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Chapter 1

Introduction and Background

Definitions

1.1 Introduction

Traditional database technology is well-suited for handling “administrative data”, such
as names and telephone numbers. In the 90’s, with the proliferation of the Internet and
the unprecedented accessibility of desktop computing, the users are quickly accumu-
lating non-traditional data, such as for medical, scientific, or geographic applications.
More and more, they are starting to expect the same kind of data manipulation facilities
for this data as MIS departments have enjoyed for theirs.

Constraint databases (CDBs) extend the relational database paradigm to allow
working with infinite amounts of data, as long as it is finitely representable (via con-
straints). A perfect example is spatiotemporal data, which consists of points in time
and/or in space, typical of the applications mentioned above. Besides having con-
straints for data representation, constraint databases also have them as query language
primitives, with clean integration into all query language paradigms: procedural (al-
gebraic), declarative (formula-based), or deductive (logic programming). Therefore,
CDBs provide a strictly more expressive query paradigm than relational databases,
even for “administrative” data.

CDB theory is an active area of theoretical database research. Our work concen-
trates on the “middle layer” of constraint database systems, i.e., the layer underneath
the user interface layer and above the disk access layer. In this layer, querying consists



of primitive operations that are equivalent to the operations of the relational query
algebra; i.e., any CDB query can be translated into an expression over these primitive
operations. For this reason, we will refer to it as Constraint Query Algebra.

The particular issues for CDBs that we will examine include data representation,
operator efficiency, and safe use of additional operators (see Section 1.7 for individual
topics and our contributions). We consider Constraint Query Algebra to be particularly
appropriate for studying these issues, because the algebraic middle-level for relational
algebra proved so appropriate for similar issues in the relational database context. Our
ultimate goal, as yet unattainable, is commercial success of Constraint Databases, on

par with that of Relational Systems.

1.2 Constraint Databases

Our perception of how data management features should be packaged into software
systems is largely governed by forty years of experience with mainframe database ap-
plications, and is quickly becoming outdated. Today’s relational technology is not
suited for tomorrow’s data intensive applications, such as scientific or geographical or
medical data repositories and query systems. Constraint Databases address this short-
coming of the relational paradigm by enriching both the data model and the query
primitives with constraints. It is a young area of database research that lies at the
intersection of Database Management, Constraint Programming, Computational Ge-
ometry and Operations Research.

One can look at the history of Constraint Logic Programming (CLP) to get a
glimpse at the potential promise that Constraint Databases hold. Until the mid-80s,
Logic Programming was viewed mostly as an instructional tool, with limited real-world
applications. Then, Logic Programming was transformed by applying the following
insight:

e the unification mechanism of standard Logic Programming can be regarded as a
trivial constraint solver (for equality constraints only).

Expressiveness is therefore gained by replacing unification with constraint solving, and
allowing constraints in logic programs, i.e., CLP. Now, CLP is finding applications in
Operations Research (which has been revolutionized by this technology), in Scientific
Problem Solving, and in other areas where problems can be stated declaratively and

[\



can be solved by a combinatorial search approach [VanH].

It was not immediately clear how to apply the same type of insight to Relational
Databases, since the bottom-up and set-at-a-time style of database query evaluation
emphasized in databases seems to contradict the top-down, depth-first intuition behind
Constraint Logic Programming. In [KKR95], the gap between database programming
and constraint solving was bridged, with the following key intuition:

e a tuple (or a record or ground fact) in standard relational databases can be

regarded as a conjunction of equality constraints on the attributes of the tuple.

Therefore, an appropriate generalization of a tuple is a conjunction of constraints over
the tuple attributes.

The constraint data model is a generalization of the relational data model which
allows databases to model relations that include infinitely many data points, by re-
placing the notion of finite data with finitely representable data. A perfect example is
spatiotemporal data, which consists of points in time and/or in space [BIM93, BLLM95,
PVV94, VGVGY95, Cho94], typical of the applications mentioned at the beginning of
the chapter.

Besides extending the data model with constraints, Constraint Databases also inte-
grate constraints into the queries, while preserving the efficient bottom-up declarative
semantics that enabled relational databases to become such a success. There has been
work on the complexity of constraint database queries ( [KKR95, GST94, PVV95]),
concentrating on data complexity (i.e. treating the number of variables & in a query
as a constant, see [CH82, Var82]). This use of data complexity, a common tool for
studying expressibility in finite model theory, distinguishes the CDB framework from
arbitrary, and inherently exponential, theorem proving.

The CDB framework has provided a unified view of some previous database re-
search: for example, on the power of constraints for the implicit specification of tem-
poral data [CI89], on relational query safety [AGSS86], on conjunctive queries with
inequalities [Klu88] and on extending magic sets [Ram88]. By widely enriching the
types of data that can be managed by Database Management Systems, as well as the
types of queries that can be expressed in they System, Constraint Database technology

holds a lot of promise for the database users of tomorrow.



1.3 Declarative Querying of CDBs

In this section, we discuss declarative query languages for constraint databases, or Con-
straint Query Languages (CQLs). The declarative style of database query languages
is an important aspect of database systems, that has been at the core of the relational
data model since Codd’s pioneering work [Cod70] on the declarative relational calculus
and its equivalence to the procedural relational algebra. Indeed, having such languages
for ad-hoc database querying is a requirement in today’s relational technology (see
[AHV, Kan90, Ull].

CQLs can be viewed as a specialized form of constraint programming, similar to
the way that relational query languages can be viewed as a form of first-order the-
orem proving. Constraint programming paradigms are inherently declarative, since
they implicitly describe computations by specifying how these computations are con-
strained. Programming with constraints as primitives (or constraint programming) is
appealing because constraints are the normal language of discourse for many high-
level applications. Pioneering work in constraint programming goes back to the early
1960’s, e.g., Sutherland’s SKETCHPAD [Sut]. The theme has been investigated since
the 1970’s, e.g., in artificial intelligence [Mon74, Mac77, Fre78, Ste80], in graphical-
interfaces [Bor81], and in logic programming languages [JL87, DVSAGBSS, Col80].

One of the most important advances in constraint programming in the 1980’s has
been the development of Constraint Logic Programming (CLP) as a general-purpose
framework for computations, e.g., in CLP(R) [JL87], in Prolog III [Col80], and in
CHIP [DVSAGBSS8, VanH]. The insight that led to CLP is: the unification mechanism
of standard Logic Programming can be regarded as a trivial constraint solver (for
equality constraints only). Expressiveness is therefore gained by replacing unification
with constraint solving, and allowing constraints in logic programs.

This advance in CLP is very relevant for database applications. CLP was adapted
to database querying by [KKR95], who proposed a framework for Constraint Database
(CDB) queries by combining bottom-up, efficient, declarative database programming
with efficient constraint solving. The insight here, borrowed from CLP research, is:
a tuple (or a record or ground fact) in standard relational databases can be regarded
as a conjunction of equality constraints on the attributes of the tuple. Integrating
constraints with databases leads to the following: a conjunction of quantifier-free con-
straints over k variables, where k depends on the database schema and not the nstance,



is an appropriate generalization of the k-tuple.

In [KKR95], finite relations are generalized to finitely representable relations and
appropriate calculi for their data manipulation can be developed in this framework.
Thus, constraint databases are a natural generalization of the relational model of data
by allowing infinite relations that are finitely representable using constraints. The
work on the complexity of constraint database queries ([KKR95, GST94, PVV95]) has
concentrated on data complexity, treating the number of variables k in a query as a
constant. In many cases, the calculi have polynomial time data complexity. This use
of data complexity, a common tool for studying expressibility in finite model theory,
distinguishes the CDB framework from arbitrary, and inherently exponential, theorem

proving.

1.4 Procedural Querying of CDBs

The relational data model was pioneered in [Cod70]. From that work, follows that Re-
lational Calculus on finite sets can be evaluated bottom-up in closed form. Relational
Algebra, an operator-based query paradigm with bottom-up expression evaluation se-
mantics and LOGSPACE data complexity [Var82], is just the query language whose
existence was foreseen in [Cod70].

The algebraic querying paradigm is not declarative, since the algebraic expressions
represent a ‘plan’ or a ‘recipe’ for evaluating a query. Relational Algebras play a
very important role in relational database theory, since they are more useful than the
calculi for carrying out query optimization and evaluation. For this reason, it is typical
that declarative user queries are translated into algebraic expressions before they are
optimized and evaluated by the relational database system.

Constraint Query Algebras (for various constraint classes) are the equivalent of Re-
lational Algebras for the Constraint Database model. No syntax or semantics for CQAs
was provided in [KKR95]; however, the existence of an efficient bottom-up evaluation
strategy for dense order constraints was proven by grouping the tuples in a generalized
relation into r-configurations. Note that it is relatively easy to transform a Constraint
Query Calculus into an “naive” algebra, one where operations are defined as syntactic
manipulations of constraint formulas. For example, with Fourier-Motzkin elimina-
tion [Sch] one easily derives a “naive” algebra for linear constraint databases [GSTY94].

In this work, we will show that the “naive” approach is not sufficient to define a



good Constraint Query Algebra, i.e. one that preserves the practical advantages of
the algebraic querying paradigm. We will provide the syntax and semantics of CQAs,
with the goal of preserving these advantages. We expect that CQAs will prove Jjust as
ubiquitous in Constraint Database Systems as Relational Query Algebras are in the

relational database systems.

1.5 Relational Algebra: Definitions

Since the Constraint Query Algebras are a generalization of Relational Algebras, we
need to define the latter before looking at the former. Relational Algebra is based
on a small number of primitive operations on relations, i.e., sets of tuples without
duplicates. Duplicate elimination depends on the relational algebra implementation
and is typically done only when needed, with lazy evaluation. We will revisit lazy
evaluation in Chapter 3; in this section, we present a definition of Relational Algebra.

Let X be a finite set of attributes from an (infinite) set U. An X-tuple t is a
mapping from X into a set D distinct from U (of atomic constants of the database).
A relation r over attributes a(r) = X is a finite set of X-tuples. In the definitions
that follow, clause (1) expresses the conditions required of the argument and resulting
relations, and clause (2) expresses the semantics of the operation.

Projection: z(r) is the projection of r on Z.
(1) Z C a(r) and a(rz(r)) = Z.
(2) wz(r) = {t[Z] : ¢ € r}, where t[Z] is the restriction of £ to the variables in Z.

Selection: ¢(r) is the selection on r by ¢.
(1) ¢ is a boolean formula over a(r) and a(ss(r)) = a(r).
(2) sp(r) = {t:t € r and 4(t) is true}.

Natural Join: r; M r, is the (natural) join of r; and r,.
(1) a(ri ¥ r2) = a(r)) U a(ry).
(2) ri M ry = {t:tis an a(r)) U a(rs)-tuple, such that tla(r1)] € ry and t{a(r;)] € rp).

Cross-Product: r, x r, is the cross-product of r; and r,.
(1) a(r1) Na(rz) = B; a(ry X ry) = a(ry) U a(r,).
(2) This is a special case of Natural-Join.



Intersection: r;Nr,is the intersection of r1 and r,.
(1) a(r1) = a(rz) and a(ry N ry) = a(ry).
(2) This is a special case of Natural-Join.

Remark: Both Cross-Product and Intersection are special cases of the Natural-Join
operation, so the CQA operations we define later in this work will only include an
analogue to the Natural-Join. It should be noted that Natural-Join is itself expressible
using Cross-Product, Select, and Project; however, Natural-Join is more commonly
used than the Cross-Product.

Union: r{Ur; is the union of r; and ra.
(1) a(r1) = a(rz) and a(ry U rp) = a(ry).
() riUr;={t:t€riort €ry}.

Renaming: gpg4(r) is the renaming in r of A4 into B.
(1) A€ a(r), B ¢ a(r) and a(epa(r)) = (a(r) — {4}) U {B}.
(2) epja(r) = {t : for some ¢ € r, t{B] = ¢[A] and t{[C] =t'[C] when C # B }.

Difference: r, — r, is the difference of ry and ry.
(1) a(r1) = a(rz) and ofr, — r2) = a(ry).
(2)ri—ro={t:ter and t & ry}.

The positive fragment of Relational Algebra consists of the above operations ex-
cept Difference. Note that Relational Algebra is equivalent to the domain-independent
Relational Calculus for both finite and infinite (i.e., unrestricted) relations [Kan90].

1.6 Principles of Constraint Query Languages

As a background for the rest of the work, we present a summary of the framework
from [KKR95].

Definition 1 A generalized k-tuple, or a constraint tuple, s a quantifier-free conjunc-
tion of constraints on k variables, where these variables range over a set D.

There are many kinds of generalized tuples depending on the kind of constraints
used. In all cases equality constraints among individual variables and constants are

allowed.



For example, in the relational database model, R(3,4) is a tuple of arity 2. It is
a single point in two-dimensional space, representable also as R(z,y) with £ = 3 and
Yy = 4, where z,y range over some finite set. All relational tuples, including this one,
are generalized tuples over equality constraints. R(z,y) with (z = yAz < 2) is also
generalized tuple of arity 2 and so is R(z,y) with z + y = 2.5, where z,y range over
the rational or the real numbers.

Hence, a generalized tuple of arity k is a finite representation of a possibly infinite
set of k-ary tuples (or points in k-dimensional space D¥).

Definition 2 A generalized relation, or a constraint relation of arity k is a finite set of
generalized k-tuples, with each k-tuple over the same variables. A generalized database

1s a finite set of generalized relations.

A generalized relation is a first-order formula in disjunctive normal form (DNF)
of constraints, which uses at most k variables ranging over set D. Each generalized
relation is a finite representation of a possibly infinite set of k-ary tuples (or points in

k-dimensional space D¥).

Definition 8 The syntax of a Constraint Query Calculus is the union of a relational
database query language and formulas in a decidable logical theory.

For example: Relational calculus [Cod70] + the theory of real closed fields [Tar,
Ren92]; Relational calculus (or even Inflationary Datalog™, [AHV] + the theory of
dense order with constants [FG77].

Definition 4 The semantics of CQC is based on that of the decidable logical theory,
by interpreting database atoms as shorthands for formulas of the theory.

Let ¢ = ¢(z1, ..., Zm) be a constraint query program using free variables z,, .. ., z,,.
Let predicate symbols Ry, ..., R, in ¢ name the input generalized relations and let
1, ...,rn be corresponding input generalized relations. We interpret the program in
the context of such an input. Let ¢[r,/R;,..., rn/Ry] be the formula of the theory that
is obtained by replacing in ¢ each database atom Ri(z,...,2) by the DNF formula
for input generalized relation r;, with its variables appropriately renamed to z, ..., z.
The output is the possibly infinite set of points in m-dimensional space D™, such that

instantiating the free variables z, ..., z,, of formula #[r1/Ry, - ..,Tn/Ry] to any one of

8



these points makes the formula true. (We can assume that an occurrence of a database
atom in ¢ is of the form Ri(z,...,2) 1 < i < n, where R; is of arity k and z, ..., z
are distinct variables; this is because we can always use equality constraints).

Definition 5 A query Q has data complexity in PTIME (LOGSPACE) if there is a
TM which given input generalized relations d produces some generalized relation rep-
resenting the output of Q(d) and uses polynomial time (resp. logarithmic space on the
work tape).

We assume a standard binary encoding of generalized relations. The notion of
data complexity arose from a study of the expressibility of computations over finite
structures. It corresponds nicely to the intuition that the database size is much larger
than the query program size.

The framework of [KKR95] imposes two critical requirements on queries:

o For each input, the queries must be evaluable in closed form and bottom-up.

The analogue for the relational model is that relations are finite structures, and
queries are supposed to preserve this finiteness. This is a requirement that creates
various “safety” problems in relational databases [Cod70, Ull]. The precise analogue
in relational databases is the notion of weak safety of [AGSS86]. Evaluation of a query
corresponds to an instance of a decision problem. Quantifier elimination procedures
realize the goal of closed form and use induction on the structure of formulas, which
leads to bottom-up evaluation. Such evaluation can usually be described with operator-

based expressions, i.e., a Relational Algebra.

e For each input, the queries must be evaluable efficiently in the input size, i.e.,
with at most PTIME data complezity.

Database atomic formulas indicate, in the declarative query language itself, the
parts that can grow asymptotically versus the parts that are constant-size. By fixing
the program size and letting the database grow, one can prove that the evaluation
can be performed in PTIME or even in LOGSPACE, depending on the constraints
considered (for models of efficient algorithms see [AHU]. It seems reasonable to limit
computations to efficient ones, i.e., PTIME manipulations of the data. The constraint
query framework is interesting because many combinations of database query languages
and decidable theories have PTIME data complexity.

9



1.7 Overview

Constraint query languages extend the relational paradigm to allow the handling of
spatiotemporal data. In this work, we study Constraint Query Algebras, which we
believe is the proper query language for considering the implementational issues of
constraint query languages.

In Chapter 2, we provide the foundations for the rest of the work, by presenting
the issues involved in designing Constraint Query Algebras. We consider the desirable
properties for data representation, and for operator tmplementation. We examine the
notion of duality of representation (syntax) and meaning (semantics), central to the
theory of CQAs. We define the principle of semantic closure, one which makes explicit
the commutativity of the syntactic and semantic interpretations of a CQA.

In Chapter 3, we briefly consider two issues that are crucial to practical implemen-
tations of constraint database querying: indexing and optimization. For optimization,
we suggest two promising approaches to optimizing CQA queries. The first is lazy
evaluation of linear and nonlinear constraints (for real polynomial constraints see [Tar];
for recent developments and a symbolic computation survey see [Ren92], and for nu-
merical computation see [VMK95]. The second approach is to optimize CQAs by using
the indexing information, just as for relational algebras.

In Chapter 4, we present the syntax for data representation for dense-order [FG77,
Kan95, Klu88] and temporal constraint tuples, and define the algebraic operations
over this representation. We apply the principle of semantic closure to establish the
correctness of the dense-order algebra. We note that this algebra satisfies all the criteria
for a good algebra presented in in Chapter 2. In particular, the projection operation
is extremely efficient: projection is carried out by restricting the tuples to the desired
attributes, just as for the relational model.

In Chapter 5, we consider how the implementation of the PROJECT operation can be
made more efficient for a subclass of linear inequality constraints (see the comprehensive
survey in [Sch]). We prove a new result, which is that the projective closure of a given
mouotone constraint tuple is often strongly polynomial in the size of the tuple (i.e.,
whenever the path ezpression for the corresponding monotone network is of polynomial
size). We also provide a concrete algorithm for achieving this polynomial bound.

In order to match the expressiveness of the relational queries, it is necessary to
allow aggregation operations in CQA expressions. In fact, generalizing aggregation

10



operators to constraint databases has been identified as one of the most important
open research issues in the constraint database area [KG94, Kan95]. In Chapter 6,
we provide a natural restriction on Constraint Database schema which guarantees the
safety of algebraic expressions involving aggregation. This restriction, called variable
independence, is a generalization of the assumptions underlying the classical relational
model of data.

Finally, in section 7, we show how queries over spatiotemporal data can be defined
in a constraint setting, and implemented with a multidimensional indexing structure.
We provide both the description and the implementational details for a framework for
similarity querying of time-series data. Similarity queries are strictly more expressive
than approximate match queries, for which a framework had been supplied in [FRM94].

Chapters 2-7 represent original work, most of which has already been published [KG94,
CGK96, GK96, GK95]. Further work is in progress in the areas of aggregation, mono-
tone constraints, and similarity querying.
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Chapter 2

Constraint Query Algebras

Constraint Query Algebras are a generalization of Relational Algebra for different
classes of constraints. Constraint Query Algebras need to satisfy the requirements
on queries defined above (Section 1.6). They should also have the same expressibility
as Constraint Query Calculi, i.e. that for any Constraint Query Calculus expression,
there exists an equivalent CQA expression. It is also highly desirable that there be an
efficient translation between the two expressions.

In this chapter, we provide the foundation for the rest of the work by isolating the
individual issues that need to be addressed when designing a good Constraint Query
Algebra.

2.1 Data Representation and Semantics

The data in Constraint Databases can be viewed both as a constraint formula over &
variables (the generalized tuple, or syntaz), and as the set of k-dimensional points that
satisfies the formula (the eztension, or semantics of the data). Figure 2.1 illustrates this
duality. The concrete format that a Constraint Database may choose for representing
the data will lie somewhere between these modalities: some pre-processing of formulas
is desirable (at least to eliminate the unsatisfiable ones), yet the actual set of points
may be infinite and therefore not directly representable.

The first condition for any choice of data representation is that it have correct

semantics:

¢ Given the data representation for a constraint relation R, the (infinite) set of
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Figure 2.1: The dual nature of constraint data.

tuples o(R) that it represents must be the same as the set of points that satisfies

the original constraint formula ¢(R).

Whichever format is chosen, it is assumed that the operators of the Constraint Query
Algebra, when implemented, will receive their input data in that format. To be able
to compose operations, the output of the operators is also expected to be in the same
format. A pre-processing mechanism needs to be provided for converting constraint
formulas into this format.

There are often implementation reasons to choose a specific format for the general-
ized tuples in the database. We consider the following characteristics to be desirable for
the data representation, when it is considered in the context of a practical Constraint

Query Algebra:

o Efficiency. This refers both to the space complexity of the data representa-
tion, and to the time complexity of evaluating the operators for the given data

representation.

¢ Succinctness. We expect the size of the representation of the constraint database
to be somehow correlated to the amount of data stored. In particular, it is un-
reasonable if many of the generalized tuples have empty extensions, i.e., if the
corresponding formula is unsatisfiable. For example, if the data is represented
by formulae without any post-processing after operations, then the naive imple-
mentation of a join or an intersection by “and”-ing pairs of formulae to create
new ones would result in many empty tuples. The implementation of the algebra
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should have a mechanism for eliminating (or avoiding) empty tuples. Essentially,
this means performing a satisfiability check for every tuple.

Redundancy. It is also unreasonable to have too much duplication, i.e., if many
of the points in the unrestricted database belongs to many generalized tuples at
once. In most applications, the number of tuples intersecting at any one point is
likely to be much smaller than the total number of tuples, so this is of less concern.
However, a redundancy removal procedure akin to rebuilding a database index
may need to be done off-line whenever redundancy is somehow determined to

reach a certain level.

Updating. Since data needs to be pre-processed, updates to the database (i.e.,
adding, deleting, or modifying data) become an issue. It is highly desirable that
updates can be performed in time that depends only on the size of the individual
generalized tuple. This means that any representation which requires a scan or
search of all tuples when preparing to add a new one is impractical.

Indexing. Given an attribute z to use as a key in a constraint relation r, the
indexing structure will typically use intervals for its index, one for each generalized
tuple ¢ in r; such an interval represents the range of the values for z within the
extension of . The computation and the updating of these intervals should
therefore be very efficient.

We shall use the term canonical form for a specific data representation format. For

example, we may view the r-configurations of [KKR95] as a particular canonical form.

There is an explicit algorithm provided there to convert a generalized relation into this
format. When a tuple ¢ is added to an already-converted relation R, it is necessary to
perform work that is at least linear in the size of R to ensure that {t} UR is in the
proper format. This renders r-configurations impractical for representing generalized

databases.

2.2 Algebraic Operations and Semantic Closure

Query algebras typically consist of a few set-based operations, with bottom-up evalu-

ation of the operator-based expressions. The syntax of the algebraic operators should
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capture propositional logic (and, or, not) through equality constraints, selection, cross-
product, union, and difference, as well as first-order predicate logic (existential quan-
tification) through projection.

Theoretically, any set of operators that preserves the algebra-calculus equivalence
can be used, though the author of such algebra can not make use of existing relational
methodologies for doing query translation and optimization. Since we want to build
on the existing successes of relational technology, and to be able able to reuse as
much machinery as possible in implementing Constraint Databases, we propose that
the standard algebraic operations such as SELECT, PROJECT, NATURAL-JOIN, UNION,
RENAME, DIFFERENCE are adopted for Constraint Query Algebras, just like Codd’s
relational algebra (Section 1.5).

Generalized Projection: Generalized to constraint tuples, the definition of projec-

tion is as follows:

Definition 6 Let? be a generalized tuple over variables X ,and S be a subset of X. A
projection of t onto S, denoted by 7 5(%), is a generalized tuple over S, such that:

An assignment p to the variables in S satisfies ws(t) iff there exists an

eztension of p to all the variables in X satisfying T.
The restriction operation of Section 1.5 generalizes as well:

Definition 7 A restriction of ¥ to S, denoted by t[S], is a subset of the constraints in

t containing those constraints that do not involve any variables outside of S.

Note that projection and restriction are not necessarily equivalent in CQAs. A
generalized tuple where they are equivalent is globally consistent:

Definition 8 A constraint set  over variables X is globally consistent if, for any
subset S of X, rs(t) = E[S].

Clearly, all standard relational tuples are globally consistent.

Generalized Selection: Constraints can be added to the syntax of the formula F
in the expression ¢r(R). At a minimum, the selection operator should admit as F any

constraint from C.
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Figure 2.2: The Closure Condition: o(Q(D)) = g(o(D)).

2.3 The Closure Principle

Whatever syntax is chosen for a CQA, the semantics of the operations should be such as
to provide closure for the semantics of the data (Section 2.1). In particular, if 7, ..., 7,
are generalized relations which describe (possibly infinite) relations o(7y),..., 0 (%),
and if OP is an operation in a Constraint Query Algebra (where OPis the correspond-
ing operation in the Relational Algebra over unrestricted relations) then it should be

the case that
ifF,H.l = OP(FI, .. .,F,.), then 0’(?,..*.1) = OP(G’(F]_), . ..,O’(Fn)).

We refer to this property as the closure of a CQA (see Figure 2.3).

This principle of semantic closure for the algebraic operators enables us to define
algebraic operators syntactically, as concrete operations over some specific data repre-
sentation, and yet be able to argue about their correctness. That is to say:

A CQA operator is defined correctly if for any input, the semantics of the
output data is the same as it would be for equivalent relational algebra
expressions over the corresponding (infinite) sets of points.

Figure 2.3 illustrates operations SELECT and PROJECT over the constraint relation of
figure 2.1.

As a result of the closure condition, CQAs admit the same notion of expression
equivalence as relational algebras. As a corollary of semantic closure for a given Con-
straint Algebra, we also prove the equivalence of the Constraint Algebra and Constraint
Calculus.
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Figure 2.3: Examples of CQA operations over constraint data.

2.4 Operator Efficiency

A minimal requirement for practical Constraint Databases is that each algebraic opera-
tion must be “efficiently implementable”, where a lot depends on what efficient means.
For example, data complexity arguments oversimplify in order to prove that the com-
putations performed are efficient in the database size. Assuming that the number of
variables is a constant k leads to algebras that are efficient in the database size but
“naive”. In such algebras, the projection operation (which captures quantifier elimina-
tion) is usually complex and costly, namely exponential in the number of variables k;
data complexity hides this in a large constant.

We believe the critical issue in designing a “good” algebra is to make projection
simple and cheap. The approach is different depending on the Constraint Class in-
volved, and both the data representation and the operator implementation have to be

tailored in each case.

Projection vs. Restriction: The fastest imaginable projection, given some subset
of variables, would be if we could simply collect the constraints involving these vari-
ables. This is what happens with relational algebra where projection is restriction and
(depending on the representation of sets used) duplicate elimination. A set of con-
straints is globally consistent [Fre82, Dec92] when the projection of the solution set on
any subset of the variables can be computed just this way, via restriction.
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This approach is studied in Chapter 4. The example is an algebra for dense order
constraints, which was published in [KG94] in preliminary form. As explained in Sec-
tion 2.1, the representation of tuples used in this algebra also has other good properties;
this representation also easily extends to temporal constraints.

Strongly Polynomial Projections: For a set of m linear constraints with k vari-
ables, elimination of some variables, i.e., existential quantifier elimination for any i < &
variables, has a worst-case bound exponential in k. Elimination could be exponential
because of the output size. A good example is given in [Yan88], consisting of a linear
constraint set for representing a parity polytope in k dimensions. This polytope, though
simple to describe, has O(2*) facets, requiring an exponential number of constraints
(if no existentially quantified variables are involved in the representation). However,
with the use of k additional variables that are existentially quantified, the number of
constraints needed to describe the parity polytope is reduced to O(k?) (note that using
these additional variables is equivalent to delaying the evaluation of quantifier elimina-
tion). Also, there might be other cases between exponential and strongly polynomial.
When the linear inequalities contain at most two variables each, [Nel78], has shown
that the Fourier-Motzkin algorithm can be optimized to reduce the exponent to log k.

Variable elimination, which is exponential in (m, k), should be contrasted with
the linear programming problem, where all variables are eliminated. This satisfiability
problem for linear constraints, of great practical significance, has worst-case polynomial
time algorithms (and efficient average-case algorithms, i.e. simplex). However, even for
this problem, the polynomials not only depend on m and k but also on the coefficient
sizes. The existence of an algorithm for linear programming that is strongly polynomial,
i.e., where the complexity does not depend on the coefficient sizes, is a major open
question.

Strongly polynomial bounds have been achieved for the linear programming problem
over sets of two-variable linear constraints [HN94]; its time complexity is O(mk3logm).
They present a modification of the Fourier-Motzkin algorithm, pruning away most of
the constraints that are generated, while preserving equisatisfiability of the constraint
sets. The actual equivalence of the sets is not preserved; indeed, it is not needed
to determine feasibility. Unfortunately, this makes the optimizations of Hochbaum
and Naor inapplicable to the projection problem. Thus, the problem of a strongly
polynomial algebra for two-variable linear constraints is open.
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In Artificial Intelligence, the property of global consistency, also known as decom-
posability [Mon74], is desirable because it allows a backtrack-free search [Fre82]. The
property has been studied for temporal constraints [DMP91] where it was shown that:
“a decomposable constraint set equivalent to a given one can be found in time poly-
nomial in the size of the constraints for any number of variables k”. (For an extensive
treatment of temporal databases using constraint programming see [Kou93]).

Clearly, if a class of constraints allows us to compute efficiently, for any constraint
set, an equivalent globally consistent representation, then it is possible to implement
fast projections for this class. A lot depends on what one considers efficient. For
example, for m linear constraints, when data complexity is used, it is possible to show
polynomial bounds but only because the number of variables k is viewed as constant.
The situation is much better when there are algorithms polynomial in m, k, as in the
case of dense order and of temporal constraints.

This approach is studied in Chapter 5. The example is an algebra for monotone
linear two-variable constraints; temporal constraints are a special form of these con-
straints. We consider monotone constraints over the rationals, and show that in most
cases, projection is strongly polynomial. The more complex integer case for monotone
constraints is analyzed by Hochbaum and Naor [HN94].

2.5 Additional Algebraic Operators

Aggregation. To be able to express practical queries, some additional operators are
needed, just as for relational query languages. One of them is the generalized version
of the “aggregation” operator, a general operator that expresses statistical operations
such as AVG, MIN, coUNT [Klu82]. Some aggregation operators like count are not
applicable to infinite relations. On the other hand, new operators like area [AS91] (or
its generalization, n-dimensional volume [GK94]) occur there quite naturally.

[Kup94] describes a general framework, modeled after [K1u82], for adding aggregate
operators to relational algebra and calculus. However, in general, adding aggregates to
constraint databases results in langua ges that are not closed, i.e., the result of a query
that uses aggregation is not finitely representable using the constraint language of the
database.

In Chapter 6, we will provide a restriction on Constraint Database schema which

guarantees the safety of algebraic expressions involving aggregation. This restriction,
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called variable independence, is a generalization of the assumptions underlying the
classical relational model of data.

Recursion. Another operator which we consider essential for expressing practical
queries is recursion, which is equivalent to finding paths in a graph whose edges are
specified by a relation. Recursive queries are common for databases that hold travel
information (such as train or airplane connections), manufacturing information (such
as bill-of-materials), or genealogical information (such as family relations). It is well-
known that first-order calculi, or equivalently algebras, are not expressive enough to
answer such queries [Pa94].

A well-behaved recursion operation for Constraint Databases should have the stan-
dard fixpoint semantics of recursion and the queries should be guaranteed to terminate
and to have a finitely representable answer. Some progress in this area has been made
very recently [GK97]. The operators defined there, the bounded partial fizpoint and the
bounded inflationary fizpoint, lead to some new results in expressiveness and complex-
ity of PTIME boolean queries over linear constraint databases. However, the closure
of general queries is not considered, and we believe the operators to be too artificial
for practical use.

It is possible that the notion of variable independence, defined in Chapter 6, can be
applied to provide closure conditions for CQA+fixpoint. However, we will not address

this in our present work.



Chapter 3

Towards Practical CQAs

Relational databases would not be such a commercial success if their implementation
did not allow such fast ad-hoc querying of such vast amounts of data. This performance
is enabled by two technologies: efficient indezing of the data, for fast data access,
and optimization of queries, for selecting good query execution strategies among many
alternatives. These issues should prove crucial for constraint databases as well.

Constraint query algebras form a procedural language layer below high-level declar-
ative calculi. Low-level access methods form the next layer of the database, and must
be properly interfaced with the algebra. Also, just like the relational algebra, this
intermediate layer should prove to play a significant role in query optimization.

In this chapter, we offer a brief look at indexing and optimization issues for con-
straint databases. We consider two possible approaches to optimizing CQAs. The first
is to delay projections by retaining unevaluated variables: if strongly polynomial oper-
ations are not available then quantifier elimination should be delayed until it is really
needed and the representation of constraints should permit such lazy evaluation. This is
applicable to linear and nonlinear constraints as long as queries are positive and could
be of significance for constraint query algebra implementations. The second is to make
use of the implementational statistics for the indexing and hashing data structures to

guide the optimization heuristics.

3.1 Indexing in Constraint Databases

The language framework of the relational data model does have low data complexity,

but does not account for searches that are logarithmic or faster in the sizes of input
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relations. Without the ability to perform such searches, relational databases on sec-
ondary storage would have been impractical. I/O efficient (i.e., logarithmic or constant)
use of secondary storage is an additional requirement, beyond low data complexity or
strong polynomiality of operations, whose satisfaction greatly contributes to relational
technology.

B-trees (and their variants B+-trees) are examples of important data structures for
implementing relational databases (see [BM72]). Let each secondary memory access
transmit B units of data, let r be a relation with N tuples, and let us have a B+-
tree on the attribute z of r. The space used in this case is O(N/B). The following
operations define (dynamic) one-dimensional searching on relational attribute z, with

the corresponding performance bounds using a B*-tree on z:

e Find all tuples such that for their z attribute, (a1 £z L ay).
If the output size is K tuples, then this range searchingis in worst-case O(logg N+
K/B) secondary memory accesses. If a; = a, and z is a key, then this is key-based

searching.

e Insert or delete a given tuple.
These are in worst-case O(logg N) secondary memory accesses.

The problem of k-dimensional searching on relational attributes Zi, ..., T general-
izes one dimensional searching to k attributes, with range searching on k-dimensional
intervals. It is a central problem in spatial databases for which there are many solutions
with good secondary memory access performance, e.g., grid-files, quad-trees, R-trees,
hB-trees, k-d-B-trees etc — for a survey, see [Sam].

For generalized databases we can define an analogous problem of one-dimensional
searching on generalized relational attribute = using the operations:

e Find a generalized relation that represents all tuples of the input generalized
relation such that their z attribute satisfies (a1 £z L ay).

o Insert or delete a given generalized tuple.

If (a1 < z < ay) is a constraint of our CDB query, then there is a trivial, but inef-
ficient, solution to the problem of one-dimensional searching on generalized relational
attribute z. One can add a constraint (g, < z < az) to every generalized tuple (i.e.,
conjunction of constraints) and naively insert or delete generalized tuples in a table
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(i-e., without a range check for the input tuple, or a satisfiability check for the output
tuple). This would involve a linear scan of the generalized relation and introduces a
lot of redundancy in the representation.

In many cases, the projection of any generalized tuple on z is one interval (a <
z < a’). This is true for relational calculus with linear inequalities over the reals,
and in general when a generalized tuple represents a convex set. Under such natural

assumptions, there is a better solution:

® A generalized one-dimensional indez is a set of intervals, where each interval is
associated with a generalized tuple. Each interval (¢ < z < a’) in the index is
the projection on z of its associated generalized tuple. The two endpoint a, a’
representation of an interval is a fixed length generalized key.

e Finding a generalized relation that represents all tuples of the input generalized
relation whose z attribute satisfies (a1 £ z < @;) can be performed by adding
constraint () < z < ay) to only those generalized tuples whose generalized keys
have a non-empty intersection with it.

e Inserting or deleting a given generalized tuple is performed by computing its
projection and inserting or deleting intervals from a set of intervals.

The use of generalized one-dimensional indexes reduces redundancy of represen-
tation and transforms one-dimensional searching on generalized relational attribute z
into the problem of dynamic interval management. This is a well-known problem with
many elegant solutions from computational geometry [PS]. Optimal in-core dynamic
interval management is one of the basic tools of computational geometry. However,
I/O optimal solutions are non-trivial, even for the static case. For the first optimal
static solution see [KRVV93] and for an optimal dynamic one see [AV95].

3.2 Algebraic Expressions and Query Optimization

The use of algebraic expressions in query optimization is based on two key notions:

e Specifying a search space of semantically equivalent relational algebraic expres-
sions that could have different evaluation costs.



e Estimating the cost of performing an operation (for example, natural join) based
on the statistics (for example, cardinality and selectivity) of its operands, and
estimating statistics for the result of the operation.

Algebraic transformations (such as selection propagation and join ordering) are
heuristics for transforming algebraic expressions to equivalent ones that are likely to
yield faster query evaluation, mostly by reducing the amount of I/O performed. An
important question is: how do various optimization methods (such as selection prop-
agation, join ordering and other algebraic transformations, magic sets, etc.) combine
with constraint query algebras? For some recent research in this direction we refer
to [Ram88, MFPR90, SR92, SS94].

In contrast to algebraic transformations, estimation-based optimization heuristics
are implementation-dependent. In fact, the dependency is bi-directional: queries may
be made more efficient by using the implementational information (such as the type of
indexing available for various attributes), and indexing strategies can be made more
efficient by knowing which queries are more likely to be asked. Section 3.1 discusses the
implementation of indexing structures for constraint databases. Then, in Section 3.3,
we suggest that CQA query optimization can benefit from indexing information in a
fashion similar to the approach of System R.

3.3 Optimization in System R

The implementation-related information can be very useful in finding a good query eval-
uation strategy. An example of a relational database system which uses the implementation-
related information for query optimization is System R [Ull]. The information includes:

e How many tuples are in a given relation?
This requires keeping a running count of the number of tuples, updating it upon
tuple insertions and deletions.

e What is the average size of a tuple?
In System R, tuples may have variable size when variable-length strings are
present. If tuple size is not constant, an estimation based on a sample of records

must be used.
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e Which indices exist for a given relation, and what is the image size of each index?
For an index on a relational attribute X, the image size is the number of different
values of X appearing in the relation. Assuming that the leaf blocks of the index
consist of keys, one per each value of X, the image size is the number of leaf
blocks times the number of keys per block. A sampling technique must be used
to estimate the latter.

o Which, if any are clustering indices?
For relational databases, a clustering indez is an index on an attribute (or at-
tributes) such that tuples with the same value for those attributes will tend to

be adjacent in memory.

[ULl] has an example of how the above parameters affect the choice of an evaluation
strategy for a given query. Some of the issues involved in generalizing the approach of
System R to constraint databases are highlighted below.

In constraint databases, tuples cannot be expected to have a fixed size, except for
“gap” constraints and their subclasses (dense-order and temporal constraints), where
canonical forms allow a fixed-size representation. As a result, average tuple size, can
only be determined by an estimate based on sampling. For several reasons discussed
in [BJM93], the sampling techniques used in relational databases are inappropriate in
the constraint database setting and need to be reconsidered.

Also, the notion of image size is not trivial to generalize. The intuition behind the
usefulness of image size in predicting query performance is:

In a relation R, we can expect that the number of tuples with a given value
for an attribute equals the total number of tuples in R divided by the image

size.

Due to the infinite semantics of constraint relations, this definition, as well as the way
image size is determined, have to be reconsidered to preserve its applicability to query
optimization.

We are confident that implementation-based evaluation of query strategies can prove
useful in constraint databases, and that the generalizations of the approach of System

R will lead to efficient query optimization in constraint databases.
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3.4 Lazy Evaluation of (Non)Linear Constraint Algebras

In this section, we consider an alternate approach to optimizing CQA queries, in par-
ticular the positive fragment consisting of the operations project, select, natural-join,
union, and rename; this is similar to the approach of [BIM93].

We suggest that for (general) linear constraints, as well as for nonlinear constraints,
it is worthwhile to leverage the performance on a tuple representation that contains ex-
istentially quantified (but not eliminated) variables. We call such variables eztraneous,
as opposed to essential.

The approach is akin to the CLP approach to constraint stores, where many vari-
ables will not participate in the output [VanH]. What mattersis that the constraints are
satisfiable, i.e., for some assignment of values to the extraneous variables, the essential
variables will form a tuple in the constraint store. For linear constraints, satisfiability
can be guaranteed using linear programming. For nonlinear constraints, satisfiability
can be implemented efficiently using numerical methods [VMK95].

Lazy Evaluation: The approach involves delaying the symbolic processing (quan-
tifier/variable elimination) whenever possible. We call this approach lazy evaluation,
borrowing this terminology from functional programming. The resulting representa-
tion of generalized relations, containing unevaluated existentially quantified variables,
is called the lazy representation.

The argument in favor of lazy evaluation hinges on the complexity gap between
performing satisfiability checks and performing variable elimination for sets of lin-
ear constraints. The former is polynomial whereas the latter is exponential [Sch].
What’s worse, variable elimination can be exponential just because of the size of the
result [Yan88] if a non-lazy, or “eager”, representation is used.

Therefore, we propose to use the lazy methodology not just for the intermediate
representation during the evaluation of positive algebraic operations, but also for the
internal representation when storing generalized relations. Fortunately, storing gener-
alized relation with unevaluated variables still permits us the use of indexing method-
ologies for constraints (Section 3.1). This is due to the fact that computing projections
onto a single variable z is equivalent to the optimization problem for a set of linear con-
straints, where we seek the minimum and the maximum allowable values for z. These
optimization problems have polynomial complexity [Sch], giving us an interval over z
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that is used in the indexing scheme.

The extraneous variables in the lazy representation will of course need to be removed
(via projection) when the relation is output to the user. This is done either by the query
processor or by some other system that processes the query output, such a graphical
display mechanism. So, lazy evaluation can also be viewed as delayed projection, and
approached as an optimization step to constraint query algebras.

A Positive CQA: Let R; be a generalized relation over (z1,-..,zk) with extraneous
variables (zr41,...,2,); let B2 be another such generalized relation. The extraneous
variables in the two relations are different from the essential variables and local to
the relations; this can be ensured through local naming of such variables. The two
relations can share essential variables; for Union they have to, for Natural-Join the
degree of sharing determines the special cases of Cross-Product and Intersection.

We assume that for any tuple ¢ of Ry, R;, t is not empty; this can be accomplished
using satisfiability checks. We now describe the positive algebraic operations on R,
R,.

¢ Projection: R = {m(;, .)t1:t € Ry}
Mark (zi41, . .., Zr) as extraneous, so R is a relation over (z, ..., z;) with extra-

neous variables (zit1, ..., zn). The constraints in ¢, are not changed.

e Selection: R = {sr(t;) :t1 € Ry}
We assume that F is quantifier-free and all its variables are among (zy,...,z,).
We perform a satisfiability check on the conjunction F AF(t,), where F(t;) is the
formula corresponding to ¢;; if it is not satisfiable, the selection does not produce
anything. Otherwise, the constraints in F are added to the constraints in t;; the

sets of essential and extraneous variables remain the same.

e Natural Join: R={t; Mt;:t; € R}t € R,}.
We perform a satisfiability check on F(t;) A F(t,); if it is not satisfiable, the
join does not produce anything. Otherwise, the constraints from ¢; and t, are
combined. The essential variables are the intersection of the two sets of essential

variables. All other variables from either R, or R, are marked as extraneous.

e Union: R={t:t€ R, VtE R,}, where R, has the same essential variables as
R,.

27



The essential variables remain the same; the extraneous variables are the union
of the two sets of extraneous variables. The constraints in ¢ remain unchanged.

e Rename: Asin the Relational Algebra case.

Of course, delaying projections during the positive fragment of Constraint Algebra
forces us to pay for it (in the form of variable elimination) during the operations of
difference and duplicate elimination, and when final output is requested. However,

there are good arguments why this is not a significant problem:
e difference is an uncommon operation;
e duplicate elimination is usually performed lazily even in the Relational Algebra;

e the final output is often quite small in practice.



Chapter 4

A Dense Order Constraint
Algebra

Dense order inequality constraints are all formulas of the form z6y or zfc, where z,y
are variables, ¢ is a constant, and 8 is one of =, <, < (or its negation #, >, >).
We assume that these constants are interpreted over a countably infinite set D with
a binary relation which is a dense order (e.g., we can take D to be the rationals).
Constants, =, <, and < are interpreted respectively as elements, equality, the dense
order, and the irreflexive dense order of D. For the first-order theory of dense order
see [FG77] and for its data complexity (with and without recursion) see [KKR95].

Most commonly, dense order constraints are used to represent (multi-dimensional)
rectangles, or intersections of rectangles and diagonal hyperplanes. Their expressibility
suffices in many spatial database applications. Note that the geometry of dense order
constraints is richer than that presented in [GS95]; for example, some rectangles with
a cut-off corner, though representable with dense order constraints: B<z<jl<
y <4,z > y), was not mentioned there.

In this section we present a CQA for dense order constraints. We first define
generalized tuples, and adopt the use of a specific tabular representation for them. We
then stipulate that these tuples are put into a canonical (or “tightmost™) form. Any
conjunction of constraints can be transformed into a union of such canonical tuples.
We define algebraic operations over these canonical tuples which satisfy the criteria
discussed in Chapter 2. Finally, we show that this algebra has the desirable closure
property. The equivalence of the dense order constraint algebra with the calculus is a

29



consequence of this property.

4.1 Constraint Sets and Generalized Tuples

Let X be a set of variables. A constraint set C over X is a finite set of dense order

constraints, each of which is of one of the four types:
(zopy)(z>1),(z<u),(z=0),

where z,y € X, op € {<,>,=} and {¢,[,u} C D. We refer to these types as two-
variable, lower bound, upper bound, and equality respectively.

We denote the set of all assignments of elements of D to the variables in X that
satisfy all constraints in C by P(C), the point set of C. We say that C is consistent if
P(C) is not empty. If C is a consistent constraint set, then the projection of P(C) onto
any variable in C must either be a single point or an open interval. Two constraint

sets C1, C, are equivalent iff their point sets are the same:
Cl = Cz iff P(Cl) = P(Cz).

We now extend the notation by introducing a new comparison operator ?, where
a variable constraint (z ? y) always evaluates to TRUE; it represents the absence of
any constraint between z and y. Similarly, we introduce new constants —oo and +00,
where the lower bound (~oco < z) and the upper bound (z < +00) always evaluate to
TRUE; they indicate the absence of any upper or lower bounds on z.

It is easy to see that any constraint set C can be represented by an equivalent set
C’ which has ezactly one constraint Hz,y between any pair of variables, and ezactly one
pair of constants (I, u;) delimiting any variable z, where I, < u,. We refer to such a
constraint set as a generalized tuple.

The conjunction of the constraints in a generalized tuple  is the formula F(t):

F@)=Ae):cet.

The terms that are trivially true may be omitted from the formula. Clearly, F(?) is
satisfiable if and only if £ is consistent.

We adopt a tabular representation for generalized tuples, as in the example below.
The size of this representation is fixed by the size of X.
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Example 1 The following is a tuple t on variables (A, B, C) whose formula is

(A<5 A 1<BAB<7TAC=6 A A>B):

t| A B C
Il |]-c0 1 6
u 5 7 6
g2l = > 7
< = 7
?7 7?7 =

From now on, we omit the adjective “generalized” when it is clear from the context.

4.2 The Canonical Form
We now turn our attention to sets of constraints that are entailed by a tuple.

Definition 9 A consistent generalized tuple %, entails a constraint 0 if the universal
closure of (F(to) => 0) is true.

The set of constraints entailed by a given consistent tuple could be infinite. We
restrict ourselves to a finite subset, by considering only the constraints whose constants
appear in the original tuple. We subdivide this finite set, grouping constraints according
to the type of the constraint and the variables that appear in it:

Definition 10 Let?; be a consistent tuple over attributes X. For all z,y € X, we now
define the constraint sets S (%o, z,y), S(fo, z, L), and S (to,z,U). Let 8 be a constraint
entailed by %o such that all constants appearing in 0 also appear in to. Then:

0 € S(to,z,y) if 0 = (z op y);
fe S(EO:-'B: L) if0=(z op C), where op € {>1=};
8 € 5(0,i,U) if 0 = (2 op c), where op € {<,=}.

By default, S(to, z,y) contains the constraint (z ? y), S(to, z, L) contains (—oo < z),
and S (%o, z, U) contains (z < +00). These constraint sets S are the entailed constraint

sets of tg. O
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By definition, each entailed constraint set S() is non-empty and finite. Also, for any
two constraints in §(), one of the two entails the other (by properties of dense order).
By structural induction, combined with the non-symmetricity of entailment, we know
that each S() has a unique member that entails all other members. We refer to this

member as the tightmost member of S().
For any generalized tuple %, the set of the tightmost members of all the entailed

constraint sets of Z; forms another generalized tuple, known as the canonical form of

Eo!

Definition 11 The canonical form of %, is a constraint setf, consisting of the tightmost

members for all the entailed constraint sets of Zy:

(1) tightmost member of S(to,z:,z;) is the two-variable constraint over
(ziyz;) int,;

(2) tightmost member of S(to, zi, L) is the lower bound over z; in %.;

(3) tightmost member of S(%o, zi, U) is the upper bound over z; in k..

A consistent generalized tuple ty is canonical if it is its own canonical form.
Example 2 The tuple  in the previous ezample is not canonical because:
(A<5 A A>B)=(B<5), but the upper bound on B is (B < 7).

The following tuple ¥ is a canonical form of £:

t |A B C
|1 1 6
@5 5 6
Fl= > <
< = <
> > =

FE)=(1<A<5A1<B<5AC=6AA>BAA<C A B<C).
The canonical form of #; is equivalent to Zo.

Lemma 1 Let?. be the canonical form of Ty. Then, P(t.) = P(t).
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Proof: All constraints in Z. are entailed by Zy; therefore, F(£) = F(%.), and P(t) C
P(Z:). It remains to show that F(Z.) = F(£). Let # be an arbitrary constraint in to;
6 must belong to some entailed subset of Z,. Let #’ be the tightmost member of that
subset; & € . and ¢’ = 4. a

Furthermore, the canonical form of a tuple has the following interesting property:

Lemma 2 Let t. be the canonical form of ¥y. Let 0, be some constraint entailed by
to, and 8, be the constraint in E. of the same type and with the same variables as 0, .
Then, 02 entails 01.

To prove this theorem, we assume there is a constraint involving a constant u ¢
D(%o) which is tighter than the corresponding entailed constraints over constants a, b €
D(%o) are the closest to u from below and above respectively. By considering satisfia-
bility and equivalence of various conjunctions of constraints, we derive a contradiction.

Proof:

1. The Proposition is trivially true when 6, belongs to some entailed canonical set
of £o. Therefore, we assume that it does not; i.e., §; contains some constant
not in D(%p), where D(f;) is the set of constants appearing in £5. W.lo.g., let
6, = (zi > v), and 0, = (z; > a).

2. Let us further assume that 6, does not entail 0:. Then, it must be the case that
01 =>02, and u > a.

3. Let 03 = (z; > b), where b is the smallest constant in D(%o) such that b > a.
Clearly, 63 = 6;; but 6, is the tightmost member of the entailed subset. This
means that 03 is not in the subset, so Zy 7 0.

4. If b < u, then 6, = 6;, and %, = 6, which is impossible. So, a < u < b. To

summarize:

b = (zi > u),u & D(tg), F(fo) = F(to) A by;

02 = (z: > a),a € D(tp), F(%) = F (%) A 02;

03 = (zi > b),b € D(%), F(fo) # F(to) Ab3,a < u < b, Be € D(%) :
a<c<hb.
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5. Let ¢ = (a < z; < u); note that 6, = (61 v ¢). By definition, (8; A ¢) is
unsatisfiable, which means that F(%5) A (6, A9) is unsatisfiable. F (To)A(01A9) =
(F(%0) A 61) A ¢ = F(to) A 6. Therefore, (F(fo) A ¢) is unsatisfiable.

6. Let ¥ = (u < z; < b). By the work of [KKR95] on r-configurations, F)Ad =
F(to) A ¢. Therefore, (F(fo) A %) is unsatisfiable.

. Let ¢’ = (u < z; < b); note that 6; = (6; v ¢’). Then:

~1

F(io) EF(?o)/\ol EF(Eo)A(03V¢’) E(F(t.o)/\03)V(F(?o)/\¢').

If F(%o) A ¢’ is unsatisfiable, then F(Zo) = F(%) A 6. This is a contradiction, so
(F(to) A ¢') must be satisfiable.

8. Note that ¢’ =9 V (z; = b). So,

F(to) A¢' = FlEo) A (¥ V (zi = b)) = (F(fo) A¥) V (FEo) A (z; = b)) =
F(fo) A (z; = b).

Therefore, F(%;) A (z; = b) is satisfiable.

9. So, it must be the case that the projection of P(C) onto z; includes b and excludes
the open interval between a and b. The projection of P(C) onto z; must also
include values in the open interval between b and {+00}; otherwise, £y = (z; = b),
and 0; would not be the tightmost subset member.

10. This is impossible, since the projection of P(C) onto z; must either be a single
point or an open interval. Qur assumption that ; = 8, has led to a contradiction.

Therefore, it must be the case that 6, = 4,.
a

It follows that all tuples that are equivalent have the same canonical form:

Lemma 3 Lett, be any tuple equivalent to to; let . be the canonical form of tg. Then,

t. is the canonical form of T;.

Lemmas 1 and 3 allow us to use canonical tuples as a unique representative of any

equivalence class of constraint sets:
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Theorem 1 Fach equivalence class E of consistent tuples contains a unique member
t. such that VE € E, . is the canonical form of t.

Since the definition of a canonical form is constructive, it is easy to check that the
canonical form for any generalized n-tuple can be found efficiently. A naive implemen-
tation of the check would rely on the following facts:

1. Given a generalized tuple  over n attributes, there are O(n?) distinct dense order

constraints over the same set of constants.

2. Checking each of these constraints for entailment is equivalent to checking its
negation for consistency with %.

3. The consistency check for dense order constraints can be implemented via a
shortest-path algorithm (Aspvall and Shiloach, 1980).

For a less naive implementation, we can avoid executing the shortest-path algorithm
every time by storing its results in a complete directed graph (Dechter et al., 1991).
We are now ready to define canonical relations and canonical databases consisting

of such canonical tuples:

Definition 12 1. A canonical relation over variables X = (Z1y---,2,) 15 a finite
set of canonical tuples over X. There erists a natural mapping ¢ from canonical
relations over X to DNF formulas over X, and a corresponding mapping o from

canonical relations to (finite or infinite) relations over D™:

$(7) =V F@, oF) =P
ter ter

2. A canonical database is a finite set of generalized relations.

4.3 The Algebraic Operations

We can now introduce the syntax and the semantics of an algebra over canonical re-
lations. As in Codd’s relational algebra [Cod70, Kan90], we define basic algebraic
operations projection (r), selection (s), natural join (™), union (U), difference (—), and
renaming (g), which map one or more canonical relations to a new one. Algebraic

queries over canonical databases are composed of these basic operations.
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tH1/ABC t,JABC t,JAC A C

LI1 16 Hi41 3 ;Lil 6 14 3

%1]5 5 6 %2(7 1 00 T(A,0) 56 Uo| 7 0O

= > < Prof= > 7 = < o= 7
<=L <=L > = ? =
>>= ?7 > =

Figure 4.1: Projection

For each operation OP on canonical relations, we claim that the result is a canonical

relation which has the following closure property:
if ¥ = OP(7y,...,T,), then o(7) = OP(o(71),...,0(Fs)),

where OP is the operation of the same name in the relational algebra in [Kan90], and
o is defined in Definition 12.
In our definitions of operators, we use the notation a(F) for the variables of a

canonical relation 7.

PROJECTION. If T is a canonical relation over variables X ,and Z is a subset of X,

then 7z(F) is the projection of ¥ on Z:

(1) a(w2(7)) = Z,
(2) 72(F) = {(¥[2]) : E e 7},

where ' = (#[Z]) is the restriction of £ to variables Z (Definition 7).

Syntactically, the variables in # have the same bounds and the same constraints
as the corresponding variables in f, and all other bounds and constraints are dropped.
(Note: Projection is restriction, just as for the standard relational algebra; this corre-
sponds to the notion of global consistency [Fre82, Dec92] for canonical tuples).

Example 8 Let ¥ = {%,,%;} be a canonical relation over varigbles (4,B,C). We
compute m(4,c)(F) = {£],5,} (see Figure {.1).

SELECTION. If ¥ is a canonical relation over variables X y Z is a subset of X, and %,
is a canonical tuple over variables Z, then SF(o) (T) is the selection on T by F(%,):

(1) alsp@,) () = X,
(2) Sp(z,) (F) = {t:forsome ' € 7, £ is the common tuple of ¥ and (%o T X)}
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>>= ? >= > > =

Figure 4.2: Selection

where (£, + X) and the notion of common tuple are defined below.

Definition 13 Let#, be a canonical tuple over variables Z , and X be a superset of Z.
Then, the extension of fy to X, written (£, 1 X) is the most general canonical tuple
over X such that tg = ((fo + X) | Z). In particular,

(¢) Vz € X such that = ¢ Z, the bounds on z are (=00 < z < +00);
(b) Vz,y € X such that eitherz € Z or y ¢ Z, By =(z?y).

The common tuple of two canonical tuples over the same variables is formed by
taking a union of the constraint sets for the two tuples, and putting it into canonical
form. If the union is inconsistent, we say that there is no common tuple.

Let  be the common tuple of £, and #;. Each entry in the table for f is obtained
by considering the pair of corresponding entries in the tables for t, and %3, and taking
the tighter one. The resulting tuple is then put into canonical form. Clearly, F(t) =
(F@&) A F(&2)), and P@E) = P(E) N P(Ey).

The following is an example of a Selection operation:

Example 4 LetT = {f;,%,} be a canonical relation over variables (A,B,C), and let t,
be a canonical tuple over variables (B, C), where Fto)) =(2<B<4 A3<C<T).
We compute Sr(#)(T) (see Figure 4.2). The result is the common tuple of t, and
to 1 (A4, B,C), since the other pair of tuples has no common tuple.
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L1 16 2 1,14 132
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ml=>< ? Bol=> 77
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>>=> 7 >=7

7?7 <= ? > 7 =

Figure 4.3: Join

NATURAL JoIN. If 7; is a canonical relation over variables X , T2 is a canonical
relation over variables Y, and Z = X UY, then 7, X7, is the natural join of ¥y and 7,:

(1) a(fiM7;) = Z,
(2) 717, = {t : for some £} € 7y,%; € 75, £ is the common tuple of (; 1 2)
and (5, 1 2)}.

Example 5 Let ¥, = {f,;,%,} be a canonical relation over variables (A,B,C), and
T2 = {f3,%4} be a canonical relation over variables (B, D). We compute 7\XT, (see
Figure {.3). It consists of two tuples, t; and %5, where t] is the common tuple of t, and

t3, and T, is the common tuple of T, and t3.

UNION. If 7; and 7, are canonical relations over variables X , then ¥1UT; is the union

of ¥, and T,:

(1) a(FIU?2) = X!
@rur,={t:tem orte7,}.

DiFrerRENCE. If 7, and ¥, are canonical relations over variables X, then 7|—~F, is

the difference of ¥; and 7,:
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(1) o(Fi—72) = X;

(2) If size of 72 = 0, 7)—T = 7y otherwise, the definition is recursive:

T1—Ty = Uﬁeﬁ {tupdif(?lr E2)_ S&tdif(?z, {?2}) : EZ € Fz},
where setdif is the standard set difference operator and tupdif is tuple difference, defined
next.

Definition 14 In the following definition, the word constraint will refer etther to a
variable constraint, or to the conjunction of a lower bound and an upper bound (an
interval constraint). Let t;, and ; be canonical tuples over variables X. Their tuple
difference, tupdif(t,,#;) is a set of tuples:

1. If there ezxists a pair of constraints such that 01 A 02 is not satisfiable, then
tupdif(t, &) = {£;}.
2. Otherwise, let 0, € ) and 0, € %, be a pair of distinct corresponding constraints

such that 01 A —0; is satisfiable; if such a pair does not ezist, tupdif(;,t;) = 0.

3. Let ¢ be the constraint such that (6, AB8y) = ¢o. Let {p1,..., o1} be the smallest
set of disjoint constraints such that (0, A =0;) =V(d1,-. -, k) k> 1.

4. Let®y (fg ) be obtained by replacing 6, in¥, (8, in%, ) by ¢o and putting the result
into canonical form. Similarly, let {f{, .. ,f’f} be obtained by replacing 6, in f,
by each ¢;, 1 < i < k, and putting the result into canonical form.

5. Then tupdif(¢, ;) = tupdif(t,, &5) U {&, ,ff}

Example 8 The difference of R, = {f,, t2} and Ry = {#3,%,}, shaded in Figure 4.4, is
computed as follows:
1. Ri—R; = (tupdif(fl,f3)-{?4}) U (tupdif(fg,'t';;) —{54}).

2. By item (2) of Definition 14, tupdif(t,,%;) = 0. By item (1) of Definition 14,
tupdif(ts, ts) = {£2}. So, Ri~Ry = (0—{f}) U ({f2}—{E4}) = tupdif(ss, &y).

3. By item (2) of Definition 14, 0, is (3 < z < 8), and 0, is (7<z < 15).
Then, by item(3), ¢g is (T < z < 8), and k = 2, where ¢1 is (3< z < 7), ¢y is
(z=7).
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R; ={t;, 5}
RZ ={ts, 4}

9 10 11 12 13 14 15

Figure 4.4: The difference of R; and R,.

4. By items ({) and (5) of Definition 14, 22 5(T<z<8 Al<y<4),
LisB<z<TAL<y<4),Bis(z=TAl<y<4),Lis(T<z<8A2<
y< 5)’ and tupdif(fg,ﬁ) = tupdif(fg, Zg) u {Eéy Eg}’

9. At the end, the following four tuples will be returned:

B<z<TAl<y<4),(z=7A 1<y<4),(7T<z<8 Al<y<2),(7<
z<8 A y=2).

RENAMING If T is a canonical relation over variables X yTE€X,y¢€ X, then 2yiz(T)
is the renaming in 7 of z to y:

(1) a(gylz(?)) = (X - {z}) U {y}a
(2) 2yjz(F) = {t: for some €T, f=F with replaced by y}.

For each operation OP on canonical relations, we claim that the result is a canonical

relation which has the following closure property:
if ¥ = OP(F,...,7), then o(F) = OP(a(71),-..,0(Fa)),

where OP is the operation of the same name in the relational algebra and o is defined

in Definition 12.
The closure properties of the operations are composed to obtain the closure of the

dense-order algebra:
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Theorem 2 For every relational algebra QUERY on unrestricted finitely representable
relations over D", the constraint algebra QUERY that uses OP's instead of OPs has

the property that:

o(QUERY (71, ...,7a)) =QUERY(o(r1),...,o(Fn))

Proof: See Appendix. o

4.4 Remarks on the Syntax of Dense Order Algebra

The tabular format introduced for the dense order constraints above was kept deliber-
ately simple. This syntax was inspired by the r-configurations, discussed below. It is
important to note that this syntax can be adapted to richer classes of constraints while
preserving its elegance and without incurring any performance penalties.

Two such classes are dense order constraints with “less-than-or-equal” and temporal

constraints:

e Dense order constraints with “less-than-or-equal” are all formulas of the form zly
or zfc, where z,y are variables, ¢ is a constant, and 8 is one of =, <, <, >, >.
To incorporate the <, > operators into the bounds, we tag each constant with a
flag that indicates whether the bound is open or closed. For example, the lower
bound for z in the constraint (z > ¢) is ¢~, whereas for the constraint (z>¢)it
is ¢*. Also, the operators <, > need to be added to the list of permissible binary
operators in the body of the table.

e The temporal constraints consist of the same types of constraints as dense order
constraints, except that the two-variable constraints specify the distance a be-
tween variables: (z < y + @), (z = y +a), where a 2 0. Thus, the dense order
constraints are a subclass of temporal constraints where a is always 0. To use
the dense order tabular format for the temporal constraints, we add the distance
constant into the table as a tag for the binary operators. For example, the above

constraints correspond to (z <, y), (z =4 9).

Note that the above two approaches can be combined, so that the operators include
<, 2, and both the bounds and the operators are tagged. With appropriate adjustments
to the definitions, all algorithms and results hold for these new tabular formats.
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To conclude this section, we would like to compare canonical tuples with a different
tuple construct used in [KKR95}, called r-configurations. There is a deliberate similarity
in the syntax of canonical tuples here and r-configurations, and in fact:

For a given finite subset Dy of D, an r-configuration is any canonical tuple
t over variables X where (a) Vz € X, I;, u, € Dy, and there does not exist
¢ € Dy such that I, < ¢ < uz; and (b) Vz,y € X, by # (2 y).

The time of checking whether a canonical tuple is an r-configuration is not constant
in the size of Dy, whereas it is constantfor checking whether a tuple is canonical. There-
fore an advantage of the canonical tuples here over the r-configurations of Kanellakis
et al. is that insertions are more efficient.

Furthermore, for an arbitrary conjunction @ of constraints over free variables X .
the size of the smallest set of canonical tuples ¥ over X such that § = Vier F(2) is
only dependent on the length of 8, whereas it would grow to be at least linear in the
size of Dy if ¥ was restricted to r-configurations. Nevertheless, if we choose to restrict
canonical relations to sets of r-configurations, it is important to note that all of the

definitions and lemmas in the previous section remain valid.
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Chapter 5

A Monotone Two-Variable

Linear Constraint Algebra

In this section, we consider the class of monotone two-variable linear constraints; the
dense order inequalities are a subclass of monotone constraints. We show that for sets
of these constraints, projections can be found in strongly polynomial time. Also, we
show that for monotone constraints, a globally consistent representation can be found
in polynomial time.

Projecting a constraint set £ over variables X onto S C X (see Definition 6) is also
referred to as eliminating X —S from £. We use a variant of the Fourier-Motzkin variable
elimination method to perform this operation. First, we restate the variable elimination
method as a graph algorithm. Then, we modify the algorithm by pruning certain edges
from the graph at each stage of variable elimination. We use graph parsing techniques
for regular path expressions to show that the performance of the resulting algorithms

is strongly polynomial.

5.1 Variable Elimination over Monotone Two-Variable Con-
straints

Monotone two-variable linear constraints are all formulas of the form z; 0 az;+b, where
8 € {<,=,<}, 71,z are variables and a,b are rationals; a must be non-negative. We

will simply say “monotone constraints” when referring to monotone two-variable linear

constraints. The dense order inequalities are a special form of monotone constraints.
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Figure 5.1: The set of edges (A) corresponds to the set of constraints (B).

For the rest of this chapter, we assume that 8 is <, though all results generalize to
other binary operations.

A set M of monotone constraints over a set of variables X can be represented by a
directed labeled multigraph M = (X, E), which we call a monotone constraint network.
There is a node in X for every variable in M , and an edge in E for every two-variable
constraint in M there are no reflexive edges.

Each edge in E is labeled with a monotone function: there is an edge e; from z; to
T, labeled f if and only if there is a constraint ¢ = (z1 < f(z2)) in M. We represent
f by the pair of its coefficients (a, b), where f(z) = az + b (see Figure 5.1); a > 0.

Each node z; € X is labeled with the upper and lower bounds for the corresponding
variable: low(z;) and high(z;). If {h<zi)y-..,(k < z;)} C M, then low(z;) is the
minimum of l;’s, with the default value of —oo. Similarly, if {(k1 > z:),..., (ke >
z;)} C M, then high(z;) is the maximum of h;’s, with the default value of +oc.

Definition 15 Two networks M, and M, are equivalent if the corresponding con-
straint sets are equivalent.

We define a composition operation on the edges of M as follows:

Definition 16 Lete; be an edge in M from z, to z, labeled fi, where fi(z) = az +5b.
Let e2 be an edge in M from z; to 3 labeled f,, where fo(z) = cz + d. Then, e; @ e,
is an edge from x| to z3 labeled f; ® fa, where:

(/1 ® f2)(z) = fi(fa(2)) = (ac)z + (ad + b).

The constraint corresponding to e; ® e is entailed by the conjunction of the con-

straints corresponding to e; and e;: (z1 £ fi(z2)) A (z2 < fo(z3)) = (2, <
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(f1 ® f2)(z3)). Therefore, adding e; ® e; to M results in an equivalent network. Note
that e; ® e; cannot be added to M when Z) = z3, since M may not have reflexive
edges. In this case, however, (z; < (f1 ® f2)(z3)) = (921 < h), where ¢ =1 — ac and
h = ac + d; let us call this constraint C.

There are four possible cases for C, depending on the values of g, h:

(a) g =0,k < 0: C is unsatisfiable and M is unsatisfiable.
(b) g =0,k > 0: C is trivially true and can be ignored.

(c) g > 0: C = (z; < h/g); high(z;) can be updated to h/q.
(d) g < 0: C = (z, > h/g); low(z1) can be updated to h/g.

The updates described above correspond to adding entailed constraints to the network,
so network equivalence is preserved.

We next show how to use the network representation of M to implement the Fourier-
Motzkin Elimination algorithm for computing the projection of M onto some subset S
of X, where |[S| > 1. We begin with an informal description of the original algorithm:
see [Sch] for a formal discussion.

Fourier-Motzkin Elimination The variables in X — S are eliminated one by one.
The set of constraints at the beginning of stage i is denoted by M;, where M, =M.
At stage ¢, the ’th member of X — S is eliminated; call it z;:

1. All constraints in which z; participates are partitioned into two sets, H and L.
H contains the constraints of the form z; < h, and L contains those of the form

z; > l, where h,! are either constants or monotone functions.

2. A new set of constraints LH is created as follows: for all [ €Land h € H, a new
inequality I < h is added to LH. The size of LH is |L] - |H|.

3. Miy, = (M;ULH) - (LU H).

If S =k, then My, is the desired set of constraints.
When implemented via monotone networks, the same algorithm is as follows:

Algorithm I. M is represented by a network M, where each node z; is tagged with
the constant bounds (I;, h;) and each edge e; is labeled with f;. The computation
proceeds by eliminating, one by one, all variables that are in X — S, while updating
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bounds and removing redundant constraints at each stage. If at any point we obtain a
node whose lower bound exceeds its upper bound, M is known to be unsatisfiable.
Here is the procedure for eliminating variable z;:

1. For each pair of edges (ej: ex), where e; ends at z; and e starts at z;:

if the head of e; is distinct from the tail of ek, add e; ® ex to M;
otherwise, use e; ® ex. to update the bounds on the head of €;

2. For each edge e entering z; (labeled f), where z; is the head of e:
if f(h:) < hj, replace k; by f(h;).

3. For each edge e leaving z; (labeled f), where z; is the tail of e:
if l; > f(le), replace It by f1(1;)

4. Remove from M the node z; and all edges adjacent on z;. O

The edges that are in M at the end of variable elimination correspond to all simple
paths p in the original network such that:

p starts and ends at nodes from X — S; all other nodes in parein S.

Note that the number of such paths can be exponential in the size of M. We will show
that we can prune most of the edges created at each stage of the node elimination
algorithm, while preserving network equivalence.

This is similar to the approach of [HN94], where the Fourier-Motzkin algorithm is
modified to solve the feasibility problem efficiently. There, the equisatisfiability of the
constraint sets is preserved at each stage; this condition is necessary to guarantee cor-
rectness of the feasibility algorithm. However, equivalence of the sets is not preserved,
making the optimizations of Hochbaum and Naor inapplicable to the projection prob-

lem.

5.2 Modifying the Variable Elimination Algorithm

In this section, we tag each edge of the monotone network with intervals, called a
domain and a range. These intervals, computed at the beginning of each stage of
variable elimination, are used to reject most of the new edges produced during the
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stage. This modification to the variable elimination algorithm allows us to achieve
strongly polynomial performance.
Since there is a one-to-one correspondence between binary monotone constraints

and edges in a monotone network, we will use these terms interchangeably.

5.2.1 Domains and Ranges of Monotone Constraints

Let us consider, for two arbitrary nodes z; and z, in M, the set of all edges (cluster) £
from z to z3, as in Figure 5.1; |£] = k > 0. The labels of the edges are linear functions
{f1;---1 fx}. We assume they are distinct, so as to ensure that the corresponding
constraints are not equivalent. (Note that the f’s need not be independent).

Given an edge e; labeled f;, we define the domain of ¢; to be the set of values for
z3 over which f; is the minimal function:

Definition 17 Let e; be an arbitrary edge in €, and f; be its label. A value v is in
the domain of e; if and only if for every edge e’ € £ (with label f'), f(v) < f'(v). If
there are no values on which f; is minimal, the domain of e; is empty (denoted by ¢).
We say that a domain is trivial if it is either empty or its upper bound equals its lower
bound (i.e., it consists of one value); otherwise, it is non-trivial.

Lemma 4 The non-trivial domains for the edges in £ form a set of consecutive inter-

vals covering the whole z,-azis.

Proof: Due to the linearity of f;s, any arbitrary pair of distinct functions f; and f,
can intersect in at most one point. This means that all the domain are disjoint, except
at the endpoints. Due to the monotonicity of fi’s, every value v belongs to at least one

domain. a

We also associate a range with each edge:

Definition 18 Let ¢; be an arbitrary edge in £, and fi be its label. A value v is in the
range of e; if and only if £~ (v) is in the domain of e;.

It is easy to see that the ranges form a set of consecutive intervals covering the whole
z1-axis, and that range(e;) < range(e;) if and only if domain(e;) < domain(ez), where
" > designates a natural ordering of intervals (Figure 5.2).
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Edge Coustraint Range Domain

e (XpSxp+1) [, 1] [=0,2]
e (xS2xmp+1) [1.4] (2,51
3 (X1 S.5x3+3) [4,+00] [5, 40o]
e (xpS3xp-1D) € €

(A) ®)

Figure 5.2: Domains and ranges: graphical (A) and tabular (B) representations.

5.2.2 Redundant Constraints

When we have an edge e in M whose domain is trivial, e corresponds to a redundant

constraint:

Proposition 1 Removing any edge with a trivial domain from the network at any

point in Algorithm I results in an equivalent network.

Proof: When we have an edge e in M whose domain is trivial, e corresponds to a

redundant constraint, and M is equivalent to M — e. a

Let us now consider what happens when we eliminate some node z,. Then, for all
pairs of nodes z; and z3, we compose each edge from z, to z; with each edge from
T2 to z3, and add the resulting edge to M. Let & be a cluster of edges from z; to
zq, with [&]| = 7, and &, be a cluster of edges from z; to z3, with |£;| = k. We now
show that at most j + k — 1 of the jk edges formed by pairwise composition are not

redundant.

Lemma 5 Let e, = (21,22, fi) and e; = (z3, z3, f2) be two arbitrary adjacent edges;
let v be some real number, and let v = f, (v). v belongs to the domain of e; ® e, only
if u belongs to the intersection of the domain of e, and the range of es.

Proof: Case 1: u is not in the domain of e;. From the definition of domain, there ex-
ists en edge e3 = (21, T2, f3) such that f3(u) < fi(u). Then, (fi ® £)(v) = fi(f2(v)) =
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fi(u) > f3(u) = fa(f2(v)) = (® f2)(v)- So, v is not in the domain of (e1 ® e2). Case
2: uz is not in the range of e;. From the definition of range, we know that v is not in
the domain of ez, and there exists en edge e4 = (z, z3, f1) such that fi(v) < fo(v).
Then, (fi ® f2)(v) = fi(f2(v)) > A(f1(v)) = (fi ® f1)(v). So, v is not in the domain
of (e; ® e3). a
Corollary 1 Lete, = (z;, z2, f1) and e; = (z2, z3, f2) be two arbitrary adjacent edges.

e1 ®ez is not redundant if and only if the intersection of the domain of e, and the range

of ez is non-trivial.
We are now ready to assert that most of the edges can be pruned:

Theorem 8 Let &, be a cluster of edges from z to z,, with &1 = j; let & be a
cluster of edges from z; to z3, with |E;| = k. Less than j+ k of the jk edges formed
by pairwise composition of £ and &, are not redundant.

Proof: In this proof, boundary point denotes a startpoint or an endpoint of an interval
on the real axis, excluding infinity. Note that a set of n non-trivial disjoint intervals
covering the real axis has n — 1 boundary points; if some intervals are trivial, there are
even fewer points.

Let Z; (I;) be the set of intervals corresponding to the domains (ranges) of the
edges in & (£;); let S; (S2) be the set of its boundary points. Let T3 be the pairwise
non-trivial intersection of Z; and Z,:

Li={INI':IeL),I'eL,|INnI|>1}.

I3 is a set of disjoint non-trivial intervals covering the real axis; let S3 be the set of its
boundary points.

Given any two intersecting intervals I = (v;,v;) and I' = (u1, uz), the boundary
points of I'N I’ will be among {vy,v2, u1, uz}. Therefore, S3 C S; U S, and |S3] <
|S1| +1S2| £ (j —1) 4+ (k - 1). This means that Z3 can have at most j +k —1 intervals;
combined with Corollary 1, this completes the proof. a

5.2.3 Monotone Projection Algorithm

We now describe the modified algorithm for computing the pro jection of some monotone
constraint set M onto some subset S of variables, |S | 2 1. Note its similarity to
Algorithm I.
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Algorithm II. M is represented by a network M, where each node z; is tagged

with the constant bounds (I;, h;) and each edge e¢; is labeled with f;. The computation

proceeds by eliminating, one by one, all variables that are in X — S , while updating

bounds and removing redundant constraints at each stage. If at any point we obtain a

node whose lower bound exceeds its upper bound, M is known to be unsatisfiable.
Here is the procedure for eliminating variable z;:

1. For each variable z; distinct from z;:
compute the domains and ranges for the clusters E(ziz;) a0d Ez; zyy-

2. For each pair of edges (e;, ex), where e; ends at z; and et starts at z;, such that

the intersection of domain(e;) and range(er) is non-triviak

if the head of e; is distinct from the tail of ey, add e; ® e to M;
otherwise, use e; ® e to update the bounds on the head of €;

3. For each edge e entering z; (labeled f), where z; is the head of e:
if f(h;) < hj, replace h; by f(hg).

4. For each edge e leaving z; (labeled f), where zj is the tail of e:
if I; > f(lk), replace I by f~(l;)

5. Remove from M the node z; and all edges adjacent on z;. O

Except for the computation in Step 1 and the check of domains and ranges in Step
2, this algorithm is the same as Algorithm I. This, combined with Proposition 1 and
Corollary 1, gives us the following theorem:

Theorem 4 Algorithm II produces a network equivalent to that of Algorithm I.

Proof: Algorithm II produces the same constraints as Algorithm I, except for the
constraints that result from the composition of two edges whose domain and range
respectively do not intersect. This, combined with Proposition 1 and Corollary 1, gives
us the theorem. a
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5.3 Strongly Polynomial Time Complexity

In this section, we show that the time complexity of monotone projections is strongly
polynomial. Furthermore, we show that the time complexity of computing globally
consistent sets of monotone constraints is also strongly polynomial.

5.3.1 Time Complexity of Eliminating One Variable

In this subsection, we consider the time complexity of performing one stage of Algo-
rithm II in Section 5.2.3. We assume that we are eliminating z;, and that there are
n edges incident on z;. By making use of convez hulls algorithms from computational
geometry [PS], we show that the time complexity is O(nlogn).

We start by observing the following:

the non-trivial edges of a given cluster correspond to the facets of the convez
hull for the set of all points defined by the cluster.

Therefore, the problem of determining which of the edges in a ciuster are non-trivial is
equivalent to the problem of computing the convex hull for a set of points defined as
an intersection of half-planes. For k half-planes, such algorithms have time complexity
O(klog k) [PS].

Each facet of the convex hull is defined by the pair of vertices that bound it. Given
a non-trivial edge, its domain and range can be obtained directly from the coordinates
of the vertices bounding the corresponding facet (see Figure 5.1). This gives us the
following:

Proposition 2 In Step 1 of Algorithm II, the domains and ranges can be computed in

time O(nlogn).

The set of domains of all edges entering z; (of size k;) can be sorted in time
O(k1logk,); similarly with the set of ranges of all edges leaving z; (of size k,). It
remains to check which of the domain-range pairs have a non-trivial intersection, which
is equivalent to a merge of the two sorted lists, and can be done in O(k, + k;) = O(n)
time. This gives us the following:

Proposition 3 In Step 2 of Algorithm II, the non-redundant edges can be determined

in time O(nlogn).
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We are now ready for the main result:
Lemma 6 The time complerity of eliminating a node with n incident edges isO(nlogn).

Proof: It is clear that the time complexity of Steps 3 through 5 is O(n). By summing
the time complexities of all steps (Propositions 2 and 3), we obtain the desired result. O

5.3.2 Time Complexity of Monotone Projection

Algorithm II finds the projection of M onto some subset S of its variables. This is
equivalent to finding some set of simple non-trivial paths in M;

Definition 19 Let p be a path in M; p = (e; .. -ex). The domain of p is defined as the
domain of e1 ® . . .Q ex; similarly, the range of p is defined as the range of 1 ® ... R eg.

We say that p is non-trivial iff its domain is non-trivial.

In this subsection, we show the connection between simple non-trivial paths and
path ezpressions [Tar8la, Tar81b]. We start with an introduction to path expres-
sions [Tar81a, Tar81b].

Let M = (X, E) be a directed multigraph; any path in M can be regarded as
a string over the alphabet E. The set of all paths in M forms a regular language
(see [AHU] for an introduction to regular languages). The path ezpression over M
is a regular expression that defines this regular language; its size is the length of the
expression, with all subexpressions unfolded.

Lemma 7 Let P be the path ezpression over M. Then, the number of simple non-
trivial paths in M is not greater than the size of P.

Proof: Let paths(P) represent the set of simple non-trivial paths in the language of
P; let size(P) represent the size of P. We claim that | paths(P)| < size(P); the proof
is by structural recursion on P.

Case 1 (P = e;, for some edge ¢; in M): size(P) = 1, and paths(P) = {e;}-
Therefore, | paths(P)| = 1, so the claim holds.

Case 2 (P = Py, for some regular expression P1): size(P) = 1 + size(P,), and
paths(P) = paths(P;) (since no path containing a loop can be simple).

Therefore, | paths(P)| = | paths(P;)|. By the inductive assumption, |paths(P;)| <
size(P;), so the claim holds.



Case 3 (P = P,UP;, for some regular expressions P; and P): size(P) = 1+-size(Py)+
size(Pz), and paths(P) = paths(P1) U paths(P,).

Therefore, | paths(P)| < |paths(P1)| + | paths(P,;)|. By the inductive assumption,
| paths(P1)| < | size(Py)| and paths(P2) < size(P,), so the claim holds.

Case 4 (P = P, - P;, for some regular expressions P; and P3): size(P) = 1+size(P;)+
size(P;), and paths(P) C {p1p; : p1 € paths(Py),p; € paths(P;), and the intersection
of the domain of p, and the range of p, is not trivial}.

By the definition of path expressions, all paths in P, share the same starting node;
they also share the same ending node. The same is true of the paths in P, where the
starting node of P; is the ending node of P;. Therefore, by Lemma 3, | paths(P)| <
| paths(Py)| + | paths(Pz)|. By the inductive assumption, | paths(Py)| < size(P;) and
| paths(Pz)| < size(P;), so the claim holds. a

It follows from Lemma 7 that the number of simple non-trivial paths in M is poly-
nomial in the size of M whenever the size of the path expression over M is polynomial.

We are now ready to prove the following theorem:

Theorem 5 The performance of Algorithm IT is strongly polynomial in the size of M
whenever the size of the path ezpression over the corresponding monotone network is

polynomial in the size of M.

Proof: Let the constant Q represent the number of simple non-trivial paths in M.
The number of edges incident on any one node at any stage of Algorithm II will never
exceed Q. Therefore, from Lemma 6, the time complexity of each stage of Algorithm
II'is O(QlogQ).

Algorithm II consists of O(k) such stages, where k is the number of variables in X.
Therefore, its time complexity is O(kQ log Q), which is polynomial in the size of M. O

5.3.3 Globally Consistent Constraint Sets

We have shown in the previous section that computing projections of monotone con-
straint sets has polynomial time complexity, where the polynomials do not depend on
the coefficient sizes, i.e., strongly polynomial. In this section, we show that it is possi-
ble, in strongly polynomial time, to obtain a globally consistent (Definition 8) monotone
constraint set equivalent to a given one.
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If we are given a constraint set E over variables X » We want to somehow preprocess
E so that for the resulting set E’, the pro jection onto any subset of X can be computed
by simply collecting the constraints involving these variables. It is trivial to construct
E’ by taking the union of the projections of E onto all subsets of X ; however, this is
an exponential-time procedure. We now show that for two-variable constraints (where
each constraint involves et most two variables), it suffices to project the constraint set
onto the subsets of size 1 and 2.

Though E[S] is fixed for a given E and S (Definition 7), there may be different
ways to represent ws(E) (Definition 6). We will abuse the notation and assume some
arbitrary fixed representation for 75(E), perhaps by fixing the algorithm that computes
it. It is easy to see that whenever E; = E, (i.e., their solution sets are equal), 7g(E,) =
7s(E) for all S. It is also easy to see that for all E and all S, any solution to ws(E)
satisfies E[S]: we know that some extension of this solution will satisfy E, and E[S]is
a subset of E.

Lemma 8 Let E be a set of two-variable constraints, and E' be constructed from E as

follows:
E' = U(rs(E)), for all subsets S of X where S| <.
Then, the following is true:
1. E'=E (i.e., their solution sets are equal).

2. For all subsets S of X, ns(E') = E'[S].

Proof: First, we show that any assignment satisfying E satisfies E’. Let C be an arbi-
trary constraint in E'; w.lo.g., let C involve the variables z) and z,. By construction,
it must be the case that C € ,,,(E). Let p be an arbitrary assignment satisfying E;
by definition, the restriction of p to {z;,z,} satisfies Tz,zo(E). Therefore, p satisfies
C.

Next, we show that any assignment that does not satisfy E also violates E’. Let
p be an arbitrary assignment that does not satisfy E; then, there exists a specific
constraint C' € E such that p satisfies ~C. W.lo.g., let C involve 2 variables, z; and
z2; by definition, p does not satisfy Tzyz,(E). Therefore, p cannot satisfy E’.

We know from earlier in the subsection that any assignment satisfying 7g(E") sat-
isfies E’[S]; it remains to prove the other direction. Let S be an arbitrary subset of X.
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By construction, E'[S] = U(rs,(E)), for all subsets S; of S where [Sil < 2. Let p be
any assignment satisfying E'[S]; then, p satisfies ws;(E) for all S; C S with |S;| < 2.
Let C be a constraint in E that does not involve any variables outside of S; w.lo.g.,
let C involve 2 variables, z; and z;. We know that p satisfies 7, ,, (F); therefore, p
satisfies C. Since we’ve just shown that p satisfies all constraints in E that involve only
S, it follows that p satisfies 7s(E). And since E’ = E, we can conclude that p satisfies
Ws(E’). a

Note that Lemma 8 is very general; it holds for all sets of 2-variable monotone
constraints, not just monotone ones. The same is not true of the final theorem of this

chapter:

Theorem 6 For any monotone two-variable linear constraint set with a polynomial-
size path ezpression, a globally consistent representation can be found in strongly poly-

nomzial time.

Proof: Given a set X of k variables, there are O(k?) subsets S € X where [S] < 2.
By Lemma 5, we can find the projection of the constraint set onto each S in strongly

polynomial time. By Lemma 8, the union of the resulting sets is globally consistent. O
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Chapter 6

Variable Independence and

Aggregation Closure

A query language resulting from adding aggregation to a constraint query calculus
[KKR95] or algebra [GK96] should be well behaved. However, unrestricted use of
aggregation may fail to produce a closed language, as shown in [Kup94].

In this section, we approach this problem by restricting the way aggregate opera-
tors are used in constraint queries. We show that under certain natural restrictions,
captured by the notion of variable independence and reflecting the way aggregation is
often used in real databases, we can add aggregate operators to relational algebra, and
still get a closed language.

It is an open issue whether variable independence can also be defined for other query
languages with aggregation (e.g., relational calculus, Datalog [MPR90, RS92, SSRB93,
VG92, Rev95]). Also, it is possible that the variable independence can be applied to
provide closure conditions for CQA +fizpoint.

6.1 Background

As shown in [Kup94], relational algebra over linear constraint databases is not closed
under aggregation using area. The typical example where a query is not closed is where
we have a region whose boundaries vary with time, and we want to know how the area of
the region varies with time. While there are applications where one might conceivably
need the full generality of such a language (and for which the closure problem would
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Land

Name | Time owned

Bob | ti<t<t, | Cix, y)
Bob | ty<t<ty | Calx, ¥)
Joe | <<ty | Cax.y)
Ann | gty | Cux, v

Figure 6.1: A geographical database with cadastral information.

be unavoidable), this is not the case for many applications.

Consider a geographical database with cadastral information, i.e., information on
land ownership and land boundaries. Suppose we are interested in finding the area
of the land owned by each person at all points of time. Land ownership does not
vary continuously—pieces of land are acquired by individuals at single, discrete points
of time. As a result, the attributes of the relation can be grouped into ‘independent’

subsets.

Example 7 The constraint relation in Figure 6.1 can be represented by a set of gen-

eralized tuples of the form
n=NAt <t<t3AC(z,y)

where C(z, y) are constraints that describe the region owned by N between times t, and
t2. If we want to find the area of the land owned by N as a function of t, we can

represent the result as a set of generalized tuple of the form
hh<t<tzA(n=N)A(z=A)
which is clearly finitely representable. O

The important property of the tuples in the above example is that the constraints
on z and y — those on which the area computation is performed — are separate from
the constraints on n and t. Many typical uses of area computation in GIS systems have
this property, which we will define as variable independence.

This chapter is organized as follows. In section 6.2, we review the basic concepts of
aggregation. In section 6.3, we define the notion of variable independence that is central
to the notion of restricted aggregation. In section 6.5, we define the relational algebra
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with restricted aggregation and show that it is closed. In section 6.7, we present
some results about inferring variable independence in relational algebra expressions.
The extended abstract of the work presented here, written with Gabi Kuper and Jan
Chomicki, has appeared in [CGK96].

6.2 Aggregation in Constraint Databases

We view a set of variables {z), ..., zx} as a relation schema and generalized relations
over {zy, ..., i} as instances of this schema.

In database theory, a k-ary relation r is a finite set of k-tuples (or points in a k-
dimensional space) and a database is a finite set of relations. However, the relational
calculus and algebra can be developed without the finiteness assumption for relations.
We will use the term unrestricted relation for finite or infinite sets of points in a k-
dimensional space. In order to be able to do something useful with such unrestricted
relations, we need a finite representation that we can manipulate. This is exactly what

the generalized tuples provide.

Definition 20 Let & be a class of constraints interpreted over domain D, r a gener-
alized relation of arity k with constraints in &, let &, be the formula corresponding to
r with free variables z,,...,zi. The generalized relation r represents the unrestricted
k-ary relation which consists of all (a,,.. ., ar) in D* such that or(a, ..., ak) is true.
Two generalized relations over the same set of variables are equivalent if they represent

the same unrestricted relation. O

With some abuse of notation, we will use the same symbol for a generalized tuple
(relation) and the unrestricted relation it represents.

A query ¢ on a constraint database is a first-order formula, whose predicates are
constraints or generalized relation symbols. The semantics of a query, are, intuitively,
the mapping from unrestricted relations to unrestricted relations defined by this for-
mula. Such a query is well-defined if the result of substituting a generalized relation for
each occurrence of the corresponding relation symbol, is equivalent to some generalized
relation over the same constraint domain.

A query language L is closed for a class of constraint databases C if the result of
any query belonging to L evaluated over a database from C can be finitely represented
as a generalized relation from C.
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We assume that the constraint language is closed under negation. Moreover, it
should admit effective quantifier elimination. These assumptions are necessary for
the closure of relational algebra operations. For the rest of this section, we consider
only those constraint languages that satisfy the above conditions. In particular, we
concentrate on dense order and lLinear arithmetic constraints; the latter are of the form
@1Z1+ - -+ GmZm 0p ao With op € {<, <, =} and with rational coefficients aq, . . ., a,,.

As shown in [Kup94], Klug’s relational calculus and algebra with aggregation can
be extended to constraint databases with minor modifications, at least as far as the
underlying semantics on unrestricted relations is concerned. The definitions in [Kup94]

are as follows:

Definition 21 An aggregate function f maps (possibly infinite) relations with an ap-
propriate schema to the domain D of the constraints. For every relation S over at-
tributes X, if S’ is a constant ezpansion of S over X UY, i.e., if there ts a projection
such that nx(S') = S and 7y (S’) contains ezactly one tuple, then the function f' such
that f(S) = f'(S") is also an aggregate function.

For our purposes here, it is sufficient to assume that the algebra is extended by the

following operator for every aggregate function:

Definition 22 Let r be an unrestricted relation over the set of attributes U, X C U
such that |U — X| = n, and f is an aggregate function of arity n which outputs a
constraint over attributes Y. Then, the aggregate operator (X, f), when applied to r,
produces a new relation r’ with attributes X UY :

r{X, f) = {¢[X],p)lterA
Ny = f({t'[U - X]|t' € r AE'[X] = {X]})}.

Intuitively, the above corresponds to grouping the tuples in r on X and applying the
aggregation operator to the remaining attributes in each group. For more details,
including the construction of an equivalent calculus, see [Kup94).

Generalized relational algebra with aggregation may fail to be closed even for dense
order constraints [Kup94].

Example 8 Consider the instance of R in Figure 2.1 , consisting of a single generalized
tuple:
O<z<y<z<l.
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The query R (z,area, ) evaluates to a binary relation S|z, a) where S(z,a) holds iff
a = 0.52%. The latter constraint cannot be represented using order constraints (or linear

arithmetic constraints).

We propose to provide a restriction on applying the aggregate operator to a relation,
and show closure for the resulting class of relational expressions. In particular, we will
define the notion of variable independence, and stipulate that X and U/ — X must be
independent in r (see Definition 22). So, the expression R (z, area,,) from the above
example would not be permitted by our restriction.

It should be noted that the relation r in Definition 22 can be either extensional or

intensional. We show how to maintain the restriction in both of those cases.

6.3 Independence of Variables

In this section, we define variable independence for generalized relations as well as for
relational schemas. In the following definitions, we assume that R is a generalized

relation over attribute set U.

Definition 28 Let X,Y C U and t be a generalized tuple in R. We say that X and Y
are independent in ¢ if:

Txy(t) = mx(t) ¥ 7y (t);

they are related in t otherwise.

Clearly, variable independence in a tuple is decidable. Also, note that variable
independence in a tuple ¢ may be viewed as an embedded join dependency [Kan90]
holding in the unrestricted relation corresponding to ¢.

Definition 24 We say that X and Y are independent in R if there ezists a relation
R’ equivalent to R where X andY are independent in every (generalized) tuple of R'.
Otherwise, we say that they are related in R.

Example 9 We return to the generalized relation in Figure 6.1, consisting of tuples
of the following form:
Lh<t<taA(n=N)AC(z,y)
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Figure 6.2: Instance (A) is equivalent to instance (B).

where C(z,y) is a conjunction of linear arithmetic constraints describing a piece of
land ouned by person N over the time interval (t1,t2). In this relation, the attributes

sets {N'}, {t}, {z,y} are all independent.

Note that for classical relations, where each tuple always represents exactly one
point, it is trivially true that all subsets of variables are independent in every relation.
In general, however, decidability of variable independence is far from obvious. As the
next example shows, it is not sufficient to check the individual tuples in order to
verify variable independence. In Section 6.6, we show that for linear constraints, there
is an effective method to tell whether two variables are independent in an arbitrary
generalized relation.

Example 10 The instance of R(z,y) in Figure 6.2 (A ) contains two tuples:
2<y<4n0<z<y;
2<z<4N0<y< 2.
In each tuple, z and y are related. However, there is an an equivalent relation (Fig-
ure 6.2 (B)) where this is not the case:
2<y<4A0Lz <4
2<z<4N0<y<2

To conclude the section, we define variable independence for the schema of a gen-
eralized relation. Here, variable independence is viewed as a restriction, to be satisfied
by all relations that satisfy the schema. In this way, we enrich the relation schema
beyond the standard attribute name and type information.

Definition 25 We say X and Y are independent in the relational schema R if every
relation satisfying R preserves the independence of X andY; X and Y are related in
R otherwise.
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In Section 6.6, we show how to test whether a generalized relation satisfies the
independence restrictions on its schema. This test, performed upon relation updates,
ensures that we maintain the independence restrictions on the schema of all relations

in the constraint database.

6.4 Semantic vs. Syntactic Independence

The above definitions of variable independence are semantic: for each generalized tu-
ple ¢, they consider the semantics of £. One can also define variable independence

syntactically:

Definition 26 Let X,Y C U be disjoint, and t be a generalized tuple in R. We say
that X and Y are syntactically independent in ¢ if £ is a conjunction of C1(XUZ) and
C:(YUZ), where Z =U~X -Y, and C(X) denotes a conjunction of constraints over
X.

The above definition extends to relations, just as for semantic variable independence.
In Section 6.5, we will impose a variable independence condition on the schema of

those relations to which aggregation may be applied, and show that for all reasonable

constraint classes, relational algebra with restricted aggregation is closed. The proof

will rely on the following lemma:

Lemma 8 X and U — X are semantically independent in R iff they are syntactically
independent in R.

Proof: The “if” direction is straightforward. We prove the “only if” direction. By
Definition 24, there exists R’ equivalent to R where for every tupletin R, t = mx(t) X
Ty-x(t). Since the constraint class admits quantifier elimination, both projections are
representable as finite disjunctions of conjunctions of constraints; the first one is over
X, the second over U — X. By pairing up the disjuncts from the two projections, we
obtain a finite set of tuples whose disjunction is equivalent to ¢, where X and U — X
are syntactically independent in all tuples. By repeating this construction for every
t in R, we obtain a relation equivalent to R where X and U — X are syntactically
independent in each tuple. ]
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Note that the above lemma does not generalize to arbitrary sets of attributes; in
general, semantic independence does not imply syntactic and vice versa. For exam-
ple, {z} and {y} are semantically (but not syntactically) independent in the singleton
relation consisting of the tuple

0<z<1IANO<y<lAz=z+uy.

On the other hand, {z} and {y} are syntactically (but not semantically) independent
in the relation consisting of the tuple

z<yAy<z=.

In the rest of this chapter, independence will mean semantic independence, unless

explicitly stated otherwise.

6.5 Restricted Aggregation

In this section, we impose a variable independence condition on the schema of those
relations to which aggregation is applied. We show that for all reasonable constraint
classes, relational algebra with restricted aggregation is closed; i.e., the result of any

relational algebra expression can be represented as a generalized relation.

Definition 27 The relational algebra with restricted aggregation consists of the stan-
dard relational algebra, together with ezpressions of the form e (X, f), provided that X
and U — X are independent in the schema of e (where U is the set of attributes of e).

Example 11 Let L be the cadastral relation in Figure 6.1. The relational algebra query

L ({11 2}1 are&!ﬂ)

lists the area of land owned by each person at all times. Since the attributes sets
{N}, {t}, {z,y} are all independent, this query satisfies our restriction on the use of

aggregation.

Theorem 7 Relational algebra with restricted aggregation is closed for constraint databases
whenever the constraint class admits quantifier elimination and is closed under nega-

tion.
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Proof: Let e be a relational expression on the given schema, with attributes U, and
let X be a subset of U such that the expression e (X, f) is permitted in the language,
and let e evaluate to the relation Ry. We must show that R, (X, f) is representable as
a generalized relation in our constraint language.

By our restrictions on the use of aggregation, combined with Lemma 9, there must

be R equivalent to Ry, of the form

R= \/ (C'ADY)
1<i<t

where each C* (D) is a conjunction of constraints containing only variables from X
(U-X). Foreachi,let C* = c{A---Aci,. LetC = {c},~ci : 1 <i< 1,1 <k < ;). Since
the constraint language is closed under negation, C is a valid constraint set (containing
all constraints over X in R, and their negations). We refer to a non-empty subset of C
as a C-set; for any C-set S, we denote the conjunction of its constraints by ¢g.

A C-set S is minimal if it is satisfiable and there does not exist a satisfiable S’
such that S # S’ and ¢sr = ¢ (clearly, every satisfiable C-set is either minimal or is
implied by some minimal one). Note that the models of minimal C-sets are disjoint:
suppose that some assignment z satisfies two C-sets S; and Sz (where ¢s, # ¢s,), and
let S3 = S; U S,. We know that S is satisfiable, ¢s; — ¢s,, and ¢s, — ¢s,. Since
¢s; cannot be equivalent to both @5, and ¢s,, at least one of {51, S2} is not minimal.
Further, note that any assignment T satisfying some C* also satisfies some minimal
C-set. If we suppose otherwise, then each minimal C-set contains a constraint falsified
by Z; let So be the set of the negations of all such constraints (Sg is a C-set satisfied
by Z). So is not equivalent to any minimal C-set, and is not implied by any minimal
C-set; this is impossible.

A C-set S is relevant if it is minimal and there exists C* such that ¢s — C*. Given
a relevant C-set S, we denote by Ag the set of assignments to U — X that satisfies some
D! such that és — C*'. We now define the following relation R’, over variables X UY:

R' = {(Z,7) : 7 satisfies some relevant S,5 = f(As)}.
Clearly, R’ is finitely representable:
R= '\ ¢sA(@= f(4s)).

S relevant
We complete the proof by showing that R’ is equivalent to R (X, f):

R'={(z,7) : T = ¢[X] for some t € R,¥ = f(Gz)},
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where Gz = {t[{U ~ X] : t € R, T = t[{X]}. This equivalence follows from the following

facts:

(a) 7 satisfies some relevant S iff Z = ¢[X] for some ¢ € R;

(b) given Z satisfying some relevant S, f(As) = f(G3).
a

Note: The above proof is different from the original proof in [CGK96], which was
due to G. Kuper.

To make restricted aggregation practical, we must be able to determine effectively,
for a generalized database {R,, ..., R,} and a relational expression e (X, f), whether X
and U — X are independent in e. If e is some database relation R;, this is accomplished
by stipulating that X and U — X are independent in R;’s schema (see Section 6.3).
Otherwise, if e is an arbitrary relational expression, variable independence can be
inferred at query compile-time (see Section 6.7), under the assumption that all schema
restriction for {R,,..., R,} are properly maintained.

Note that the above is accomplished without affecting the run-time query perfor-
mance; as a result, we believe that restricted aggregation is a very promising approach

to assuring the closure of queries with aggregation.

6.6 Testing variable independence

As mentioned at the end of Section 6.3, given a relation R whose schema restricts X and
Y to be independent, we must be able to test whether R satisfies the restriction. Clearly,
if X and Y are independent in each tuple of R, the answer is positive. Therefore, one
way of enforcing independence restrictions on R’s schema is by stipulating that each
tuple satisfies these restrictions.

To allow the user maximum flexibility, it is desirable to have an algorithm for
testing, given an arbitrary R with attribute set U/ , and arbitrary X,Y C U, whether X
and Y are independent in R. In this section, we provide such an independence test for
linear constraint databases. As a side effect, this test generates on success a relation R
equivalent to R where X and Y are independent for all tuples.

Unlike the work of [Las90], where all tests are performed on constraint sets (i.e.,
tuples), this test is for disjunctions of constraint sets (i.e., relations). The independence

test consists of three steps:
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Step 1. The first step of the test is to create the boundary representation B(R) for
the polyhedral object consisting of the feasible points of R, i.e., the points whose coor-
dinates have values satisfying R’s formula ¢g. This is done using standard techniques
from CAD, summarized below.

Each generalized tuple ¢ corresponds to a convex set P; of n-dimensional points,
bounded by n-dimensional half-planes. The boundary representation of P, is computed
by a convex hull algorithm, such as the “gift wrapping” method in [CK70].

B(R) is obtained by unioning together the boundary representations of the indi-
vidual tuples, a standard Solid Modeling operation. See [FvDFH] for an introduction
to polyhedral Solid Modeling, or [MM] for details of the algorithms. These algorithms
extend to an arbitrary number of dimensions, as in [PS86].

Step 2. The next step of the algorithm is to create a vertez grid partitioning R of
R.

We project the set of B(R)’s vertices onto each of the n axes, and sort the k;
obtained values, for 1 < j < n. This partitions each axis into (kj + 1) intervals:

{(—OO, U]), (vh 02)1 sy (vkj, +°°)}-

In turn, this induces a partitioning of the n-space into ((k1+1) x -+ X (kn + 1)) n-
dimensional rectangles, where each rectangle is the cross-product of the corresponding
intervals. We denote this set of rectangles by Vg, the vertez grid of R.

The intersection of each rectangle in Vr with B(R) consists of 0 or more disjoint
point sets. These point sets are convex, since no rectangle can contain a vertex of B(R)
as its interior point; therefore, each one corresponds to some tuple t;. The set of these
tuples, denoted by R, is the vertez grid partitioning of R. It is equivalent to R.

Step 3. The last step of the algorithm is to check, for each ¢ in R, whether X and
Y are independent in ¢.

The following theorem provides the motivation for the tndependence test:

Theorem 8 X andY are independent in R if and only of, for all tuples t in B, X and
Y are independent in t.

Proof: (Sketch) The “if” direction of the theorem follows from definitions. For the
other direction, we assume that X and Y are independent in R. Let R’ be equivalent
to R where X and Y are independent for each tuple ¢ € R'. Let B be the intersection
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of the tuples of R’ with the vertex grid of R':
E={t;ntr:t; e R ,tx € V).

It can be shown that X and Y are independent for each tuple in B'. It can also be
shown that for each tuple ¢ in the vertex grid partitioning of R, there exists a subset
of R whose union is equivalent to ¢t. This implies that X and Y are independent in ¢,
completing the proof. a

We conclude the chapter with a short discussion of complezity issues. It can be
shown that the data complexity of the independence test is polynomial. However, the
combined complexity is exponential in n. This is due to the fact that the size of B(R)

can be exponential in n:

Example 12 Consider a relation R over n variables consisting of one tuple with the

following constraints:
OS-'BI Sla"ﬂoszn S 1.

Its feasible points form a hypercube with 2™ vertices and O(2") edges.

It is our opinion that the exponential combined complexity is unavoidable, since
any independence test will have to somehow consider the complete geometry of the

feasible points of R.

6.7 Inference of variable independence

In this section we show how to infer variable independence in relational algebra ex-
pressions. In contrast to the previous section, the results in this section are applicable
to any constraint language closed under negation and admitting quantifier elimination,
not just linear arithmetic constraints. The notation and the inference rules presented
below are from [CGK96], due to Jan Chomicki.

Notation:
e U denotes the schema of the generalized relation R,
e R :Indep(X,Y) denotes the fact that X and Y are independent in R,

® B(Ay,..., Ai) denotes a constraint with free variables 4,, .. oy Ak,
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Theorem 9 The following inference rules are valid:

1.

2.

if X CU, then 04—, (R) : Indep({A4}, X) and 04—, (R) : Indep(X, {A});

Indep(X,Y);

if R :Indep(X,Y) and X,Y C Z, then 7z(R) : Indep(X,Y);

if R : Indep(X,Y) and S : Indep(X,Y), then RUS : Indep(X,Y);
if R : Indep(X,Y), then R x S : Indep(X,Y) (similarly for S );

if S has schema U’ disjoint from the schema of R and X CU and Y C U, then
R x S :Indep(X,Y) and R x S : Indep(Y, X);

if R:Indep(X,Y) and X,Y C Z then R(Z, f) : Indep(X,Y);

if Y C X and m is the new column corresponding to the result of the aggregation,
then R(X, f) : Indep(Y, {m}) and R (X, f) : Indep({m},Y).

Proof: We prove the validity the second inference rule. The validity of the remaining
rules can be established in a similar way.
The basic idea is as follows: given a representation for R in which X and Y are

independent, we construct from it a representation for OB(A;,...A;) (R) in which X and
Y are independent. In this case, we conjoin every (generalized) tuple t of R with
OB(A;,...A.) (B) to obtain another generalized tuple . We have to show that

mxy (t') = mx(¥') Wy ().

The fact that the left-hand side is contained in the right-hand side follows directly from
the definition of projection and join. To obtain the containment in the other direction,
let p be a (ground) tuple in wx () ™ 7y (¢'). Thus, there are tuples p’ € ¢’ and pet
such that:

o p'[X] = p[X] and B(p'[A1], - .., '[AL]) holds,
o ?[Y] = p[Y] and B(p"[A1], ..., p"[Ak]) holds,
e YIXNY]=p'[XNY]
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Now clearly p € mx(t) M 7y (t). Because
Txy(t) = mx (¢) X 7y (2)

P € mxy(t). But also S(p[A,], ..., p[As]) holds (notice the importance of Ay, ..., Ax
being entirely in X or Y) and thus p € rxy (t). a

Note that in general, we cannot infer variable independence in a difference of two

relations.

Example 13 Consider the instance Iy with schema {z,y, z}:

y>z
z<y.

Its complement consists of the tuple
zSyAy<z

Thus while = and z are independent in I, they are not independent in the complement
Of Io.

However, for the special case of Y = I/ — X, we have:
Theorem 10 The following inference rule is valid:
® if R :Indep(X,U—X) and S : Indep(X,U - X), then R— S : Indep(X, U ~ X).

Proof: (sketch) Assume I; is an instance of R satisfying Indep(X,U - X) and I, is
an instance of S satisfying Indep(X,U — X). Then by definition there exist instances
I{ equivalent to I and I} equivalent to I, consisting only of tuples in which X and
U — X are independent. Let I] = {t;,...,¢,} and I} = {s1,...,5m}. The difference of

I] and I; can thus be represented as the set of tuples
w; = (8 A =81 A 8p,)

fori=1=1,...,n. Let X = {A;,..., Ac}and U-X = {B1,-...,Bn}. Now every s;,
t=1,...,m, can in turn be represented as a tuple of the form

ﬂ(Aly"'yAk)A7(Blv"'1Bm)
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by Lemma 9. Thus its negation is of the form
ﬂ.6(‘41v .. -1Ak) v ﬂ‘Y(Bla oy Bm)~

Because of this and the fact that the constraint language is closed under negation, each

tuple w; can be represented using a finite number of tuples of the form
,B(Alv ceoy Ak) A 7(311 ey Bm)’
In every such a tuple X and U — X are independent. ]

The above special case is important because the application e (X, f) of a restricted
aggregation operator in the version of relational algebra discussed in section 6.5 is
allowed only if € : Indep(X,U — X) where U is the schema of e.

Remark: Though we have shown the above inference rules to be sound, no claim
is being made about their completeness. A full treatment of variable independence
should consider it as a dependency class, addressing the issues of axiomatization and

implication. This is being left for future work.
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Chapter 7

Similarity Queries for
Time-Series Data: an Application

of Multidimenstional Indexing

Constraints are a natural mechanism for the specification of similarity queries on time-
series data. However, to realize the expressive power of constraint programming in
this context, one must provide the matching implementation technology for efficient
indexing of very large data sets. In this paper, we formalize the intuitive notions of exact
and approximate similarity between time-series patterns and data. Our definition of
similarity extends the distance metric used in [AFS93, FRM94] with invariance under a
group of transformations. Qur main observation is that the resulting, more expressive,
set of constraint queries can be supported by a new indexing technique, which preserves
all the desirable properties of the indexing scheme proposed in [AFS93, FRM94].

7.1 Problem Definition

7.1.1 Approximate Matching of Time-Series Data

Time-series are the principal format of data in many applications, from financial to
scientific. Time-series data are sequences of real numbers representing measurements
at uniformly-spaced temporal instances. The next generation of database technology,
with its emphasis on multimedia, is expected to provide clean interfaces (i.e., declarative
specification languages) to facilitate data mining of time-series. However, any proposal
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of such linguistic facilities must be supported by indexing (i.e., be implementable with
reasonable I/O efficiency) for very large data sets. Examples of recent database research
towards this goal include [AFS93, FRM94, SLR94].

A most basic problem in this area is First-Occurrence Subsequence Matching, de-
fined as follows: given a query sequence Q of length n and a much longer data sequence
S of length N, find the first occurrence of a contiguous subsequence within S that
matches Q ezactly.

A wide range of algorithms has been developed for internal (i.e., in-core) versions
of this question [AHO90] for strings over an alphabet or for values over bounded dis-
crete domains. There are particularly elegant linear-time O(n + N ) algorithms (by
Knuth-Morris-Pratt and Boyer-Moore) and practical searching utilities for more gen-
eral patterns instead of query strings Q@ (e.g., regular patterns in grep). The part of
this technology that is most related to our paper is the Rabin-Karp randomized linear-
time algorithm [KR87], which provides an efficient in-core solution based on fingerprint
functions. Fingerprints are a form of sequence hashing that allow constant-time com-
parisons between hash values and are incrementally computable.

A variant of the above problem involves finding all occurrences; this is called the
All-Occurrences Subsequence Matching problem.

The above two problems have variants when the data consists of many sequences of
the same length as the query. The First(All)-Occurrence(s) Whole-Sequence Matching
problem is: given a query sequence Q of length n and a set of N/n data sequences, all
of the same length n, find the first (all) of the data sequences that match Q ezactly.

Since the size of the data in commercial applications of time-series data mining is
usually too large to be stored internally, the research in various time-series matching
problems has concentrated on the case when storage is erternal (i.e., secondary as

opposed to in-core). Here we are interested in:

External solutions to the All-Occurrences Matching problems (either Sub-
sequence or Whole-Sequence), with two additional characteristics:

o the match can be approzimate;

o the match is up to similarity.

We define “approximate” in this subsection and “similar” in the next.
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Time-series data in continuous (e.g., real-valued) domains is inherently inexact,
due to the unavoidable imprecision of measuring devices and clocking strategies. This
forces us to work with the approximate version of the various matching problems.

Given a tolerance € > 0 and a distance metric D between sequences, sequences S
and S, match approzimately within tolerance € when D(S51,5;) <e.

The All-Occurrences Approzimate Matching problems (either Subsequenceor Whole-
Sequence) are defined as before, but with “match approximately within tolerance €”
instead of “match exactly”.

For external solutions to the All-Occurrence Whole-Sequence Approximate version,
we refer to [AFS93, SLR94]; for the All-Occurrence Subsequence Approximate version,
we refer to [FRM94].

A further characteristic of time-series data that is used to advantage, is that they
have a skewed energy spectrum, to use the terminology borrowed from Discrete Signal
Processing [DS]. As a result, most of the technology of information retrieval in this
area is influenced by signal processing methods.

7.1.2 Approximately Similar Time-Series Data

The database applications of interest involve queries expressing notions of “user-perceived
similarity”. Here are some examples of applications for approximate time-series match-
ing that illustrate this notion of similarity:

e find months in the last five years with sales patterns of minivans like last month’s;
e find other companies whose stock price fluctuations resembles Microsoft’s;

e find months in which the temperature in Paris showed patterns similar to this

month’s pattern.

In many cases, it is more natural to allow the matching of sequences that are not
close tc each other in an Euclidean sense. For example, two companies may have
identical stock price fluctuations, but one’s stock is worth twice as much as the other
at all times. For another example, two sales patterns might be similar, even if the
sales volumes are different. We shall refer to the difference between these sequences as
scale. In another example, the temperature on two different days may start at different
values but then go up and down in exactly the same way. We shall refer to the difference
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(a) (b)

Figure 7.1: Sequence (b) is a similarity transformation of (a).

between these sequences as shift. A good time-series data-mining mechanism should
be able to find similar sequences, as illustrated by these examples, up to scaling and
shifting.

Combinations of scaling and shifting are shape-preserving transformations, known
as similarity transformations in the mathematical field of Transformational Geometry
[MP]. We will approach the definition of similarity from this well established geomet-

rical perspective:

Let G be a set of transformations then two sets of points are similar if there

exists a transformation, in G, which maps one to the other.

In geometry, a transformation typically belongs to a group. Combinations of scale
and shift are affine transformations. In practice, the user may restrict the allowable
transformations to a set that may not be group, by imposing constraints on the scaling
and shifting factors, or by fixing one or both factors.

Let D be a distance metric between sequences and € > 0 a tolerance. Query
sequence Q is approzimately similar within tolerance € to data sequence S when there
exists a similarity transformation T so that D(Q,T(S)) < e. When ¢ is set to 0, we
have ezact similarity.

Approximate and exact similarity queries can now be defined Just like approximate
and exact matching queries were defined in the last section.

The All-Occurrences Approzimate Similarity problems (either Subsequenceor Whole-
Sequence) are defined as was Matching, but with “approximately similar within toler-
ance € instead of “match approximately within tolerance ¢”. Analogous definitions
apply for All-Occurrences Ezact Similarity problems (either Subsequence or Whkole-

Sequence).
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When T is restricted to be the identity transformation, the various similarity prob-
lems become the matching problems of the last section. In this sense, our work is
a generalization of the work of [FRM94]. This generalization is in the direction of
[Jag91], which discusses translation and distortion transformations but does not pro-
vide the guarantees of [FRM94] and of our indexing scheme.

A general framework for similarity queries is described in [JMM95]. Our work hap-
pens to be (an efficiently solvable) special case. The [JMM?95] framework for similarity-
based queries has three components: a pattern language P, an approximation language
(they refer to it as transformation rule language), and a query language. In our case,
P is the set of allowable transformations on the query sequence ). An expression in P
specifies a set of data objects; in our case, it is the set of all sequences exactly similar
to Q. Approximations have a cost, and the distance between objects is defined as the
minimal cost of reaching one object from the other via approximations. In our case,
the approximations are the distortions in the time-series data (i-e., the jiggling of indi-
vidual points); the cost is the distance between the original sequence and the distorted
one. Note that membership testing in the [JMMO95] framework is at best exponential;

thus this framework is too general for our purposes.

7.1.3 An Overview of Similarity Querying

Our main contribution is: A syntaz and semantics for similarity queries, that account
for approzimate matching, scaling and shifting, and that have efficient indezing sup-
port. We show this using a new indexing technique, which preserves all the desirable
properties of the indexing scheme proposed in [AFS93, FRM94].

In Section 2, we provide a semantics for similarity querying where we use the sim-
ilarity distance between Q and S (defined in Section 7.2.2) as the distance metric.
Similarity distance constitutes a good distance metric because it is non-pegative, sym-
metric, and effectively computable; it also obeys the triangle inequality. This is not
true of the “naive” distance metrics that correspond more closely to the formulation of
the problem in the Section 1.2. The semantics of Section 7.2.2 serves as the basis for
the internal representation of the query, i.e., our normal form.

In Section 3, we show that the semantics of Section 2.2 has several desirable prop-
erties, such as updateability and well-behaved trails, which allow us to provide efficient
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implementations for similarity querying, both in the internal and external query set-
ting. We first adapt the criteria put forth in [AFS93, FRM94] (Section 3.1) and satisfy
them using fingerprints of the normal form (Section 3.2). We then argue that finger-
prints are incrementally computable (Section 3.3), can be used ala Rabin-Karp [KR87]
for internal searching (Section 3.4), and most importantly external indexing (Section
3.5).

This is the implementation technology that is needed to support the internal rep-
resentation of Section 2. Our new indexing technique combines the MBR structure of
[FRM94] with our internal representation. Many spatial data-structures can be used,
for examples varieties of R-trees (see [Sam] for a comprehensive survey of the available
external data-structures).

In Section 4, we provide a constraint syntaz for similarity querying. We show how
various query variations can be expressed and translated into the internal representation
of Section 2. This translation also clarifies the relationship of the problem as defined
in Section 1.2 with the semantics of Section 2.2.

The syntax could be embedded in most constraint logic programming languages
[Col80, DVSAGBSS, JL87] or constraint query languages [BNW91, BJM93, KSW90,
KKR95]. This completes the connection between high level specification and imple-
mentation.

The importance of combining high-level specification with efficient implementation
is the common theme of constraint databases (e.g., see [BIM93, KRVV93]) and the
main motivation for this work. In Section 5, we close with some open problems and

future work.

7.2 The Semantics of Similarity Queries

7.2.1 Similarity Transformations and Normal Forms
An n-sequence X is a sequence {zy,...,z,} of real numbers. Each n-sequence X has

an average (X) and a deviation o(X):

«X)=(1/n) Y z;; o(X)=(1/n) 3 (zi— a(X)))V2.

1<i<n 1<i<n

We shall feel free to drop the arguments to « and o, treating them as constants, when

the context is not ambiguous.
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A pair of reals (a,b) defines a similarity transformation T, 4 over n-sequences by
mapping each element z; to axz;+b. We will assume that all similarity transformations
are non-degenerate, i.e., that a # 0. In fact, we will further assume that a > 0;
this restriction on a implies that a sequence symmetric to X w.r.t. the z-axis is not
considered similar to it.

Definition 28 We say that X is similar to Y if there ezist some (a,b) € [R* x R]
such that X =T, ,(Y).

This simularity relation is reflexive, symmetric, and transitive:
* Reflexivity: for any sequence X, X = T o(X) [the identity transformation];

e Symmetry: if X = T,;,(Y) then Y = Ty/a,-6/a(X) = T, +(X) [the inverse of
Ta,b];

¢ Transitivity: if X = T,4(Y) and Y = T.4(Z), then X = Tacad46(2) = (Tap *
T..4)(Z) [the non-commutative product of Tpp and T 4.

Therefore, the set of all sequences similar to a given one constitutes an equivalence
class, which we call a simalarity class; we shall denote the similarity class of X by X~.
The similarity relation partitions all n-sequences into similarity classes.

To be able to refer to similarity classes, we need a way to compute a unique rep-
resentative for each class, given any member in it. Towards that end, we now define

normal forms of sequences.

Definition 28 An n-sequence X is normal if &(X) = 0 and g(X)=1.

Let X be normal and Y be similar to X, i.e., ¥ = T 4(X) for some (a, b) € [R* x R].
Then, a(Y) = b and o(Y) = a:

oY) = (1/n) Ligign ¥ = (1/7) Ticicalazi +b) = (a/n)a(X) + b = §;

a?(Y) = (1/n) Ticicn Wi~a(Y))? = (1/n) Ligign(azi+b~b)? = (¢*/n) 1 i (zim

0)2 = a?* 0?3(X) = a2.

Y is normal only if 7(Y) = a =1 and a(Y') = b = 0; this is the identity transformation.
This means that a similarity class has exactly one normal member; we will call it the
normal form of all the members of the class.
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Given any n-sequence X, X denotes the normal form of X*. If « is the average of
X, and o is the deviation of X, we’ve shown that X = 0+ X + . Therefore, we can

compute X from X by the inverse transformation:
:Y- = Tc-,ct (X) = Tl/c,-a/c(x) .

In a transformation T, 5, we call a the scale factor and b the shift factor. If a is 1, the
transformation is a pure shift; if b is 0, it is a pure scaling. The identity transformation
is a pure shift; the inverse of a shift is a shift; and the product of two shifts is also
a shift. This allows us to conclude that the set of all shifts of a given sequence is an
equivalence class. The same is true of the set of all scalings. The normal form for these

classes is defined just as for the general case.

7.2.2 Similarity Distance and Semantics

Given two sequences X and Y, the similarity distance between X and Y is the distance
between the normal forms of their respective similarity classes:

Definition 30
Ds(X,Y) = Dy(X,Y),

where Dy is the normalized Euclidean distance, defined as follows:

Definition 31

Dn(X,Y) = [(1/n) 3 (zi—w)?

1<i<n

The intuition behind Dy is that it represents the average distance per point between
two sequences. For example, the deviation of a sequence X can be thought of as the
normalized Euclidean distance between X and a sequence all of whose points are the
average of X. Any proper distance metric D for n-sequences can be used instead of
Dpy. Since we will be using techniques from Discrete Signal Processing (DSP) and
the Euclidean distance is a standard distance metric in DSP, we have chosen to use a
variant of it here.

Note that the similarity distance between any pair of sequences from X™ and Y* is

the same; this gives us a distance metric for similarity classes:

Definition 32
Ds(X™,Y™) = Ds(X,Y).
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A distance metric should be non-negative and symmetric, and it should obey the tri-
angle inequality. A good distance metric should also be effectively computable. It is
easy to see that similarity distance satisfies all these criteria.

Remark: Note that there are definitions of distance that correspond more
closely to the naive formulation of the problem. For example, given Q and S,
we could have used the minimum Euclidean distance between @ and all S’ €
S5*(the equivalence class of S); let us denote this distance by D,, (Q,S7).
However, this definition is not symmetric: Dy (Q, S*) # D,..(S, Q). Given
Q and S, we could have also tried to choose the minimum Euclidean distance
between @’ and S’ for all Q' € Q~ (the equivalence class of S) and S’ € S*
(the equivalence class of Q). However, by choosing the members of Q™ and
S* with arbitrarily small deviations, this distance will always approach 0.
The normal forms provide a distance metric that does not suffer from any

of these defects.

By using similarity distance, we are now ready to define a similarity semantics for the

All-Occurrences Subsequence Approzimate Similarity problem.

Given a query sequence Q, a time-series S, a tolerance e > 0, and a similarity
relation [which partitions sequences into equivalence classes with normal
forms], find all contiguous subsequences S in the time-series S such that
Ds(@,S) <e

Note that these semantics are slightly different from the problem formulation in Section
1.2. The differences will be clarified (and bridged) in Section 4. To conclude this sub-
section, we want to consider the All-Occurrences Subsequence Ezact Stmilarity problem

(i.e., when € = 0).

Given a query sequence @, a time-series S, and a similarity relation [which
partitions sequences into equivalence classes with normal forms], find all
contiguous subsequences S in the time-series S such that Q and S are
similar [belong to the same equivalence class].

The exact case can be answered using the normal forms, because Q and S are in
the same equivalence class if and only if Q = X. Finally, analogous definitions apply
to Whole-Sequence problems.
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7.3 Indexing of Similarity Queries

7.3.1 Sequence Fingerprints: Criteria and Definitions

Computing the similarity distance Ds between any two n-sequences requires O(n)
operations. An efficient implementation of similarity querying cannot afford to compute
Ds every time for each sequence in the data set (for the Whole-Sequence case), or for
each contiguous subsequence in the time-series (for the Subsequence case).

Following the approach of [KR87], which has gained wide acceptance, we introduce a
fingerprint function F, together with a fingerprint distance metric Dp. This fingerprint
mechanism provides fast rejection, filtering out most of the non-similar sequences.

A fingerprint mechanism needs to satisfy the following criteria:

e Compactness: The comparison of the fingerprints of two n-sequences can be

done in constant time.

e Validity: If S is a valid query answer, then the comparison of F(S) and F(Q)
should return TRUE:

Ds(X,Y) < e = Dp(F(X),F(Y)) < e
® Accuracy: If the comparison of F(S) and F(Q) returns TRUE, S is highly likely
to be a valid query answer.

e Updateability: Computing the fingerprints of all subsequences of an N-sequence
for N much larger than n can be done in O(N) time, by updating the fingerprint
value as we move along rather than recomputing it for every subsequence.

We now define the fingerprint function F as well as the fingerprint distance func-
tion Dp. These definitions are similar to the ones used for Approximate Matching in
[AFS93] and [FRM94].

Definition 33 A fingerprint F(X) of an n-sequence X = {z1,...,zn} is the tuple
[DFTy(X), ..., DFTy(X)),

where | is a small constant (such as 3), and DFT,, is the m ’th coefficient of the Discrete

Fourier Transform of X:

n—1
E (sje-j(2m')m/n) ,
Jj=0

1
DFTm(So, . -,sn-l) = ﬁ
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where i = /-1.

Note that DFT,, is a complex number: DFT,, = @y + bp,i for some a,,,b,, € R.
Thus, F is specified by a sequence of 2/ real values. Note that we are not including
DFTy in the fingerprint, since its coefficients are both 0 for normal sequences.

Definition 34 The fingerprint distance D between F(X) and F(Y') is the Euclidean
distance between the real-valued sequences for F(X) and F(Y) divided by /n, where
n = |X|=1Y].

By taking [ to be a small constant our fingerprint mechanism is compact. In the
subsections below, we establish its validity, accuracy, and updateability.
7.3.2 Validity and Accuracy of Fingerprinting
To establish the validity of fingerprinting, we need to show that
Ds(X,Y) < e=> Dp(F(X),F(Y)) <e
We make use of the fact that the DFT is a linear function, i.e.,
DFTm(aX +b0Y) = aDFT(X) + bDFT,,(Y)

for all scalars a and b. Also, we rely on Parseval’s theorem, well-known in DSP:

Y. IDFT,(X)P= ¥ |z

0<m<n—-1 0<i<n-1

And we make use of the fact that the coefficients of DFTy for normal sequences are
both 0. First, we show that Ds(X,Y) > Dp(F(X),F(Y)):

Ds(X,Y) = Dn(X,Y) = (Togicn-1 IX[i] - VL] /2/ /R =
= (Zogmen-1 |DFTn(X - Y) )2 /n >
2 (Zogmgt IDFTm(X ~Y)[2)/2/n = Dp(F(X), F(Y)).

It immediately follows that Dp(F(X), F(Y)) < € whenever Ds(X,Y)<e.
To establish accuracy, we want to know how likely it is that Ds(X,Y) < e provided
that Dp(F(X),F(Y)) < €. The cases when Dp(F(X),F(Y)) < e but Dg(X,Y) <€
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represent false alarms, and we want to minimize their occurrence. Therefore, we would
like the ratio Dp(F(X), F(Y))/Ds(X,Y) to be close to 1.
The actual ratio strongly depends on the nature of the data sequences. It is worst

in the case of white noise, when
Dr(F(X),F(Y))/Ds(X,Y) = (I +1)/n.

However, a large class of signals (the colored notses) have a skewed energy spectrum,

and it is the case that:
The amplitude of DFT,, decreases rapidly for increasing values of m.
In fact, the decrease is as O(f~%) [Fal96], where:
e b =1 for pink noise, such as musical scores;
e b = 2 for brown noise, such as stock movements and exchange rates;
® b > 2 for black noise, such as rainfall patterns.

As a result, 2-3 coefficients are sufficient to provide good accuracy for most applications,
including the one used for our experiments. Therefore, we may assume that the length
[ of the fingerprint is < 3. (Note that, the randomization ala Rabin-Karp [KR87] makes

no assumptions about the spectrum.)

7.3.3 Ubpdateability of Fingerprinting

When computing fingerprints of all subsequences of length n for a much longer sequence
of length N, the efficiency of the algorithm hinges on a property of the fingerprint that
we call updateability:

Given the fingerprint of a subsequence {z, ..., Tk4n—1}, it is possible to
compute the fingerprint for {zt41,...,Zr4n} in constant time.

Let X be the first subsequence, and Xik41 be the second subsequence. We show
how to compute the fingerprint F(X,) from the fingerprint F(X%) in constant time.
As inputs to the update step, we assume that we have the values of the following
expressions:

> oz Y (zj)zvQ(Xk)va'(xk),DFTl(Xk),---1DFTI(Xk)aF(Xk)-
k<j<k4n—1 k<j<k+n-—1
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We also assume that all constants (such as 1/z) are pre-computed. During the update
step, we obtain the values for the above expressions with k + 1 instead of k; the

computation proceeds as follows:
1. Increment k to k4 1;
2. Look up Zgyi, ZTisn;

3. Compute 3=, 1| cickin Zj- This involves one subtraction and one addition:

Z zj=( Z Tj) — Tk + Thpn;

k+1<j<k+n k<i<k+n-1

4. Compute 37,4, cicksn (27)%, using two multiplications, one subtraction and one

addition:
2 242 .
Z zi=( Z 23) — 2 + 2hp
k+1<j<k+n k<j<k+n-—1
5. Compute a(Xy41), using one multiplication:
(X)) = a1 = (1/n) Y. zj;
k+1<j<k+n

6. Compute o(X¢y1), using two multiplications, one subtraction and one square

root:

0} (Xk41) = "Z-H = (1/n)( z 33) - a’2=+l;
k+1<7<k+n

7. Compute DFT;(Xi41), ..., DFTi(Xi41), using one subtraction, one addition
and two multiplications for each index:

1 o
DFTm(Xk+1) = — Z (zj+k+le-1(2m)m/n) =

VR ocicn—1
1 : ; : T -z
= . e~ (-1)@2mi)m/ny _ (2mi)m/n ntk ky,
7 1<§,-<:..(z’+ke )=e (DFTn(Xk) + =—);

8. Compute the fingerprint of Xj,;, using one division for each index. Here, we rely
on the linearity of DFT’s, and on the fact that DFT,,(1) is 0 when m > 0:

DFT(Xk41) = DFTm(Xe41/0k41 —~ 41/ Ok41) =
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= (1/0k41) DF Tin (Xic41) = (Qk41/0k41) DFTn (1) = DF Ty (Xies1)/ 0k 1-

Note that the above algorithm is on-line, suitable in a situation when the data are
streaming past and we can never back over it. In addition, we have shown that the
fingerprint of [AFS93] for time-series approximate matching (without similarity) is also
updateable.

7.3.4 Internal Query Representation

In this section, we sketch out the internal implementation of similarity queries. The
implementation is based on an internal representation of a similarity query:

Definition 35 The internal representation of a similarity query consists of:
(query sequence Q, the values {¢;,ly, tq, l,, Uy })-

The internal representation corresponds to an internal query with the following

semantics:

Internal query: Find all S such that Ds(@,5) < €, la € a(S) < o, I, < a(S) <
Uy
In Section 7.4, we will show how to translate the constraint-based syntax of a user
query to this internal query. Here, we just note that the translation is not “tight”; i.e.,
though it will not force any false dismissals, it may generate some false alarms.

The updateability results established in Section 7.3.3 allow us to answer the internal
query for the in-core case with an algorithm much like that of [KR87]. We proceed
through the sequences and the subsequences, comparing Dp(F(Q), F(S)) to ¢ and
checking a(S) and o(S) against the bounds.

If we want to avoid run-time linear scanning of the data, we need to create an indez
structure for it. This is the case for any database application of similarity querying. A
naive index structure is a list of tuples of the following form:

[F(X), a(X), (X), location of X].

The algorithm is very similar to the in-core case; we scan the index and look for potential

matches:
Potential match: Is Dr(F(Q), F(S)) < €, la < a(S) < tg, and I, < o(S) < u,?
Whichever index structure we use for the search (if any), all potential matches are

then checked against the internal query to determine which of them actually satisfy it.
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7.3.5 External Indexing

To speed up index searching, we can instead build an indexing mechanism that allows
spatial access methods for range queries of multidimensional points. The query point
Pg is computed from the internal query representation:

Pq = (F(Q), ma, m,), where mq = (ug +1,)/2, me = (uy + l,)/2.

The answer to the similarity query is the set of all points (F(X),a(X),(X)) such
that:

F(X) is within € of F(Q), a(X) is within (q — l,)/2 of mg, and
o(X) is within (4, — l,)/2 of m,.

Though the index structure described above performs well for the whole-sequence
case, it is unsuitable in the subsequence setting. This is due to a very simple obser-
vation: for a real sequence of length m, the there would be m — n + 1 indices with 2!
reals each. Such space overhead renders indexing less efficient than a direct sequential
scan of the data [FRM94].

This problem is overcome with the Minimum Bounding Rectangle (MBR) tech-
nique, introduced in [FRM94]. This technique significantly reduces the size of the
indexing structure, though introducing some false alarms in the process. Our final
indexing method consists of combining the MBR technique with the spatial access
approach described above.

The MBR technique relies of the continuity of subsequence indices:

Continuity: Given two adjacent subsequences, the difference between the corre-
sponding coefficients of their indices is likely to be small.

We conclude the discussion of indexing by verifying that our indexing possesses the
continuity property. This is a “heuristic” statistical argument, that also applies to
[FRM94] (where continuity was assumed, but not shown).

Denote adjacent sequences by Xy = {20,..-yZn—1} and X; = {z1,...,z,}; denote
the corresponding indices by (ag, oo, Fp) and (ay, 01, F}); and Denote the order of the
expected value of an expression by ~. Assume that n is reasonably large, so that 1/n
is considered to be a small constant. Proceed by considering each element of the index

separately.

85



1. The exl;ected value of [a; — ap| is on the order of ag/n:

ley ~ ao| = [zn — Zo|/n = a0/n.

!\D

The expected value of |0y — oy is on the order of oo/n:
lor = ao|(o1 + 00) = |0} — a3 =
1
= —|(zn ~ @)+ (zo—a)® + Y ((zj—1)® - (zj— a0)?)| =
1<5<n—1

= [(zn — Zo)(zn — a1 + 70 — ag)|/n = (00/n) (01 + d0).

3. The expected value of [ DFT,,(X;)— DFT,,(Xo)| is on the order of [DFT,, (Xo)|/n+
1/y/n. Here, we use the equations for DFT’s derived in Section 7.3.3, as well as

the ones derived above:

|DFT(X1) ~ DF T (X0)| = |[DFTn(X1)/01 — DFT(X0)| =

e(2xi)m/n

= |~ —(00DFTn(Xo) + ~*2=2) ~ DF T (Xa)| =
= o) (22 (2mi)m/n _ Zn ~ %0 (2ri)m/n|
_IDFTm(Xo)(dle )+ = |

2 |[DFTm(Xo)((1 + 1/n)(1 - 27m/n) — 1) + (1 + 1/n)(1 - 2rm/n) /7| =
= |DFTu(Xo)|/n+O(1/v/n)

7.4 Constraint Specification of Similarity Queries

In the previous section, we have shown how to provide an efficient database index-
ing mechanism for queries with similarity semantics. This enables us to answer the

following question:

Internal query: Given Q, €;, (la, 4s) and (I,, Ug),
find all S such that Dg(Q, S) <¢, I, < a(S) £ ta, Iy < o(S) < u,.

The syntax of the user query may be very different from this. In particular, the user
querying a database of sequences should probably not be expected to refer to normal
forms, similarity distance, or even to averages and deviations.

In this section, we provide a syntaz for similarity queries, based on constraints.
Then, we show how to translate from this syntactic formulation to the internal repre-

sentation.
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7.4.1 Constraint-Based Syntax of Similarity Queries

For the general similarity query, we define the following constraint-based syntax, which
expresses the queries described in Section 1.2:

General similarity query: Given Q, ¢, (la; ua), and (I, uy),
find all [S, a, b] such that D(Q,aS +b) < ¢, I, < a < u, and I <b<u.

We assume that the sequence distance D is Dy (see Definition 31). Of course, regular
Euclidean distance may be used, multiplying € by a factor of \/n. Of course, the user
may choose to omit the bounds on a and/or b:

Unbounded Case: Given Q and ¢,
find all [S, a, b] such that D(Q,aS +b) < e.

In all the following queries, bounds either a or b are optional.
The user may want to query for scaling transformations only, or for shift transfor-

mations only:
Scaling: Find all [S, a] such that D(Q, aS) < e.
Shifting: Find all [S, 5] such that D(Q, S +b) <.
Finally, the user may ask approximate matching queries or exact similarity queries:
Approximate Match: Find all S such that D(Q,S) < e
Exact Similarity: Find all [S, a,b] such that Q = aS +b.

For all these variations on similarity queries, it is possible to efficiently find the
corresponding values for the variables used in the internal query representation:

{ei: la, Yoy s, ua}-

We shall show how to do that in the next subsection.

7.4.2 From Constraint-Based Syntax to Internal Representation
We first reduce the cases of scaling, shifting, alternate matching, and exact similarity

to the general case:

Scaling: force b to have the value 0 by specifying an equality constraint b = 0:
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“ | V2-2/T=&f57
l, (aQ ~ up — €)/u,
U | (aq-lb+e)/la
lo (0g +¢€)/ls

U (oq +¢€)/l,

Figure 7.2: Computing the values for the Internal Query

D(Q,aS)< e < D(Q,aS+0)<e < D(Q,aS+b) <eAb=0.
Shifting: force a to have the value 1 by specifying an equality constraint a = 1:
D(Q,S+b)<e < D(Q,aS+b) <eAa=1.
Approximate Matching: by similar reasoning, set a to 1 and b to 0.
Exact Similarity: set € to 0:
Q=aS+b < D(Q,aS+b) =0.

Then, we convert the general case to the internal representation. This is done via
the conversion formulas summarized in Figure 7.2; these are derived in Section 7.5.

It is important to note that the translation is not always bi-directional. If a sequence
satisfies the internal query, another filtering step needs to be performed before we can
be sure that it also satisfies the user query. This step answers the following question:

Filter: Given a subsequence X, do there exist a and b within the bounds specified
by the external query such that Dy (Q,aX +b) < €7

The additional filtering indicates a potential performance disadvantage of our approach
and is a trade-off to achieve generality. We conclude this section with a sketch of the
filtering method.
We know that [, < a < u, and Iy < b < u. This defines a rectangle R in the
(a,b)-coordinate system. Let ¢ be the following linear transformation:
t(a,d) = (aox — 0 XQ,aax +b— ag).

Let (a¢, b) be the point in ¢(R) closest to the origin. Then, it is the case that X passes
the filter only if DN(Q,aX + b) < ¢, where (a,b) = t~(a¢, b;) (see the corollary to
Proposition 7 in Section 7.5).
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7.5 From External to Internal Queries and Back

In this section, we derive the formulas for the translation between the general similarity
query and the internal query (throughout this chapter, we denote the normal form of
X by X and the average and standard deviation of X by ax and oy, respectively):

General similarity query: Given Q, ¢, (I,, u,), and (I, us),
find all [S, a, b] such that Dn(Q,aS +b) <€, I, < a < u, and Iy <b < u.

Internal query: Given Q, ¢;, (lo, uo) and (lgy ug),
find all S such that Dy(Q,X) < ¢, lp < as < g, Iy < 05 < u,.

The translation needs to be made in both directions:

Direction I (Computing internal query values): Given a sequence Q and the
values for {¢, l5, ua, s, u}, find the values for {¢;, ln, uq, I, uq} such that for any
sequence S, there exist (,b) with [S, g, b] satisfying the general similarity query
only if S satisfies the internal query.

Direction IT (Filtering potential matches): Given a sequence S returned by the
internal query, find the values of a and b (if any) such that [S, q, b] satisfies the
external query.

7.5.1 Normalized Products and Distances

First, we define the normalized product of two sequences and introduce some of its
properties; we also introduce some properties of Dy, the normalized Euclidean distance.

These properties are used for the proofs in the remainder of the section.

Definition 36 Let X = {z,,...,z,} and Y = {y, ..., Yn} be two sequences of length
n. XY is the normalized product of X and Y:

XY = (1/n) Y (ziws)
1<i<n

It is easy to verify that normalized product operation is commutative, and that
it is distributative with respect to sequence sums and differences (e, X(Y+2) =
XY + X Z). The normalized product has some other useful properties, well-known in
the field of mathematical statistics (see [MSW] for details):
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Property 1: XY =ayxay +oxoy XY
Property 2: -1<XY <1
Property 8: X?=oa% +0%

2

Property 4: X = o+ 0%x=02+12=1

Here, X2 is the normalized product of X with itself. Note that in our calculations,
we will assume that 0 < XY < 1, because if XY is negative, this means that as the
values in X increase, the values in Y tend to decrease, and vice versa [MSW]. This,
then, corresponds to the need for a negative scale factor in our similarity relation, which
we disallow. Therefore, we do not wish these two sequences to be considered similar

under our definition of similarity.
Note that the normalized product has an intimate connection to the normalized
distance Dy (see Definition 31), and in fact:

Proposition 4 D% (X,Y) = (X - Y)?

Proof: Follows from definitions. a
The following two propositions are also about Dy.

Proposition 5 D% (X,Y) < 2

Proof: D}(X,Y)= (X -Y)??=X"+Y’-2XV =1+1-2XV =2-2XV <2 O

Corollary 2 XY =1 - D%(X,Y)/2

7.5.2 Computing the Internal Epsilon

Let us denote the minimum normalized distance between X and Y’ ,forall Y € Y™,
by D (X,Y™):

D(X,Y") = min{Dn(X,Y’") : Y’ = aY +b,a > 0}.
Proposition 6 D (X,Y*) = 0% (D%(X,Y) - D4(X,Y)/4)

Proof:
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1. Let us denote D} (X, aY +b) by f(a,b); f(a,b) = (1/n) X(z: ~ (ay; + b))2.
We will obtain its minimum by finding the values of a, b where dffda = df /db = 0.
Then, we will complete the proof by substituting these values back into f(a,b).

[

- The rest of the proof provides the details for these calculations. Let us denote
(¥i — ay) by g;; similatly, (z; — ax) is Z;. It is easy to verify that:

(a) X & = 4 = 0; (b) ¥ 5iti = noxoy XY.
From (b), it also follows that
(c) X &2 = no%, 3% = nol.

3. df/db = (1/n) 32(zi — ay; — b) = 2(ax — aay ~ b) = 0. Therefore, the desired
value for b is (ax — aay).

4. df/da = (1/n) E2yi(z: ~ ayi — b) = (2/n) Tui(z: — ayi ~ (ax — say)) =
(2/7) X yi(2i — agi) = (2/n) T(ey + %) (£i — afii) = (2/n)(ov T i — aay X 6 +
2. ¥i(Zi — agi)) = (2/n) T §i(%: — ag;) = 0. Therefore, the desired value for a is
(2 )/ (X 92)-

5. Now, we do the substitution into f(a, b).
f(a,b) = (1/n) (=i — ayi ~ b)? = (1/n) T(3i — efi)? = (1/n) (2 + a?5i% —
2az;5;) = (I/n)(X 42 + (53 (T i/ TH2)? ~ 2T #:5) (S €5/ Toi?)) =
(1/n)(X 2% ~ (T )/ £5:3) = (1/n)(no% — (noxovXY)?/(no})) = o (1 -
(XY)?).

6. Let us denote D% (X,Y) by D. We make use of Corollary 2 to complete the

proof: D% (X,Y™) = o} (1 - (XY)?) = 0% (1 - (1 - D?/2)?) = o4 (D? - D/4).
O

Now, we are ready to compute the value for ¢;, used in the internal query represen-

tation.

D(Q,aX +b) < €= Dn(Q,X") <€ + D%4(Q,X") < &
= 03(DX@,X) -Dy@.X)/4) < &
<= DN(Q,X) -~ 4D%(Q.X) +4€%/03 > 0

= (D}(@ X) £2-2\/1-¢¥/03) v (D} (@.X) > 2+2,/1 - &/03)
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By Proposition 5, we see that only the first inequality for D%(Q, X) is valid. There-

Dy(Q,X) < \[2 - 2‘/1 - ez/aa =¢.

Notice that if ¢ and b are unbounded, then

fore,

D(Q,aX +b) <€ <= Dn(Q,X") < ¢
and this value for ¢; is tight.

Remark: The above value for ¢; only makes sense when €2 > 0} - However,
this does not reduce the expressibility, because D%(Q,X") < 0'5 for all
sequences X'. Therefore, any tolerance value greater than aé will produce

no new matches.

7.5.3 Computing Internal Bounds
Now we compute bounds on the average and deviation. First, we prove the following

proposition:

Proposition 7 Given two sequences Q and X, let t be the following linear transfor-

mation:
t(a,b) = (aox — 0@ XQ, aax + b — aq).

Then, for all (a,b), if (a',b") =t(a,b) and c = 05 (1 - (XQ)?), we have:
D (@, aX +b) = () + (¥)* +ec.

Proof: D%(Q,aX +b) = (Q - (aX +0))? = Q*+a’ X2+ b2 +2abay —2bag —2¢XQ =

= (o +03) + a?(a% + %) + b? + 2sbay —~ 2bag — 2a(axoq + ox0gXQ) =
= (aax +b~ag)? + (aox — 0qXQY + (1~ (XQ)) = (B)*+ (@) +c. G

Next, we combine the fact that Dn(Q,aX +b) < € with the equality derived in

Proposition 7:

Dn(Q,aX +b) <€ += D%(Q,aX +b) < & @)+ )2 +c<
€ = (a)+ (V)2 <e—~c.
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Note that ox (ax) appears only in a’ ('), and its range can be maximized by setting
b’ (a’) to 0:
(@) = (aox ~0QXQ)> < ~¢
(b)? = (aax +b-ag)* <& -c
Solving the resulting inequalities for ax and ox, we obtain:
(c@ -b—- Ve -c)fa<ax <(ag ~b+ Ve =c)/a
(0@XQ - Ve —c)/a < ox < (0 XQ + VE - ¢)/a
Unfortunately, the above formulas involve values that are not constant at the time
of computation; i.e., a, b and X(J. We need to substitute constants for a, b and XQ;
we do this conservatively so as to ensure no false dismissals, while trying to allow for
the widest range of ax and ox. Specifically, we find that taking XQ = 1 always
minimizes the lower bounds and maximizes the upper bounds. Therefore, the square
root expression always collapses to ve2 = €. For a and b, we choose appropriately

from the external query bounds on these values in order to obtain the widest bounds.
Therefore, we obtain the following bounds:

(aQ —up—€)/us < ax < (QQ -+ e)/la
(0@ —€)/us < ox < (0Q +€)/la

This completes the specification of the conversion from the external to the internal
query. The conversion results are summarized in Figure 7.2

7.5.4 Filtering Potential Matches

Proposition 8 Given a query Q, a potential match X ; the (open) bounds (I, ua), (I, up)
on a and b define an (open) rectangle R:

(@b)ER <= (l<a<u)A(lb<b<uy).

The transformation t (defined in Proposition 7) maps R to an (open) quadrilateral
t(R). Let (at,be) be the point in t(R) closest to the origin, and let (a0, bo) be the

inverse transformation t~'(ay, b,):

ao = (ae + 09XQ)/ox, bo = b, + ag — agax.
Then, min{Dn(Q,aX +b) : (I, < a < ) A (b < b < w)} = DN(Q, aoX + bo) =
Vet +b +c.
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Proof:

1. Let us consider some arbitrary (a;,5;) € R, with t(ay,01) = (af,b]). We know
that (af + b7) < (a + bP). This means that 0 < (a? +b?) — (a? + b3) =
(aP+bZ+c)— (a2 +b+¢) = D%4(Q,a1 X +b1)—D%(Q, a0 X +bo) (by Proposition 7).

2. We've just shown that for all (@1,b1) in R, DN(Q, 0, X +b;) > Dy(Q, agX + bg).
Since ¢ is linear, (ao, bg) is itself in R. Since we know that Dn(Q,a0X + bo) =
y/ai + b} + ¢, this completes the proof.

a

7.6 Current Work and Future Directions

We have implemented a framework for Time-Series Approximate Similarity Queries
that allows the user to pose a wide variety of queries and that preserves desirable
indexing properties of Time-Series Approximate Matching. Possible extensions involve
more powerful similarity queries and different distance functions; also indexing of time-
series data that is represented using constraints (see [BNW91, KSW90]).

In addition to implementing the general version of similarity querying, as described
in this chapter, we have implemented other versions, by tailoring the internal repre-
sentation and the corresponding indexing scheme for specialized subsets of similarity
queries.

As with a generalized version of any problem, there is a trade-off between a gain in
expressibility and a decrease in performance, though it is not significant. There is some
slow-down due to the extra keys in the new indexing scheme (as opposed to [FRM94]),
as well as due to the additional false alarms generated by our fingerprinting (as com-
pared to the specialized cases without a similarity transformation). We are currently
examining these trade-off through performance evaluations; this experimental work is
in progress.

Some other questions, more theoretical in nature, remain. The existence of a fin-
gerprint function for internal similarity querying that is a real hash function but is also
distance-preserving and updateable is an interesting open question. Is there a finger-
print method that gives a provably linear performance for the Rabin-Karp algorithm
[KR87], either for approzimate matching or for similarity querying? Can it be truly

randomized for any adversary?
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Chapter 8

Summary

In this work, we have studied Constraint Query Algebras (CQAs). CQAs constitute
the algebraic component of the Constraint Query Language (CQL) paradigm. CQLs
were first introduced in [KKR95], with a focus on the semantics of the declarative
constraint query paradigm (Constraint Query Calculi). This paper complements the
original work by focusing specifically on Constraint Query Algebras, which we believe
is the proper query language for considering the implementational issues of constraint
query languages.

In Chapter 2, we provided the foundations for the rest of the work, by presenting the
issues involved in designing Constraint Query Algebras. We considered the desirable
properties for data representation, and for operator tmplementation, and examined the
notion of duality of representation (syntax) and meaning (semantics), central to the
theory of CQAs. Finally, we defined the principle of semantic closure, one which makes
explicit the commutativity of the syntactic and semantic interpretations of a CQA.

In Chapter 3, we briefly considered two issues that are crucial to practical implemen-
tations of constraint database querying: indexing and optimization. For optimization,
we suggested two promising approaches to optimizing CQA queries. The first is lazy
evaluation of linear and nonlinear constraints (for real polynomial constraints see [Tar];
for recent developments and a symbolic computation survey see [Ren92], and for nu-
merical computation see [VMK95]. The second approach is to optimize CQAs by using
the indexing information, just as for relational algebras.

We then highlighted the importance of the syntax-semantics duality on two im-
plementational issues in particular: representation of data and implementation of the
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algebraic operations. In Chapter 4, we presented the syntax for data representation for
dense-order [FG77, Kan95, Klu88] and temporal constraints, and define the algebraic
operations over the data. We established the correctness of the dense-order algebra, by
proving the commutativity of its syntactic and semantic interpretations. In Section 5,
we considered how the implementation of the PROJECT operation can be made more
efficient for a subclass of linear inequality constraints (see the comprehensive survey
in [Sch]. We presented an algorithm for projection over monotone constraints which is
strongly polynomial in the size of the constraint set whenever the path ezpression for
the corresponding monotone network is of polynomial size.

In Section 6, we generalized the notion of relational schema to include specifica-
tion of vaeriable dependence, and apply it to produce a restriction on CQA expressions
which guarantees closure under the aggregation operator. In the context of constraint
databases, we have defined a restricted version of aggregation whose addition to re-
lational algebra results in a closed language. The restriction requires that the set of
variables grouped upon is independent of the remaining variables. We formalized this
restriction using the notion of variable independence. We have shown that for con-
straint databases with linear arithmetic constraints variable independence is decidable
with acceptable complexity. We have also provided a set of rules for inferring variable
independence in relational expressions.

Finally, in section 7, we show how queries over spatiotemporal data can be defined
in a constraint setting, and implemented with a multidimensional indexing structure.
We provide both the description and the implementational details for a framework for
similarity querying of time-series data. Similarity queries are strictly more expressive
than approximate match queries, for which a framework had been supplied in [FRM94].

Sections 5-7 represent original work, most of which has already been published [KG94,
GK95, CGK96, GK96, BG96]. Further work is in progress in the areas of aggregation,
monotone constraints, and similarity querying.
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Appendix A

The Closure Theorem

In Appendix A, we present the proof of the closure theorem for Dense Order Constraint

Algebra operations:

Theorem 2 For every relational algebra QUERY on unrestricted finitely repre-
sentable relations over D", the constraint algebra QUERY that uses OPs instead of

OPs has the property that:
o(QUERY (Fy,...,7n)) =QUERY (o(F1),...,0(%a))
The first three lemmas involve projection.
Lemma 10 If? is canonical and ¥’ = (t | Z), then ' is canonical.

Proof:

1. Assume that ¥ is not canonical. Then, there exists a constraint 4 such that ¥ =6,
but @ is strictly tighter than the corresponding constraint in 7.

2. Since the constraints in ¥ are a subset of the constraints in t, 8 must also be
strictly tighter than the corresponding constraint in Z. Furthermore, since f is a
union of ¥ and some additional constraints, if £ }= 6, then  |= 4.

3. Therefore, £ |= 0 but 4 is strictly tighter than the corresponding constraint in £.

This is impossible since £ is canonical. Therefore, £ must also be canonical.
0

Lemma 11 Iff is a canonical n-tuple and ¥’ = (t | Z), then P(¥) = Tz (P(%))
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Proof:

1.

o

Let p € P(%), i.e,, p is an assignment over X satisfying £. Since £ C ¥, restricting
P to Z must satisfy all the constraints in . Therefore, 7z(P(F)) C P(t).

- For the other direction, it suffices to show that when [Z]| = | X |-1,ifpe PE)is

an assignment over Z, then there exists an extension of p to X satisfying t. The
remainder of the proof easily follows by induction on X - Z].

- Let X = {z1,...,2,}, Z = X ~ {zn}. Let p be an assignment satisfying £. We

define a sequence of constraint sets {Cy, ..., Cn} as follows:

Co=tU (Ur<icn—1(zi = p(z:))), where p(z;) is the constant assigned
to z; in p;
C1 =CoU0, where 8 = (I, = z,,) if (I, =1uy), and 0 = (I, < z, < u,)
otherwise;
C2 = CLU&;, where & is the two-variable constraint over (zn,z1) in £

Cn = Cp_y U &1, where &,_; is the two-variable constraint over

(ZnsZpn-1) in £.

. Note that C,, O £. In the remainder of the proof, we show that each C;,1 < i < n,

is satisfiable. Since any p’ satisfying C, is an extension of P, we can conclude
that there exists an extension of p to X satisfying Z.

- Inductive Assumption (IA). The actual statement about each C:i, proven by in-

duction on ¢, is that C; is satisfiable and one of the following is true:

(a) Ci = Co U {(zn = c.)}, where either ¢, = I, = u,, the bounds of z, in %, or
there exists k < ¢ such that c. = p(z¢) and & = (Tn = zi);

(b) Ci =CoU {(zn > c1), (zn < cu)}, Where:

either ¢; = I, or there exists k < i s.t. ¢; = p(zx) and & = (zn > zk); and

either ¢, = u,,, or there exists k <is.t. ¢, = p(zk) and & = (zn < z,).

. Base Case: C; =t U (UIS"S"-I (zi = p(z;))) UG, where @ is either (I,, < z, < Up)

or (I, = z,). It is easy to see that IA holds for C;.

. Inductive Step. Let us now assume that for some J £ n—~1, IA holds for all C;,

1 <1 < j. By definition, Cj4y = C; U, where &; is one of:
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(Zn = z;), (Za < 2j), (Tn > z;).
By inductive assumption, there are two possibilities for Cj:
Ci=CoU(za=¢.) or C; =Co U {(zn > a1), (zn < cu)}.

It remains to consider the different combinations of C; and §;, making use of the
following facts: (a) # is canonical, (b) each C; is a subset of £ and a superset of

Co. For each combination, it is easy to see that I4 holds for C;.
a

Lemma 12 Let ¥ = nz(F). Then, ¥ is a canonical relation, and () = nz(c(7)).
Proof: This follows from Lemmas 10 and 11. =

The next four lemmas involve selection, natural-join, union, and renaming.
Lemma 13 Let¥ = Sp(5)(T)- Then, ¥ is a canonical relation, and o(7) = SF(i) (0 (7))-
Proof:

1. According to the definition, all tuples in 7 are canonical.

2. Let p be an assignment to the variables in X. p € o(7) iff there exists ' € ¥
such that p € P(¥) iff, by definition of generalized selection, there exists 7 € 7
such that p € P(% 1 X) N P(?).

3. p € P(to 1 X) iff p satisfies F(Zy). Therefore, p € o(7) iff p satisfies F(fy) and
there exists £ € ¥ such that p € P(%).

4. This is equivalent to stating that p € o(¥) iff p € Sr(Ee) (7 (T))-
]

Lemma 14 Let¥ = 7|}7;. Then, ¥ is a canonical relation, and o(¥) = o(F, )Xo (7).
Proof:
1. According to the definition, all tuples in ¥ are canonical.

2. Let p be an assignment to the variables in Z. p € () iff there exists ¥ € 7 such
that p € P(¥') iff, by definition of generalized join, there exists some #; € 7; and
some t; € 7, such that ' is the common tuple of (£, + Z) and (%, T Z).
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3. This is equivalent to stating that p € o(¥) iff p satisfies F(f, 1 Z) A F(, t 2).

4. By definition of common tuple, p satisfies F(f, 1+ 2) iff 7x(p) € P(f); ie.,
Tx(p) € o(f1). Likewise, p satisfies F(f, t Z), iff 7y (p) € o(72). Therefore,

p € o(7) iff p € o(F1)Xo(r,).
o

Lemma 15 Let¥ =FUF,. Then, ¥ is a canonical relation, and o(7) = o(F1)Uo (7).
Proof: This follows from the definitions. a
Lemma 16 Let7 = g,,,(F). Then, ¥ is a canonical relation, and o(F) = 0z,y (o (7).
Proof: This follows from the definitions. a

The last two Lemmas involve the difference operator; the notation here is taken

from the definitions.
Lemma 17 O’(tupdif(ﬁ,fg)) = P(El) - P(Ez).

Proof:

1. The proof proceeds by induction on m, the number of constraints that are different
in £; and £,. The inductive assumption is that whenever the number of different
constraints is less than m, tupdif(%,,%;) = P(f,) — P(%,).

2. Base Case: m = 0. f m = 0, then f; = F,, and P(t;) = P(f;). Therefore,
tupdif(?l,fz) =0= P(?l) - P(Ez).
3. Inductive Step:
(2) By definition, tupdif(t;,%;) = tupdif(},23) U {Z,...,2}, so
o(tupdif(, ) = o(tupdif§}, &) U (Ur<iceP(H))-
(b) & and i‘,’ have one more constraint in common than did #; and %, (¢o is that

constraint), so by inductive assumption, o(tupdif(fy, %)) = P@®) - P(59).
Therefore,

o(tupdifié,, &) = (P@&) — P(E3) U (Uicick PEL)).
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(c) For 1 < i < k, (62 A ¢;) is not satisfiable, so P(f;) and P(E.) are disjoint.
This means that P(£,) — P(£;) = P(f) — P(®).

(d) P(f1) = Uocick P(8}); also, P(f3) and P(£}) are disjoint for 1 < i < k. So,
P(t) - P(52) = Uocick P(B) — P(B2) = (Lisik P@) U P(E)) - P(3) =

(PE) ~ P@)) U (Uicick P()) = tupdif(E}, 13) (by the equality of (b)).
m]

Lemma 18 Let¥ =7,~F,. Then, ¥ is a canonical relation, and o(¥) = o(F1)—0 (F2).
Proof:

1. Since all tuples in a tuple difference are canonical, all tuples in 7 are canonical.
The proof proceeds by induction on m, the size of 7. The inductive assumption

is that whenever || < m, o(F1~T2) = (7)) — 0 (2).

2. Base case: m = 0. Since 7, = 0, o(72) = 0. By definition, 7, —F, = T1; therefore,

o(Fi—72) = o(71) = o(F1) — o(F2).
3. Inductive step: |F,| = m.

(a) Fi—T2 = U?[Eﬁ {tllpdif(fl, Ez)—setdif(?z, {Ez}) 1t € Fg}.

(b) Let 73 be tupdif{f|,£;}). By Lemma 17, o(73) = P(f;) — P(t;).

(c) Let 74 be setdif(Ts, {£;}); o(72) = P(E2)Uo(Fs). [Fa| = m~1, so by inductive
assumption, o (F3—~74) = o(T3) — o(Fy).-

(d) So, o(Fi—Ts) = o(Uger, : T3 ~Ta) = Uy er,0(Fa—F4) = Vs er, (0(T3) -
o(F4)) =
Vier, (P(B) — P(B2) — 0(F4)) = Uper, (P(R1) - (7)) = (Up,er, P(R1)) —
o(F2) = a(f1) ~ ().

O
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