign and LInt analyses is presented in Section 7.3.

7.1 The Benchmarks

Our benchmarks are relatively small, since most large CLP(Ry;n) programs use Prolog
terms in addition to linear constraints, and our analyzer is not able to handle structures
at this stage. Nevertheless, the benchmarks indicate clearly the potential of the opti-
mizations. Most of the programs are also multi-directional and they are run with various
modes: u stands for an unconstrained variable while £ stands for a fixed variable. Pro-
gram Integer(N) can be used either to check if its argument is a non-negative integer
or to generate the non-negative integers. In the results, it is used to verify if 25000 is
an integer and to generate the first 250 integers. The next three programs, Exp(N,E),
Sum(N,S) and Fibonacci(N,F) are programs that compute 2%, the sum of the first N
integers, and the N** Fibonacci number, respectively. Once again, these benchmarks are

used in various modes such as computing the sum of the first N integers, determining N
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u_Program Mode | Description j]

Integer f Is 25000 an integer?

u Generate 0...250
Exp fu Compute 2%

uf Compute lg 2%

uu Generate (0,1)...(25, 2%%)
Sum fu Compute 041+ ...+ 500

uf Find Ns.t. 0+ 1+...4+ N = 125250

uu Generate (0,0) ... (500, 125250)
Fibonacci fu Compute 15** Fibonacci number

uf Find N s.t. 987 is N** Fibonacci number

uu Generate (0,1)...(15,987)
Mortgage flfu (1) Principal = 100, Time = 50; find Balance
(Linear) fifu (2) Principal = 200, Time = 100; find Balance

fufu (1) | Principal = 100, Time = 0 ... 50; find Balance

fufu (2) | Principal = 200, Time = 0 ... 100; find Balance
Mortgage fiffu (1) | Principal = 100, Time = 50 ; find Balance
(Nonlinear) fiffu (2) | Principal = 200, Time = 100; find Balance

fuffu (1) ( Principal = 100, Time = 0 ... 50; find Balance

fuffu (2) | Principal = 200, Time = 0 ... 100; find Balance
Ode-Euler fiffu Compute final y value

fufif Compute initial y value

fuffu Relate inital and final y values
Triangular, 2000 Solve N equations, N = 2000

4000 Solve N equations, N = 4000
8000 Solve N equations, N = 8000

Table 7.1: Test Programs: Description of Usage in Various Modes.

such that a given number F is the N** Fibonacci number, generating all pairs of num-
bers (N, 2¥) for 0 < N < 25 etec. Mortgage relates the various parameters of a mortgage
computation, and we have two versions of it. The first is the running example used in
the thesis. The second is a syntactically nonlinear version which has the interest rate
as an argument. In our benchmarks, we have used an interest rate of 1% per month
and a monthly repayment of 2 units; the final balance is unconstrained. The value of
the principal and time period vary to illustrate various tradeoffs in the optimizations.
Ode-Euler [39] is a program solving the ordinary differential equation y’ = ¢ numerically
using Euler method. Triangular is a benchmark that involves simultaneously solving
a sparse system of N equations, subsystems of which are in upper triangular form. Ta-
ble 7.1 summarizes the usage modes of the various test programs. Some of the programs
(Mortgage and Ode-Euler) are syntactically non-linear, but the queries make them lin-
ear at runtime. In other words, the constraint solver can deduce some of the variables
to be fixed, and using their fixed values instead of their symbols makes the constraints

linear.

The benchmarks used for testing the analyses with LSign and LInt are similar. The
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Program Mode Unopt. Opt. | Speedup | Annotation Bypass?
(1) (2) | (1)/(2)
Integer f 1380 1280 1.08 | REF X
4810 280 17.18 | REO,REF,REM v
Exp fu 10 10 1.00 | REO,REF Vv
uf 100 10 10.00 | REQ,REF,REM Vv
uu 120 10 12.00 | REO,REF,REM v
Sum fu 200 40 5.00 | REO,REF v
uf 19220 | 17270 1.11 | REQ, REM x
uu 31490 2180 14.44 | RED,REF,REM v
Fibonacci fu 720 240 3.00 | REO,REF v
uf 8570 1950 4.39 | REO, REF x
uu 7880 810 9.73 | REO, REF b%s
Mortgage fifu (1) 410 390 1.05 | REF x
(Linear) fifu (2) 30 20 1.50 | REF x
fufu (1) 880 420 2.10 | RED,REF,REM v
fufu (2) 870 70 12.43 | REO,REF,REM v
Mortgage fiffu (1) 800 690 1.16 | REF x
(Nonlinear) fifiu (2) 50 40 1.25 | REF x
fuffu (1) 1750 1100 1.59 | REO,REF,REM Vv
fuffu (2) 1590 140 11.36 | REO,REF,REM v
Ode-Euler fiffu 1260 1120 1.13 | REF x
fufff 1540 1440 1.07 | REO,REF x
fuffu 1330 1210 1.10 | REO,REF X
Triangular, 2000 520 130 4.00 | REF,REO v
4000 1660 210 7.90 | REF,REQ v
8000 4490 290 15.48 | REF,RED v
Ar. Mean 5.68

Table 7.2: Comparison of Running Times: Optimized vs. Unoptimized.

only difference is that the version of a benchmark used with LSign typically has a base
case of zero, while the version of the same benchmark used with LInt has a non-zero

base case.

7.2 Execution Time

The benchmarks are used to compare the optimizing compiler with the standard com-
piler. Both compilers generate code for the same runtime system which is a WAM-based
system with special instructions for tests and assignments. The runtime system uses
infinite precision integers to guarantee numerical stability. Table 7.2 reports the com-
putation times (in milliseconds on a Sun Sparc 10) for the optimized and unoptimized
versions of the benchmarks for various modes. It also gives the ratio of the unoptimized
execution time to the optimized execution time. This number is called the speedup and it
quantifies the benefit of optimization, i.e. a larger speedup implies a greater benefit due

to optimization. The table also specifies which optimizations have been performed. REO
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indicates that constraints were reordered, REF indicates that constraints were refined
to tests or assignments and REM indicates that (redundant) constraints were removed
from the program. The final column in the table indicates whether the optimizations
enabled the execution to bypass the constraint solver entirely (i.e perform only tests and
assignments in the engine and interface). A / indicates that the unoptimized program
utilized the constraint solver to perform constraint solving, while the optimized program

bypassed the constraint solver entirely.

The speedups vary from 1.00 on one of the Exp queries to 15.48 on the Triangular
program, when 8000 equations are solved. Seven programs exhibit speedups of at least 10,
while eleven programs exhibit speedups lower than 2. The average speedup observed was
5.68. It is interesting to see which optimizations had a greater effect on the speedups. The
average speedup when only refinements were performed was just 1.20. This is because
when only refinements are performed, even the unoptimized program does not invoke
the constraint solver for the constraints that are refined. The only saving comes from
the specialization into tests and assignments at compile time, rather than at runtime.
This is because the system is organized such that tests and assignments discovered at
runtime are executed in the interface rather than being passed to the constraint solver.
When the optimizations do not result in bypassing the constraint solver entirely, the
average speedup observed was 2.23. This speedup is about double that obtained for
refinements only. The maximum benefits were observed when the constraint solver was
bypassed entirely. In that case, the average speedup was 8.39. This is because the
original program performed costly constraint solving, while the optimized program only
executed tests and assignments (handled in the interface and engine). Note that there
is a close correlation between reordering and bypassing the solver entirely. Each of the
examples where the solver is bypassed entirely was reordered by the optimizer (though
the reverse is not true). Reordering moves the constraints to a point in the program
where they may be removed or specialized into tests or assignments, thereby bypassing

the solver.

The speedups on Triangular illustrate that the optimizations can produce more than
constant factors of improvement. In Triangular, the speedup depends on the size of
the problem, i.e. the number of equations being solved simultaneously. Reordering and
refinement make it possible to bypass calls to the constraint solver completely, avoiding
the costly Gaussian elimination in the solver which takes place in the original program.
While the original program solves a set of constraints which takes time quadratic in the

number of variables, the optimized program executes a sequence of assignments which
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Program Mode || Unopt. | Reordering | Removal | Refinement Total
(1) (2) (3) (1) + (2) + (3)
I[nteger f 100 120 20 10 150
100 400 10 10 420
Exp fu 150 510 10 10 530
uf 120 690 10 10 710
uu 110 980 10 20 1010
Sum fu 160 1200 10 10 1220
uf 130 1470 20 20 1510
uu 180 1530 10 10 1550
Fibonacci fu 90 4280 30 20 4330
uf 110 7900 90 80 8070
uu 100 6150 70 50 6270
Mortgage fifu 120 1420 20 20 1460
(Linear) fufu 100 3060 30 10 3100
Mortgage fiffu 160 3350 30 40 3440
{Nonlinear) fuffu 240 9480 50 30 9560
Ode-Euler fiffu 110 1680 40 10 1730
fufff 110 1650 30 20 1700
fuffu 140 1140 20 20 1180
Triangular, 2000 100 360 20 10 390
4000 120 480 30 10 520
8000 160 2320 80 30 2450

Table 7.3: Optimization Times: LSign.

takes time linear in the number of variables.

Mortgage (linear and nonlinear versions) also illustrates a side-effect of reordering
that we did not expect. As mentioned previously, the system uses infinite-precision
numbers but it makes an effort (especially in the interface between the engine and the
solver) to keep numbers in standard integer technology as long as possible. When a
program is reordered, it is possible that it can be run without infinite precision numbers
at all. When this happens, the speedups are magnified and this explains the discrepancy
between the speedups of Mortgage with a value 200 and with a value 100 for the principal.

The above results are presented for the optimizing compiler using the LSign analysis.
The results are very similar using the LInt analysis and the modified benchmarks. The
main point of interest is that the modified benchmarks typically cannot be optimized by

the LSign analysis, however they are successfully optimized by the LInt analysis.

7.3 Optimization Time

In order to get an idea whether the optimizations are practical, it is useful to quantify

the time taken to perform reordering, refinement and removal in the optimizing compiler.
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Program Mode LInt | LSign [ Ratio
(1) (2) | (/)
Integer f 800 150 5.33
u 2150 420 5.12
Exp fu 4110 330 7.75
uf 5140 710 7.24

uu 7020 1010 6.95
Sum fu 8060 1220 6.61
uf 10340 1510 6.88

uu 11180 1550 7.21
Fibonacci fu 43910 4330 10.14
uf 120750 8070 14.96
uu 76610 6270 12.22
Mortgage fifu 14410 1460 9.87
(Linear) fufu 42420 3100 13.68
Mortgage fiffu 25070 3440 7.29
{Nonlinear) fuffu 62180 9560 6.50
Ode-Euler fiffu 11110 1730 6.42
fufff 11070 1700 6.51
fuffu 7200 1180 6.10
Triangular, 2000 1350 390 3.46
4000 1510 520 2.90
8000 3920 2450 1.60
Ar. Mean 7.39

Table 7.4: Comparison of Optimization Times: LInt vs. LSign.

Table 7.3 gives the optimization time (in milliseconds) for the benchmarks along with the
compilation time if no optimizations are performed (column Unopt.). The numbers are
given for a version of the compiler in which the LSign and Prop analyses are used. The
optimization time is given separately for each of the three phases, as well as for the total of
the three phases. Note that at this point, no effort has been spent in making the analyses
or the optimization algorithms fast. The table indicates that the optimization times are
reasonable for our benchmark programs, but that avenues of making the optimizer fast
is an open area of research. For example the techniques of [19] should be useful here to

obtain a faster, incremental implementation.

In order to experimentally quantify the penalty paid for using intervals instead of
signs, it is also useful to compare the optimization times when LInt is used in the
analyzer instead of LSign. Table 7.4 gives the total optimization times (in milliseconds)
for the benchmarks when the analysis is performed using LInt and also when the analysis
is performed using LSign. The ratio of the optimization times for LInt vs. LSign is
also given for comparison. For our benchmarks, the average penalty paid by the LInt
analysis over the LSign analysis is a factor of 7.39 indicating that the LInt analysis is

practical, and does not impose too much overhead for the additional accuracy.
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Chapter 8

Related Work

In this chapter, we discuss the relation of our thesis with a number of different areas of
research. The chapter is organized as follows. Section 8.1 dicsusses the relation of the
work presented in this thesis with the research on optimization of the language CLP(R).
The previous work on abstract interpretation of CLP languages is discussed in Sec-
tion 8.2. The relation of the thesis with optimization of Prolog is covered in Section 8.3.
The chapter concludes by examining the relation of the CLP(Ry;,) optimizations with

imperative language optimizations in Section 8.4.

8.1 Optimization of CLP(R)

Our research is closely related to a number of papers published on the optimization of
CLP(R) (eg. [36, 26, 37, 24, 39, 31, 23]. However, few experimental results have ap-
peared to quantify the possible benefits in a practical optimizing compiler. The only
exceptions that we are aware of is the system described in [26] which performs three op-
timizations on CLP(R) programs viz. “solver bypass”, “dead variable elimination” and
“no fail constraint detection” and the system described in [27] which performs the above
optimizations, as well as reordering and an optimization called "future redundancy”.
However little information is available as to how the reordering is automated or how the
correctness of the reordering optimization is guaranteed in the system of [27]. It is just
mentioned that a constraint that contains a "new” variable can be reordered across any
number of intervening goals that do not contain that variable. This is actually just a
special case of the conditional satisfiability checked in our compiler (as the projection of

any intermediate store on the "new” variable would be the empty set). Our compiler’s
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reordering criterion is much more sophisticated and can allow reorderings to take place
even when all the variables of the constraint under consideration occur in the intervening
goals. As we show in this thesis, reordering is probably the most fundamental optimiza-
tion, enabling the other optimizations to be applied more effectively. Moreover, there
are several subtle issues in guaranteeing that the reordered program has the same search
space as the original program, and these deserve to be addressed in rigorous detail. While
reordering constraints was first proposed by Marriott and Stuckey [36, 37], this thesis is
the first to formalize the notion of admissible reorderings and give an abstract test for

the same.

Our optimizations are most closely related to the refinement, removal and reorder-
ing (3R’s) proposed in [36]. Unlike our approach, the 3R’s methodology transforms the
original monotonic program (constraint addition only) into a non-monotonic program
(constraint addition and removal). The refinement proposed in that paper is quite dif-
ferent from the refinement that we propose, and involves adding additional constraints
to the source program , so as to guide the execution away from unprofitable choices.
The redundancy elimination proposed in that paper is much more general, and is related
to the future redundancy optimization of [24]. It consists of adding explicit constraint
removal instructions to the program, which means that constraints can be added and
then removed at a future program point when they have become redundant. Finally,
reordering is also more general because in addition to moving constraint addition later
(as in our compiler), the methodology also envisons moving constraint removal earlier.
The paper also presents an outline of the analyses that would enable implementation
of the 3R’s methodology and an idea of the speedups obtainable, by optimizing some
programs by hand.

There are number of other optimizations of CLP(R) programs proposed in various
papers. Optimizations such as “mutual exclusion” (converting multiple clauses for a
predicate into “if then else” statements) and “code motion” (moving recursion invariant
expressions out of recursive clauses, similar to loop invariant optimization in imperative
languages) are proposed in [24]. More specialized optimizations such as linear threading,
linear gather and mixed nonlinear gather, that work only on some classes of CLP(R)

programs are presented in [39].
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8.2 Abstract Interpretation of CLP

As mentioned previously, the optimization of CLP programs is achieved by the method of
abstract interpretation. Abstract interpretation of CLP is closely related to the abstract
interpretation of logic programs and borrows many of the theoretical aspects such as
work on frameworks [2, 5, 4, 32, 33, 38] and algorithms (5, 7, 29, 25, 41]. Much of
the previous work on abstract interpretation of CLP has focused on theoretical aspects
[17, 35] and defining various abstract domains (13, 14, 37]. Little work has been done
on actually integrating domains into optimizing compilers and evaluating the benefits
(except for the systems of [26, 27]). While this thesis contributes to the definition of the
abstract domains LSign and LInt and the theory underlying them, it is also an attempt to
demonstrate the use of abstract interpretation of CLP in a practical optimizing compiler

and to quantify the benefits thereof.

8.3 Optimization of Prolog

The work on optimization of CLP languages can be seen as a natural extension of similar
work on Prolog. In particular, the attempt to reduce the constraint solving time through
refinement and removal can be compared with the attempt to reduce the time spent in
unification. Papers by Van Roy [53] and Taylor [45] give a good idea of the speedups that
can be obtained for Prolog programs through sophisticated global analyses. Debray [12]
proposes a number of loop optimizations for Prolog that are the equivalent of classic loop
optimizations in imperative languages. The paper uses “fold/unfold” transformations to
remove recursion, fuse loops and move code out of loops. The CLP(R,;,,) optimizations
in our compiler are orthogonal to the above mentioned Prolog optimizations. In fact,
as demonstrated earlier in the thesis, a CLP(R;,) program may be transformed by our
optimizations into a Prolog program (enhanced with a rational arithmetic component).

All the traditional Prolog optimizations may then be applied to this program.

8.4 Optimization of Imperative Languages

Finally, we would like to add some comments about the relation of our work with the
traditional compiler optimizations for imperative languages [1]. Dead code elimination
in imperative languages is the counterpart to constraint removal in CLP languages. The

interesting parallel is that just as dead code in imperative programs is likely to appear
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as the result of previous transformations, so is removal of redundant constraints likely to
occur due to previous reordering. Code motion in imperative languages can be compared
with constraint reordering in CLP languages. While code motion typically seeks to
move 2 loop invariant computation before the loop, constraint reordering typically seeks
to move a constraint that does not influence a predicate call after the predicate call.
The effect of code motion is to compute an expression just once, while the effect of
constraint reordering is to execute the constraint at a point where it may be specialized
to a cheaper operation or even removed altogether. However, we would like to point
out that the analysis for reordering constraints is much more involved when compared
to the analysis for moving loop invariant computation out of the loop. While the latter
primarily involves reasoning about the local properties of the loop, the analysis for
constraint reordering requires reasoning about the search space of the program which
may be complicated due to nondeterministic definition of predicates. Finally, strength
reduction in imperative languages may be compared to refinement in CLP languages.
They both involve replacing more complicated expression evaluation by simpler forms,

through static analysis.
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Chapter 9

Conclusion

In this thesis, we have considered the problem of designing and implementing an opti-
mizing compiler for the constraint logic programming language CLP(R;,), performing
the optimizations of reordering constraints, refining constraints into tests and assign-
ments and removing redundant constraints. In this concluding chapter, we review the

contributions of this thesis in Section 9.1 and discuss the open issues that remain in

Section 9.2.

9.1 Contributions

The contributions of this thesis range from the theoretical, i.e. designing the abstract
domains LSign and LInt and formalizing the reordering optimization, to the practical,

i.e. implementing an optimizing CLP(Rz;,) compiler.

The thesis contributes to the theory underlying the abstract domain LSign [37, 43].
Unfortunately, the original paper on LSign by Marriott and Stuckey [37] has a number of
theoretical drawbacks. In particular, the ordering of abstract constraint stores given in
[37] does not capture the intended meaning and makes it imposssible to prove the consis-
tency of the abstract operations of LSign. This thesis reconsiders the domain LSign, and

corrects and completes the results of [37]. The thesis reports the first implementation of

the domain LSign.

The thesis also proposes the domain LInt which is a generalization of LSign, ab-
stracting coefficients by intervals instead of signs. This enables a more accurate analysis

of programs in many cases. The main technical difficulty is that LInt is an infinite
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domain unlike LSign, and therefore requires the definition of a widening operator to
guarantee the termination of analyses. The implementation of LInt indicates that the
domain can provide a practical analysis of programs and does not pay too much penalty

in time of analysis as compared to LSign.

The thesis is the first work to formally specify what it means for a reordering opti-
mization on CLP programs to be correct and it is also the first to present (with proof
of correctness), a sufficient condition for performing correct reordering optimizations of
CLP(RLin) programs. The correctness criterion essentially guarantees that for any finite
execution of the original program, the reordered program must mimic it. The thesis also
shows how the correctness criterion may be reduced to a satisfiability problem on con-
straint stores which can then be answered (in a conservative fashion) using the domains

LSign or LInt.

The primary aim of this thesis is to implement an optimizing compiler for CLP(R;,),
and we have succeeded in doing so. The experimental results obtained indicate the
promise of our approach. The thesis presents the first provably correct implementation
of reordering as well as the first implementation of constraint removal for CLP R
programs. Along with the implementation of constraint refinement, this produces the
first CLP(R1;n) compiler integrating all these source to source transformations. The ex-
perimental results show that sophisticated static analyses and source to source transfor-
mations can produce dramatic speedups for CLP(Rz;,,) programs, indicating the promise
of our approach. The speedups can increase as the size of the inputs increases. Also,
reordering is seen to be the most powerful optimization, producing the most dramatic
speedups. This is because reordering a program often leads to a complete bypass of
the constraint solver. In that case, the unoptimized program performs costly constraint
solving, while the optimized program performs only tests and assignments which are

cheaper to implement.

9.2 Open Issues

This thesis leaves a number of minor and major problems in the area unsolved. We now

mention these open issues.

The primary limitation of the solution to reordering presented in this thesis is the
restriction to CLP(Rr;,) programs without functors. CLP programs contain Prolog

terms (structures) in addition to arithmetic constraints, and arithmetic expressions may
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occur inside terms. This requires any abstract domain dealing with the properties of the
variables in arithmetic constraints to also handle the cases where arithmetic expressions
occur inside structures. It is not clear how to extend the domains LSign and LInt
so as to handle structural information as well. This is a drawback in analyzing real-
life CLP programs as they usually combine structures and arithmetic expressions. It
is necessary to keep track of structural information in order to extend the scope of
this work. An example that motivates the need for keeping structural information in
the abstract domains follows. Consider a variant of the mortgage example where the
monthly repayment may vary and where the final balance is always zero. The repayment
parameter is replaced by a list of repayments and the parameter for the number of
installments can be dropped as it is equal to the length of the list of repayments. This

program is given below:

mglist(o,[ ]).
mglist(P,[R[Taill) :- P > 0, R > 0, P1 = P*1.01 - R, mglist(Pi,Tail).

When mglist is called such that the second argument (list of repayments) is fixed and
the first argument (principal P) is unconstrained, it should be possible to reorder the

program so as to produce

mglist(0,[ 1).
mglist(P, [RITail]) :- R > 0, mglist(P1,Tail), P = (P1 + R) / 1.01, P > 0.

However, the current LSign analysis is unable to handle structures (or lists), and there-
fore is unable to perform the above reordering. Unfortunately, it is not obvious or trivial
to instantiate the generic pattern pattern domain Pat (R) [9] with the domains handling
linear constraints. This is because Pat(R) may lose information about functors. For
example if either R = f(T) or R = g(T) is true (this could be imposed by two different
clauses of a predicate, for example) then the generic pattern domain would lose the in-
formation that R is bound to a functor. In that case a future constraint such as R = f(B)
would fail to add the abstraction of the possible constraint T = B to the abstract descrip-
tion, thereby violating the definition of the concretization for LSign and LInt. Some
investigation is required to design a domain that can wrap LSign and LInt with struc-
tural information or to design an extended LSign domain (including for example some

sharing information) that can be succesfully instantiated into the Pat(R) framework.

The LSign and LInt domains are not very accurate for the purposes of redundancy
removal. Consider for example the constraint store {R+P < 1,P+B < 2,B+R < 5h
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The domains cannot deduce that the constraint R+P +B < 4is redundant in the context
of this store. This because the redundancy algorithms for the domains merely use the
equations of the store to simplify the constraint and then check for trivial satisfiability.
The domains cannot deduce redundancy caused by complex interactions of constraints.
Utilizing a more sophisticated domain such as the domain Hull of [11] would improve

the accuracy of redundancy removal.

The addition of structures and improved redundancy removal would enable the anal-
ysis of more real-life examples, including larger programs. While the present examples
are not trivial, they are all short programs. Future work can focus on studying the
behaviour and speedup obtained by the optimizations for large programs, to verify that

they scale well.

Finally, not much attention has been paid to making the optimizing compiler efficient
or to optimizing the abstract operations of the domains. In particular, the present
compiler is naive with respect to the recomputation of abstract stores after each simple
reordering step. Basically the input and intermediate description of every predicate that
can be affected by a reordering is recomputed from scratch. Incremental techniques to
only recompute relevant abstract stores of an abstract description need to be devised
and the techniques of [19] should be helpful here to obtain a fast implementation. Also
the present compiler performs multiple passes over the input program looking for more
opportunities for reordering, as long as the previous pass was able to reorder something.
Strategies could be devised to minimize the number of passes over the program. The
abstract operations of the LSign and LInt domains can be made more efficient through
the use of caching as has been done in implementations of other domains such as Prop.
During the computation of a fixpoint for abstract descriptions, the same operations may
get repeated several times on a given abstract store. Caching the result of previous

operations could improve the performance.
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Appendix A

Proofs of Results

A.1 Ordering

Lemma 22 [Composition of Ordering Functions] Let 1, 82, 83 be abstract stores, let f
be an ordering function of #; to §, and let g be an ordering function of 8, to 83. The

composition go f is an ordering function of g, to fs.

Proof: The three properties of ordering functions hold.

1L.VyeBi:vE f(v) Cg(f(v).

o

By hypothesis, we have Vy1, 72 € 81 : 11 # 72 = f(m) # f(72)Vf(n) € Indef(5,)
and ¥71,72 € B2 : 71 # 72 = g(11) # 9(72) V 9(m) € Indef(fs). By combination
of the two statements and f(7;) C (g o f)(71), we obtain Vy;,v, € 8; : 1 # vy =

(g0 f)(m) # (g0 f)(v2) V(g0 f) (1) € Indef(Bs).

3. By hypothesis, we have Def((3) C range(g). By property 1 of Definitior 9, there
exist ¥1,...,7n in Def(0,) such that {f(v1)y---, f(7n)} = Def(B3). The result
follows from the hypothesis that Def(3;) C range(f).

Theorem 1 [Ordering Relation] C: ASp x ASp is a pre-order.

Proof: Reflexivity follows by choosing the identity function as ordering function. Tran-

sitivity follows by Lemma 22. a



Lemma 23 Let vy be an abstract constraint with multiplicity and 6 a concrete constraint
store. § € Ce(y) = VA € 0 : A € Ce(cons(v)).

Proof: Immediate consequence of Definition 6. i

Lemma 38 [Lifting Function Lemma] Let 8 be an abstract store and 6 a concrete con-

straint store. § € Cec;(f) if and only if there exists a lifting function f of 4 to 3.

Proof: By induction on |3].

Basis: B = 0. If § € Cc;(B) then § = 0 by Definition 7 and we choose the empty
function as a lifting function. Conversely, if there exists a function f: 6 — g, then 8§ =0

since # = 0 and f must be the empty function. The result follows from Definition 7.

Induction Step: Assume that the hypothesis holds for all abstract stores whose cardi-
nality is not greater than n. We show that it holds for abstract stores of cardinality n4-1.

Consider an abstract store 3 satisfying |6| = n + 1 and let 8 be {r}u g, where v ¢ g
and [#'| = n. By Definition 7,

Cei(B) = Cei({vIup) ={6U b |6, € Cc(y)AE € Cei(6) }.

(=) Let § € Cc;(8). Hence, § =6, U ¢, where 61 € Ce(v)A8' € Cci(5'). By hypothesis,
there exists a lifting function f’ of ' to A’. Define a function f:0—= B as

Fi(A) ifaee
A) =
) {7 if A€6y.

We show that f is a lifting function of 6 to 3.
1. VA€# :)xe Cc(cons(f'(A))) by Definition 11

VA €6, : )X e Ce(cons(y)) by Lemma 23
= VA€ b : e Ce(cons(f(A))).

!\')

VALA €t A # A= F/(M) # fl(A) V f'(A1) € Indef(8’) by Definition 11
= VAL A2 €0 A £ A = f(M) # F(A) V f(A1) € Inde£(8)
since Indef(4') C Indef(f)

153



VALEOL, Az €0, A1 # Do = f(M) # f(A2)  since f(\) =7 ¢ 6 and f(Ay) € B

VAL Az €61 : A # Ay = v is indefinite by Definition 6
S>VALAEO M # X = f(A) € Indef(8) since v = f(\)
3. Def(8’) C range(f’) by Definition 11

7 is not definite = Def(8) = Def(f') A range(f’) C range( f)
= De£(8) C range(f)

7 is definite = Def(f) = {y}UDef(8') A {7} U range(f’) = range(f)
= Def(f) C range(f).

(<) Let f be an lifting function of 8 to 8 = {7}UpB'. We show that 8 € Cc;(8).

Case v is not definite. Let A,..., A, be all elements in 8 such that fA) =y (1 <
t <m). A € Ce(cons(y)) (1 < i < m) by Definition 11 and {At:--.; A} € Ce(v) by
Definition 6. Let § = {Ay,...,An} U ¢ and consider the function f' 60 — p defined
by f'(A) = f()) for all A € 6. We show that f'is a lifting function of ¢’ to 4.

1. VA€#': Ae Ce(cons(f'(A))) by Definition 11.

!\D

VAL, A2 € 0" : A # A2 = f(A1) # f(A2) V f(A1) € Indef(8) by Definition 11
VAL A2 € 0': A1 # da = f/(A1) # F/(A2) V f/(A\1) € Indef(8')
since Indef(8') = Indef(B)\ {v} and f(\{) # 7.

3. Def(B) C range(f) by Definition 11
range(f') = range(f) \ {7}
Def(f’) = Def(B) => Def (4’

C range(f)  since v is not definite
= Def(f’) C range(f’)  since v & Def(4').

By hypothesis, 8’ € Cc;(8'). By Definition 7, (A Am} U8 € Cei({v}u B).

Case v is definite. By Definition 11, there exists a unique A; € 8, such that f(A\;) = 7.
A1 € Ce(cons(v)) by Definition 11 and {A1} € Ce(7) by Definition 6. Let § = {\,} U ¢
and consider the function f': 6’ — 8’ defined by f/(\) = f(\) for all A € ¢'. We show
that f’ is a lifting function of 8’ to §'.

1. VAe#d, A€ Cc(cons(f'(\))) by Definition 11.
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o

VAL €0, M1 # X = f(M) # f(A2) V f(M) € Indef(f) by Definition 11
V)\[, /\2 c 01,/\1 ;é /\2 = fl(’\l) ;I-' fl(/\z) Vfl(/\[) € Indef(ﬂ')
since Indef(3) = Indef(f').

3. Def(B) C range(f) by Definition 11

range(f) = {v} U range(f")
{v}UDef(f') =Def(B) = Def(f’) C range(f') since 7 is definite.

By hypothesis, 8’ € Cc;(8’). By Definition 7, {\,} U ¢’ € Cei({y}ug). a

Lemma 24 Let v, and v, be two abstract constraints with multiplicity and let y; C 7,.
(i) If 72 is a definite constraint, then 7, is also a definite constraint.

(ii) If v, is an indefinite constraint, then 7, is also an indefinite constraint.

Proof: Immediate consequence of Definitions 6 and 8. g

Theorem 2 [Monotonicity of Concretization Function w.r.t. Ordering Relation] If 8,

and (B, are two abstract stores then

(i) B1 E B2 = Cci(B1) C Cei(B2).

(if) B1 C B2 = Ce(B1) C Cc(Pr).
Proof: (i) Let 8, C f, and 8 € Cc¢;(B;). We show that 6 € Cc;i(#2). By Lemma 3, there
exists a lifting function f of § to B,. By Definition 10 there exists an ordering function

g of B1 to B,. Consider the function g o f. We show that go fis a lifting function of 4
to Bs.

L. VA€f:A¢e Cecons(f(N))) by Definition 11
VF(A) € By f(A) T g(f(N) by Definition 9
Vf(A) € B1 : cons(f(A)) C cons(g(f(A))) by ordering on AMp
VA €8 : A€ Cc(cons(g(f(N)))) by Lemma 1.
2

VAL Ada€80: 0 # X
= f(A) # f(A2) V F(A
= f(A1) # f(A2) v g(
= g(F(M) # 9(f(r2
= g(f(M)) # 9(f(Xa

1) € Indef(f,) by Definition 11
f(M)) € Indef(By) by f(A1) E g(f(A1)), Lemma 24
)V g(£(A1)) € Indef(B2) V g(f(A1)) € Indef(B2) Def. 9
)V 9(f(M)) € Indef(By)
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3. Def(B;) C range(yg) by Definition 9
> V1 €Def(B2) I € B1: g(m) =72
= V72 € Def(f2) Iy1 € Def(B1) : g(m1) =72 71 E9(1) =72, Lemma 24
Yn €Def(f) IX€b: f(N) =7 by Definition 11
= Vv €Def(f;) IN €6 : g(f(N)) =12 combining the above
= Def(f;) C range(g o f)

6 € Cc;(f;) follows by Lemma, 3.

(if) Now let 8 C 35 and 6 € Cc(B1). By definition of Cc, there exists 6; € Cci(61) s.t.
8 «+ 6;. By part (i), 6; € Cci(02). Hence, by definition of Cc, § € Ce(f.)- g

Lemma 4 [Reduction of Ordering over ASp to Weighted Bipartite Graph Matching]
Let 8, and B, be two abstract stores and G be a matching graph of 8; to G,. 8, C 5, if
and only if G has a matching of weight [B1] + [Def(8)]-

Proof: (=) Let 8, C §;. By Definition 10, there exists an ordering function f of §; to
B2. Consider the set given by M = M, U M3 U My where,

My = {(vu72) I meEVIAT € VoA = f(m)}
My = {(vu72) I MEVIAT, EVaAy= f(m)}
My = {(vi,73") | 1 EVi Apm EViAra = f(n)}

We first prove that M is a matching. By Definition 9, for each edge in M, we have
71 E f(71) = v2. Therefore, M; C E; (2<i<4),ie, Mis a set of edges of G. In

addition,

1. each vertex v; in V; appears in exactly one edge in M, since f is an ordering

function (property 1);

(V]

. each vertex v, in V; appears in exactly one edge in M, by Definition 9 (properties
2 and 3);

3. each vertex v, in V3 appears in at most one edge in M3 by Definition 9 (property
2);

4. each vertex 7, in Vj appears in at most one edge in My, by definition of M since

f is a function.

Hence, M is a matching of G.
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We now prove that M has the appropriate weight. By point 1 above, M has exactly
[V1| edges. By point 2, M, has exactly |V3| edges. Therefore M has |V3| edges in M,
and [Vi| —[V2| edges in M3 U M. Hence M is a matching of weight 2{V5| + (|V1| — [Val),
Le. [Vi| + V2|, ie. |B1] + [Def(62)]-

(«<) Let G have a matching M of weight |8;] + |Def(82)|. Then M = M, U M3z U M,

where

M; = {(vu7r)imeViAy e Va}
M; = {(viu7)lm € ViAy: € Va}
My = {(vu72')lm € ViAy™ €V}

We define f by f(v1) = 72 if (71,72) € M2, or (71,72) € M3, or (71,72™) € My and
f(m) = undefined otherwise. We first show that f is a total function from 3 to 32, i.e.,
there is no undefined value. It suffices to show that each vertex in V; appears in at least
one edge of M. If it is not the case, then there will be n vertices not in M and |V}|—n
in M (n > 0). Since each vertex appears at most once in M and only |V3| of them can
be given a weight of 2, the weight of the matching is only 2|V3| + |V1| — n — |V3| which is
|V2| +|Vi| — n contradicting our hypothesis. We now show that f is an ordering function

of 8, to B,.

1. Property 1 follows from the definition of the edges in the matching graph G;

!\D

Property 2 follows from the definition of a matching;

3. Toshow Property 3, assume that there exists vo € Def(f;) such that v, ¢ range(f).
This means that there is no v, € 8 such that (7, v2) is an edge of G. This implies
that the weight of the matching is at best |V3| + |V1| — 1 which contradicts the
hypothesis.

A.2 Addition

Theorem 5 Let 3 be an abstract store and v be an abstract constraint with multiplicity.
(i) If 1 € Cci(B) and 62 € Cc(y), then 6; U 8, € Cc;(BW 7).
(ii) If 6, € Cc(B) and 62 € Cc(y), then 6; U 6, € Cc(f W 7).



Proof: (i) Let v = (o, pu). If 8, € Cc;(6), then there exists a lifting function f of 6; to
B by Lemma 3. Consider the function f’:6; U 6, — B ¥ v given by

i) =fN) for all A € 6,.
=47 yeh for all A € 6,.
(0, Any) if v = (o,p) € 5.

We show that f’is a lifting function of §; U 6, to S y.

1. VAL €61: A € Ce(cons(f'(A1))) by Definition 11 and fi(A) = f(A)
VA2 €0, : A; € Ce(cons(f'(A))) by Lemma 23, vy C f'(A2) and Lemma 1
= VYA €6, Ubs: e Cc(cons(f'(N)).

2. VA el A # A
= f(A1) # f(A2) V f(A1) € Indef(B) by Definition 11
= f'(M) # F(M) V f'(M) € Indef(Buv)
since f'(A1) = f(A1), f'(X2) = f(X2),BC By

V/\1 € 01,/\2 € 02 :
TEB = fl(A) # F(h2) since f'(A1) € B, f'(A2) =y and v ¢ 8
YEB = f'(A2) € Indef(BWy)  since (g, Any) is indefinite

VAL, A2 €02 : A\{ # Ay = v is indefinite by Definition 6.
= VA, A € 0 : M\ # Ay = f(/\]_) € Indef(ﬂtﬂ ")’)

3.  Def(B) C range(f) By Definition 11
Y#8 = [Def(Bwv) C {7} UDe£(8) C {7} U range(f) = range(f')]
Y€B = [Def(B4y) = Def(8) C range(f) C range(f')].

Therefore 8, U 6, € Cc;(f W 7).

(ii) Consider now 8; € Cc(8) and 6, € Cc(y). By definition of Cc, there exists §; €
Cci(B) s.t. 61 « 6;. By part (1), 0: U by € Cci(fW 7). Since 6; U 0, < 6; U 5, by
definition of Cc 6y U6, € Ce(B ). |

A.3 Upper Bound

Theorem 6 Let 8, and §; be abstract stores and 8 be a, constraint store.
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(i) 6 € Cei(B1) V6 € Cei(B2) = 8 € Cei(UNION(Gy, ).
(ii) 6 € Cc(B1) V6 € Ce(B;) = 6 € Ce(UNION(BL, Ba)).

Proof: (i) We only show that § € Cec;(f1) = 6 € Cc;(UNION(B1,,)). The case 6 €
Cci(82) = 6 € Cc;(UNION(By, B,)) is similar. The proof is by induction on |8] + |B,].
The basic case is trivial. Assume that the result holds for |B1] + 82| < n. We show that

it holds for n + 1. Let 6 € Cc;(8) and consider the various cases.

e case 2i: We have that 81 = {y}U B8] (v ¢ B7) and v = (0, One). By definition
of the concretization function, we have that § = 6; U 62, 6; € Cc(v), and 8, €
Cci(B1)- By hypothesis, we have that 6, € Cc;(UNION(S1, B2)). We also have that
61 € Cc({o, ZeroOrOne)) by monotonicity of Ce. Hence, by Theorem 5 (i), we
have 6; U 6, € Cc;(UNION(S], B2)) & (o, ZeroOrOne).

e case 2¢i: By hypothesis, we have that § € Cc;(UNION(B,, 83)). By definition of
the concretization function, we have that § € Ce((o, ZeroOrOne)). Hence, by
Theorem 5 (i),

0 € Cc;(UNION(Gy1, B3)) W (o, ZeroOrOne).

e case 3i: Similar to case 2i.
e case 3ii: Similar to case 2i:.

e case 4: We have that §; = {7} UB] (v ¢ B}) and v = (sg op Yo sizi,p). By
definition of the concretization function, we have that § = 6, U b,, 8, € Cc(v),
and 02 € Cc;(f]). By hypothesis, we have that 6, € Cc;(UNION(S, 53)). By
monotonicity of Cc, we have that 8; € Ce(((so U sp) op %, (si U s})zi, p U ).

The result follows from Theorem 5 (i).

(ii) Consider now 8 € Cc(f1) V8 € Cc(f2). By definition of Cec, there exists #; s.t.
b: € Ceci(B1) V 8; € Cci(fB2) and 6 <+ 6;. By part (i), 6; € Cc;(UNION(Sy, B2)). By
definition of Cc, § € Cc(UNION(G,, 8,)). m

A.4 Projection

Lemma 9 [Gauss] Let v € X, o be an abstract constraint such that o[v] = & and op(o)

is '=" and f§ be an abstract store. We have

f € Cci(B) A A€ Cc(o) = Cgauss(8, A\, v) € Cci(Agauss(f, a,v)).
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Proof: By induction on |8|. The basic case is obvious. Assume that the result holds for
I8] < n. We show that it holds for [8| = n+1. Let 8 = {¥}up' (v ¢8') and |8| =n.
Let 6 € Cci(B). Then, 6 =6} U 65 with 85 € Ce(v') & 65 € Ce;(8'). We have

A € Cc(o)

6 € Ce()

6 € Cei(B)

61 = Cgauss(fi,), v)

f; = Cgauss(i, ), v)

71 = (Aeliminate(o’,o,v),u")
B2 = Agauss(f',0,v)

By hypothesis, we have
b, € Cei(8,).-

By Lemma 7, the definition of the concretization function for abstract constraints with

multiplicity, and the fact that there are as many constraints in f; as in 6{, we have
61 € Ce(m1).-

The result follows from Theorem 5 (i). o

Lemma 10 [Split Top] Let 6 be a constraint store, let 8 be an abstract store, and v € N.
We have
6 € Cci(B) = 6 € Cc;(Asplit_top(fB,v))

Proof: By induction on [f]. The basic case is trivial. Assume that the result holds for
|B] < n. We show that it holds for [8] = n+ 1. Let 8 = {(FIUB: (v =(o,n) €& 6y)
and [B2| = n. Let 8 € Cc;(f3). Then, 8 = 6, U 6, with 8, € Ce(y) & 8, € Cci(B2). By
the induction hypothesis, we know that 6, € Cci(Asplit_top(f2,v)). Now if ofv] # T,
the result follows by Theorem 5 (i) . Otherwise 6, can be partitioned into three distinct
sets 67,61 and 6], depending on the coefficient of z,. We have that 82 € Cc(y°) since
67 € Cc(y), all constraints in 69 have a zero coefficient for z, and u E p U ZeroOrOne.
Similarly 6f € Ce(y*) and 81 € Cc(y~). By Theorem 5 (i), we have

61 =60 uot Uy € Cei({+% 7t 7))

The result then follows from Lemma 5 (i). a
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Lemma 11 [Split Basic] Let 6 be a constraint store, let 4 be an abstract store, and

v € . Let ofv] € {0,®, 8} for all constraints (o, z) € . We have

Csplit.basic(d,v) = (6°6+,6~)

8 € Cei(B) = 6% € Cci(B%) AOF € Cc;(B¥) A6~ € Cei(B7).

Asplit.basic(8,v) = (8% 6+, 57)
Proof: By induction on |8|. The basic case is obvious. Assume that the result holds for
|8| < n. We show that it holds for [] = n+ 1. Let 8 = {7}UB2 (v & B2) and |B,] = n.
Let 8 € Cc;(B). Then, § = 8, U 6, with 6, € Cc(y) & 02 € Cc;i(B2). By the induction
hypothesis, we know that

62 € Cci(B3) A 6F € Cci(BF) A 67 € Cei(By)
where
Csplit_basic(fs,v) = (63,6F,6;) and Asplit basic(f,,v) = (G, 65, 87)-
We show that 8+ € Cc;(6%). The other proofs are similar. Let v = (o, p).

Case g[v] = 0. 6; does not contain any constraint A such that A[v] = @ by definition of

the concretization. Hence, 8% = 6 and the result follows from the fact that g+ = 83

Case o[v] = @. 6, contains only constraints such that A[v] = &, 6§+ = 67 U 6, and
Bt = ,3;' ¥ 7. The result follows by Theorem 5 (i).

Case o[v] = & and op(o) is not ’=". §+ = 85 and the result follows from the fact that
Bt =p5.
Case o[v] = & and op(c¢) is '=". 6, contains only constraints such that Al =6, 6t =

% U 63 where 83 = {Cneg()\)|A € 61} and B* = BF ¥ v3 where 73 = (Aneg(o), i). Also,
by Lemma 6, 8; € Cc({o, £)) and the fact that there are as many constraints in 63 as 6,
y 03 € Cc(v3). The result follows by Theorem 5 (1). a

Lemma 12 [Split] Let 6 be a constraint store, let 8 be an abstract store, and v € N. We
have
Csplit(d,v) = (6°,6%,67)
8 € Cc;(B) = 8% € Cci(8°) A 6% € Cei(B*) A 6™ € Cei(B7).
Asplit(B,v) = (8°, 4%, 57)

Proof: This follows from Lemma 10, the fact that for all v = (o, ) € Asplit_top(B,v),
o[v] € {0,®, 6} and the consistency of Asplit_basic. )
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Lemma 13 [Fourier Step] Let v € R, let §+ be an abstract store such that for all v € B,
v = {0, 1) and ov] = @, let 8~ be an abstract store such that for all YEBT, v = (o,pu)
and ofv] = 6. We have

0t € Ce;(BY)NG™ € Cci(87) = Cfourier_step(f*,6™,v) € Cc;(Afourier step(8t, 5, v))-

Proof: Let f* be {7{",..., 74} and 8~ be {7 ,..., 75} Let {(+},77),---, (v, 7))
be the pairs considered in the algorithm. Consider the pair (v 1) (A<i<n &1L
7 < m) such that v = (¢ , uf) and 7; = (o7 , #j) and consider 8% € Cc(y}) and
0~ e Cc('yj'). By Lemma 8, we have that any pair of constraints A* € 8+ and A\~ € 9~
satisfies
Ccombine(A™, AT v) € Cc(Acombine(o}, o, v)).

Moreover, the number of constraints in Cfourier_step(6*,8~) is |6*| x |§~|. The upper
bound operation on multiplicities approximates this product, since pifu Ki is Any as
soon as one of them is Any, is ZeroOrOne as soon as none of them is Any and one of

them is ZeroOrOne, and is One otherwise. As a consequence,

6t € Ce(v+) & 6~ € Ce(])
= Cfourier_step(6%,6~,v) € Ce((Acombine(oy, o, v), uf U £5))

The result follows from Theorem 5 (i). a
Lemma 14 [Fourier] Let v € R, 8 be a store, and § be an abstract store. We have

8 € Cci(B) = Cfourier(d, v) € Cc;(Afourier(B,v)).

Proof: This follows from the consistency of Asplit (Lemma 12) and of Afourier_step
(Lemma 13) and from the definition of the concretization which specifies that, when v is
of the form (o, 1) with u € {One, ZeroOrOne}, any 8 € Cc(v) is of cardinality at most

one. O
Theorem 7 [Project] Let v € R, 6 be a store and 8 be an abstract store.

6 € Cc(f) = Cproject(d,v) € Cc(Aproject(f,v)).

Proof: If § = @, the result is trivially true. Otherwise let 3 be {r}u B (v ¢ 8" with
v = (o, 1) and @ € Cc(B). By definition of Cec, there exists 8; € Cc;(B) s.t. 6 & 0;. If
p = One, op(0) is ‘=" and o[v] = @, then there exists a As.t. §; = {A} U6, A € Ce(v),
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and 6’ € Cc;(8). By definition of the concretization, Afv] > 0 and it follows from

Lemma 9 that
Cgauss(d', A, v) € Cc;(Agauss(f’, o, v))

and thus
Cproject(f;, v) € Cc;i(Aproject(B,v))

Since Cproject(f, v) «» Cproject(d;, v), it follows by definition of Cec that
Cproject(f,v) € Cc(Aproject(s, v))
The case 1 = One, op(0) is ‘=’ and ofv] = & is similar. In the last case, we have by

Lemma 14 that
Cfourier(f;,v) € Cc;(Afourier(s, v))

Moreover, since Cproject(6;, v) +» Cfourier(f;, v), and Cproject(d, v) « Cproject(f;, v),
it follows by definition of Cc that

Cproject(f, v) € Cc(Aproject(s, v))

A.5 Satisfiability

Lemma 25 [Is Trivially Satisfiable] Let 6 be a store and 8 be an abstract store.
(i) 6 € Cc;(B) = (Ais_trivsat(f) = Cis_triv_sat(d))
(i) 8 € Cc(B) AVar(6) =@ A Var(8) =0
= (Ais_triv_sat(f) = Cis_triv_sat(f))
Proof: (i) By induction on |8|. The basic case is obvious. Assume that the result holds

for |8| < n. We show that it holds for || = n+ 1. Let 4 = {r}uf (v ¢ B with v =
(o,1) and |8'| = n. Let 6 € Cc;(B). Then, 6 = 6, U 6, with 6, € Ce(v) & 8, € Cc;(8).

Casegis s < Y 0z; A so=6. By definition of the concretization for abstract con-

straints,

n
VA€bi:Aisco< D 0zi A <0
=1

Therefore C_is_triv_sat(f)) is true. This gives

Cistriv.sat(f) =C_istrivsat(d;) A Cis_triv.sat(f;) = C_is_triv_sat(fs)
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But Ais trivsat(B) = Ais_triv.sat(f’). The desired result follows from the hy-

pothesis.

Case o is so = 3%, 0z; A s9 =0. The arguments are similar.

Casegis 5o < 0 0z; A (sg=0Vsp= ©). The arguments are similar.

Otherwise. There is nothing to prove as Ais triv_sat(f) is false.

(ii) Let 8§ € Cc(B). By definition of Ce, there exists 8; € Cci(f) s.t. 8 & 6;. The
precondition Var(8) = 0 gives Var(d;) = 0. Moreover Var(§) = @. This implies that

Cis-triv.sat(f) = C_is_triv_sat(f;). The desired result then follows from part (i). O

Theorem 8 [Is Satisfiable] Let § be a store and § be an abstract store.

8 € Cc(B) = (Ais_sat(f) = Cis_sat(f))

Proof: Let 8 € Cc(B). By Corollary 1, we have that bp € Cc(Bp). Also, Var(B,) =0
and Var(f,) = . The desired result follows by Lemma 25 (ii). o

A.6 Unsatisfiability

Lemma 26 [Is Trivially Unsatisfiable] Let 8 be a store and 4 be an abstract store.
(i) 6 € Cei(B) = (Ais_triv.unsat(f) = Cis_triv_unsat(6))
(ii) 6 € Ce(B) AVar(8) = @ A Var(8) =0
= (Ais_triv_unsat(f) = Cis_triv_unsat(d))
Proof: (i) By induction on |A|. The basic case is obvious. Assume that the result holds

for [B] < n. We show that it holds for |#] =n+1. Let 8 = {rIup’ (v ¢p) with y =
(o,p) and [B'| = n. Let 6 € Cc;(8). Then, § = 61 U 8, with 6, € Ce(y) & 0, € Cei(G").

Casegis 5o < ¥ 0z; A (s=0V sy = @) A p = One. Here Ais_triv_unsat(f) is

true. By definition of the concretization for abstract constraints,

3/\60:/\i500<202:; Ac2>0
=1

Therefore C_is_triv_unsat(6;) is true. The desired result follows.

Caseogis 5o =37.,0z; A (So=@®Vsy = ©). The arguments are similar.
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Case o is 5o < ¥, 0z; A sg =&. The arguments are similar.

Otherwise. A_is_triv_unsat(f) = Ais triv_unsat(f8’). If Cis_triv_unsat(f) is true,
there is nothing to prove. Otherwise Cis_triv_unsat(f) = Cis_triv_unsat(6’), and the

result follows by the induction hypothesis.

(ii) Let # € Cc(B). By definition of Ce, there exists 6; € Cci(B) s.t. 0 < 6;. The
precondition Var(8) = @ gives Var(f;) = @. Moreover Var(§) = §. This implies that
C.is_triv_unsat(f) = C_is_triv_unsat(f;). The desired result then follows from part
(i). a

Theorem 9 [Is Unsatisfiable] Let # be a store and 8 be an abstract store.

§ € Cc(B) = (Ais_unsat(f) = Cis_unsat(f))

Proof: Let § € Cc(B). By Corollary 1, we have that b0p € Cc(Bp). Also, Var(8,) = 0
and Var(f,) = @. The desired result follows by Lemma 26 (ii). a

A.7 Conditional Satisfiability

Lemma 27 [Reduce Grounds] Let § be a store and 3 be an abstract store.
(1)0 € Cc;(B) = Cred_gnd(6) € Cc;(Ared_gnd(f)).
(i) € Cc(B) A 6 satisfiable = Cred_gnd(6) € Cc(Ared_gnd(3)).

(i) € Cec(B) A 6 satisfiable = § € Cc(Ared_gnd(f)).

Proof: (i) By induction on ||. The basic case is obvious. Assume that the result holds
for [B| < n. We show that it holds for |[3] = n + 1. Let 3 be {7}up (v ¢ B') with
Y = (o,p) and |#'] = n. Let 6 € Ce¢;(8). Then 6§ = 6; U 8, with 61 € Ce(y) and
62 € Cc;i(8'). According to the induction hypothesis, we have

Cred_gnd(f,) € Cc;(Ared_gnd(8')).

Case 0 is s, op Y%, Oz;. By definition of the concretization function for abstract con-

straints with multiplicity, we have that #! consists only of constraints of the form
1 Y

co 0p Y, Oz; and therefore Cred_gnd(d;) = @. This gives

Cred_gnd(f) = Cred gnd(6,) U Cred._gnd(4,) = Cred_gnd(6,).

165



But Ared_gnd(8) = Ared_gnd(f). The desired result follows from the induction hypoth-
esis.

Case g is not s, op %, Oz;. Again by definition of the concretization function for ab-

stract constraints with multiplicity, we have that Cred_gnd(#;) = 6,. This gives Cred_gnd(f) =
Cred_gnd(f,) U 6;. But Ared_gnd(f) = Ared_gnd(8')w~. The desired result follows from
the induction hypothesis and Theorem 5 (i).

(ii) Let 8 € Cc(B). By definition of Cc, there exists 6; € Cci(B) s.t. 8 & 6;. By part (i)
we have that
Cred_gnd(6;) € Cc;(Ared_gnd(G)).

But § satisfiable implies that Cred_gnd(f) < Cred_gnd(6;). The desired result follows
by the definition of Cec.

(iii) This follows from part (ii), the definition of Ce, and the fact that if 6 is satisfiable,
then @ ¢ Cred_gnd(6). a

Lemma 28 [Reduce Equations Step] Let v € R, 8 be a store and 4 be an abstract store.
()6 € Cc(B) = Cred_eqn_step(f,v) € Cc(Ared_eqn_step(s, v)).
(i)6 € Cc(B) = 6 € Cc(Ared_eqn_step(B, v)).
Proof: (i) If 3 = 0 the result is obvious. Otherwise, let 8 = {v}up (v ¢ B") with
7 = (o, ). Let § € Cc(B). Then, by definition of Cec, there exists §; € Cc;(fB) s.t. 6 < 6;.

Case p = One A op(a) is '=" A o[v] = @. There exists a As.t. §; = {AYud, X e Ce(o),
and 6’ € Cc;(8'). By definition of the concretization, Alv] > 0 and it follows from

Lemma 9 that
Cgauss(6', A, v) € Cc;(Agauss(4', o, v))

and thus by definition of Cec that
Cgauss(6', A, v) € Cc(Agauss(f', o, v))
It follows from A € Cc(vy) and Theorem 5 (i) that

Cred_eqn_step(f,v) € Cc(Ared_eqn_step(f,v)).

Case = One A op(o) is ’=" A o[v] = &. The arguments are very similar.

Otherwise. We have that Ared_eqn_step(f,v) = . Moreover, § + Cred_eqn_step(d, v).

The desired result follows by the definition of Cc for abstract stores.
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(ii) This follows from part (i), the definition of Cc and the fact that 8 « Cred_eqn_step(4, v).
a

Lemma 29 [Reduce Equations Set] Let V € 2%, 6 be a store and 4 be an abstract store.

6 € Cc(B) = 6 € Ce(Ared_eqn_set(S,V)).
Proof: The proof is a simple induction of applying Lemma 28 (ii) |V] times. a

Lemma 30 [Reduce Equations] Let § be a store and 8 be an abstract store.

8 € Cc(B) = 0 € Cc(Ared_eqn(f)).
Proof: Direct consequence of Lemma. 29. a

Lemma 31 [Reduce Tops] Let 4 be a store and 3 be an abstract store.

0 € Cc(B) A 6 satisfiable = 6 € Cc(Ared_top(8)).

Proof: If 3 =0 or |8]| = 1, the result is obvious. Otherwise, let 8 = {v1, 2} Uf’ (1 ¢
B’y vo & B') with v; = (01, 11) and 71 = (o9, 2) . Let 6 € Cc(B). Then, by definition
of Ce, there exists §; € Cci(B) s.t. 8 & §;. We consider one subcase of the first case

statement in the algorithm.

Case = One A (o) is & < @z,,) A (02 is T = @z,). There exists a A; such that 0; =
MPUub, ud, A\ € Ce(ay), 6, € Cc(y2) and ¢ € Ce;(8'). By definition of the
concretization, A, is of the form ¢g < ¢,z, where ¢g > 0 and ¢y > 0. Consider any
A2 € O;. If Ay is of the form ¢y = ¢,z, where co £0and ¢, > 0, then {\} U 6, is

unsatisfiable. So for all Ay € 6, A2 is of the form Cg = cyT, Where ¢g > 0 and ¢, > 0.

By definition of the oncretization for abstract constraints, 6, € Cc((® = ®zv, 12)). By
the induction hypothesis and Lemma 5 (i) it follows that 6; € Cc;i(Ared_top(B)). The
desired result follows by the definition of Ce.

Other subcases and second case. Proof is similar.

Otherwise. We have that Ared_top(f) = f and so there is nothing to prove. a

Theorem 10 [Reduce] Let 6 be a store and 3 be an abstract store. Then
8 € Cc(B) A 6 satisfiable = 4 ¢ Cec(Areduce(B))
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Proof: Consequence of Lemma 31, Lemma 30, and Lemma 27 (iii) m]

Theorem 11 [Conditional Satisfiability] Let 6;, 8, be stores and 3;, 8, be abstract stores.
Then

61 € Cc(B1) A 02 € Cc(B,) = (Ais_cond_sat(f, f2) = Cis_cond_sat(f#; U 6,))

Proof:

Ais_cond sat(f, 67)
= Aisunsat(f,) V Ais.sat(Areduce(Aproject set(Sy,Var(B:) \ Var(f2)))62).

And its concrete counterpart
Cis_cond_sat(f;,0;) = Cis_unsat(6;) V Cis_sat(f; U 6,).
Let V = Var(f;) \ Var(B,). For all variables v € V, we have that v ¢ Var(6,). Therefore

Cis_sat(f, U 62)

= Cis_triv.sat(Cproject_set(d; U 6,, X))

= Cis_triv_sat(Cproject.set(Cprojectset(d;, V) U 65, R))
= Cis_sat(Cproject_set(f;,V) U ;)

By Corollary 1 and Theorem 10, we have that
Cproject_set(fi, V) € Cc(Areduce(Aproject.set(fy, V))).

The desired result then follows from Lemma 5 and Theorems 8 and 9. o

A.8 Redundancy

In this section, we shall use the nondeterminism in the concrete redundancy algorithm to
prove that there is a concrete algorithm which the abstract algorithm mimics. Since any
of the concrete algorithms is correct (it does not matter what choices are made by the
concrete algorithm), the correctness of the abstract algorithm follows. In the proof of
consistency of Asimplify_step, it is necessary to assume that the eliminating constraint
chosen by the concrete algorithm is the one corresponding to the abstract constraint

chosen by the abstract algorithm.
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Lemma 32 [Simplify Step] Let v € R, 6,, 8 be stores and B+, B be abstract stores. Then

Or € Ce(B:) A6 € Cc(B) = Csimplify step(d,,d,v) € Cc(Asimplify step(f,. 3, v))

Proof: Let § € Ce(B) A8, € Cc(B,). If 8 = 0 the result is obvious. Otherwise,
let 8 ={y}upB' (v ¢ B') with v = (o,u). Then, by definition of Ce, there exists
i € Cc;(B) s.t. 8 & 6; and there exists 6! € Cci(B,) s.t. 6, < 6!

Case p = One A op(0) is '=" A o[v] = @. There exists a As.t. §; = {A}U €, X e Cclo),
and 6’ € Cc;(8'). By definition of the concretization, A[u] > 0 and it follows from

Lemma 9 that
Cgauss(f}, A, v) € Cc;(Agauss(B;, o, v))

and thus by definition of Cc that
Cgauss(fr, A, v) € Ce(Agauss(G,, o, v))

The desired result follows immediately.

Case 1 = One A op(0) is '=" A ofv] = ©. The arguments are very similar.

Otherwise. We have that Asimplify step(S:,8,v) = B,. There is a concrete algorithm
such that Csimplify step(f,,8,v) = 6,. The desired result follows immediately. o

Lemma 33 [Simplify] Let V' € 2%, 4,8 be stores and 3,, 8 be abstract stores.

br € Cc(Br) A € Cc(B) = Csimplify(d,,0.V) € Cc(Asimplify(g,, 3,V))
Proof: The proof is a simple application of Lemma 32. a

To prove the consistency of Ais_redundant, it is necessary to work with a modified
concrete algorithm that projects exactly the same variables as the abstract algorithm
before it calls Creduce. This is because Var(d,) C Var(8,) and so the concrete algorithm

as presented in the main text may project more variables than the abstract algorithm.

Theorem 12 [Is Redundant] Let 6,, 8 be stores and B, 3 be abstract stores.

8- € Cc(Br) N 8 € Ce(B) A 0 satisfiable
= (Ais_redundant(f,, §) = Cis_redundant(6,, 6))

Proof: There is a concrete redundancy algorithm that projects exactly the same vari-

ables as the abstract algorithm before calling Creduce and therefore by Corollary 1 and
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Theorem 10, 8, € Cc(f3,). By the consistency of Asimplify (Lemma 33), we have that

85 € Ce(Bs)

If Var(f,) # 0 then there is nothing to prove as Ais_triv_sat(f,) is false. Otherwise
Var(8,) = 0 and 8, € Cc(B,) gives Var(f,) = 0. The result then follows from the

consistency of Ais_triv_sat (Lemma 25(ii)). o

A.9 Freeness

Theorem 13 [Is Free] Let v € X, # be a constraint store and B be an abstract store.
(i) 8 € Cci(B) = (Ais_free(8,v) = Cis_free(f,v)).
(ii) 6 € Cc(B) A6 satisfiable => (Ais_free(f,v) = Cis_free(d, v)).

Proof: (i) By induction on |8]. The basic case is obvious. Assume that the result holds

for [8] < n. We show that it holds for |8] = n+ 1. Let 8 = {(v}up (v ¢8) withy =
(o,p) and |B'| = n. Let 6 € Cc;(B). Then, 6 = §; U 8, with 01 € Ce(v) & 62 € Ce;(8).

Case o{v] = 0. By definition of the concretization for abstract constraints, Alv] = 0
for each A € ;. Therefore Cis_free(d,v) = Cisfree(d,,v) A Cis.free(fy,v) =
Cis_free(f,v), as Cis_free(d;, v) is true. But Ais free(f,v) = Ais_free(#’,v). The
desired result then follows by the induction hypothesis.

Otherwise. There is nothing to prove because Ais free(f, v) is false.

(ii) Let § € Cc(B). By definition of Ce, there exists 8: € Cci(B) s.t. § & 6;. By part (i).
Ais free(8,v) = Cis_free(4;, v)

But 0 satisfiable and 6 « 6; gives
Cis_free(f,v) = Cis_free(d;, v)

The desired result follows immediately. a

A.10 Widening

Before proving the correctness of the widening, we need to introduce some additional

notation. We introduce the functions n_infty and n_zero which give the number of
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infinity and zero symbols respectively in an abstract object. For example, n_infty(a)
denotes the number of infinity symbols in the abstract multistore o. We also introduce
the function n_infty_zero over abstract objects which gives the ordered pair whose first
element is the number of infinity symbols and second element is the number of Zero
symbols in an abstract object, i.e. n_infty zero(a) = (n-infty(a),nzero(a)). For
each n, we consider the set of normalized abstract multistores Xn over the variables
{z1,...,zn}. For each normalized abstract multistore o, we define its size denoted as
|a| which is the number of abstract stores in a. Now, there are 3 x 4"*! abstract
constraints with different shapes over the variables {z, ..., Zn} (corresponding to three
multiplicities and 4 ways to assign the signs of the constant and n coefficients). A
normalized abstract store can have at most 3 x 4"+! constraints as all the constraints
are required to have different shapes. As normalized abstract stores have constraints
with all different shapes, there can be at most 23%4™*" pormalized abstract stores with
different shapes. A normalized abstract multistore contains normalized abstract stores
with all different shapes. Therefore, for any normalized abstract multistore a, we have
that
0 < |af <234

Further, if « is a normalized abstract multistore, each abstract store in « has at most
3 x 4™*! constraints which corresponds to 3 x 4™+ x (n + 1) infinity or zero symbols.
Therefore

0 < n_infty zero(a) < 23" x (3 x 4" x (n +1))?
though the upper bound is over estimated. For each normalized abstract multistore, we

introduce its measure defined as
measure(a) = (|af,n_infty. zero(w))
The set
Measure, = {measure(a)|a € x,}

is finite (because of the bounds on |a| and n_infty zero(a)) and can be totally ordered
by

measure(a;) < measure(a;)

& (laa] < laa]) Vv ((len| = laz]) A (n-infty zero(a;) < n_infty zero(asy)))

where
n_infty zero(e;) < n_infty_zero(a;)
¢ (ndnfty(ay) < n-infty(ayp)) V

((ndinfty(a;) = n_infty(ay)) A (nzero(a) < nzero(a,)))
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The following lemmas are enhanced versions of the lemmas in the main text.

Lemma 15 Let syq and sp.y, be intervals s.t. shape(Spew) = shape(syq). Then
(i) shape(sota) = shape(Snew Vsola)-
(ii) ¢ € Ce(sotd) V ¢ € Ce(Spew) = c € Cc(SnewVsold).
(iii) n_infty zero(sya) < n_infty zero(snew Vsold)-
(iv) Snew ¥ Sold = n_infty_zero (Sotd) < n_infty_zero(Spew Vsold)-
Proof: (i) If pos(souq). left(SnewVsod) = left(syq) and open.left(Spew Vsod) =

open_left(sed) or left(Spew Vsod) = 0 and open_left(SpewVSotd) = true. In either

case, we have that pos(Snew Vsord).
If neg(soiq). The arguments are similar about the right endpoint.
If zer(so1d). zer(Snew) and Snew VSold = Soid-

Otherwise. shape(soq) = T. We have that left(SnewVSod) = left(spq) < 0 and
open_left(spew Vo) = open left(s,yq) or left(Snew VSold) = —00 and

open_left(Spew VSoig) = true. This implies ~pOS(Snew VSotd). It can be similarly proved
that —neg(snew Vsos), by considering the right endpoint. It can also be proved that

—ZeI (SnewVsola) by considering both endpoints. This gives shape(Snew Vsod) = T.

(ii) If ~decrease(spew, Sotd). We have that the left limit of Snew VSold 1s the same as that

of So1q and therefore ~decrease(soq, Snew VSold) and ~decrease(Snew: SnewVSold)-

If decrease(Spew, Sotd) A Pos(Soiq). The left limit of Spey VSoig is the minimum possible

for a positive interval and so ~decreas e(Sold; SnewVSo1d) and ~decrease(spew, Snew V Sold)-

If decrease(Snew, Sotd) A —Ppos(So1q). The left limit of Snew V Sold i the minimum possi-

ble for any interval and so —decrease(Sod, Snew VSold) and —decrease(Snew; Snew VSold)-

In all cases, we have that —~decrease(Sold, SnewV Sold) and —decrease(spey, Snew V Sold) -
Considering the right endpoint, we can similarly prove that ~increase(s,yq, Snew V Sold)

and —increase(Snew, Snew VSold)-

iFrom the definition, we have that s,y E Snew VSold and Spew T Spew VSog. The

desired result follows by monotonicity of the concretization over intervals.

(iii) The left endpoint of an interval can remain unchanged (if ~decrease(snew, Soid))
or become an infinity symbol (if decrease(Spew, Soid) A ~Pos(Seid)) or become a zero

(if decrease(Spew, Sold) A Pos(Soia)). Also in the last case, the left endpoint cannot be
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originally an infinity symbol because pos(s,y). Similar arguments apply at the right

endpoint of an interval. The desired result follows.

(iv) By definition of the ordering on intervals,
—(—increase(Spew: Sold) A "decrease(Spew, Sotd))

i.e.

increase(Snpew, Sold) V decrease(Snew; Sold)-

If decrease(Spew, Sotd), the left endpoint of the interval can become an infinity symbol
(if ~pos(seta)) or become a zero (if pos(se)). Also in the last case, the left endpoint
cannot be originally an infinity symbol because pos(sey). Similar arguments apply if

increase(spew, Sold). In conjunction with part (iii), the desired result follows. a

Lemma 16 Let v,g and vney be abstract constraints with multiplicity s.t. shape(vnew) =

shape(y,4). Then
(i) shape(Yota) = shape(YnewVYold)-
(ii) 6 € Cc(Yota) V 0 € Cc(new) = 8 € Ce(YnewVYold)-
(iii) n-infty zero(Yoq) < n-infty zero(YnewVvyotd)-

(iv) Ynew & Yota = n_infty zero(Yoiq) < n-infty zero(Ynew Vyord)-

Proof: (i) This is a direct consequence of Lemma 15 (i).

(it) This is a direct consequence of Lemma 15 (i) and the definition of the concretization

of an abstract constraint with multiplicity.

(iii) Direct consequence of Lemma 15 (iii).

(iv) Let Ynew = (5§ & 7, sP¥z;, p) and Yo = (s8¢ & %, s%92;, 1), By definition
of the ordering on abstract constraints, if Ynew Z Yota then

3 siUEsF? (0<j<n)

Applying Lemma. 15 (iv) in conjunction with part (iii) leads to the desired result. )

Lemma 17 Let 8,14 and Frnew be normalized abstract stores s.t. shape(fnew) = shape(fod)-
Then

(i) shape(Botd) = shape(BnewVBotd) and BrewV Borq is normalized.
(ii) 6 € Cc(Bota) V 0 € Ce(Brew) = 0 € Cec(Brew VPold)-
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(iii) n_infty zero(fu) < n_infty zero(fnewV Botd)-

(iv) Bnew Z Botd = n_infty.zero(fuq) < n_infty zero(Snew Viola)-

Proof: (i) The result is a direct consequence of Lemma 16 (i) and the one to one

correspondence between 7,14 € Botd 20d Ynew VYold € Brew V Bota-

(ii) The basic case i.e. |Bnew| = [Bota] = 0, is trivial. Assume the result for n. We prove
it for n + 1. We have

Brew = {Ynew} U B1, Ynew & B1, |61 =n

Botd = {Yota} U B2, Yola & B2, [B2] = n

shape(f;) = shape(f3,)

BrewVBod = (B1VP2) U (YnewV7old) = (81V82) ¥ (Ynew V Yotd)
shape(Ynew) = shape(7ola)

Let 8 € Cc(Bnew)- Therefore by definition of Cc, § = 8, U 6,, where
b1 € Cc(B1) A by € Ce(Ynew)-
By the induction hypothesis and Lemma 16 (ii)
61 € Cc(B1VB2) A b2 € Ce(TnewVold)-

It follows by Theorem 5 that
6 e Cc(ﬂnewvﬂold)-

This completes the proof for Bpew. The proof for Byg is very similar.

(iii) The result is a direct consequence of Lemma 16 (iii) and the one to one correspon-

dence between Yoiq € Botd 20d Ynew VYold € Brew V Botd-
(iV) If (ﬂnew Z ﬁo[d), then

3')’old € ﬂolda Ynew € ﬂncw . Shape(7old) = Shape('Ynew) A Ynew Z Yold-

Applying Lemma 16 (iv) in conjunction with part (iii) leads to the desired result. m

Lemma 18 Let oy and @pew be normalized abstract multistores. Then
(i) @nVaeq is normalized.
(ii) 6 € Ce(ota) V 0 € Cc(tnew) =6 € Cc(tnew Vaod)-

(iii) |aod] £ |@new V aotal-
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(iV) (ancw ‘E_ a’old) A (la’oldl = Iancwvaoldl)

= n_infty_zero(aoy) < n_infty zero(anew Vaoiq)

Proof: (i) Direct consequence of the definition.

(i) If Gnew T ovold, the result follows directly from the monotonicity of the concretization
for abstract multistores. Otherwise, Let 8 € Cc(apew). By definition of Cc for abstract

multistores,
Brew € tnew : 0 € Ce(Brew)-

If shape(fnew) ¢ shape(ao4), the result follows immediately. Otherwise, there exists a

Bold € otq such that shape(fnew) = shape(foiq) and by Lemma 17 (i1)

ge Cc(ﬂnewvﬂold)-

AS BrewVPold € tpew Vagd, the result follows. This completes the proof for o,e,. The

proof for a,iq is very similar.

(iii) This is because for each B4 € Qold, there is a corresponding abstract store in

Qnew V Qolq4 having the same shape as §,4.

(iv) I |aotd] = |onew Vaord|, then ey introduces no new shapes and therefore

anewvaold = {ﬂnewvﬂold I ﬂnew € Cnew, ﬂold € Qold, Shape(ﬂnew) = Shape(ﬂold)}-

As there is a one to one correspondence between the stores Botd € g and stores

BrewV Botd € Gnew Vo, we have by Lemma 17 (iii) that
n_infty.zero(agyqy) < n_infty zero(tnew Vaoid)-
Also

Upew Z Qold = 3ﬂold € Qold, .Bnew € Qpey © Shape(ﬂold) = Shape(ﬁnew) A ﬂnew Z ﬂold-

The desired result then follows by applying Lemma 17 (iv) in conjunction with part (iii).
]

Theorem 15 Operation V is a widening operator.

Proof: By Lemma 18 (ii),

0 € Cc(owotd) V0 € Ce(anew) =0 € Cc(tnew Vaord).
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Let g, ...,at, ... be a sequence of abstract multistores and 0Q, ..., &, ...a sequence of

normalized abstract multistores defined as

@ = normal(a})

aiy1 = normal(af) Vo; (:>0)

We show that ag, ..., ;... is stationary. Denote o; by aorq and normal(at) by ameyw. If
normal(«;) C a;, then by definition of V, @iy = a;. Otherwise, since normal(a!) & o,

by Lemma 18 (iii) and (iv),

(la'oldl < |anewvaoldl) \
((laotd] = lotnew Veod]) A (ninfty zero(auq) < n_infty zero(amew Vaud)))

This gives measure(q;) < measure(a;y;). As the set Measure, is finite and totally

ordered for all n, there cannot be an infinite sequence in this case. a

A.11 Reordering

Lemma 20 Let P be a program. Then for every satisfiable constraint store 0, every

constraint A and every body G,

A FF mp((G © 8)) = 7p({G O 8)) = mp((G O 6 U {A})).

Proof: The proof consists of proving that for any satisfiable constraint store 6, constraint

A, body G and finite depth d s.t. A FF 7p((G © 6)):
TP({G O 8)) =4 TP({(G © 8 U {A})).

The proof proceeds by induction on d.

Basis: d = 1. For any body G, constraint A and satisfiable store 6 s.t. A FF (G O 8)),
we have that § U {A} is also satisfiable. This gives (G O ) = (G © 6 U {A}), and it
follows from Definition 38 that

P((G © 6))) =1 TP({G © 6 U {A})).
Induction Step: Assume that the hypothesis holds for similarity of depth not greater

than d, for every G, @, and A s.t. A FF p((G © 0)), We show that it holds for similarity
of depth d + 1.
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CaseG=ce.
P((G © 8)) = tree((G ¢ 6),[])

TP({(G O 6 U {A}) =tree((G O 8 U {A}),[])
The similarity to depth d + 1 follows easily from Definition 38 because the child list is
empty for both trees.

Case G=(f',q) :: B and 6 U # is inconsistent or no clause in P has head q-
q

We must have that § U {A} U ¢’ is also inconsistent or no clause in P has head q. The

proof is then similar to the previous case as the child list is empty for both trees.
Otherwise.
Let G = (¢,q) :: B.

TP((G O 6)) = tree((G © 6),[T1, ..., T,))

where H; : —B; is the it" of the n clauses of P with head g (renamed with all new

variables) and
T;=rp((Bi = BOOUG U (q=H;))

By Lemma 20 we have that A is failure free in each 7} and so
Vi:0U 6'U (¢= H;) consistent = 68U {A} U U (q= H;) consistent
This gives us that
P((G © 0 U {A})) = tree((G O O U {A}),[T},..., L)

where
Ti=7p((B:i=BOOU{N UG U (¢=H))))

By the induction hypothesis,
Vi: T, ~4 T‘I

Moreover, (G © 6) = (G © 8 U {A}). The desired result follows from Definition 38. O

Before proving the main theorem, it is convenient to give a precise definition for the
inclusive and exclusive execution of queries. This is done by defining two operational
semantics for any program containing the syntactic construct ?. One corresponding to
6 7 {A\} =8 is called the exclusive operational semantics, while the other corresponding

to 8 7 {A} =0 U {A} is called the inclusive operational semantics.
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Definition 47 [Exclusive Operational Semantics 7§ : State — Tree] The exclusive

operational semantics of a program P is a mapping T : State — Tree defined as

follows:
(G © 6)) = tree({G © 6), L)
where
(] ifG=c¢
[] if G=(¢,q):: B and
6 U @' is inconsistent or no clause in P has head q
[] if G=(67{A},q):: B and

§ U @' is inconsistent or no clause in P has head q
[T1,....Tn] G =(#,q):: B and § U ¢ is consistent and
T;=715((Bi = BO 60U U (¢q=H;))) where H; : —B; is the ith of
L= J the n clauses of P with head ¢ (renamed with all new variables)
and ¢ = H; adds the equality constraints between the actual
parameters of ¢ and formal parameters of H;
[T1,...,Ta] £G=(8'"?{)\},q):: Band §U ¢ is consistent and
T;=75((B:i = BO O U U (q=H;))) where H; : —B; is the ith of
the n clauses of P with head ¢ (renamed with all new variables)

and ¢ = H; adds the equality constraints between the actual

parameters of ¢ and formal parameters of H;

Definition 48 [Inclusive Operational Semantics 75 : State — Tree] The inclusive op-

erational semantics of a program P is 2 mapping 7h : State — Tree defined as follows:

(G © 8)) = tree((G © 6), L)
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where

[] fG=e
[ ifG=(0,q):: B and

§ U ' is inconsistent or no clause in P has head q
[] ifG=(0'?{\},q):: B and

6 U 6’ U {7} is inconsistent or no clause in P has head q
(T1,...,Ta] if G=(#,q):: B and 6 U ¢ is consistent and
T:=1p((Bi 2 B OO UG U (q=H,))) where H; : —B; is the ith of
L= the n clauses of P with head q (renamed with all new variables)
and ¢ = H; adds the equality constraints between the actual
parameters of ¢ and formal parameters of H;
[T1,...,Tn] fG=(07?{)\},q):=BandbUé u {A} is consistent and
T;=7p((B;=BOIUF U{\}U (¢ = H;))) where H; : —B; is the
ith of the n clauses of P with head q (renamed with new variables)

and q = H; adds the equality constraints between the actual

parameters of ¢ and formal parameters of H;

\

Theorem 16 [Failure-Free Reorderings are Admissible] Let R be a program consisting

of the sequence of clauses ¢y ...c;...c,, where the clause c; is

p:—- (611 ql)a sy <0k ? {/\},Qk), <0k+1 u {’\}st+l)v AR <0m:Qm>'

Denote by program point 4 the point in the clause c; just before (6 7 {A}, qx). Denote
by © the set of all constraint stores that can occur as the accumulated constraint store

at the program point A in the inclusive execution of program R for the query S. Let
V8 € ©: A FF 75({(6k 7 {\}, qr) © 8)).

Then
TR(S) = TE(S).

Proof: Consider a "hybrid” operational semantics for the program R that consists of
using the inclusive operational semantics upto depth d and then switching to the exclusive
operational semantics. The hybrid operational semantics of program R can be defined

formally as a mapping 75 : State x Integer — Tree given by:

E((G © 6)) fd=1

™ =
r((G © 6),4d) { tree({G © 6),L) otherwise
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where

(] ifG=¢
[] if G=(¢,q):: B and
# U ¢’ is inconsistent or no clause in R has head q
[] ifG=(7?{A},q):B and

8 U 6’ U {A} is inconsistent or no clause in R has head ¢
[T1,...,Tn] fG=(6,q):: B and 8 U ¢ is consistent and
T:=7h((Bi =B OO UE U (q=H;)),d— 1) where H; : —B; is the
L= i*h of the n clauses of R with head ¢ (renamed with new variables)
and ¢ = H; adds the equality constraints between the actual
parameters of ¢ and formal parameters of H;
[T1,....Tn] fG=("7{\},¢):Bandfuéu {A} is consistent and
T; =7h((Bi :BOOUG U {A}U (¢ =H)),d— 1) where H; : —B;
is it" of the n clauses of R with head g (renamed with new

variables) and ¢ = H; adds the equality constraints between the

{ actual parameters of ¢ and formal parameters of H;

Consider the top level query S. Because the hybrid operational semantics mimics the
inclusive semantics upto depth d, the hybrid execution tree T;‘Z(S, d) is identical to the
inclusive execution tree 7% (S) upto depth d. We need to prove that the following invariant
holds for any depth d:

T8(S, d) = T5(S).

It follows trivially that for any depth d:
Th(S) =4 TE(S).

The proof is by induction on d.

Basis: The basic case is obvious, since
Th(S,1) = TE(S).
Induction Step: Assume that the invariant is true for depth d, i.e.
Th(S,d) = TE(S).
We show that it remains true for depth d 4 1 by showing that
TR(S,d+ 1) = T(S, d).
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The invariant follows for depth d + 1 from the transitivity of the similarity relation.

Because 74(S, d) and 75(S, d+1) are identical upto depth d, there is a 1-1 correspon-
dence between their nodes upto and including depth d. They may diverge below depth
d because T(S, d) uses the exclusive semantics at that point while 78(S,d + 1) uses the

inclusive semantics for one more level.

Consider a node NV at depth d in T8(S, d). We show that the corresponding node N’
in TA(S,d+1) is either exactly the same as IV or it is similar to N. N and N’ must have
the same labels (because 7f(S, d) and T4(S, d + 1) are identical upto depth d), however
their child lists may differ. Let NV be tree((G © 8),L) and N’ be tree((G © 6),L').
We need to systematically consider the various cases in the operational semantics. The
child list of IV is determined by the exclusive operational semantics (Definition 47) while

the child list of N’ is determined by the hybrid operational semantics.
Case G =e.
Here L=L'=[],and so N = N'.

Case G = (#',q) : B and 8 U #' is inconsistent or no clause in R has head q.

Again, L =L'=[],and so N = N'.

Case G = (6 ? {A\},qx) :: B and 8 U 6, is inconsistent or no clause in R has head g.

We must have that § U 6 U {A\} is also inconsistent or no clause in R has head qr.- Hence
L=L"=[], andso N = N'.

Case G =(6',q) :: B and § U # is consistent and R has a clause with head q.

Let H; : ~B; (1 <i < n) be the n clauses of R with head q. Here L =[T,...,T,] with
Ti=7r((Bi = BOOUG U (g= H;))).
Also L' =[T!, ..., T!] with
T =rh((Bi = BOOUE U (g=H)),1)=rE((B; =BOIUF U (¢=Hy))) =T

Here we used the fact that 7A(S, d41) uses the inclusive semantics only for one more level
than 7A(S, d), and so the trees rooted at the children of N' use the exclusive semantics
(as they are at depth d 4+ 1). We have that L = L', and so N = N’.

Case G = (6k ? {A},qx) :: B and 6 U 6. is consistent and R has a clause with head q.-

Let H; : —B; (1 <7< n) be the n clauses of R with head g- Here L = [T, ...,T,] with

Ti=7p((Bi : B OO U b U (q = Hy))).
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Since N corresponds to the program point of interest (A), and since T5(S, d) is identical

to TH(S) up to depth d, we have that 8 € O, Hence, by hypothesis,
A FF ({0 7 {A}, ax) © 6)).

and, by Lemma 21,
A FF 2({((6k ? {A},qx) == B © 6)).

In other words, A is failure-free in N. By Lemma 19, ) is failure-free for every child T;
of N. This gives us that

Vi:0 U6 U {A} U (g = H;) is consistent.
Hence L' =[T},...,T!] where
T{ =Th((Bi = BOOUG U{A}U (g = Hi)),1) = r5((B; = BOBUGU {A}U (o = Hi))).

Again, we used the fact that 74(S,d+ 1) uses the inclusive semantics only for one more

level than r(S,d). By Lemma 20 we have
Vi:T: ~ TV

It follows that N = N’. This completes the proof. a
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