INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600






Modeling Surfaces of Arbitrary Topology Using Manifolds

by
Cindy Marie Grimm
B.A. University of California, Berkeley, 1990
M.S. Brown University, 1992

Thesis
Submitted in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in the Department of Computer Science
at Brown University

May, 1996



UMI Number: 9704037

Copyright 1996 by
Grimm, Cindy Marie

All rights reserved.

UMI Microform 9704037
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



Copyright
by
Cindy Marie Grimm
1996



This dissertation by Cindy Marie Grimm
is accepted in its present form
by the Department of Computer Science
as satisfying the dissertation requirement
for the degree of Doctor of Philosophy.

e 2/26/06 & @wbﬁ

John Fo}bw Hughes

Recommended to the Graduate Council

Dateyzé/?/ W (2

Andries van Dam

Date 9/99/ 9\ GU ' \D @/\

Anthony D. DeRose
Pixar Animation Studios, Richmond, Ca

Approved by the Graduate Council

Date _~/2 Yo, _@MF&L\

ii



Vita

[ was born July 13, 1967 in Stanford, California. I attended the University of California at
Berkeley and received a Bachelors of Art in both Art and Computer Science in 1990. [ received
my Master of Science in Computer Science from Brown University in 1992. While at Brown [
published the following three papers:

“Smooth Isosurface Approximation”, Cindy Grimm and John Hughes, Eurographics Work-
shop on Implicit Surfaces, April 1995

“Modeling Surfaces of Arbitrary Topology Using Manifolds”, Cindy Grimmand John Hughes,
Siggraph 1995

“Visual Interfaces for Solids Modelling”, Cindy Grimm, David Pugmire, Mark Bloomenthal,
John Hughes, and Elaine Cohen, UIST 1995

iii



Acknowledgements

I am grateful to the Brown graphics group for all their help and support, and the Hapkido
club for keeping me sane, especially my fellow instructor Mark Abbott. Thank you to Michael
Kowalski for building Alexander’s two-holed torus and Daniel Robbins for making the original
teapot. My appreciation to the folks at Stanford for letting me use their laser-scanned bunny.
Special thanks to Professor Marc Levoy at Stanford for his many insightful suggestions.

Thanks to the following people for reading various versions of the thesis, and for all their
helpful comments: Katrina Avery, William Smart, Tony DeRose, Andy van Damm, and of
course, John Hughes.

And finally, many thanks to William Smart for keeping me well-supplied with jelly beans

and beer.

iv



Contents

Vita

Acknowledgements

List of Figures

1 Introduction

2 Previous work

3 A different approach

3.1
3.2
3.3
3.4
3.5

The sketch, orpolygon . . . . . . . .. ... ... ..
Theatlas . . ... ... ... .

Commentary on thisapproach . ..........................
3.5.1 Two-Step Process . . . . . . o v vt ittt e e e e

3.5.2 Parameterization . . . ... ... ... ...

4 Building a manifold ~ an informal discussion

4.1
4.2
4.3

Manifolds, an analyticview . . .. ... ... ... ... .. .... .. ... ..
Manifolds, a syntheticview . . ... ... .....................
Buildingamanifold .. ... ....... ... ... ..... ... ... ..
4.3.1 A vertex chart and its meighbors . . . ... ... ... ..........
4.3.2 The charts, overlaps, and transition functions . . . . ... ........

5 Formal description of a manifold

5.1
5.2

5.3

Traditional manifolds. . . . . . ... ... ... ....... ... ... . .. ...

v

iv

viii

11
16
16
20
24
25
25
26

28
28
29
31
33
34



5.3.1 Thecharts . ... ... .. 0.0ttt inn. 43

5.3.2 Theoverlapregions . ........... ... ... ... ... .... 45

5.3.3 The transitionfunctions . . . ... ... ... ... ... ... . ..... 49

5.3.4 Proof that this structure is a proto-manifold . .............. 53

6 Immersing the manifold 59
6.1 Defining functionson the manifold . ... .. ................... 60
6.1.1 Partitionofunity . ... .. .. .. .. ... ... ... .. 61

6.2 Knot vectors and basis functions for manifolds . ... .............. 62
6.2.1 Knot vectorsforcurves . . . ... ... ... ... ..., 62

6.2.2 Knot vectors forcurve manifolds . . . .. ... .............. 63

6.3 Defining basis functions on the manifold . . . . . ... ... ........... 66
6.3.1 Knotsintheplane . . . . . .. .. ... . ... .. .. ... .. 69

6.3.2 Knot sets for surface manifolds . . . ... ... .............. 69

7 Manifolds with boundary 75
7.1 The polyhedron withboundary . ... ... ... ... .............. 75
7.2 Thechartsand theoverlaps . . . . .. ... ... ................. 7
7.3 The transition functions . . . . .. ... ... ... .. ... ... ... 77
74 Theimmersion . . . . ... . . . i ittt it it e, 78

8 Additional issues 81
81 Thegaph . . . . . @ . i it e e e 81
8.2 Initial locations for the control points . . . ... ................. 82
8.3 Triangulating the manifold . ... .... ... ... ................ 85

9 A history of alternative approaches 86
9.1 Thepolyhedron. . ... ... ... ... ... ... 86
9.2 Themanifold . . . ... ... ... ... . . 88
9.3 Theimmersion . . .. .. .. .. ... e 90
9.3.1 Ensuring C¥ continuity . .......................... 91

9.3.2 Partitionofunity . . . . .. .. ... e 92

9.3.3 Number of overlapping functions . . ... ................. 95

9.3.4 The shape of the basis functions . ... .................. 93

10 Implementation 99
10.05 Results . . .. ... .. . e, 99

vi



11 Future work
1.1 Spline manipulationtechniques . . . ... .....................
11.1.1 Refinement and subdivision . ... .....................
11.1.2 Introducing discontinuities. . . . . ... ..................
11.1.3 Curves immersedinasurface . .. .....................
11.1.4 Parameter-space-based texture mapping . . . . ..............
11.2 Other directions . . ..... ... ... ... ... ... uuuenunenn. ...
11.2.1 Building the manifold and the immersion . ................
11.2.2 Sketchingmodels . . . . . . ... .. ... . ... ... .........
11.2.3 Datafitting . . .. ... .. .. ... ... ... . ...

C Theorems
C.l ~isanequivalencerelation . . .. .........................
C2 MXisaHausdorffspace. .. .. ... ... ... ...

D pgyv is one-to-one and invertible
D.1 Proving a functionisone-to-one. . . . .. ... ..................
D.2 Proving ppv isoneto-ome . . . . . .. ... ... ... ...
D.2.1 Thedomain.............. ... ... .............
D.2.2 The image of the blended region . . ....................
D.2.3 Abbreviations and definitions . . . ... ... ...............
D.24 ppvisoneto-oneon Dgy .. ... ... ..... ... ... ... .
D.2.5 Proving the cones do not intersect . ... .................
D.2.6 Aspecificexample . . ... ........... ... .. ... . ... ..

Bibliography

vii



List of Figures

1.1
1.2
1.3

1.4
1.5

1.6

o
—

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

Asculptureofaflower. . ... ... ... ... ... . ... ... .. .. ....
Anexhaust manifold. . ... ... ... ... ... .. .. .. ... ... ...
(a) An axis curve and tangent vector. (b) The cross-section curve with z and y
axes shown; the z axis is out of the paper. (c) The resulting sweep surface: the
z axis of the cross-section is always oriented in the direction of the axis curve’s
tangent vector. . . . . . . . . .. L L e e e e e e e e e
Two different chairs. . . . . ... ... ... ... ... ... ..
Two ways to make the body of the flower. Left: A sweep with two sweeps
attatched. Right: A sweep with two holescut init. .. ... ...........
Left: Parameterizing the sphere with latitude and longitude lines. Right: Using

a different parameterization for the northpole. . .. ... ... .. .......
A model of a ding (an ancient Chinese bronze ritual vessel). . . .. .......

Two surface patches glued together by abutting along their edge, making them
positionally continuous. The supports of the patches do not overlap. . . . . . .
Two surface patches glued together by overlapping; the supports of the patches
overlapsubstantially. . . . .. .. ... ... ... ... .. ... ... ...
Extending a Bézier curve by joining another Bézier curve to it. Continuity is
established by constraining the first two control points of the second curve.

Extending a B-spline curve by adding another segment. Continuity is automat-

ically maintained. . . . ... . ... .. . ...
Two overlapping pages froma worldatlas. . . . ... ...............
An atlas describingapark. . ....... ... ..., .. ... . .. .....
An outline of the curve construction process. A manifold is built from the sketch
polygon and then immersed using control points and basis functions. . . . . .
The polygon sketch, with four vertices and four edges. .. ............

The eight atlas pages corresponding to the four vertices and four cdges of the

sketch polygon. . . . . ... ...

3.10 An edge page of our atlas and how it overlaps with its two adjacent vertex pages.

viii

[ S 8

13

13

14

17

18

18
18



3.11

3.12
3.13

3.14

3.15

3.16

3.17

3.18

3.19

4.1

4.2

4.3

4.4
4.5

4.6

Left: Gluing the two adjacent vertex pages to the edge page. Right: All of the
pages glued together. . . . . ... ... .. L L L
The glued-together pages stretched out into several shapes. . .. ... ... ..
Defining a B-spline. Left: Four basis functions defined on the real line. Right:
The corresponding four control points and the resulting curve. .. ... . ...
Left: The construction process for a B-spline curve. Right: The construction
process for a manifold curve. Note that a B-spline basis function is defined on
the entire real line while a manifold basis function is first defined on a chart,
then promoted to a function on the manifold. . ... ..............
The manifold itself has no inherent metric. The unrolled bit of manifold can
be put into correspondence with the interval (-5, 5), or (—2,0), or any other
contiguous subset of thereal line. . . . .. ... ... ...............
Three pages of the atlas. Two basis functions are defined on each page (bold
curves). We also show the functions from the overlapping pages and how they
would appear on the page (dotted curves). . . ..................
How to define the basis functions on the pages of the manifold so that when
the pages are glued together the basis functions overlap in a manner similar
to traditional basis functions: we unroll a bit of the manifold and line up the
“pages” with a segment of the real line so that the support of each basis function
is contained within asinglepage. . ........................
The manifold immersed into 2-space. The topology of the immersion is deter-
mined by the topology of the manifold but the geometry of the immersion is
determined by the locations of the control points. . . . . .. ...........
Adding detail to a manifold curve by adding a small chart to the manifold and
defining new basis functionson that chart. . . . . ... ... ...........

Two charts and the inverse property: for all z € Uger (the left red region),
z=gccr(pcrc(T)). - o oo
Three charts, their overlaps, and the co-cycle condition: for all z € Us; N Uik
(the purple region in chart i) g (z) = pjropij(z) . .o o ...
Top: A vertex v and adjacent elements ey, ...,e3 and fo, ..., f3. Bottom: The
charts and overlaps resulting from those elements. .. ..............
A sketch of the different chart types. .. ... .............. ... .
The transition function between an edge and a face chart consists of a translation
followed by a rotation. . . . ... ...... .. ... ... ... .. ... ..
The transition function between a face and a vertex chart is a projective trans-

form. ...,

19
20

20

(8
o

23

23

24

1S
wn

(]
-~

30

31



4.7

5.1
5.2
5.3
5.4

5.5

5.6

5.8
5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18
5.19

The transition function between an edge and a vertex chart is a blend of the two

functions formed by composing the map from the edge chart to one of the face

charts with the map from the face chart to the vertex chart. ... ....... 35
Two overlappingmapsdand .. . . . . . ... . . .. . 38
Going from the charts of Definition 3 to M ¥ to the chart functions of Definition [. 42
A vertex chart is a unit square without boundary. . ... ............ 44

Example shapes of the edge charts. Top, left to right: The upper face has three,
four, five, and six sides, the lower face has four sides. Bottom, left to right: The
lower face has three, four, five, and six sides, the upper face has four sides. .. 44
The face charts are regular polygons centered at the origin with edge length
1 — 2h. For these figures, h = 0.1. From left to right the corresponding face has
three, four, five, and sixsides. . ....... ... ... . . ... ... ..... 45
Left: The elements of the polyhedron adjacent to the vertex v. Right: The

locations of the Uy g, and Uy g, within the vertex chart. . ........... 46
The shape of Uy g, for h = 0.1. From left to right: Face f; has three, four, five,
andsixsides. . . ... ... e e e e e e e 46

Example shapes of Uy g, for h = 0.1; F3 and Fy have the number of sides indicated. 47
Left: The elements of the polyhedron adjacent to the edge e. Right: The loca-

tionsof the Ugy, and Ugr,;. . .. . .. . . oo i ittt it 47
The shape of Ugy, and Ugy, ; both adjacent faces have four sides. . . . . . . .. 47
The shape of Ugr, and Ugg,; both adjacent faces have four sides. . . . .. .. 48

Left: The elements of the polyhedron adjacent to face f. Right: The locations
of the Urv, and UpE‘. ............................... 48

The shape of Upy, for h = 0.1. From left to right: The corresponding face has
three, four, five,and sixsides. . .......... ... ... ... ........ 48
The shape of Urg, for & = 0.1. From left to right: The corresponding face has
three, four, five,and sixsides. . . .. ... ... ... .. ... ... . ..... 49
The transition functions pgr, and pgr,. Top: Uer, is mapped to the second
edge of F,. Bottom: Ugp, is mapped to the second edgeof Fi. . ........ 50
The transition function @py is a restriction of the projective transform taking
the quadrilateral {¢;} to the square {p;}. ..................... 50
The projective transform (gp takes the quadrilateral {g;} to the quadrilateral
{p:}. Note that lines are preserved. . .. ..................... 51
The transition function gy for h=0.1. ... ... .. ............. 52
Left: The B-spline basis function used to make the blend function. Right: The
blend function Sforh=02and k=2. . ... ... ............... 52



5.20

5.21

5.22
5.23

6.1

6.2

6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

The limits of the blend regions mapped into a vertex chart via the upper and
lower composed functions (k = 0). From top left to bottom right, the faces have
three, four, five,andsixsides. . . . .. ... ... ... .. ............
Embedding an edge-face pair. Left: The face chart overlaps the upper edge of
edge chart. Right: The face chart overlaps the lower edge of edge chart. . . . .
Embedding a face-vertex pair for a 5-sided face chart. . .. ...........

Embedding an edge-vertex pair. . .........................

Extending a function f. : ¢ — R defined on a chart to a function F, : MX - R
defined on the manifold using the indicator function Z.. .............
A knot vector (—2.0,—~1.25,-0.4,0,0.6, 1.8,2.0), the four basis functions of de-
gree one it defines, and the resultingcurve. . .. ... ... ...........
Left: Defining a knot. Right: A knot vector x on the manifold with 16 knots. .
Top: A knot vector K on the manifold. Bottom: The knots falling in the image
of the chart ¢ (left) and the chart ¢/ (right). These knots are drawn in the
corresponding chart ¢ or ¢/, along with the basis functions of degree k£ = 1
resulting fromthem. . ... ... .. .. ... .. ... ... ...
The number of knots needed to ensure that an interval between two adjacent
knots is contained in the support of k + 2 basis functions. The knots can be
distributed amongst the charts asshown. . ... ... ... ...........
Examples of assigning 2(k + 2) knots to each chart for three overlapping charts
ofthemanifold. . . .. ... ... ... .. ... ... ...
The manifold knot vector and corresponding basis functions on a chart for various
valuesof k. . . . . L,
A grid of knots in the plane formed by the cartesian product of two curve knot
vectors (K=1). . . .. .o e e
The knot set for k£ = 1 (6, = 0.1) in a vertex chart (left), an edge chart (middle)
and a four-sided face chart (right). . ........................
The knot vector in three-, five-, and six-sided face charts (k = 1). The knots
form an n-sided pattern in the center of thechart. . . ... ...........
Defining an equivalent basis function using only the four corner knots instead of
the entire grid. The projective map (,, takes the four corner knots to the four
corners of the unit square. The basis function is defined to be the composition
bo(g,. Top: A vertex chart. Bottom: A three-sided face chart. .. .. .. ...
The knot vector in three different edge charts (k = 1). The knots form a distorted
Brid. .
Picking four corner knots from the knot patterns (k = 0) in the face charts. Note
that the knots contained within the four corner knots may not form a grid. . .

xi

35

oYW
-~ =

60

63
64

64

67

68

68

69

71

7l

73



-1
.
p—

7.2

7.3

74
7.5

8.1

8.3

8.4

8.5

8.6

8.7

9.1
9.2
9.3

9.4
9.5
9.6
9.7

9.8

The shape and overlap regions of the three types of boundary vertex charts. The
adjacent faces have foursides. . . ... ......................
The shape and overlap regions of a boundary edge chart (the adjacent face has
dsides). .. ... e
The transition function pgv for the boundary case is build from a single com-
position. . . .. ... e e e e,
Constructing chart basis functions on a vertex boundary chart. . .......
Constructing basis functions on an edge boundary chart. . . . . ... ......

The knots in the vertex chart and the overlap region Uy ¢ for decreasing values
of h (Fhasthreesix). . ... ....... ... ..... ... .. .......
Left: A vertex chart on the manifold with the support and centers of two ba-
sis functions marked. Right: The sketch polyhedron subdivided once with the
corresponding locations of the corresponding control points marked. . . .. . .
Left: Original polyhedron P. Middle: After one level of subdivision (P'). Right:
Subdividing again (P”). .. ... .... ... ... .. .. ... ...,
Upper left: A face f of P with the new point v; € P’. Upper right: An edge
of P and the two adjacent centroid locations. Bottom: A vertex v of P and the
adjacent edge and face points. . . . ... ... ... ... .. ..........
An abstraction of the subdivision process on a vertex chart. The surface has
been subdivided twice. ... ... ..... ... . ... ... ... . .. ...,
Triangulating the interior of a vertex chart (r = 5). The polyhedron is a three-
sided face surrounded by four-sided faces. . .. ..................
Filling in the gaps of the triangulation. Left: Adjoining edges. Right: Filling in

the centers of thefaces. . ... ... ... ... ... ... ... .. ... ...,

Mapping a triangle containing Ugy to a vertex chart via pgy (h = 0.2). Left:
The two faces have three sides. Right: The two faces have six sides. . . .. . .
Building a manifold function F from two chart functions f; and foo oo
“Flipping” g around the origin and translatingby z .. . . . ...........
Using convolution to construct the B-spline basis functions. . . ........ .
Defining a single basis function across two face charts, an edge chart, and a
vertex chart. The support of the function is spread across the four charts; no
singe chart contains the entire support of the function. . . . . ..........
Top center: The basis functions used to create the two curves. Left: gi(t) is the
constant function. Right: g;(t) is a linear function. . . ..............

xii

78
79
80

81

83

84

85

87
89

90

91

93

93

96

97



10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8
10.9

11.2

B.1

A spiderweb (764 polygons).. . . . . . .. ... .. ... ... .. .. .. ...
Alexander’s two-holed torus (596 polygons). . . . ... ... ...........
Top left: The initial polyhedron. Top right: The valence-four polyhedron. Bot-
tom: The C! surface, tesselated with 52 triangles per vertex chart. ... ...
Top left: The initial polyhedron. Top right: The valence-four polyhedron. Bot-
tom: The C! surface, tesselated with 52 triangles per vertex chart. ... ...
Top left: The initial polyhedron. Top right: The valence-four polyhedron. Bot-
tom: The C! surface, tesselated with 52 triangles per vertex chart. ... ...
Upper left: The laser scanned data. Upper right: The control polyhedron (built
by hand). Lower left: The surface before data fitting. Lower right: The surface
afterdatafitting. ... ... ... ... ... .. .. ... . . ..
Top: The initial isosurface. Bottom: The C! surface, tesselated with 52 triangles
per vertexchart. . .. . . . . ... ... e e
Left: Before moving the vertex. Right: After moving the vertex. . ... .. ..
Top left: Initial C® surface. Top right: Moving control points on the C? surface.
Bottom left: Moving control points on the C! surface. Bottom right: Moving

control pointson the CZsurface. . . ... .........00vvuuuunun...

Individually refining the basis functions of a curve. Note that pairs of functions
areidentical. . . ... ... ... .. .. .. ... .
Introducing a discontinuity into one of the knot vectors used to build the knot
grid for a a spline surface. This results in a duplicated knot line in the knot grid
(the red line in the knot grid) and a line of discontinuities in the surface (shown
ontheright). . . ... ... ... .. .. ...

A projective transform and its line of discontinuity. . ... ...........
The lines where the transition functions ¢y r (top) and ppyv (bottom) are not
defined. From left to right: The number of sides is three, five, and six. (For
four-sided face charts the line is at infinity.) . . ... ...............

A visualization of a complex C = ({vo,...,vs}, {€0,--- €5}, {fo, f1}) where

fo = [vo, v1, 174] and f1 = [vl, V2, U3, 114]. ......................

An example embedding of a sphere built from two charts. . .. .........
The real line with two origins. The charts are glued together everywhere but at
theirorigins. . . ... ... . ... ... ...

A Y-shape formed by gluing the negative part of the charts together. . . . . .

The derivatives of f in the z direction all lie within the blue cone and the
derivatives of f in the y direction all lie within the red cone. . ...... ...

xiii

104

105

106

107

111

119



D.2

D.3

D.4
D.5
D.6
D.7
D.8

The relative locations of f(z,y), f(z’,y) and f(z’,y’) where the = and y deriva-
tives overlap. Note that f(z,y) = f(z',¥/). ... ...« o ..
The relative locations of f(z,y), f(z’,¥), and f(z',y)- The slope of v; is greater
than the slope of v, because the z and y derivatives do not overlap. . ... ..
Shearing the cones so that one boundary of each cone lies along an axis. . . . .
Bounds on the image of the blended region. . . . ... ... ...........
The relationships between the z derivatives of ¢y, ¢, and wgv. . .......
The general locations of the derivatives making up the derivatives of pgy.

Showing that the two cones do not intersect. . . ... ..............

xiv

129

130
131
135
136
138



Chapter 1

Introduction

Modeling complicated surfaces is a difficult and time-consuming task. In this paper we present
a technique for both analyzing and building surfaces whose topology and geometry are compli-
cated. The aim of this research is to provide a constructive approach for creating and editing
such surfaces using a minimum of data. Additionally, the final surface should resemble the
data in a reasonable way. We approach the problem by defining techniques which are designed
specifically for analyzing and building complicated surfaces.

The desire to model complicated surfaces is not new; the CAD/CAM world in particular has
developed a variety of approaches to the problem. We briefly describe two of these approaches
in order to provide some intuition about why they may not be appropriate for designing free-
form shapes such as the flower in Figure 1.1 or topologically complicated models such as the
exhaust manifold in Figure 1.2.

CAD/CAM has focused on building surfaces using techniques based on traditional mechan-
ical design. There are two reasons for this: the language is well developed and familiar to
designers and the types of objects that can be machined are limited by existing tools, such as
lathes and drills. CAD/CAM systems generally take one of two approaches. Solids modeling
begins with solid primitives, such as cubes and spheres, then adds and subtracts these primi-
tives from one another to construct more complicated shapes [Man88][Hof89]. This technique
is suitable for a wide class of objects, especially many man-made objects. The second approach
is spline-based. Surfaces are built up from curves using operators such as the sweep opera-
tor [BR91], an example of which is shown in Figure 1.3. These surfaces are very free-form,
although their topology is essentially rectangular.! This approach has many parallels with the
traditional approach of describing a surface by drawing what it looks like from three or more

sides.

! An object’s topology is rectangularif it can be built from a stretchy, rectangular sheet without tearing holes
in it, creasing it, or compressing an edge to a point. For example, cylinders and tori are essentially rectangular,
but a two-holed torus is not.



Figure 1.1: .\ sculpture of a flower.

Figure 1.2: An exhaust manifold.



(a) (b)

L \

()

Figure 1.3: (a) An axis curve and tangent vector. (b) The cross-section curve with z and y
axes shown; the z axis is out of the paper. (c) The resulting sweep surface: the z axis of the
cross-section is always oriented in the direction of the axis curve’s tangent vector.

Figure 1.4: Two different chairs.



Figure 1.5: Two ways to make the body of the flower. Left: A sweep with two sweeps attatched.
Right: A sweep with two holes cut in it.

Both of these approaches rely on a fairly good understanding of how basic operations, such
as subtracting a cylinder from a cube, can be combined to produce the desired shape. The
model is generally broken down into subparts that each consist of a sequence of operations.
Deciding which subpart hierarchy to use and the order of operations within those subparts can
be difficult. A major part of a good design is structuring the model with as much flexibility as
possible, which often requires fairly specific knowledge of the desired surface. This is because a
small change in topology can often require restructuring an entire model. For example, the two
chairs in Figure 1.4 look very similar but changing from one to the other is difficult and much of
the geometric detail cannot be carried over. There are, of course, benefits to organizing a model
using CAD/CAM techniques; in the chair example, changing certain aspects of design, such as
the height of the chair, the curve of the seat, etc., requires the change of only a single value
or curve. Parameter and feature-based design systems exploit this by allowing designers to
create explicitly parameterized models in which changes can be propagated through the model
automatically.

Sometimes, however, the designer or artist wants the freedom to change the model quickly
and drastically and sometimes the desired surface does not break down easily into a series of
spline or solids modeling operations. For example, the flower in Figure 1.1 can be thought of
as a sweep with two sweeps attached to it, or as a single sweep with two holes cut out of it (see
Figure 1.5). While a good user interface may simplify the specification task, it is still restricted
by the underlying modeling techniques. To address these problems we present a general method
‘for blending simple surfaces together into complicated topologies. A complicated surface is



Figure 1.6: Left: Parameterizing the sphere with latitude and longitude lines. Right: Using a
different parameterization for the north pole.

built by saying “it looks like this over here and that over there...;” the blending between these
requirements takes place automatically. This is essentially what splines do for rectangular
topologies, and makes it very simple to alter the surface without redesigning or rethinking the
entire surface.

Another problem addressed in this paper is parameterization. It is always possible to find
a parameterization for a complicated surface but it is not always an ideal one. For example,
a sphere parameterized by the standard latitude and longitude method behaves well around
most of the equator but near the poles the latitude lines converge to a point and along the
date line there is a “seam.” Any technique, such as parameter-space based texture mapping,
that uses this parameterization will have difficulty at the poles and at the date line. The
solution presented here provides a local parameterization at every point that “behaves well”
and a method for moving from one local parameterization to the next.

Although in this paper we focus on building interesting models for computer graphics, these
techniques are also applicable to problems arising from the representation of data whose domain
is locally planar. For example, a bidirectional reflectance function [CW93] can be represented
as a function on a sphere. This task is simplified by representing the function in “bits,” each of
which represents what the function looks like over part of the sphere. The bits do not have to
be the same size; a specular highlight might be built from lots of small bits while the remaining
function is represented with a few, larger bits.

In addition to the general issues mentioned above, the following issues (inspired, in part,
by the success of splines as a modeling tool) were also considered when designing this surface

model.

e User-defined arbitrary continuity. Although C? continuity is sufficient for most modeling
situations, the ability to model smoother surfaces is sometimes necessary (for example,

car bodies and airplane wings).

e A smooth parametric domain. We do not attempt to define a single parameterization of

the entire surface; instead, we provide a local parameterization at any point of the surface



and a method for smoothly changing between local parameterizations. Let us return to
parameterizing the sphere. Around the equator we can use the standard longitude and
latitude lines (see the left side of Figure 1.6) but at the north and south poles use a
different parameterization (the right side of Figure 1.6). These parameterizations do not
match up (and hence do not form a global parameterization), so we also need to define
a way to blend between them. A smooth parametric domain is useful for calculating
a variety of surface attributes (e.g., geodesics, derivatives) and for operations such as

texture mapping.

® A compact representation. A complicated spline curve can be represented by a set of
control points and a knot vector. For a uniform B-spline, just the control polygon suffices
(and also provides a fairly simple way to manipulate the shape of the curve at a high
level). By analogy, the surface model described here starts with a control polyhedron
that describes and controls the surface shape and topology.

e Computational tractability. The surfaces are simple enough to compute that they can be
constructed interactively.

One way to view our technique is as an extension of B-splines to arbitrary topologies (indeed,
for rectangular surfaces our technique reduces to B-splines). A different view is that we are
constructing a smooth structure from the structure of a polyhedron that can then be used as
a parameterization of that polyhedron. If the points of the polyhedron are in a one-to-one
correspondence with another object, for example, a subdivision surface or an implicit surface,
then we can relate the smooth structure to that object as well. This has the potential to
simplify such tasks as texture mapping implicit surfaces.



Chapter 2

Previous work

The problem of modeling free-form surfaces has been approached from a variety of directions.
Most techniques fall into one of four classes: solids models, implicit models (including algebraic
surfaces), geometric models (e.g., polygonal models), and parametric models (e.g., splines).

Solids models [Man88][Hof89] build complicated models by combining basic 3D geometric
primitives such as cylinders, cones, and cubes. They can model any oriented topology but are
limited in geometric detail. The individual geometric primitives have their own parameteriza-
tion but there is no relationship between these parameterizations.

Implicit surfaces [Mur91] [BS91] [WMW86] have found a limited use in modeling “soft”
objects. They naturally model smooth shapes of arbitrary topology but have difficulty model-
ing objects with intricate surface geometry (for example, the face on the object in Figure 2.1)
because there is no small-scale control over the surface. Its geometry is determined by the un-
derlying skeleton and the offset function, both of which are fairly large-scale. Also, they have
no parameterization, making techniques such as parameter-space texture mapping [Ped95] and
direct manipulation more difficult [WH94)]. Surfaces with boundary are formed by clipping
an implicit surface to a volume, say a tetrahedron {War89] [BI92a] [Sed85]. These surfaces
(called algebraic patches) have two advantages: positional and derivative constraints are easily
expressed and solved for, and they typically have a lower degree than their parametric counter-
parts. Complicated surfaces can be made by stitching together these algebraic patches [BBX95].
Unfortunately, these surfaces are difficult to use and expensive to render (rendering requires
either marching cubes [LC87] or a ray tracer). Additionally, it is difficult to guarantee that the
patch is single-sheeted, i.e., that the isosurface passes through the clip volume exactly once.

Polyhedral models can approximate nearly any surface but they have only C continuity.
and accuracy is achieved at the cost of model size. One method for producing smooth models
from polyhedra is subdivision [CC78] [Nas87] [BS88] [Loo87]. This process begins with an
arbitrary polyhedron and through a process of “chipping off” the corners produces, in the limit.
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Figure 2.1: A wodel of a ding (an aucient Chinese bronze ritual vessel).

a dense set of points describing a sinouth surface. The surface is defined not analytically but as
the limit of a series of polyhiedra: this makes any analysis of it very ditficult. since there is no
simple way to determine even the continuity of it [DSTX]. Recent work [DR93] has made these
surfaces more tractable but they still lack a stmooth parameterization. One further problew is
that the surface produced is at best (72 smooth (and in some cases not even ' [HBYY]) and
there ix no obvious way to produce smoother surfaces.

The most conmmon parametric model is the spline, in particular. NURBS and their simpler
cousins. B-spline and Bézier surfaces [BBBx7] [Farsy]. Unfortunately. these surfaces are based
on a rectangular domain and therefore do not naturally wodel arbitrary topologies. The dif-
ferent approaches to making splines model non-rectangular topologies have all proceeded by
=stitching™ together various tyvpes of spline patches in different wavs. These techniques fall
tuto three broad classes: filling in n-sided holes in otherwise regular meshes, allowing patches
to meet n at a vertex. and more global methods involving either constraints and mintmization
(variational modeling) or a systematic conversion of an trregular mesh into regular patches,

The most complete method involving n-sided patches is S-patches [LDxY] {LDY0]. These
patches have the advantage that the derivative information along an edge is independent of the
other edges (given a high enough degree). Joining them together smoothly, however, requires
Beézier-style constraints on the control points: this reduces the available degrees of freedom
and complicates tasks such ax data fitting. Other methods [Sabx3] [Wary2]  [Grex3] [DMx]
are computationally expensive or non-general. Mann ot ol conclude that these and other

polynomial interpolants are unsatisfactory [MLL*Y92].



Hollig and Mogerle [HM90] explore a general method for determining continuity constraints
on patches meeting n at a vertex. Van Wijk [Wij86] discusses the specific case of three and
four, or an odd number of, patches meeting at a point. Chiyokura and Kimura [CK83] define
a surface on which any number of patches can meet at a point, although continuity across
this point is not discussed. Neamtu and Pfluger [NP94] use global geometric information to
constrain patches locally; parametric continuity is not discussed.

In variational modeling, the shape of the patches is determined by a set of sketch curves
(containing positional and derivative information) and the minimization of an energy func-
tional [MS92] [WW92] [CG91]. These techniques produce pleasing surfaces (close to C? or
higher, although this is not guaranteed) at considerable expense. Witkin and Welch [WW 94]
extend this technique to an interactive system by replacing the surface patches with triangu-
lar elements (essentially a finite element solution). Sketching with curves is natural for many
objects that are fairly regular, but it is unclear if this technique is suitable for more free-form
objects such as that in Figure 1.1.

The most comprehensive approach to date are Loop’s patches [Loo94b] [Loo94a], work
building on Peters’ techniques [Pet92] [Pet93]. These techniques begin with an arbitrary mesh,
produce a more regular mesh with particular properties, then approximate the mesh using
three- and four- sided patches. One advantage is that the patches are constructed using the
geometric information in the original mesh instead of calculating continuity constraints on a
per-edge basis (the conditions for continuity are established in general and can be satisfied by
assigning linear combinations of the vertices of the mesh to the control points).

[n general, all of these spline techniques build a surface in a quilt-like fashion, with continuity
between pieces of the quilt maintained by constraints on the individual patches. This quilting
has two drawbacks: changing the topology or geometry of the surface requires recalculation
of the constraints between the affected patches and there is no global parameterization. The
former makes data-fitting or direct manipulation techniques difficult because these internal
constraints must be maintained on top of the external constraints. The latter makes texture
mapping and other parameter-space operations difficult.



| Operation Solids Modeling | Subdivision Surfaces | Implicit Surfaces |
Rendering Triangulation Subdivide until small | Ray tracing or march-
enough ing cubes
Continuity C~to C® c* C? to C®
Parameter Local to geometrical primitives, discon- | Initial polyhedron (not | None
space tinuous between primitives smooth)
Geometrical Boolean combinations of primitives Location of polyhedron | Skeleton and offset
control function
Local control Yes Yes No
Hierarchical Tree structure of primitives and opera- | Yes No
tions
[ Operation Patch Gluing | Manifolds ]
Rendering Triangulate domain or ray trace Triangulate domain
Continuity c* C* for a given k
Parameter Local to patches, discontinuous between patches c*t
space
Geometrical Unconstrained control points Control points
control
Local control Yes Yes
Hierarchical Yes (Oslo algorithm) Unknown

Table 2.1: A summary of the different techniques discussed in this section. Although not
discussed in this section, we include the technique developed in this paper (listed under the
heading “Manifolds”) for completeness.
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Chapter 3

A different approach

It is easier to build a complicated surface by stitching together simpler ones than by describing
the entire surface at once. Many of the approaches mentioned in the previous chapter do pre-
cisely that; they begin with n-sided patches and “glue” them together. Although the glue used
varies somewhat, these approaches all have one thing in common: the patches are glued together
by abutting their edges, as shown in Figure 3.1. This approach has several disadvantages:

¢ The gluing relies on constraints on the control points of the patches. Enforcing conti-
nuity in this manner presents two problems; whenever the control points are moved the
constraints must be re-established, and there is generally a reduction in the number of
degrees of freedom of the surface. The latter makes operations such as data fitting more
difficult because maintaining the constraints while reducing the approximation error is in
general more difficult than just reducing the error.

¢ The domain has discontinuities at the patch boundaries. These discontinuities cause dif-
ficulties when defining operations whose domain crosses a patch boundary, for example,
texture mapping. They also present problems when defining derivatives across the bound-
aries — much of the patch literature [Sab83] [LD90] [HM90] is concerned with defining what
continuity means across such boundaries.

-t

Support of left surface l! Support of right surface

Domain of glued-together surfaces

Figure 3.1: Two surface patches glued together by abutting along their edge, making them
positionally continuous. The supports of the patches do not overlap.
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Domain of glued-together surfaces

Figure 3.2: Two surface patches glued together by overlapping; the supports of the patches
overlap substantially.

e Increasing the continuity across a patch boundary is difficult, both deriving the neces-
sary constraints and maintaining them (increasing the continuity increases the number of
control points needed to maintaining the constraints).

As a different approach, consider Figure 3.2. Here the domains of the patches overlap
substantially instead of abutting. There is room to move from the domain of one patch to the
domain of the next, which eliminates the problem of domain discontinuities. As we demonstrate
later, the patches can be glued together before geometry is assigned to them, meaning the glue
does not rely on geometric constraints.

Aside 1 An analogy to splines: The difference between these two approaches,
abutting versus overlapping, is similar to the difference between eztending a Bézier
curve and eztending a B-spline curve. To eztend a Bézier curve in a smooth fashion,
another curve is added and some constraints are placed on the first few control points
of the new curve to ensure a continuous join (see Figure 3.8). In this case the curves

are abutted, with the locations of the control points chosen to maintain continuity.

In contrast, to extend a B-spline curve, another basis function-control point pair is
added (see Figure 3.4). This “adds” the section of curve defined by the four basis
functions by, ..., by to the ezisting section of curve, already defined by the four basis
functions by, . . ., b3. The curve sections are overlapped along the portion [1,7] of the

real line.

The idea of describing a complicated surface with many overlapping bits of simpler surfaces
is not a new one — mathematicians call such a structure a manifold [Spi70]{ST67]. A world atlas
can be viewed as an informal example of a manifold (see Figure 3.5): each page of the atlas is
rectangular (i.e., a simple bit of surface) but the collection of pages describes a spherical object,
the world; the pages of the atlas overlap enough to show how to get from one page to the next.
For example, the page for France contains part of Spain, and the page for Spain contains part
of France. When traveling from France to Spain there is a time when one is located on both
pages simultaneously; the two maps may not be identical where they overlap but they contain
enough information to establish a correspondence between the two pages.

12
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Note: No overiaps in domains

After gluing

Figure 3.3: Extending a Bézier curve by joining another Bézier curve to it. Continuity is
established by constraining the first two control points of the second curve.

domain of curve 2

Figure 3.4: Eztending a B-spline curve by adding another segment. Continuity is automatically
maintained.
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Note
overiap World

Figure 3.5: Two overlapping pages from a world atlas.

Of course. map makers already have their complicated surface (the world) and are simply
covering that surface with simpler surfaces (the atlas pages}. Since we are trying to build a
surface we need to reverse this process. Suppose you wanted to describe the carth to someone:
vou could hand them an atlas and they could reconstruct what the earth looks like by gluing,
the pages together. In fact. you could describe an imaginary world by “making up™ an atlas
of that world. We propose to do just that: =make up™ an atlas for the surface we want. then
build that surface by gluing the pages of the atlas together.

As a simpler version of this. consider ~making up™ an atlas of a park. Lach page of the atlas
i= sotne part of the park. for example, the swings, the pond. the grassy field. the boat dock. ete.
Each page is labeled with the part of the park it shows and contains a bit of the neighboring
area. also labeled. Fer example. the page containing the hoat dock also shows a bit of the pond
and the grassy field. We now have an object that allows us to navigate around the park: i.e..
we can figure out how to get from the boat dock to the swings by tracing paths through the
pages (see Figure 3.6).

Although this information is sufficient for navigating from one part of the park to another.
we still need one other piece of information to build the park  we need to know what the park
looks like  how big the pond is. how much sand is around the swing set. ete. OQue method
for adding this information is to make a geometrical model of each page. We may need to do
some blending between the models  the bit of the model for the boat dock may not mateh up
exactly with the model for the pond  but with a little care we can now build a model of the
park.

The remainder of this section describes how to build a curve in this manner. We do not
create a new “type” of curve in this discussion  the curve is pearly identical to a B-spline
curve  but we are expressing the waterial in a ditferent language. Later. when we repeat this
construction for a surface, this different language lets us build surfaces that are more general

than B-spline surfaces.
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The park

Figure 3.6: Au atlas describing a park.
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In the following sections we describe the steps involved in building a curve using an atlas.
The sequence of steps is outlined in Figure 3.7; the individual steps are expanded as follows.
To get started, we need a “sketch” of the desired curve — this sketch is a polygon, the details
of which are given in Section 3.1. From this sketch we build an atlas, i.e., the parts of the park
and how one gets from one part to another. This atlas is then stitched together into a manifold
by gluing the pages together (Section 3.2). This manifold has the fopology of our goal curve
but not the geometry. We assign geometry to the manifold to produce the goal curve, i.e., to
build a model of our park (Section 3.3).

In the following discussion we use the terms “page” and “world” for simplicity’s sake; note
that these correspond to the more formal terms “chart” and “manifold” used in later sections
and traditional manifold literature.

3.1 The sketch, or polygon

To sketch our desired curve we need something that looks a lot like a curve but is quick and
easy to create and involves only a small amount of data. We use a polygon, a collection of
vertices and edges. Each edge consists of two vertices, and each vertex has exactly one or two
edges adjacent to it.! The sketch for this example is the polygon in Figure 3.8, which has four

vertices, vo, ..., v3, and four edges, {vo,v1},..., {v3,v0}.

3.2 The atlas

The atlas consists of a set of pages and information on how those pages overlap (i.e., the “map”
of the park). Note that the set of pages chosen here is only one of many possible choices.

We put one page in the atlas for each element (each vertex and each edge) in the polygon.
This may seem excessive — we could, for example, get by with just one page per vertex. The
redundancy will prove useful, however, for blending between the pages, especially when we
extend this technique to surfaces. Our example polygon has four vertices and four edges, so
our atlas has eight pages. Each page must have some sort of topology ~ in a world atlas, the
pages are rectangles. Since we are modeling a curve, the pages are a subset of the real line; we
chose the unit interval (—0.5,0.5) for all the pages. The atlas constructed from the example
polygon is shown in Figure 3.9.

Next we decide how each page overlaps with other pages in the atlas — which bit of the pond
on this page is the same as which bit of pond on that page. This requires some care to ensure
that the maps are consistent (Section 4.2). If one walks from the grassy field to the pond and
then turns around and goes back, one expects to end up back on the grassy field. Fortunately,

! The sketch must look, locally, like a curve or line segment, not a T-joint: hence a vertex can not have more
than two adjacent edges.
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Figure 3.7: An outline of the curve construction process. A manifold is built from the sketch
polygon and then immersed using control points and basis functions.
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Vertices

Figure 3.8: The polygon sketch, with four vertices and four edges.
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Figure 3.9: The eight atlas pages corresponding to the four vertices and four edges of the sketch
polygon.
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Figure 3.10: An edge page of our atlas and how it overlaps with its two adjacent vertex pages.
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