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Chapter 1

Introduction

Modeling complicated surfaces is a difficult and time-consuming task. In this paper we present
a technique for both analyzing and building surfaces whose topology and geometry are compli-
cated. The aim of this research is to provide a constructive approach for creating and editing
such surfaces using a minimum of data. Additionally, the final surface should resemble the
data in a reasonable way. We approach the problem by defining techniques which are designed
specifically for analyzing and building complicated surfaces.

The desire to model complicated surfaces is not new; the CAD/CAM world in particular has
developed a variety of approaches to the problem. We briefly describe two of these approaches
in order to provide some intuition about why they may not be appropriate for designing free-
form shapes such as the flower in Figure 1.1 or topologically complicated models such as the
exhaust manifold in Figure 1.2.

CAD/CAM has focused on building surfaces using techniques based on traditional mechan-
ical design. There are two reasons for this: the language is well developed and familiar to
designers and the types of objects that can be machined are limited by existing tools, such as
lathes and drills. CAD/CAM systems generally take one of two approaches. Solids modeling
begins with solid primitives, such as cubes and spheres, then adds and subtracts these primi-
tives from one another to construct more complicated shapes [Man88][Hof89]. This technique
is suitable for a wide class of objects, especially many man-made objects. The second approach
is spline-based. Surfaces are built up from curves using operators such as the sweep opera-
tor [BR91], an example of which is shown in Figure 1.3. These surfaces are very free-form,
although their topology is essentially rectangular.! This approach has many parallels with the
traditional approach of describing a surface by drawing what it looks like from three or more

sides.

! An object’s topology is rectangularif it can be built from a stretchy, rectangular sheet without tearing holes
in it, creasing it, or compressing an edge to a point. For example, cylinders and tori are essentially rectangular,
but a two-holed torus is not.



Figure 1.1: .\ sculpture of a flower.

Figure 1.2: An exhaust manifold.



(a) (b)

L \

()

Figure 1.3: (a) An axis curve and tangent vector. (b) The cross-section curve with z and y
axes shown; the z axis is out of the paper. (c) The resulting sweep surface: the z axis of the
cross-section is always oriented in the direction of the axis curve’s tangent vector.

Figure 1.4: Two different chairs.



Figure 1.5: Two ways to make the body of the flower. Left: A sweep with two sweeps attatched.
Right: A sweep with two holes cut in it.

Both of these approaches rely on a fairly good understanding of how basic operations, such
as subtracting a cylinder from a cube, can be combined to produce the desired shape. The
model is generally broken down into subparts that each consist of a sequence of operations.
Deciding which subpart hierarchy to use and the order of operations within those subparts can
be difficult. A major part of a good design is structuring the model with as much flexibility as
possible, which often requires fairly specific knowledge of the desired surface. This is because a
small change in topology can often require restructuring an entire model. For example, the two
chairs in Figure 1.4 look very similar but changing from one to the other is difficult and much of
the geometric detail cannot be carried over. There are, of course, benefits to organizing a model
using CAD/CAM techniques; in the chair example, changing certain aspects of design, such as
the height of the chair, the curve of the seat, etc., requires the change of only a single value
or curve. Parameter and feature-based design systems exploit this by allowing designers to
create explicitly parameterized models in which changes can be propagated through the model
automatically.

Sometimes, however, the designer or artist wants the freedom to change the model quickly
and drastically and sometimes the desired surface does not break down easily into a series of
spline or solids modeling operations. For example, the flower in Figure 1.1 can be thought of
as a sweep with two sweeps attached to it, or as a single sweep with two holes cut out of it (see
Figure 1.5). While a good user interface may simplify the specification task, it is still restricted
by the underlying modeling techniques. To address these problems we present a general method
‘for blending simple surfaces together into complicated topologies. A complicated surface is



Figure 1.6: Left: Parameterizing the sphere with latitude and longitude lines. Right: Using a
different parameterization for the north pole.

built by saying “it looks like this over here and that over there...;” the blending between these
requirements takes place automatically. This is essentially what splines do for rectangular
topologies, and makes it very simple to alter the surface without redesigning or rethinking the
entire surface.

Another problem addressed in this paper is parameterization. It is always possible to find
a parameterization for a complicated surface but it is not always an ideal one. For example,
a sphere parameterized by the standard latitude and longitude method behaves well around
most of the equator but near the poles the latitude lines converge to a point and along the
date line there is a “seam.” Any technique, such as parameter-space based texture mapping,
that uses this parameterization will have difficulty at the poles and at the date line. The
solution presented here provides a local parameterization at every point that “behaves well”
and a method for moving from one local parameterization to the next.

Although in this paper we focus on building interesting models for computer graphics, these
techniques are also applicable to problems arising from the representation of data whose domain
is locally planar. For example, a bidirectional reflectance function [CW93] can be represented
as a function on a sphere. This task is simplified by representing the function in “bits,” each of
which represents what the function looks like over part of the sphere. The bits do not have to
be the same size; a specular highlight might be built from lots of small bits while the remaining
function is represented with a few, larger bits.

In addition to the general issues mentioned above, the following issues (inspired, in part,
by the success of splines as a modeling tool) were also considered when designing this surface

model.

e User-defined arbitrary continuity. Although C? continuity is sufficient for most modeling
situations, the ability to model smoother surfaces is sometimes necessary (for example,

car bodies and airplane wings).

e A smooth parametric domain. We do not attempt to define a single parameterization of

the entire surface; instead, we provide a local parameterization at any point of the surface



and a method for smoothly changing between local parameterizations. Let us return to
parameterizing the sphere. Around the equator we can use the standard longitude and
latitude lines (see the left side of Figure 1.6) but at the north and south poles use a
different parameterization (the right side of Figure 1.6). These parameterizations do not
match up (and hence do not form a global parameterization), so we also need to define
a way to blend between them. A smooth parametric domain is useful for calculating
a variety of surface attributes (e.g., geodesics, derivatives) and for operations such as

texture mapping.

® A compact representation. A complicated spline curve can be represented by a set of
control points and a knot vector. For a uniform B-spline, just the control polygon suffices
(and also provides a fairly simple way to manipulate the shape of the curve at a high
level). By analogy, the surface model described here starts with a control polyhedron
that describes and controls the surface shape and topology.

e Computational tractability. The surfaces are simple enough to compute that they can be
constructed interactively.

One way to view our technique is as an extension of B-splines to arbitrary topologies (indeed,
for rectangular surfaces our technique reduces to B-splines). A different view is that we are
constructing a smooth structure from the structure of a polyhedron that can then be used as
a parameterization of that polyhedron. If the points of the polyhedron are in a one-to-one
correspondence with another object, for example, a subdivision surface or an implicit surface,
then we can relate the smooth structure to that object as well. This has the potential to
simplify such tasks as texture mapping implicit surfaces.



Chapter 2

Previous work

The problem of modeling free-form surfaces has been approached from a variety of directions.
Most techniques fall into one of four classes: solids models, implicit models (including algebraic
surfaces), geometric models (e.g., polygonal models), and parametric models (e.g., splines).

Solids models [Man88][Hof89] build complicated models by combining basic 3D geometric
primitives such as cylinders, cones, and cubes. They can model any oriented topology but are
limited in geometric detail. The individual geometric primitives have their own parameteriza-
tion but there is no relationship between these parameterizations.

Implicit surfaces [Mur91] [BS91] [WMW86] have found a limited use in modeling “soft”
objects. They naturally model smooth shapes of arbitrary topology but have difficulty model-
ing objects with intricate surface geometry (for example, the face on the object in Figure 2.1)
because there is no small-scale control over the surface. Its geometry is determined by the un-
derlying skeleton and the offset function, both of which are fairly large-scale. Also, they have
no parameterization, making techniques such as parameter-space texture mapping [Ped95] and
direct manipulation more difficult [WH94)]. Surfaces with boundary are formed by clipping
an implicit surface to a volume, say a tetrahedron {War89] [BI92a] [Sed85]. These surfaces
(called algebraic patches) have two advantages: positional and derivative constraints are easily
expressed and solved for, and they typically have a lower degree than their parametric counter-
parts. Complicated surfaces can be made by stitching together these algebraic patches [BBX95].
Unfortunately, these surfaces are difficult to use and expensive to render (rendering requires
either marching cubes [LC87] or a ray tracer). Additionally, it is difficult to guarantee that the
patch is single-sheeted, i.e., that the isosurface passes through the clip volume exactly once.

Polyhedral models can approximate nearly any surface but they have only C continuity.
and accuracy is achieved at the cost of model size. One method for producing smooth models
from polyhedra is subdivision [CC78] [Nas87] [BS88] [Loo87]. This process begins with an
arbitrary polyhedron and through a process of “chipping off” the corners produces, in the limit.
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Figure 2.1: A wodel of a ding (an aucient Chinese bronze ritual vessel).

a dense set of points describing a sinouth surface. The surface is defined not analytically but as
the limit of a series of polyhiedra: this makes any analysis of it very ditficult. since there is no
simple way to determine even the continuity of it [DSTX]. Recent work [DR93] has made these
surfaces more tractable but they still lack a stmooth parameterization. One further problew is
that the surface produced is at best (72 smooth (and in some cases not even ' [HBYY]) and
there ix no obvious way to produce smoother surfaces.

The most conmmon parametric model is the spline, in particular. NURBS and their simpler
cousins. B-spline and Bézier surfaces [BBBx7] [Farsy]. Unfortunately. these surfaces are based
on a rectangular domain and therefore do not naturally wodel arbitrary topologies. The dif-
ferent approaches to making splines model non-rectangular topologies have all proceeded by
=stitching™ together various tyvpes of spline patches in different wavs. These techniques fall
tuto three broad classes: filling in n-sided holes in otherwise regular meshes, allowing patches
to meet n at a vertex. and more global methods involving either constraints and mintmization
(variational modeling) or a systematic conversion of an trregular mesh into regular patches,

The most complete method involving n-sided patches is S-patches [LDxY] {LDY0]. These
patches have the advantage that the derivative information along an edge is independent of the
other edges (given a high enough degree). Joining them together smoothly, however, requires
Beézier-style constraints on the control points: this reduces the available degrees of freedom
and complicates tasks such ax data fitting. Other methods [Sabx3] [Wary2]  [Grex3] [DMx]
are computationally expensive or non-general. Mann ot ol conclude that these and other

polynomial interpolants are unsatisfactory [MLL*Y92].



Hollig and Mogerle [HM90] explore a general method for determining continuity constraints
on patches meeting n at a vertex. Van Wijk [Wij86] discusses the specific case of three and
four, or an odd number of, patches meeting at a point. Chiyokura and Kimura [CK83] define
a surface on which any number of patches can meet at a point, although continuity across
this point is not discussed. Neamtu and Pfluger [NP94] use global geometric information to
constrain patches locally; parametric continuity is not discussed.

In variational modeling, the shape of the patches is determined by a set of sketch curves
(containing positional and derivative information) and the minimization of an energy func-
tional [MS92] [WW92] [CG91]. These techniques produce pleasing surfaces (close to C? or
higher, although this is not guaranteed) at considerable expense. Witkin and Welch [WW 94]
extend this technique to an interactive system by replacing the surface patches with triangu-
lar elements (essentially a finite element solution). Sketching with curves is natural for many
objects that are fairly regular, but it is unclear if this technique is suitable for more free-form
objects such as that in Figure 1.1.

The most comprehensive approach to date are Loop’s patches [Loo94b] [Loo94a], work
building on Peters’ techniques [Pet92] [Pet93]. These techniques begin with an arbitrary mesh,
produce a more regular mesh with particular properties, then approximate the mesh using
three- and four- sided patches. One advantage is that the patches are constructed using the
geometric information in the original mesh instead of calculating continuity constraints on a
per-edge basis (the conditions for continuity are established in general and can be satisfied by
assigning linear combinations of the vertices of the mesh to the control points).

[n general, all of these spline techniques build a surface in a quilt-like fashion, with continuity
between pieces of the quilt maintained by constraints on the individual patches. This quilting
has two drawbacks: changing the topology or geometry of the surface requires recalculation
of the constraints between the affected patches and there is no global parameterization. The
former makes data-fitting or direct manipulation techniques difficult because these internal
constraints must be maintained on top of the external constraints. The latter makes texture
mapping and other parameter-space operations difficult.



| Operation Solids Modeling | Subdivision Surfaces | Implicit Surfaces |
Rendering Triangulation Subdivide until small | Ray tracing or march-
enough ing cubes
Continuity C~to C® c* C? to C®
Parameter Local to geometrical primitives, discon- | Initial polyhedron (not | None
space tinuous between primitives smooth)
Geometrical Boolean combinations of primitives Location of polyhedron | Skeleton and offset
control function
Local control Yes Yes No
Hierarchical Tree structure of primitives and opera- | Yes No
tions
[ Operation Patch Gluing | Manifolds ]
Rendering Triangulate domain or ray trace Triangulate domain
Continuity c* C* for a given k
Parameter Local to patches, discontinuous between patches c*t
space
Geometrical Unconstrained control points Control points
control
Local control Yes Yes
Hierarchical Yes (Oslo algorithm) Unknown

Table 2.1: A summary of the different techniques discussed in this section. Although not
discussed in this section, we include the technique developed in this paper (listed under the
heading “Manifolds”) for completeness.
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Chapter 3

A different approach

It is easier to build a complicated surface by stitching together simpler ones than by describing
the entire surface at once. Many of the approaches mentioned in the previous chapter do pre-
cisely that; they begin with n-sided patches and “glue” them together. Although the glue used
varies somewhat, these approaches all have one thing in common: the patches are glued together
by abutting their edges, as shown in Figure 3.1. This approach has several disadvantages:

¢ The gluing relies on constraints on the control points of the patches. Enforcing conti-
nuity in this manner presents two problems; whenever the control points are moved the
constraints must be re-established, and there is generally a reduction in the number of
degrees of freedom of the surface. The latter makes operations such as data fitting more
difficult because maintaining the constraints while reducing the approximation error is in
general more difficult than just reducing the error.

¢ The domain has discontinuities at the patch boundaries. These discontinuities cause dif-
ficulties when defining operations whose domain crosses a patch boundary, for example,
texture mapping. They also present problems when defining derivatives across the bound-
aries — much of the patch literature [Sab83] [LD90] [HM90] is concerned with defining what
continuity means across such boundaries.

-t

Support of left surface l! Support of right surface

Domain of glued-together surfaces

Figure 3.1: Two surface patches glued together by abutting along their edge, making them
positionally continuous. The supports of the patches do not overlap.

It
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Domain of glued-together surfaces

Figure 3.2: Two surface patches glued together by overlapping; the supports of the patches
overlap substantially.

e Increasing the continuity across a patch boundary is difficult, both deriving the neces-
sary constraints and maintaining them (increasing the continuity increases the number of
control points needed to maintaining the constraints).

As a different approach, consider Figure 3.2. Here the domains of the patches overlap
substantially instead of abutting. There is room to move from the domain of one patch to the
domain of the next, which eliminates the problem of domain discontinuities. As we demonstrate
later, the patches can be glued together before geometry is assigned to them, meaning the glue
does not rely on geometric constraints.

Aside 1 An analogy to splines: The difference between these two approaches,
abutting versus overlapping, is similar to the difference between eztending a Bézier
curve and eztending a B-spline curve. To eztend a Bézier curve in a smooth fashion,
another curve is added and some constraints are placed on the first few control points
of the new curve to ensure a continuous join (see Figure 3.8). In this case the curves

are abutted, with the locations of the control points chosen to maintain continuity.

In contrast, to extend a B-spline curve, another basis function-control point pair is
added (see Figure 3.4). This “adds” the section of curve defined by the four basis
functions by, ..., by to the ezisting section of curve, already defined by the four basis
functions by, . . ., b3. The curve sections are overlapped along the portion [1,7] of the

real line.

The idea of describing a complicated surface with many overlapping bits of simpler surfaces
is not a new one — mathematicians call such a structure a manifold [Spi70]{ST67]. A world atlas
can be viewed as an informal example of a manifold (see Figure 3.5): each page of the atlas is
rectangular (i.e., a simple bit of surface) but the collection of pages describes a spherical object,
the world; the pages of the atlas overlap enough to show how to get from one page to the next.
For example, the page for France contains part of Spain, and the page for Spain contains part
of France. When traveling from France to Spain there is a time when one is located on both
pages simultaneously; the two maps may not be identical where they overlap but they contain
enough information to establish a correspondence between the two pages.

12
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After gluing

Figure 3.3: Extending a Bézier curve by joining another Bézier curve to it. Continuity is
established by constraining the first two control points of the second curve.

domain of curve 2

Figure 3.4: Eztending a B-spline curve by adding another segment. Continuity is automatically
maintained.
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Note
overiap World

Figure 3.5: Two overlapping pages from a world atlas.

Of course. map makers already have their complicated surface (the world) and are simply
covering that surface with simpler surfaces (the atlas pages}. Since we are trying to build a
surface we need to reverse this process. Suppose you wanted to describe the carth to someone:
vou could hand them an atlas and they could reconstruct what the earth looks like by gluing,
the pages together. In fact. you could describe an imaginary world by “making up™ an atlas
of that world. We propose to do just that: =make up™ an atlas for the surface we want. then
build that surface by gluing the pages of the atlas together.

As a simpler version of this. consider ~making up™ an atlas of a park. Lach page of the atlas
i= sotne part of the park. for example, the swings, the pond. the grassy field. the boat dock. ete.
Each page is labeled with the part of the park it shows and contains a bit of the neighboring
area. also labeled. Fer example. the page containing the hoat dock also shows a bit of the pond
and the grassy field. We now have an object that allows us to navigate around the park: i.e..
we can figure out how to get from the boat dock to the swings by tracing paths through the
pages (see Figure 3.6).

Although this information is sufficient for navigating from one part of the park to another.
we still need one other piece of information to build the park  we need to know what the park
looks like  how big the pond is. how much sand is around the swing set. ete. OQue method
for adding this information is to make a geometrical model of each page. We may need to do
some blending between the models  the bit of the model for the boat dock may not mateh up
exactly with the model for the pond  but with a little care we can now build a model of the
park.

The remainder of this section describes how to build a curve in this manner. We do not
create a new “type” of curve in this discussion  the curve is pearly identical to a B-spline
curve  but we are expressing the waterial in a ditferent language. Later. when we repeat this
construction for a surface, this different language lets us build surfaces that are more general

than B-spline surfaces.

|+
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The park

Figure 3.6: Au atlas describing a park.
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In the following sections we describe the steps involved in building a curve using an atlas.
The sequence of steps is outlined in Figure 3.7; the individual steps are expanded as follows.
To get started, we need a “sketch” of the desired curve — this sketch is a polygon, the details
of which are given in Section 3.1. From this sketch we build an atlas, i.e., the parts of the park
and how one gets from one part to another. This atlas is then stitched together into a manifold
by gluing the pages together (Section 3.2). This manifold has the fopology of our goal curve
but not the geometry. We assign geometry to the manifold to produce the goal curve, i.e., to
build a model of our park (Section 3.3).

In the following discussion we use the terms “page” and “world” for simplicity’s sake; note
that these correspond to the more formal terms “chart” and “manifold” used in later sections
and traditional manifold literature.

3.1 The sketch, or polygon

To sketch our desired curve we need something that looks a lot like a curve but is quick and
easy to create and involves only a small amount of data. We use a polygon, a collection of
vertices and edges. Each edge consists of two vertices, and each vertex has exactly one or two
edges adjacent to it.! The sketch for this example is the polygon in Figure 3.8, which has four

vertices, vo, ..., v3, and four edges, {vo,v1},..., {v3,v0}.

3.2 The atlas

The atlas consists of a set of pages and information on how those pages overlap (i.e., the “map”
of the park). Note that the set of pages chosen here is only one of many possible choices.

We put one page in the atlas for each element (each vertex and each edge) in the polygon.
This may seem excessive — we could, for example, get by with just one page per vertex. The
redundancy will prove useful, however, for blending between the pages, especially when we
extend this technique to surfaces. Our example polygon has four vertices and four edges, so
our atlas has eight pages. Each page must have some sort of topology ~ in a world atlas, the
pages are rectangles. Since we are modeling a curve, the pages are a subset of the real line; we
chose the unit interval (—0.5,0.5) for all the pages. The atlas constructed from the example
polygon is shown in Figure 3.9.

Next we decide how each page overlaps with other pages in the atlas — which bit of the pond
on this page is the same as which bit of pond on that page. This requires some care to ensure
that the maps are consistent (Section 4.2). If one walks from the grassy field to the pond and
then turns around and goes back, one expects to end up back on the grassy field. Fortunately,

! The sketch must look, locally, like a curve or line segment, not a T-joint: hence a vertex can not have more
than two adjacent edges.
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Building the manifold from the sketch / \
The
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Manifold (/

the goal shape
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geometry) \\//

Immersing the manifold using basis functions and control points
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Basis functions on pages
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o (one for each basis function)
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Resulting curve

Figure 3.7: An outline of the curve construction process. A manifold is built from the sketch
polygon and then immersed using control points and basis functions.
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Vertices

Figure 3.8: The polygon sketch, with four vertices and four edges.
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Figure 3.9: The eight atlas pages corresponding to the four vertices and four edges of the sketch
polygon.
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Figure 3.10: An edge page of our atlas and how it overlaps with its two adjacent vertex pages.
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Figure 3.11: Left: Gluing the two adjacent vertex pages to the edge page. Right: All of the
pages glued together.

we already have an idea of how the pages should overlap - the connectivity information of the
polygon. Each edge of the polygon contains two vertices; we therefore make the edge page
corresponding to that edge overlap with the pages for the two vertices. Similarly, a vertex is
adjacent to one or two edges, so the corresponding vertex page overlaps with one or two edge
pages. In our example, the edge page corresponding to the edge {vo, v1} overlaps with the
vertex pages for the vertices vp and v; (see Figure 3.10). We want the pages to overlap as much
as possible (imagine navigating from France to Spain using an atlas; the more the atlas pages
overlap, the easier it is to establish a correspondence between the two pages). However, we do
not want to complicate the gluing process by having two vertex (or edge) pages overlap. These
restrictions lead to defining the overlap regions to be one of (—0.5,0) or (0, 0.5), i.e., the left
and right halves of the pages.

We need more information than just the fact that the pages overlap; we also need a function
that identifies points of one page with the points on an overlapping page. For example, we need
a function that takes the region (0,0.5) on the page for vertex vg to the region (—0.5,0) on the
page for edge {vo, v1}. This function is called a transition function. The transition functions
in our example are simply translations. For example, if ¢t = 0.3 is a point on the page for vy
then the corresponding point in the page for the edge {vg,,} is t — 0.5 = —0.2.

We now have a set of pages and information on how they overlap. How do we turn this into
an “object”? [magine gluing each of the pages onto a stretchy bit of string. Now glue the bits
of string together according to the overlap information. The points that were related via the
overlaps (e.g., the point 0.3 on the page for the vertex vo and the point —0.2 on the edge page
{vo,v1}) get glued together to form a single point on this fatter piece of string. This creates
an object (see Figure 3.11) in which matching pairs of points on the pages have been glued
together to form a single point (a “string sandwich”). This object is our manifold.?

In summary, we created a page for each element of the polygon, decided how those pages
overlapped using the connectivity information of the polygon, then glued the pages together

2In practice this “gluing” is generated by taking equivalence classes under an equivalence relation generated
by the transition functions.

19



Immersions

Figure 3.12: The glued-together pages stretched out into several shapes.
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Figure 3.13: Defining a B-spline. Left: Four basis functions defined on the real line. Right:
The corresponding four control points and the resulting curve.

using the overlap maps. This is not the end of the story; we have an object that has the same
topology as our polygonal sketch, but it has no geometry (the manifold could be drawn as a

circle, an ellipse, a square, etc.)

3.3 Adding geometry to the manifold

We can take our glued-together bits of stretchy string and stretch it out into a variety of shapes
(provided that shape has the topology of a circle), as shown in Figure 3.12. Describing what
shape to stretch the string into is called defining an immersion.? In this section we describe
how to assign geometry to, or immerse, the manifold. This is accomplished by drawing on
a traditional technique used to immerse the real line into space — B-splines. What we have
described so far is essentially a different way to build the real line (or the domain) of our curve.
In traditional B-splines this is unnecessary; the basis functions are built on the existing real
line.

% An immersion is an embedding that can cross itself, as demonstrated in the middle shape in Figure 3.12.



Aside 2 B-splines — a brief description: For this discussion, refer to Figure 3.13.
A complete discussion of splines can be found in [BBB87]. A B-spline curve v: R —~
R? maps a subset of the real line into space using basis functions and control points.
The ith basis function b; : R — R tells how much of the ith control point g; € R? to
take at a given point on the real line. The curve is a blend of these control points,
where the blending is controlled by the basis functions:

n
1) =D bi(t)e:
=0
For ezample, at t = 0.2 we take a blend of the three control points: a little of gi-1,
a lot of g;, and a little of g; 4.

The basis functions can be defined in a variety of ways; the different spline types
are distinguished by their different basis functions.

To create a B-spline curve we must first define the basis functions on the real line — the
bi_1, b;, b; 41 functions of Figure 3.13. Next we associate a control point with each basis function.
The resulting curve is then a blend of those control points.

To immerse the manifold we duplicate these steps except instead of building the basis
functions* on the real line we build them on our new “real line” - the manifold (see Figure 3.14.

Building basis functions on the manifold is difficult. Suppose we take a bit of the manifold
and draw it flat, as shown in Figure 3.15. This bit of manifold looks a lot like the real line. The
problem is identifying the relationship between points on the real line and points on the bit of
manifold. To avoid this issue we do not build basis functions directly on the manifold; instead,
we define each basis function on a page of the atlas, as shown on the right of Figure 3.14. Each
page has a coordinate system, so defining a function on a page makes sense.

Suppose we have a basis function defined on a page of the atlas. Turning this into a function
defined on the manifold is relatively straightforward; the exact mechanics are left until later
(see Section. 6.1) but pictorially we get the manifold basis function shown on the right of
Figure 3.14. Because of the way we build functions on the manifold, the support of each basis
functions lies within a single chart, i.e., it is zero on the part of the manifold that does not
contain the chart. It is possible to define a function whose support is contained in multiple
charts but guaranteeing continuity in this case becomes difficult.

Our goal is to create a curve that behaves in a manner similar to a spline. This means we
need to create functions on the charts that look like traditional basis functions. Figure 3.16
shows how to define two such basis functions on each of three pages of the atlas. Note how the
functions can be drawn on the overlapping pages, using the transition functions to determine
what the function “looks like” on the overlapping page.

4We call them “basis functions” because they are related in concept to traditional basis functions.
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Figure 3.14: Left: The construction process for a B-spline curve. Right: The construction
process for a manifold curve. Note that a B-spline basis function is defined on the entire real
line while a manifold basis function is first defined on a chart, then promoted to a function on

the manifold.
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Figure 3.15: The manifold itself has no inherent metric. The unrolled bit of manifold can be
put into correspondence with the interval (—5, 5), or (—2,0), or any other contiguous subset of

the real line.
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Figure 3.16: Three pages of the atlas. Two basis functions are defined on each page (bold
curves). We also show the functions from the overlapping pages and how they would appear
on the page (dotted curves).
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Figure 3.17: How to define the basis functions on the pages of the manifold so that when the
pages are glued together the basis functions overlap in a manner similar to traditional basis
functions: we unroll a bit of the manifold and line up the “pages” with a segment of the real
line so that the support of each basis function is contained within a single page.

The difficulty is picking these functions so that when turned into a set of basis functions
on the manifold they resemble traditional basis functions. We first take a bit of the manifold,
draw it flat, then stretch it so it lines up with the real line, as shown in Figure 3.17. Each basis
function is nonzero on some subset of the real line (the support of the function). We line up
the manifold with the real line so that the support of each basis function lies within a single
page. We now assign each basis function to the page that contains its support. Note that the
new functions drawn on the manifold resemble the traditional basis functions on the real line.

Figure 3.18 shows an immersion of our example manifold, with two basis functions (and
hence two control points) per page.

3.4 Summary

A polygonal sketch supplies the desired topology of the manifold. The manifold is related to
the polygon in the following ways:

o The pages in the atlas. There is one page in the atlas for each element in the polygon.

e The overlaps of the pages. Pages overlap if and only if their corresponding elements in
the polygon are adjacent.
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Figure 3.18: The manifold immersed into 2-space. The topology of the immersion is determined
by the topology of the manifold but the geometry of the immersion is determined by the
locations of the control points.

Another way to view this construction is that the manifold is a “smoothness structure” on
the polygon. This structure is abstract in that it has no 2D geometry, but it is topologically
related to the polygon. In fact, we can establish a one-to-one correspondence between the
points of the manifold and those of the polygon.

We assign geometry to the manifold by immersing it using basis functions and control
points. The basis functions are constructed on the pages of the manifold in a way that mimics
traditional B-splines when they are drawn on the manifold. The locations of the control points
determine the shape of the immersion — the immersion is a curve that smoothly blends between

the control points.

3.5 Commentary on this approach

In this section we explore some of the benefits and consequences of this approach, now that its
basic flavor has been established. We discuss first the breakdown of the construction process
into two steps, building the manifold and then immersing it, and then the parameterization of
complicated surfaces.

3.5.1 Two-step process

There are two major reasons to break down the surface construction process into two steps: to
establish the continuity of the surface and to provide flexibility in defining immersion functions.
The manifold captures the topology of the desired surface as described by the polyhedron, but
the manifold itself does not “live” in 3-space. Instead, it serves as a domain that has the
same topology as the desired surface, much as a subset of the real line is the domain for a
B-spline curve. [t is more difficult to define functions on this manifold than on the plane but
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this disadvantage is outweighed by the coherence the manifold provides.

For example, consider determining the continuity of two Bézier curves joined together as
shown in Figure 3.3. At every point on the curves, with the exception of the end points,
continuity is determined by taking derivatives of the function defining the curve. At the end
points, however, the derivatives only exist from one direction. It is possible to define the
continuity of the curves where they join together by considering these one-sided derivatives but
this definition differs in format from the derivatives on the remainder of the curve.

In contrast, derivatives of functions defined on the manifold are calculated in the same
manner across the entire manifold [MP77], pp. 208-218. This definition is somewhat more
complicated than the traditional one from calculus but it is consistent across the manifold.

The practical result of this is that the continuity of the surface does not depend on the
locations of the control points. This implies that the geometry of the surface can be changed
freely (via the control points) without the need for additional continuity constraints.

In this paper we present a particular immersion based on uniform B-splines. This immersion
can easily be extended to non-uniform B-splines, or even replaced with an immersion function
based on wavelets, without changing the manifold.

3.5.2 Parameterization

There is no global parameterization for the constructed surface. Instead, the charts provide
a local parameterization for any given point, and moving from one point to another on the
surface involves moving from one chart’s parameterization to another’s.

There is no guarantee that the particular set of charts used to build a manifold will result in
a “useful” parameterization. However, there is a great deal of freedom in picking charts — as
long as the charts and their overlaps meet certain criteria, given in the following section, we are
free to add in as many charts as we want. For example, suppose we want to add to the curve
on the left of Figure 3.19 a small, detailed bump as shown on the right. We simply add another
small chart to the atlas that covers the relevant area and use it to define the bump. This solves
the problem of reparameterizing an entire surface in order to define detail on a small portion
of it.
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Chapter 4

Building a manifold — an

informal discussion

In this section we extend the curve example of Section 3.2 to a surface and begin to develop the
terminology needed to discuss manifolds, going on to formalize this information in Chapter 5.
The layout of this section is as follows:

¢ An informal definition of the world atlas example. The atlas is an example of an analytic
study of a surface — we begin with a complicated surface (the world) and analyze it using
simpler surfaces (the rectangular pages).

¢ A more complete discussion of the construction of a world from an atlas, or the inverse
of the analytic approach. This is an example of a synthetic approach — we begin with
simple surfaces and construct a more complicated surface from them.

¢ An informal discussion of the construction of a manifold from a polyhedron, using the
synthetic approach previously outlined. This is the same construction process as used in
the curve example (Section 3.1) but with a surface instead of a curve.

4.1 Manifolds, an analytic view

Suppose we have a surface (in the atlas example, this surface is the world) with the property
that, when looked at locally, it resembles the plane.! We can take a bit of this surface and draw
it in the plane, as shown in Figure 3.5. The function that maps the bit of surface to the plane
is called a chart function (in the atlas example, this function results in a page of the atlas).
To describe the entire surface we cover it with these chart functions, which can take different

! This discussion applies to any dimension, i.e., any object that is locally like R". For example. a surface is
locally like R2 and a curve is locally like R!.
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amounts of the surface to the plane (the atlas page containing Antarctica covers more of the
world than the page for France) and can map the bits of surface to different shapes in the plane
(imagine an atlas made out of round pieces of paper). There are three basic properties a set
of chart functions must have, however, for the surface and the set of functions to constitute a
manifold:

e Every spot on the surface must be covered by the domain of some chart function, i.e.,
every part of the world must appear on some page of the atlas.

e The chart functions must be well behaved, i.e., no creasing, or mapping two points on the
surface to the same point in the plane. The chart functions must map the bit of surface

into an open set in R2.

¢ The chart functions must be consistent. Suppose the domains of two chart functions
overlap on the surface (like the two pages shown in Figure 3.5). Take the intersection of
these domains on the surface and map it into the plane using the first chart function (call
this area in the plane A), then do the same thing with the second chart function (call this
area B). A “nice” map must exist between area 4 and area B. As an example, consider
two atlas pages, one for Germany and one for France. Each of these pages contains a
picture of the same part of the world, i.e., the French-German border; the pages do not
line up exactly but there is enough information (names of towns, roads, etc.) on the pages
that a correspondence between the two is easily found.

If the chart functions meet more formal versions of these criteria, detailed in Section 5.1,
then we have a manifold.

This analysis began with a complicated surface (the world) and produced a description of
it in terms of simpler surfaces (the pages). Note that the existence of a surface is crucial to
this analysis — we use the surface to produce an atlas for that surface. Suppose we do not
have a surface to begin with; can we reverse this process, i.e., “make up” an atlas and produce
a surface from it? The next section defines a method for building a surface from an atlas; the
definition has many similarities to the previous one.

4.2 Manifolds, a synthetic view

In this section we begin with a set of charts,? i.e., bits of the plane, and information about how
those charts overlap and then stitch the charts into a manifold by associating points in charts
with points in other charts. Imagine that someone hands you the pages of an atlas; you could
reconstruct the world the pages came from, in a sense, by gluing the pages together where they

2In the previous discussion a chart function is a map from the surface to the world. In this discussion a chart
is a subset of R".
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Figure 4.1: Two charts and the inverse property: for all z € Ucc: (the left red region),
z =gpcer(perc(z)).

overlap. For this type of construction to work, the charts and the overlap information must

have the following properties:

o Each chart is an open, connected subset of the plane (for example, a disk, or a rectangle
without boundary). When referring to charts in the following discussion we use the labels
C and C'.

o There must be information on what part of a chart overlaps with another chart. The area
of a chart C that overlaps with another chart C' is labeled Ucc: (and the part of chart
C' that overlaps with chart C is therefore labeled Ucic). Figure 4.1 shows two charts
with these “overlap” regions demarked. Note that not all of the charts overlap, meaning
that for some charts C and C’, Ugcr = Ugic = 0.

o Knowing that the region Ucc: of chart C corresponds to the region Uc/c in C is not
sufficient; we also need to know the exact correspondence between the points in the two
regions. This correspondence is given by a transition function and of the following form:

pccr :Uccr = Ucre

These transition functions tell how to stretch the pages before they are glued together.
In the world atlas example we have no explicit transition functions but we do have the
information drawn on the map, e.g., town names, road names, etc., which establishes a
correspondence between the pages. In the previous definition (Section 4.1) this informa-
tion was required to have a certain consistency; the transition functions for this definition
must also be consistent. This is guaranteed by the following four criteria:

— The transition functions are one-to-one, onto, and smooth, i.e., there is no creasing,

no mapping of two points to a single point, etc.

- If two charts overlap, then going back and forth between them using the transition
functions puts you back where you started (see Figure 4.1):
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Figure 4.2: Three charts, their overlaps, and the co-cycle condition: for all z € Uij NUs (the
purple region in chart i) pix(z) = pjk 0 pij(z) -

VzeUcc: z=vpcci(pcc(z))

— The transition function relating a chart to itself is the identity function:

Vz€C poc(z) =z

— Any combination of transition functions that take a point through multiple charts
puts you back where you started. This is called the co-cycle condition (see Fig-
ure 4.2):

Ve €Ui;; NUik  pik(z) = pjk 0 pij(z)

e Every pair of overlapping charts can be glued together and the result embedded into R".
This condition is needed later to prove that the entire glued-together object is “nice.”

With these three objects (the charts, the overlap regions Uccr, and the transition functions
pccr) we can build a manifold. This is a matter of making all of the points related by the
transition functions become a single “point” in the final object. Details are given in Section 5.2;
the process corresponds to gluing the atlas pages together.

4.3 Building a manifold

This section describes how to build a set of charts and transition functions from a polyhedral
sketch of the desired manifold. A formal definition of the polyhedron is given in Appendix B;
informally, the polyhedron conforms to the standard definition, with two restrictions. First.
the vertices have valence four (see the top of Figure 4.3) and second, the faces have fewer than
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seven sides. (This second limitation is necessary mostly for practical reasons, not mathematical
ones.) For the following discussion we restrict ourselves to polyhedron without boundary; in
Chapter 7 we extend the construction to polyhedron with boundary.

Using the polyhedron as a guide we define a finite number of charts, the overlap regions
between the charts, and the transition functions. This process exactly parallels the construction
outlined in Section 3.2 for a curve. The basic relationship between the polyhedron and the
constructed atlas is this:

® The charts: There is one chart in the atlas for each element in the polyhedron. An aside
on notation: a chart corresponding to a vertex v is called a vertez chart and is labeled V.
Similarly, we use E for an edge chart and F for a face chart.

e The overlap regions: Two charts in the atlas overlap if and only if their respective elements
in the polyhedron are adjacent to each other. This implies that each vertex chart overlaps
with four edge charts and four face charts.? Each edge chart overlaps with two vertex
charts and two face charts. A vertex chart never overlaps with another vertex chart, and
similarly for edge and face charts.

¢ The transition functions: These functions are empty unless the two charts overlap. There
are three distinct cases in which charts overlap: vertex and edge charts, vertex and face
charts, and edge and face charts. Within one of these cases the individual functions are
all similar; therefore we define three basic types of transition functions:
— edge-to-face transitions (a rotation and a translation)
— vertex-to-face transitions (a stretching or shrinking)

— edge-to-vertex transitions (a composition of the above functions)

We first walk through how a set of charts in the area around a vertex relate to each other in
an abstract sense (see Figure 4.3). Then the actual shapes of the charts and overlap regions are
defined, along with the transition functions. A formal description of the charts and transition
functions is given in Section 5.2.

4.3.1 A vertex chart and its neighbors

Figure 4.3 shows a vertex with the adjacent four edges and faces. It also shows a schematic of
the charts generated from this bit of the polyhedron and how they overlap. Note that this is
Just a sketch of the overlaps; the real shapes of the charts are not given. In Figure 4.3

o The vertex chart overlaps with the four edge charts.

o The vertex chart also overlaps with the four face charts.

3Recall that each vertex has valence four.
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Figure 4.4: A sketch of the different chart types.

o Each edge chart overlaps with two of the face charts.

e Each face chart overlaps with two of the edge charts. (Note that an n-sided face chart
overlaps with n edge charts; in this example the remaining edge charts are not shown).

Defining consistent transition functions on areas where only two charts overlap is fairly
straightforward: define pcc: to be an invertible, well behaved function and then define pcrc
to be its inverse. For example, we define the transition function between an edge chart and a
face chart to be a translation followed by a rotation (see Figure 4.5). The transition function
from the face chart back to the edge chart is therefore a rotation followed by a translation.

A difficulty arises when defining a transition function on an area where more than two charts
overlap. In this case the co-cycle condition must also be satisfied (see Figure 4.7). The only
case in which this is a problem involves exactly three charts: one each of a vertex, edge, and
face chart. A simple way to satisfy the co-cycle condition is to define two of the functions, say
the edge-to-face function and the face-to-vertex function, then define the third function (the
edge-to-vertex one) by the composition of the other two (see the top half of Figure 4.7). This
almost suffices, but each overlap region needs two such composed functions: one for the upper
half and one for the lower half. There is no guarantee that the two composed functions will
agree on the boundary between them. To solve this problem, we create a “gap” between the
areas where three charts overlap and blend between the two composed functions.

4.3.2 The charts, overlaps, and transition functions

Figure 4.4 shows the three different chart types and their approximate shapes (unit square,
diamond, and regular polygon). Exact details are given in Section 5.3. The diamond of the
edge chart is constructed by joining together two “wedges” from unit polygons; which unit
polygons are used depends on the number of sides of the faces adjacent to the edge. The
overlap regions are summarized below.

e Vertex charts: Each quadrant of a vertex chart overlaps a face chart. Each side of the

square overlaps an edge chart.
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Figure 4.5: The transition function between an edge and a face chart consists of a translation

followed by a rotation.
g Qt
R
-
1

gag%gg)aft Vertex chart

Figure 4.6: The transition function between a face and a vertex chart is a projective transform.
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Figure 4.7: The transition function between an edge and a vertex chart is a blend of the two
functions formed by composing the map from the edge chart to one of the face charts with the
map from the face chart to the vertex chart.
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o Edge charts: One face chart overlaps the top half of the edge chart, another overlaps the
bottom half. One vertex chart overlaps the left half of the diamond, the other vertex
chart the right half.

o Face charts: Each comner of the face chart overlaps a vertex chart. Each side of the face
chart overlaps an edge chart.

The transition functions are as follows:

e Edge-to-face: a translation followed by a rotation (Figure 4.5).

o Vertex-to-face: the quadrant is distorted using a projective map (Appendix A) to fit in
the corner of the face chart (Figure 4.6).

o Edge-to-vertex: a blend of the two composed functions defined on the upper and lower
halves of the edge chart (Figure 4.7).
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Chapter 5

Formal description of a manifold

This section contains two definitions; the first is the traditional analytic definition of a manifold,
the second is a formal definition of the synthetic approach, i.e., building a manifold from a set
of charts. Following this is a formal construction of a manifold from a polyhedron using the
second definition.

5.1 Traditional manifolds

Manifolds were introduced in the 1890s and formalized in the 1920s in order to describe objects
whose topology was more complicated than that of Euclidean space. The notion was that an
object “locally like” Euclidean space could be studied in much the same way as Euclidean space.
In one view, a manifold is a structure imposed on an object - a division of that object into
overlapping regions, each of which corresponds nicely with a portion of the Euclidean plane.
As a concrete example, consider once again a world atlas. As we have seen, every point on the
world can be found in at least one chart in the atlas and sometimes in several. A path from
one point to another can be found by tracing a line through the charts. Where the path must
cross from one chart to another, the two charts overlap enough that one can locate oneself on
the second chart. The individual charts are regions of 2 but taken together they represent
a sphere [MYV93]. There are also implicitly defined maps from one page to another. Thus
Brussels and its environs may appear on two different atlas pages: the page for the Benelux
countries and also in the upper right corner of the page for France. The labels for Brussels and
the surrounding towns, etc., establish a correspondence between the upper right corner of the
page for France and the lower left corner of the Benelux page.

The following definition of a manifold is taken from [ST67].

Definition 1 A C*-differentiable manifold of dimension n is a pair (X, ®) where
X is a Hausdorff topological space and ® is a collection of maps such that the
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conditions listed below hold. (See Figure 5.1.)

1. {domain ¢}4e4 is an open covering of X.

2. each ¢ € ® maps its domain homeomorphically onto an open set in R".

3. for each ¢,% € ® with (domain ¢ N domain ¥) # @, the map po¢p~! is a CF
map from ¢(domain ¢ N domain ) C R™ into y(domain ¢ N domain ) C R".

4. ® is mazimal relative to (2) and (8); that is, if ¢ is any homeomorphism

mapping an open set in X onto an open set in R such that, for each ¢ € ®
with (domain ¢ N domainy) # B, Y 0 ¢~ and ¢ o ¥~ are C*¥ maps from
¢(domain ¢ N domain ) to Y(domain ¢ N domain ¥) and from y(domain

# N domain ) to ¢(domain ¢ N domain ¥ ), respectively, then ¢ € ®.

The first condition ensures that every point in X is contained in the domain of at least
one ¢. The second condition ensures that the domain of each ¢ is homeomorphic to a ball in
R". The third condition ensures that the functions are consistent. The last condition is largely

technical; it requires that every possible valid map be in the atlas.

This definition relates to the informal discussion in Section 4.1 in the following way:

¢ (domain ¢) is the bit of the world that the atlas page covers (the red square painted on

the world in Figure 3.5).

® ¢ is the mapping from the bit of the world to the rectangular page (the red arrow taking

the red square to the atlas page).
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e Condition 1 above ensures that every point on the surface X shows up on some page in
the atlas.

e Condition 2 above ensures that the maps are “nice”, i.e., they do not fold or crease.

e Condition 3 above ensures that when more than one map covers a spot on the world then
the two overlapping maps are consistent, i.e., we can find Brussels and its environs on
both the page for France and the page for Benelux.

e Condition 4 is violated in the world atlas example. To satisfy it, every possible atlas page
would have to be included. That means that a map for every town, every building in
every town, every street, etc., must also be in the atlas.

5.2 Constructive manifold

Definition 1 above takes an object X and covers it with local mappings to R". Because our
approach to building a surface has no object X a priori (if we had the surface, we would be
done), we describe a manifold not in terms of an object, but instead in terms of regions of R
and transition functions between these regions. (We call these regions charts.!) In Section 5.2.1
we show that this definition is equivalent to the traditional one. To continue the analogy with
an ordinary atlas: an atlas enables one to imagine the world as a whole even if the world does
not exist a priori. (In fact, many video games do exactly this: the fictitious world through
which the player moves is not a model of any real place.)

We now give a formal definition of the kind of object we described informally in Section 4.2
and then show that this object is a manifold by Definition 1. This definition proceeds in two
steps: we begin by defining a proto-manifold (charts and transition functions) and then build a
manifold from this proto-manifold using an equivalence relation (“gluing” the charts together).

Definition 2 A C*-differentiable proto-manifold K of dimension n consists of the
following:
1. A finite set A of open sets in R". A is called the proto-atlas. Each element
c € A is called a chart.
2. For every pair of charts c,c’ € A, the subset U..o Ce. Ifc = then U, =ec.

3. A set of functions @, called transition functions. For every pair of charts
¢,c' € A the transition function pccr € ® is a map peer 2 User — Usre. Note that
Ucer and Uy may well be empty. The following conditions on the transition

functions must hold:

(8) @ect is one-to-one, onto, and C*-differentiable.

! This usage differs from the usual definition of a chart on a surface, which is a map from the surface to R".
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(c) Vz € Ucc, pec(z) =<,
(d) (vik © ¢ij)(2) = @ir(z) for z € U Uij. (This is called the co-cycle
condition - see Figure {.2).

4. Let c and ¢’ be two charts in A. We define a relation on the disjoint union
of the two charts, cUi ¢/, as follows: ifz € ¢, y € ¢, and y = pcr(x) then
z ~ y. (This is an equivalence relation because p . = (perc)™t.) Let Koot be
the quotient of cLic’ by ~. Then there must ezist an embedding £+ of K.+ into
R". Note: The purpose of this condition is to ensure that MX is a Hausdorff
space; it is probably stronger than it needs to be.

This definition relates to the discussion in Section 4.2 in the following ways:

1. The charts are the same, i.e., open disks in the plane.

2. An overlap region (U) tells what part of chart c overlaps with chart ¢’ (see Figure 4.1).
We need this information for every pair of charts in the proto-atlas (although many of
the overlap regions may be empty).

3. A transition function (p../) tells how to map between the overlap regions U, and Uy..
These transition functions are defined for every pair of charts (although many of them may
be the empty function). The conditions imposed on the functions ensure the following:

o The mappings are “nice,” i.e., no folding.
o The map taking a chart to itself is the identity function.

® Going from U,cs to Ucre and back again puts you back where you started (see Fig-
ure 4.1).

e Where several maps overlap they must be consistent. Following the transition func-
tions through the charts puts you back where you started.

4. The two charts glued together (the quotient of c U ¢ by the equivalence relation) is
embeddable in R".

Next we define a relation that relates points in different pages (i.e., the point “Brussels” on
the France page with the point “Brussels” on the Benelux page). This relation dictates how to
glue the pages together. If K = (A, ®) is a proto-manifold then we can define a relation ~ on
the disjoint union of the charts, Uicea)¢, such that if z € ¢, y € ¢/ then z ~ y iff p.r(z) = .
Conditions (1) through (3) in the definition of a proto-manifold ensure that ~ is an equivalence
relation (see Appendix C.1).
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The relation ~ lets us build a single object from the charts. We declare that if a point z in
one chart is taken via s to a point y in another chart (g..(z) = y) then those two points
become a single point on the final object. Continuing the analogy of a world atlas, each chart
c is a page of the world atlas, each transition function .. is a correspondence between parts
of two pages, and the equivalence relation ~ says that “the place labeled Brussels on page 93
is the same as the place labeled Brussels on page 24.” The following definition describes the
resulting object:

Definition 3 Let ~ be the equivalence relation described above and K be a proto-
manifold as defined above. MX denotes the quotient of Ucea)c by ~ and Mg
denotes the map taking z € Uiceajc to [z] € MK, where [z] is the equivalence class

of z.
We now build a topology on MX by defining a basis for that topology [Mun75]. This topology

defines what the open sets in MX are. For the remainder of this paper, when we refer to the
topology of MK we refer to the topology of the following definition:

Definition 4 The basis elements B of MX are defined to be Ik (b) where b is an

open set in some chart c.

Appendix C.2 contains a proof that MX is a Hausdorff space, i.e., an object of the type
needed in Definition 1.

To show that this object is a manifold we need to verify that MX satisfies Definition 1. In
a sense, these two definitions are inverses of each other; Definition 3 builds MX from a set of
charts, and Definition 1 takes MX and constructs charts on it. To prove that M¥ is a manifold
we build maps to R" on MX; since we have the charts MX was built from, we can use those
charts as a starting point.

5.2.1 Proof that MX is a manifold

In this section we show that we can construct a manifold structure on MX by first constructing
an atlas A of C*-related charts [Spi70] on MX. We then show that MX, together with the
unique maximal atlas A’ containing A, is a manifold by Definition 1.

Theorem 1 Let K = (A, ®) be a proto-manifold and MX be as defined above. For
¢ € A, define a. : c -+ MK, as the restriction of g toc, i.e.,

ac:c—)MK:z—)HK(z)
For each c define the function ¢. : Im(a.) C MK 5 ¢ as follows:
¢c = ac—l
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- all points [x]
such that x inc

domain ¥

Figure 5.2: Going from the charts of Definition 3 to MX to the chart functions of Definition 1.
Let ® = {¢.:c € A}. Then A= (MK, ®) is a C*-related atlas.

Aside 3 Here is what the theorem says: An atlas of C*-related charts is very
similar to the atlas described in Definition 1 ezcept the maps between the bits of plane
(¢ o ¥~1) are only guaranteed to be C*-continuous and the atlas is not mazimal,
i.e., not every possible atlas page is included. To prove that we can construct a
C*-related atlas, we take the charts MX was built from and make a set of maps
to R" (i.e., chart functions) from them by taking inverses. Figure 5.2 shows the
charts MK was built from on the left, MX in the middle, and the chart functions
of Definition 1 on the right.

Proof:

First we show that a. is one-to-one (it is trivially a map onto its image) and therefore ¢,
is well-defined. Let z, 2’ € ¢. If a.(z) = a.(z’) then £ and z’ are in the same equivalence
class lIx(z) = Ilx(z') so z ~ z’. By the definition of ~, with both charts being ¢, the map
@cc satisfies dc(z) = z’. The function ¢.. is defined to be the identity, so z = z’. Hence ac is
one-to-one. So ¢. can be defined on I'm(a.), and is one-to-one and onto its image.

To show that . is continuous and hence a homeomorphism, we need to show that for every
open set U C ¢, (¢c)"'(U) is an open set. This is true by the definition of open sets on M¥
(see Definition 4).

To show that the ¢s are C*-related we need to show that for any two charts c, ¢’ the following

two maps are C*:



¢c°¢;;l = Pcoay = pere

¢c'°¢c—1 = ¢c’°0c=‘Pcc'

But @/ and ..+ are by hypothesis C* differentiable. O

We next need to show that there is a maximal atlas A’ containing 4 and that this maximal
atlas, together with MX, satisfies Definition 1. (A’ is needed to satisfy Condition four of
Definition 1; otherwise A would be sufficient.) The following lemma is from [Spi70]:

Lemma 1 If A is an atlas of C*-related charts on Hausdorff space M, then A is

contained in a mazimal atlas A’ for M.
Prop 1 The pair (M%, A) is a manifold by Definition 1.

Proof:

Condition 1 of Definition 1 is satisfied because A C A’ and A covers MK, Conditions 2 and
3 are satisfied by the construction of the maximal atlas. The last condition is trivially satisfied
since A’ is maximal. O.

5.3 Building a manifold: the charts and the transition
functions

This section gives the specifics for constructing a manifold from a polyhedron without bound-
ary. Extending this construction to a polyhedron with boundary is covered in Section 7. See
Appendix B for the notation used for polyhedra.

5.3.1 The charts

Recall that the proto-manifold associated with a polyhedron is defined by a set of charts (the
proto-atlas), their overlaps, and transition functions between the overlap regions.

The proto-atlas associated with the polyhedron is defined as follows. There is a chart in
the atlas for each element in the polyhedron. We label the correspondences between them as
follows: to each vertex v € V we associate a chart C,; the set of all vertex charts is denoted by
V = {Cy}vev- Similarly, the set of all edge charts is denoted by E = {C:}eec and the set of
all face charts by F = {Cy}s¢ 7. The entire proto-atlas A is then V{JE{JF.

Aside 4 A note on notation: Henceforth, the letter V denotes the vertez chart
associated with the vertez v, similarly, E denotes an edge chart and F a face chart.
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Figure 5.3: A vertex chart is a unit square without boundary.
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Figure 5.4: Example shapes of the edge charts. Top, left to right: The upper face has three,
four, five, and six sides, the lower face has four sides. Bottom, left to right: The lower face has
three, four, five, and six sides, the upper face has four sides.
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Figure 5.5: The face charts are regular polygons centered at the origin with edge length 1 — 2.
For these figures, A = 0.1. From left to right the corresponding face has three, four, five, and
six sides.

Each vertex chart is a unit square without boundary (see Figure 5.3).

Each edge chart is a diamond with two corners chopped off (see Figure 5.4). Let k be a
constant (we discuss the choice of 4 in Section 8.1). Then the width from the left edge to the
right edge is 1 — 2h. The diamonds may be asymmetrical in the vertical direction; the heights
of the top and bottom halves are determined by the number of sides of the faces adjacent to
the edge. Let f, and f; be the two faces adjacent to the edge e corresponding to the edge chart
E. Let n, be the number of sides of f,, and similarly for n;. Then the chopped diamond is

(0, cotp;[n..!)
(=5 + h, hcot(m/ny)) (-5 — h, hcot(r/ny))

(=5 + h,—hcot(r/n;)) (-6 —h,—hcot(r/n;))
(0, _cot!i;{n, !)

Each face chart is a regular polygon without boundary that is centered at the origin (see
Figure 5.5). Let h be the constant given above and let f be the face corresponding to the face
chart F. Then F is a regular polygon with the same number of sides as f and edge length
1-2h.

5.3.2 The overlap regions

The chart overlaps are determined by the adjacency relationships in the polyhedron. Charts
within a set never overlap. For example, if V, V'€ V are two different vertex charts then
Uvv: = Uvwv = 0. Two charts have a non-empty overlap if and only if their respective
elements in the polyhedron are adjacent. This is summarized below:

!
Ova:={0 V£V

V v=V'
.Uggrz{ﬂE' 5%5,



Uvg, Uvg, Uw,
Uvg, Uve,

Uve, Uve, U,

Figure 5.6: Left: The elements of the polyhedron adjacent to the vertex v. Right: The locations
of the Uy p, and Uy g, within the vertex chart.

u

Figure 5.7: The shape of Uyp, for A = 0.1. From left to right: Face f has three, four, five,
and six sides.

.Umz{g, i

e Uyp #0ifand only if v € e.
o Uvp # 0 if and only if v is a vertex of f

e Ugr # 0 if and only if e is an edge of f.

Vertex chart overlaps. Each vertex chart V overlaps with exactly four face charts
Fo,..., F3 and 4 edge charts Ey,..., Es. If the corresponding vertex v and its surrounding
elements are labeled as on the left of Figure 5.6, then the locations of the overlap regions are as
shown on the right. The Uy p, overlap the quadrants of V and the Uy E, overlap the sides of V.
The overlap region Uy F, is defined to be the quadrilateral without boundary formed by taking
¢F.v of the four corners defining Uy r, (see Figure 5.7). The overlap region Uy g, is defined to
be pg,v(Ug,v). Examples of these regions are shown in Figure 5.8.

Edge chart overlaps. Each edge chart E overlaps two vertex charts V; and V, and two
face charts F, and F;. If the corresponding edge e is labeled as on the left of Figure 5.9, then
the overlap regions are located as shown on the right. The overlap region Ugyv, is the left half
of the edge chart, i.e., all points (z,y) € E such that z < 0. Similarly, Ugv. is the right half
of the edge chart (see Figure 5.10). The overlap region Urg, is all points (z,y) € E such
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Figure 5.8: Example shapes of Uy g, for h = 0.1; F3 and Fp have the number of sides indicated.

Figure 5.9: Left: The elements of the polyhedron adjacent to the edge e. Right: The locations
of the Ugv, and UE.'F.-

Figure 5.10: The shape of Ugy, and Ugv, ; both adjacent faces have four sides.
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Figure 5.12: Left: The elements of the polyhedron adjacent to face f. Right: The locations of
the Upy, and Upg,.

that y > hcot(r/ny). Similarly, Ugp, is all points (z,y) € E such that y < —h cot(m/n;) (see
Figure 5.11).

Face chart overlaps. Each face chart F with n sides overlaps with n vertex charts
Vo,...,Va-1 and n edge charts Ey,..., E,_;. If the corresponding face f is labeled as on the
left in Figure 5.12, then the overlap regions are positioned as shown on the right. Each region
UFv, is a quadrilateral without boundary. The edges of the quadrilateral are formed by Jjoining
the midpoints of the edges to the origin (see Figure 5.13). The overlap region U, PE, is a triangle
without boundary formed by joining the origin to two adjacent corner points (see Figure 5.14).

Figure 5.13: The shape of Upy, for A = 0.1. From left to right: The corresponding face has
three, four, five, and six sides.
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Figure 5.14: The shape of Upg, for h = 0.1. From left to right: The corresponding face has
three, four, five, and six sides.

5.3.3 The transition functions

As described in Section 4.3, the non-trivial transition functions fall into one of three categories:
edge-to-face, face-to-vertex, and edge-to-vertex transition functions (the transition functions
Pees € € A are defined to be the identity function). We define them in that order.

The edge-to-face transition function pgp. This function breaks into two cases depend-
ing upon whether the face overlaps the upper or lower half of the edge chart. Let E, F,, F,
and the overlap regions be as shown in Figure 5.15.

The function ppp, translates Ugp, to the origin, then rotates it to the correct edge of F,.
Let ny be the number of sides of F,. The amount of translation is dy = —1/2cot(r/n,) and
the amount of rotation is some multiple of 8, = (27)/n,. (The multiple depends on the edge
of F, overlapped by the chart E; if the edges are labeled as in Figure 5.12, then the multiple
is the edge number.):

YEF,(s,t) = {scos(u) — (t — dy) sin(0u), (t — dy) cos(8,) + ssin(6,)} (5.1)

The function g, translates U, to the origin, then rotates it to the correct edge of F;.
Let n; be the number of sides of Fi. The amount of translation is d; = 1/2cot(n/n;) and the
amount of rotation is = plus some multiple of 6; = (27)/n; (as above, the multiple is the edge

number):
vEF (8,t) = {scos(6) + 7) — (t + d) sin(f; + =), (t +di) cos(6; + ) + ssin(6; + )}

To invert these functions, first rotate and then translate.

The face-to-vertex transition function pry. Let V, F, and the overlap regions be
as shown in Figure 5.16. The function ppy “stretches” the quadrilateral Upy to fit into a
quadrant of the vertex chart using a projective transformation ¢ : R2 — R2. The effect of
the projective transform is illustrated in Figure 5.17: it takes a quadrilateral gy, ...,q3 and
performs an edge-preserving map to the quadrilateral py, .. ., p3 (details are in Appendix A).
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Rotate 26,

Figure 5.15: The transition functions ¢er, and ppr,. Top: Ugp, is mapped to the second
edge of F,,. Bottom: Ugp, is mapped to the second edge of F;.

:‘3

Chartv

Figure 5.16: The transition function ppy is a restriction of the projective transform taking the
quadrilateral {g;} to the square {p;}.
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Figure 5.17: The projective transform (gp takes the quadrilateral {ai} to the quadrilateral
{pi}. Note that lines are preserved.

Let the four points gy, .. .,q3 be the four vertices of a corner of a unit polygon (q; and ¢3
lie at the midpoints of the two adjacent edges), as shown in Figure 5.16, and let py,...,ps be
the four corners of a quadrant of the vertex chart. Let {qp be the unique projective transform
taking go,...,q3 to py,...,ps (and Cpq be the unique projective transform taking py, ..., ps
to qo,...,93). We define the transition function as the projective transform restricted to the

appropriate overlap region:

Vz €Urv,prv(z) = (qp(z)
Vz eUvr pvr(z) = (pq(z)

In Appendix A.3 we prove that (gp = ((pq@)~?, i.e., that (prv)~! = gy p.

The edge-to-vertex transition function pgy. This function is built by blending betwen
compositions of the previous two functions. The function is defined by this method, instead of
directly, to ensure that the co-cycle condition is satisfied. Let E,V, F,, F, and the overlap
regions be as shown in Figure 5.18. The function pgy is built by blending the following two
composed functions:

PF.V ©PEF,

PFRV O PEF,

To define ppy we first show that pp_ v o ¥eF, and Ry o ppF, can be extended to the
shaded region shown in Figure 5.18, i.e., the region between the domains of the two functions.
Extending pep, to this region is trivial, since the function ¥EeF, was originally defined by
restricting a function defined on the entire plane (Eq. 5.1) to the region Ugr, (and similarly
for ppr). The function F,v is the restriction of the projective transform; this function is
undefined on certain lines of the plane, as shown in Figure A.2. These lines do not intersect
the shaded region into which we wish to extend g,y o $EF, into and therefore the following
definition is valid:



Figure 5.18: The transition function pgyv for A = 0.1.
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Figure 5.19: Left: The B-spline basis function used to make the blend function. Right: The
blend function g for h = 0.2 and £ = 2.
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vEev(s,t) = (1= B(t))erv o pEF, + B(t)pF.v © vEF,

where 3 : ® — [0, 1] is the blend function shown in Figure 5.19. This function has the following
properties (where n, and n; are the number of sides of the face charts F, and F}, respectively):

e 3(t) =0 for t < —hcot(n/ny;)
e 3(t) =1 fort > hcot(r/ny)
e (s C* for a given k (the desired continuity of the manifold).

¢ The derivative of 4 is bound by the function

h cot( [6! ) .
h cot(rx/6)—t B *
( hcot(x/6 ift>0

e [3(t) is monotonically increasing.

In Appendix D we show that for k > 0 the function ggy is invertible, one-to-one, and onto.

We now show how to construct such a blend function for a given degree k > 0 from a
non-uniform B-spline. Let ro = —hcot(r/n;) and rg41 = hcot(n/n,). Let 3 be the C*-1
non-uniform B-spline defined by a knot vector whose endpoints are ro and rx4+1 and whose
middle knot is at 0 (if k is even) or whose middle two knots average to 0 (if k is odd).? Refer
to Eq. 6.3 for the definition of a B-spline. Then

_ | Bls)ds
B(t) = W

This function is clearly C* since its derivative is C*~1. Since B is 0 to the left of ro and to
the right of ri, the function 3 must be 0 to the left of ro and constant to the right of ry (we
normalize to ensure this constant is 1). Finally, since 3 is everywhere non-negative, the integral
in the numerator increases as ¢ increases. The derivative is bounded because the area under the
derivative curve is 1, its peak is at or near 0, the width of its support is less than 2h cot(r/6),
and it is monotonically decreasing to either side of the peak.

5.3.4 Proof that this structure is a proto-manifold

To show that the set of charts and transition functions defined in this section constitute a
proto-manifold we need to show that they satisfy the conditions in Definition 2. The most

21f k = 0 then chose the two knots so that the resulting box function fits under the bounding function 5.2.
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difficult part is satisfying the co-cycle condition; informally, we have satisfied this by ensuring
that no more than three charts overlap at any point and that when they do, one of the three
transition functions is defined to be the composition of the other two.

Prop 2 The atlas A= V| JE{JF, overlap regions, and transition functions defined
above form a C*-differentiable proto-manifold.

Proof:
We first show that the charts are open sets and the overlap regions are open balls contained
in their respective chart.

1. Each chart is defined as an open set in the plane that is homeomorphic to a disk.

2. We need to show that the overlap regions U,. are homeomorphic to open balls in R2.
Most of the overlap regions are empty; these trivially satisfy this condition. The overlap
regions U, are defined to be the entire chart ¢, which satisfies this condition.

The non-empty overlap regions fall into two classes: those that we define directly (Ugp,
Upv, Uvr, Urg, and Ugv) and those that are defined by the transition functions (Uvg)-
In the first case, the overlap regions are homeomorphic to open balls in the charts by
their definitions.

To show that Uyg is an homeomorphic to an open ball we use the following theo-
rem [Mun75}:

Theorem 2 (Brouwer theorem on invariance of domain for R2). If U is an
open subset of R2 and f : U - R? is continuous and injective, then f(U) is
open in R? and f is an embedding.

Since the transition function pgv is continuous and injective (see Appendix D), by the
theorem the overlap region Uy p is an open set and the transition function YEV 18 an
embedding. To show that Uy g is homeomorphic to an open ball, we note that there exist
a homeomorphism of Ugy to an open ball and a homeomorphism from Uy g to Ugy, and
any composition of two homeomorphisms is also a homeomorphism.

We still need to show that Uy g C V. It suffices to show that the two composed functions
making up pgv both map their extended regions into the vertex chart; since the vertex
chart is convex any convex combination of points in the image of the two composed
functions is also in the vertex chart. Figure 5.20 shows these extended regions.

We now show that the transition functions satisfy the consistency conditions of Definition 2.
The non-trivial transition functions are those defined between charts of different types whose
elements are adjacent; the following discussion assumes the transition functions discussed are
non-empty. (The empty functions trivially satisfy the conditions of Definition 2.)
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Figure 5.20: The limits of the blend regions mapped into a vertex chart via the upper and

lower composed functions (k = 0). From top left to bottom right, the faces have three, four,
five, and six sides.
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Figure 5.21: Embedding an edge-face pair. Left: The face chart overlaps the upper edge of
edge chart. Right: The face chart overlaps the lower edge of edge chart.

We first show that the transition functions are one-to-one, onto, and C* differentiable.
Secondly, we show that @pccr = (pere)~1. Thirdly, we show that the pce functions are the
identity functions. Finally, we prove the co-cycle condition.

1. The edge-to-face transition functions (and their inverses) are a combination of a transia-
tion and a rotation and hence one-to-one, onto, and C*-differentiable. The face-to-vertex
transition functions (and their inverses) are also one-to-one, onto, and C°°-differentiable
because the projective transform restricted to the overlap region is (see Appendix A.2).
The edge-to-vertex transition functions (and their inverses) are one-to-one, onto, and C*
where k is the continuity of the blend function 3 (see Appendix D).

2. per = (pre)~! by definition. pyp = (¢Fv)~! because Cpg = ((gr)~*. That gy =
(pev)~! is proven in Appendix D.

3. The {pcc}cca functions are the identity function by definition.

4. The co-cycle condition is trivially satisfied when one or two charts overlap. Four or more
charts never overlap. When three charts overlap there is exactly one of each type of
chart: vertex, edge, and face. Satisfying the co-cycle condition in this case is the same as
showing that

PEV = $PFV O YEF;

but we defined pgyv as the composition of the other two functions on each such triple-

overlap area.

Finally, we need to show that any pair of charts can be embedded into the plane. If the
charts do not overlap then this condition is trivially satisfied. When two charts do overlap the
pair is one of the following three types: edge-face, face-vertex, or edge-vertex.

1. To embed an edge-face pair, embed FE using the identity function and F by ppg extended
linearly to all of F (see Figure 5.21).
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Figure 5.22: Embedding a face-vertex pair for a 5-sided face chart.
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Figure 5.23: Embedding an edge-vertex pair.



2. To embed a face-vertex pair, embed V using the identity function and F by ¢rv extended
(as a projective map) to all of F (see Figure 5.22). The discontinuity of this map does
not cross the chart F, as shown in Appendix A.4.

3. To embed an edge-vertex pair, embed V using the identity function, Ugy by vev(Uev),
and E — Ugy by rotating and translating the region to abut the appropriate edge of V
(see Figure 5.23). O



Chapter 6

Immersing the manifold

In the previous section we discussed building a structure (the manifold) whose topology is the
same as a given polygonal sketch. This manifold has no associated 3D geometry; to produce a
surface we need to define an immersion function on the manifold. The choice of an immersion
function greatly influences the quality and usability of the resulting surface. There is a wide
variety of possible immersion functions; the one described here was chosen because it satisfies

these criteria:

¢ The immersion has a set of “controls” that can be used to alter its shape (i-e., control

points):

— The controls for the immersion are local - changes in one control alter only a small,
local area of the surface.

— The affordances between the surface and its controls are straightforward — changing
a control changes the surface in an intuitive way.

o The surface is of any arbitrary, user-defined continuity.
o The surface is aesthetically pleasing (admittedly a somewhat subjective goal).

¢ The surface is quick to construct (we can build the surface interactively).

The immersion described here is based heavily on B-splines because they meet the above
criteria and have proven to be a powerful modeling technique. Before describing the immersion
itself we discuss two related topics: defining functions on the manifold (Section 6.1) and B-
spline knot vectors (Section 6.2). This establishes the vocabulary necessary for defining basis
functions on the manifold. We first define basis functions on a curve manifold and then extend
the discussion to surfaces (Section 6.3).
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Figure 6.1: Extending a function f. : ¢ — R defined on a chart to a function F. : MK 5
defined on the manifold using the indicator function Z.

6.1 Defining functions on the manifold

This section is largely technical. It provides the notation and conditions necessary for building
a C* function on the manifold from a C* function in a chart, a construction demonstrated
pictorially in Section 3.3. In Section 6.1.1 we describe a partition of unity and a method for
building one.

A function f. defined on a chart ¢ can be extended to a function F. on the manifold by
letting F. take on the values of f. for points in the image of ¢ and 0 for the remaining points of
the manifold (see the 2D example in Figure 6.1). This corresponds to separating the manifold
into two parts, the part that contains the image of the chart c and the part that does not. This
notion is captured with the following function Z, : MX — {0, 1} (called an indicator function):

1 ifp€E€acfc)

; (6.1)
0 otherwise

Z.(p) = {

We define zero times an undefined function as zero (i.e., when a>! is undefined). We can now
define F. as follows:

Fe(p) = Z(p) f-(aZ ' (p))

This defines F, but what about its continuity? This definition of continuity on the manifold
is from [MP77], page 209.

Definition 5 Let M be a C* manifold. Let p € M and let F:MR fis
differentiable of class C* (I < k) at p if there is a chart ¢ such that p € a.(c) and
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foa l:co R

is of class C' at a7'(p) € R". The continuity of f is at best k because this must
also hold when composed with the transition function of any overlapping chart ¢

which also contains p:
pecr 0 (foail):dd 5 R

which is at best C*.

Clearly the continuity of F_ is at best the continuity of the manifold; in the following
discussion we assume the continuity of M¥ is greater than or equal to the continuity of f..
The continuity of F. on the region a.(c) is the continuity of f., by the definition of continuity
on the manifold. On the remainder of the manifold F. is zero; the only region in question is the
boundary of the region ac(c). If the function f. is zero at the boundary of the chart then the
values will match up, i.e., there is no positional discontinuity. Similarly, to ensure that F. is
C*-continuous, the function f. must be at least C*-continuous and its first k derivatives must

be zero at the boundary of c.

6.1.1 Partition of unity

A partition of unity on a set D is a set of n functions {F; : D — R}ici<n that sum to one
everywhere, i.e.,
n
VdeD, ) Fi{d)=1
i=1

Typically, each individual function F;(d) satisfies
VdeD, 0<Fd)<1

The basis functions used to define a B-spline are an example of a partition of unity: on the
domain of the spline the sumn of the basis functions is one.
We can build a partition of unity from a set of proto-functions {F; : D — R}icicn provided
the following is true:
vde D, Y Fid)>0
=1

We build the partition of unity by dividing each function by the sum of all of the functions:

Fi(d)

F;(d) = ——=——

(6.2)
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6.2 Knot vectors and basis functions for manifolds

Our goal is to create functions on the manifold as similar to B-spline basis functions as possible.
B-splines derive many of their characteristics from the properties of their basis functions:

® The basis functions are non-negative and sum to one. This ensures that the resulting
curve lies within the convex hull of the control points.

e The support of each basis function is local, so that the corresponding control point influ-
ences only a part of the curve.

o If the basis functions are C* then the resulting curve is also C*.

® The left half of the basis function is monotonically increasing while the right half is
monotonically decreasing. The influence of the corresponding control point has a peak
that falls off nicely, contributing to the intuitive “feel” of moving a control point.

By defining basis functions on the manifold that have these properties, the resulting immersion
will behave in a manner similar to a B-spline.

The major issues to address are how many basis functions to build, where their support is
nonzero, and what they look like. For B-splines this information is contained in a knot vector.
In this section we discuss the role of the knot vector in defining B-spline basis functions and
then show how a similar idea can be used to define basis functions on a curve manifold of the
type found in Chapter 3. We build the basis functions in the charts; they can be extended to
functions on the manifold using the techniques of Section 6.1.

In Section 6.3 we extend the discussion to the plane and hence to surface manifolds. For
the remaining discussion, let k be the desired continuity of the curve or surface.

6.2.1 Knot vectors for curves

We define a knot vector on the real line and list some of its properties. A knot vector is
an increasing! sequence of n, numbers {ry,...,r, _1} that describes where the “breaks” are
between the polynomials making up a spline (see Figure 6.2). A knot vector with n, kmots
defines n, — (k + 2) basis functions of degree k in the following manner (0 < i < n, — (k + 2),
0<d<k):

bi—l(t) - 1 ifr.- <t <. Tit1
0 otherwise

t—r) ,a- (Figk41=1) 4
() = (—b‘? Lg) 4 3kl 77 pd~1(4 6.3
‘0 Titk+1 = T8 ) Titk+2 = Titl i) (6:3)

1'We do not consider duplicated knots here.
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Figure 6.2: A knot vector (—2.0, —1.25,~0.4,0,0.6, 1.8, 2.0), the four basis functions of degree
one it defines, and the resulting curve.

The knot vector has the following effects on the basis functions for the spline:

e There are n. — (k+2) basis functions. The support for the ith basis function lies between
the knot r; and the knot r; (k2. This means that every subset [r;, riii 4] of the real line
contains the entire support of one basis function.

e On any given interval [r;,ri4;] there are at most k + 2 nonzero basis functions and
everywhere but the end intervals there are exactly k + 2 nonzero basis functions. (As an
aside, the visual smoothness of higher order basis functions (k > 2) comes largely from
the fact that more control points are involved in the blend at every point, not from the
higher order continuity of the basis functions.)

6.2.2 Khnot vectors for curve manifolds

The knot vector serves two purposes: it determines the supports of the basis functions and
it ensures that enough basis functions overlap at every point. To define basis functions on a
manifold we begin by defining something similar to the knot vector on the manifold, then use
it to define the support of the basis functions. Because the basis functions are defined initially
in the charts, we need a way to determine what part of the knot vector lies in a given chart.
Once we have this subset of knots, we can use it to define a traditional knot vector in the chart.
This traditional knot vector is then used in Equation 6.3 to define basis functions on the chart
(see Figure 6.4).
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Figure 6.3: Left: Defining a knot. Right: A knot vector & on the manifold with 16 knots.
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Figure 6.4: Top: A knot vector K on the manifold. Bottom: The knots falling in the image of
the chart ¢ (left) and the chart ¢’ (right). These knots are drawn in the corresponding chart ¢
or ¢/, along with the basis functions of degree k = 1 resulting from them.
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We now carry out this construction for the curve manifold of Chapter 3. The knot vector
on the manifold is defined as an unordered set of points on the manifold. If x is an element of
this set, then it is in the equivalence class of at least one point in some chart:

K = a.(z) for some point z € ¢

The knot vector K on the manifold is then an unordered set of nx knots (see Figure 6.3):

K = {ri}o<i<nx

Given a chart ¢, we can impose an order on a subset of K. Let S:(K) be the set of knots
that fall within the chart c, i.e.,

S(K)y={reK:ZI.(x) =1}
(Zc is the indicator function for the chart c.) We impose an order on S.(K) as follows:
VK;, k; € 5:(K), Ki < Kj iﬁ'a:l(n;) < a;l(:cj)

Figure 6.4 shows a set of knots on the example manifold of Section 3.2 and the resulting ordered
subset in two charts, ¢ and .

Aside 5 Knot ordering: A subset of knots falling in the image of the overlap
region Ucer has one ordering imposed upon it by the chart ¢ and another by the
chart /. For the curve manifold, either these two orderings are the same or one is

the reverse of the other.

When we exztend this technique to the surface manifold and hence to knots in a
plane, defining an ordering on every chart is not so simple. We define an ordering
in the vertez charts (where there is a natural grid) and use it to impose an ordering

on the knots in the edge and face charts.

We now consider defining basis functions on the manifold using K. Within a given chart ¢
we have an ordered list of knots S.(K) that can be treated as a traditional knot vector on the
real line, i.e., we can use it to define basis functions with Equation 6.3. It takes k + 2 knots to
define a single basis function with that equation, so we define a basis function for every ordered
list of k + 2 knots in the subset S.(K). Note that the same list of k + 2 knots may appear in
a different chart as well; we chose one of the two charts to define the basis function associated
with that list of knots.

Aside 6 Choosing a chart: For this particular manifold the choice of the chart
makes no difference — the basis functions are the same regardless. This is because
the transition functions are translations and the basis functions are invariant under
translation. When defining basis functions for the surface this holds true only for

areas corresponding to four-sided faces.



We can now construct basis functions on the manifold using the manifold knot vector K.
The remaining question is what K should consist of: we want to satisfy the two properties
above, i.e., that each interval between two adjacent knots be contained in the supports of k42
basis functions and that the support of each basis function contain k + 2 intervals. The latter
is satisfied by the construction of the basis functions; it remains to ensure that enough basis
function supports overlap at every point.

For the region between two adjacent knots to be contained in the supports of k + 2 basis
functions, there must be k + 1 knots to the left and &+ 1 knots to the right of the two adjacent
knots (see Figure 6.5). This can be achieved in one of two ways: one chart can contain all of
the needed knots, or the knots can be partially split between two charts. In the latter case,
one chart has k + 1 knots to the left of the interval and the other has k + 1 knots to the right
of the interval. Additionally, the left chart must have k, knots to the right of the interval and
the right chart must have &, knots to the left of the interval, where k; + ks = k.

To achieve this we place the knots of the manifold knot vector as follows. Let 8, = mﬁ_—zn:

8
x:{n:x=ac(-.5+§+jak), VeeA, 0<j<2(k+2)}

As shown in Figure 6.6, this produces a sufficient number of knots in each chart to define a
basis function for each knot.

In summary, we define a “knot vector” on the manifold by dividing up the charts into 2(k+2)
intervals. We then define a basis function for every interval of k + 1 knots, thus ensuring that
each knot interval is contained in the support of k + 2 basis functions. Example knot vectors
and their corresponding basis functions are shown in Figure 6.7.

6.3 Defining basis functions on the manifold

In this section we demonstrate how to extend the ideas of the previous section to the plane
and hence to surface manifolds. Since the charts are subsets of R? instead of R!, we divide the
manifold into 2D regions instead of 1D intervals. As in the curve example, we ensure that each
region is contained in the supports of some number of basis functions and that the support of
each basis function consists of a given number of regions.

We begin with the “rectangular areas” of the manifold, i.e., areas where all the correspond-
ing faces in the polyhedron are four-sided. In the curve example the manifold was divided into
intervals by dividing the charts into line segments; here we divide the manifold into approx-
imately square regions. To do this we “grid” the manifold. Each grid square is defined by
four knots that are connected together to form a square. We require that each grid square be
contained in the supports of (k + 2) x (k + 2) basis functions and the support of each basis
function consist of (k + 2) x (k + 2) grid squares, i.e., a square (k + 2) knots on a side.
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Figure 6.5: The number of knots needed to ensure that an interval between two adjacent knots

is contained in the support of k + 2 basis functions. The knots can be distributed amongst the
charts as shown.

One chart
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Figure 6.6: Examples of assigning 2(k + 2) knots to each chart for three overlapping charts of
the manifold.

Figure 6.7: The manifold knot vector and corresponding basis functions on a chart for various
values of k.
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Figure 6.8: A grid of knots in the plane formed by the cartesian product of two curve knot
vectors (k = 1).

6.3.1 Kbnots in the plane

One method for defining a B-spline basis function b in the plane is to take a tensor product of
two B-spline curves, b; and b,:

b(s, t) = b(s)by (£)

where b: and by are each defined using a knot vector. The function b is then defined by the
cartesian product of these two knot vectors, instead of by a single knot vector. We call this
product a knot grid because it forms a grid of points in the plane (see Figure 6.8). This knot
grid is a (k + 2)-by-(k + 2) grid of points because each of the curve knot vectors has (k+2)
knots in it.

6.3.2 Knot sets for surface manifolds

We require that the knot set for the manifold form a grid when the knot set is drawn in a
vertex chart. This grid is then used to create knot grids for B-spline basis functions. To ensure
that the knots form grids, we define the manifold knot set as follows. For each vertex chart we
create a grid of points. These points, mapped to the manifold, form the knot set. Note that,
unlike the curve example, we define knots only in the vertex charts. Let

1

O =
* = 202k + 3)

d
r; = —.5+7k+i5k
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Figure 6.9: The knot set for k = 1 (& = 0.1) in a vertex chart (left), an edge chart (middle)
and a four-sided face chart (right).

] .
yi = —.5+7k+]5k

Then the manifold knot set K is
K={r:x=av(ziy), YWEV, 0<ij<22+3)}

The knot set forms a grid when drawn in a vertex chart. If we (temporarily) restrict
the manifold to four-sided face charts, then each of the transition functions is a combination
of a translation and a rotation by some integer multiple of 7/2. Because of this, the knot
set also forms a grid when drawn in an edge or face chart (see Figure 6.9). In analogy to
the curve example, we could define a chart basis function for each (k + 2)-by-(k + 2) grid of
knots. Unfortunately, extending this definition to the three-, five-, and six-sided face charts is
impossible because the knots do not form a regular grid in these cases (see Figure 6.10). We
can, however, use an equivalent method for defining basis functions that has the advantange
that it can be extended to the non-four-sided cases.

Let gx be any four knots forming a quadrilateral in some chart. Let g be the projective
transform from the quadrilateral to the unit square. Now let b be the C* tensor product B-
spline whose support is the unit square and whose knot spacing is equal. We define a basis
function as follows:

bo (g, (6.5)

In essence, this equation “stretches” the basis function b so that its support becomes the
quadrilateral defined by the four knots gx. Note that the equation depends only on the locations
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Figure 6.10: The knot vector in three-, five-, and six-sided face charts (k = 1). The knots form
an n-sided pattern in the center of the chart.

>

Knot grid for basis
function b

Figure 6.11: Defining an equivalent basis function using only the four corner knots instead of
the entire grid. The projective map (,, takes the four corner knots to the four corners of the
unit square. The basis function is defined to be the composition b o Cgx- Top: A vertex chart.
Bottom: A three-sided face chart.



Figure 6.12: The knot vector in three different edge charts (k = 1). The knots form a distorted
grid.

of the four knots g, not a grid of knots. To define a basis function we simply chose the four
knots which form the “corners™ of the support of the function.

In the four-sided regions, the gi are chosen to be the four corner knots of a (k+2)-by-(k+2)
grid of knots. The quadrilateral in this case is a square; therefore the projective transform (g,
is a rigid motion and takes the knots in the square gi to the knots of b (see Figure 6.11). The
basis function b o g, is therefore identical to one defined using the (k + 2)-by-(k + 2) grid of
knots.

In the non-four-sided case we chose the gi as follows: the knot set, when drawn in an edge
chart, forms a distorted grid (see Figure 6.12). Choose any four knots that form the corners of
a (distorted) (k+2)-by-(k+2) grid. The knot set, when drawn in a face chart, forms a grid-like
pattern near the edges of the face chart but an n-sided pattern in the center (see Figure 6.10).
In this case, choose any four knots which meet the following criterion:

o The knots are separated on three sides by k + 1 knots in a row.
¢ The knots form a convex quadrilateral (this is only a concern for three-sided charts).

Some examples of these are shown in Figure 6.13.

It is possible for four knots to form a basis function in two different charts ¢ and ¢ if all
four knots lie in the image of Uc.s. In this case we select a single definition: we select a vertex
chart basis function over that for an edge or face chart (and similarly an edge chart one over a
face chart one).

Note that the basis functions no longer sum to one in the middle of the non-four-sided face
charts. We fix this by dividing by the sum of the basis functions (see Section 6.1.1). Some care
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Figure 6.13: Picking four corner knots from the knot patterns (k = 0) in the face charts. Note
that the knots contained within the four corner knots may not form a grid.
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is needed in the k = —1 case to ensure that every point in the manifold is contained in the
support of some function.
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Chapter 7

Manifolds with boundary

To extend this discussion to surfaces with boundary, we need to define what a manifold with
boundary is (a modification of Definition 1), how to define one from charts and transition
functions (a modification of Definition 2), and how to build one from a polyhedron. The
definition of a manifold with boundary is very similar to the original definition except the
mappings to " may be mappings to “open sets with boundary” as well as open sets [Spi70].

Similarly, the charts and overlap regions of Definition 2 are expanded to include open sets
with boundary; the remainder of the definition is unchanged. Creating a manifold with bound-
ary from a polyhedron with boundary involves defining new chart types for the boundary
elements in the polyhedron; the overlap regions and the transition functions are largely unaf-
fected.

The immersion of a manifold with boundary is defined exactly as before. The algorithm
for constructing the basis functions, however, must be altered slightly to construct the basis
functions along the boundary.

7.1 The polyhedron with boundary

To sketch a surface with boundary we use a polyhedron with boundary (see Appendix B). Each
vertex on the boundary has exactly one, two, or three contiguous faces adjacent to it (and hence
two, three, or four edges). Each boundary edge has exactly one face adjacent to it. Fer each of
these different boundary elements (three vertex and one edge) we define a new chart type. The
following sections discuss what the new chart types look like, along with their corresponding
overlap regions and transition functions.

~1
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Figure 7.1: The shape and overlap regions of the three types of boundary vertex charts. The
adjacent faces have four sides.
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Figure 7.2: The shape and overlap regions of a boundary edge chart (the adjacent face has 4
sides).

7.2 The charts and the overlaps

The new vertex charts consist of some number of the quadrants of the unit square and the
adjacent parts of the z- and y-axes. The number of quadrants depends on the number of faces
adjacent to the vertex; if there are n adjacent faces then there are n quadrants. The quadrants
must be adjacent to each other. The overlap regions (Uy r and Ugy) are defined as before (see
Figure 7.1).

Each boundary edge chart is a triangle without boundary, joined to the adjacent part of the
z-axis. The exact shape of the triangle is determined by the number of sides, n 1. of the face
adjacent to it. The three corners of the triangle are:

(0 cot!x(nt!!

4 2
(~0.5,0) (0.5, 0)

The overlap regions Ugr and Ugv are defined as before (see Figure 7.2).
There are no new face chart types.

7.3 The transition functions

Both the face-to-vertex and face-to-edge functions are unchanged. A boundary edge has only
one face overlapping it; therefore the edge-to-vertex function in this case is just the composition
of ppr and prv extended to all of Ugy (see Figure 7.3).
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Figure 7.3: The transition function pgyv for the boundary case is build from a single composi-
tion.

7.4 The immersion

The charts are of two types, interior charts or boundary charts. The basis functions on the
interior charts are defined exactly as described before. To define the basis functions on the
boundary charts, the “missing” overlapping faces of the boundary charts are filled in with
phantom four-sided face charts. The basis construction algorithm is then run normally to
produce a set of functions on the “filled-in” boundary charts. The supports of these functions
are then clipped to the boundary chart to produce the boundary basis functions.

So, for example, a boundary vertex chart with two overlapping face charts is expanded to
a unit square, where the two top quadrants overlap with the two “phantom™ face charts. We
build the knot set on the unit square as before and construct a function for each (k+2) x (k+2)
grid of knots. The support of some of these functions lies partly (or entirely) within the filled-in
area of the chart; we clip the support of these functions to the boundary vertex chart, i.e., the
area including and below the z-axis (see Figure 7.4).

Each boundary edge chart has two boundary vertex charts that overlap it; we map the knot
set (defined on the filled-in area of the vertex charts) from the vertex charts to the edge charts.
This fills in the knot set for the edge chart, where knots in the filled-in part of the vertex charts
are mapped to the filled-in part of the edge chart (see Figure 7.5). As before, we construct a
function for each (k +2) x (k + 2) grid of knots and clip the result to the boundary edge chart.
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Figure 7.4: Constructing chart basis functions on a vertex boundary chart.
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Chapter 8

Additional issues

The following sections discuss some issues that have not been fully dealt with.

8.1 Thegaph

This section discusses the choice of the value for the gap h. The gap must be small enough that
all of the knots in the knot set fall within the overlap region Uy p. Figure 8.1 shows the knot
set in a vertex chart and corresponding overlap regions obtained with different values of k.
The knot located at (dx /2, §x/2) must lie within the overlap region Uy P, (where & is given
in Equation 6.4). We solve for the value of h for which the corner of Uy F, is exactly (8x /2,0 /2).

(6%/2,6:/2) = @rv(0.5— h, —hcot(r/6)) (8.1)
0.0416667
b = TInmeLE (8.2)

We set h to be slightly smaller than this to ensure that the knots all lie within the overlap

region.
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Figure 8.1: The knots in the vertex chart and the overlap region Uy r for decreasing values of
h (F has three six).
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T basis function

o Center of support

A vertex chart The polyhedron

Figure 8.2: Left: A vertex chart on the manifold with the support and centers of two basis
functions marked. Right: The sketch polyhedron subdivided once with the corresponding
locations of the corresponding control points marked.

Figure 8.3: Left: Original polyhedron P. Middle: After one level of subdivision (P’). Right:
Subdividing again (P").

8.2 Initial locations for the control points

Although the choice of control points is completely unconstrained, we chose an initial set
of values that reflects the user’s intentions, as specified by the geometry of the polyhedral
sketch. Since the Catmull-Clark [CC78] subdivision process produces a smooth surface from an
arbitrary polyhedron, we use the subdivision surface to compute the placement of the control
points. We could place the control points on the polyhedron itself but that would lead to a
blocky surface.

Each control point G is associated with a basis function B whose center of support is at
some manifold point p € MX. We want G to be the point on the subdivision surface that
“corresponds” to p. To do this we need to associate the points of the subdivision surface £
with the points of the manifold. We describe this association with a mapping X : MX - L.
To set the control point G' we assign it to its corresponding point on the subdivision surface,

H(p)-
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Figure 8.4: Upper left: A face f of P with the new point vy € P’. Upper right: An edge of P
and the two adjacent centroid locations. Bottom: A vertex v of P and the adjacent edge and
face points.

Aside 7 Subdivision surfaces: See [CC78] for a complete description of subdivi-
sion surfaces.

Subdivision takes a polyhedron P and produces a new polyhedron P'. For each vertez,
edge, and face in P there is a vertez in P'. These vertices are connected together
by four-sided faces (see Figure 8.3).

A face f in P produces a vertez vy in P' whose location is the centroid of the face
f in P (see upper left of Figure 8.4). If v; are the locations of the vertices of the
face f then

S |-

n
vy = Z vs
1
An edge {vo,v1} in P produces a vertez v. in P’ by averaging the centroids of the
two faces adjacent to the edge and the two vertices vo and vy. If vy, and vy, are the
previously calculated centroids of the adjacent faces (see upper right of Figure 8.4)
then

1 1
Ve = Z(vo +un)+ Z(”fo +vy,)

A vertez v in P produces a vertez v, in P' by averaging the points in P’ corre-
sponding to the n adjacent faces vy, and the n adjacent edges v., of v. Leta,be R,
0<ab<1
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Figure 8.5: An abstraction of the subdivision process on a vertex chart. The surface has been
subdivided twice.

e — b &
vy = ;;u,,+;¥ve.+(1—(a+b))u

To define H, we first note that after one level of subdivision we have one subdivision point for
each chart in MX. If. is the subdivision point corresponding to the element ¢ in the polyhedron
then we set #(ac(0,0)) = l.. This relates the origins of the charts to the subdivision points
generated by the first level of subdivision. The subdivision points, therefore, lie in the vertex
charts as shown in the left of Figure 8.5.

Recall that the sketch polyhedron has vertices of valence four, so that after one level of
subdivision every face in the subdivision surface is four-sided. We define # to take each face of
L into a quadrant of a vertex chart. Applying another level of subdivision “grids” the vertex
chart as shown in the right of Figure 8.5. Each further level of subdivision divides this grid
again. We define # by assigning the grid points (av (grid point)) to their corresponding points
in the subdivision surface. Eventually, this relates a set of points that are dense in MK to the
subdivision points.! This dense set can be extended to MX in a natural way.

In practice, we compute several levels of subdivision and then interpolate by finding the
grid square in which the point ay;!(p) lies and interpolating between the values of the corners
of the grid square.

1 We assign the points along the boundary of the vertex charts ay(V) to their adjacent points in M¥.
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Figure X.6: Triangulating the interior of a vertex chart (r = 5). The polyhedron is a three-sided

face surrounded by four-sided faces.

Figure %.7: Filling iu the gaps of the triangulation. Left: Adjoining edges. Right: Filling in

the centers of the faces,

8.3 Triangulating the manifold

There is a tradeoff between the nwnber of triangles in the triangulation and how closely that
triangulation approxitnates the surface. The triangulation presented here produces approxi-
mately r2 triangles per vertex for a given resolution r. If the control points are evenly spaced
in 3-space then the resulting triangulation will also be evenly spaced in 3-space.

We triangulate the domain by fiest triaugulating the vertex charts as showu in Figure 8.6,
where ¢ deteninines the number of squares. To fill in the remaining gaps. we adjoin the triangles
along the boundaries to the triangles of neighboring vertex charts. The edges are filled in with
a strip of triangles and the remaining corners with an appropriate n-sided triangulation isee

Figure X.7).

)
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Chapter 9

A history of alternative

approaches

This chapter describes the alternative approaches we tried and why we discarded them. The
discussion is organized into three categories: the polyhedron, the manifold, and the immersion.

9.1 The polyhedron

Two restrictions are placed on the polyhedron: the vertices have valence four and the faces
have six or fewer sides. This restricted polygon was chosen over a general polygon because it
simplifies constructing the manifold and imposes a “local coordinate system” on the manifold
in that the vertex charts can be modeled with unit squares. If all the vertices have the same
valence then the number of possible combinations with n—sided faces is reduced, i.e., we need
not deal with vertices of valence m adjacent to faces with n sides. By limiting the number of
combinations we decrease the complexity of the charts and their overlaps. Alternatively, we
could use the dual to the restricted polyhedron, which has vertices of valence m and faces with
four sides. This would reverse the role of the vertex and face charts: the face charts would be
unit squares and the vertex charts n-sided polygons.

Restricting the vertices of the polyhedron to be of valence four does not limit the topologies
the polyhedron can assume; a polyhedron of this restricted form can be produced from a general
one by taking the dual of the first subdivision surface (see Aside 7 for a description of subdivision
surfaces).

The restriction to faces of fewer than seven sides is largely for programming reasons, not
theoretical ones: again, this reduces the number of cases to consider.

Aside 8 The topology of the polyhedron: There is a correspondence between the
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Figure 9.1: A stick figure.



number of sides of the faces and the Gaussian curvature of a valence four polyhe-
dron: three-sided faces are equivalent to w/4 worth of curvature, four-sided faces are
equivalent to zero curvature, and five-sided faces are equivalent to —xw/4 curvature.
As an ezample, consider the “stick figure” in Figure 9.1. The ends of the arms,
legs, and head are capped with four three-sided polygons which “curve in” and close
off the model. This area is essentially a hemisphere, which has Gaussian curvature
. The branching of the legs and arms is accomplished with four five-sided polygons.
These areas are saddle points, with Gaussian curvature —n. The body, where there
i8 no curvature, is modeled with four-sided polygons.

Obviously, other combinations of polygons can model the same figure. This partic-
ular choice has the property that the edge lengths of the polygons are all about the
same (i.e., the polygons are not distorted) and the symmetry of the model is reflected
in the symmetry of the polyhedron.

9.2 The manifold

The issues involved in creating a manifold are choosing the number of charts and how they
overlap. This decision is influenced by the requirements on the transition functions, especially
the co-cycle condition.

We chose to create one chart for each element in the polyhedron because this establishes a
good correspondence between the elements of the polyhedron and the manifold and also allows
substantial overlap between the charts.

Other choices were to create charts for subsets of the elements in the polyhedron, instead
of all of the elements. For example, we could create one chart for each vertex, or alternatively
one chart for each edge and each vertex. This approach reduces the number of charts in the
manifold but increases the complexity of the overlaps and transition functions. The complexity
increases because reducing the number of charts means enlarging the charts themselves, so that
more than three charts will overlap in places, making the co-cycle condition difficult to meet.
Because the cost of charts is relatively low, we chose simple transition functions over fewer
charts.

The charts and their overlaps were chosen so that nearly every point in the manifold is
in the image of a vertex, edge, and face chart, i.e., the overlaps of the charts are substantial.
This allows plenty of room to move gradually from one chart to another when traversing the
manifold. It also means we can define basis functions whose supports overlap substantially,
even though their support is contained in different charts. This is important because splines
rely on this overlap to produce smooth blends between the control points.

If nearly every point in the manifold is in the image of a set of charts (say the vertex charts),
then we say that set of charts “nearly” covers the manifold. To formalize this idea, we use the
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Figure 9.2: Illustration of where the co-cycle condition is difficult to meet.

following notation. Let a C A be a subset of the atlas. The set a nearly covers the manifold if
the following holds true:

Y =u
c€a
where T denotes the closure of the set z.

We initially wanted each of the subsets V, E, and F to nearly cover the manifold but this
proved to be too difficult, so we settled for having only the set V cover the manifold. The
reason this is difficult is the co-cycle condition. Take a vertex v and an adjacent edge e. The
edge e is adjacent to two faces, f; and f,. The vertex v must also be adjacent to these two faces.
Therefore the overlap regions Uy r,, Uy r,, and Uy g are all non-empty. If each of the subsets
covers the manifold then the vertex chart must be covered by Uﬁv?- (and similarly for the
Uve,). This implies that Uy g (YUvF, # 0 (and similarly for the other face, f,). The problem
is making pv = ¢ v o pgF, agree with PEV = ¢F,v o pEF, Where the two regions Uy r, and
Uvr, abut (see Figure 9.2). A similar problem arises for the other possible configurations.

To address this problem we “shrank™ the face charts, which created a “gap” between the
areas where three charts overlapped, leaving enough room to blend between the composed
functions.

The edge charts are defined as chopped diamonds instead of diamonds because of this
blending. Suppose the edge chart is a diamond; that makes the overlap region Ugy a triangle.
If we take gy of this triangle, the result is not a triangle in the vertex chart. In fact, depending
upon the number of sides of the overlapping faces, the overlap region may map to an area larger
than a triangle (see Figure 9.3). To solve this, we cut off the corners of the edge chart.

The transition functions were chosen so as to distort their domain as little as possible; some
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Figure 9.3: Mapping a triangle containing Ugy to a vertex chart via ppyv (h = 0.2). Left: The
two faces have three sides. Right: The two faces have six sides.

distortion seems inevitable.

9.3 The immersion

The first choice to be made is the type of functions to use in the immersion. We began with
splines (i.e., basis functions and control points) because we were trying to extend splines to
arbitrary topologies. Another approach we have not tried, but that might prove fruitful, is
wavelets — for example, something like the approach in [SS95].

To produce a satisfactory surface from B-splines we address the following four issues:

¢ The basis functions must be C*.
o The basis functions must form a partition of unity.

¢ A sufficient number of basis functions must be nonzero at any point. The number is
dependent upon the choice of k (if k increases then the number of functions overlapping
at a point must also increase).

¢ The basis functions must be monotonically decreasing to either side of their peak, i.e., be
a “bump” shape.

This list is not exhaustive list, nor are the issues independent; achieving one may be possible
only at the expense of another. Ensuring these properties does not guarantee that the resulting
surface is “nice,” either. It is, however, a point of departure for discussing different approaches
for building basis functions.
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A part of the
manifold

Figure 9.4: Building a manifold function F from two chart functions f; and f,.

9.3.1 Ensuring C* continuity

In Section 6.1 we discussed one method for building C* functions on the manifold; these func-
tions have the property that their support is contained entirely within the image of a single
chart. We first recap that method, then describe a method for building functions whose support
is not contained in a single chart.

To build a C* function F on the manifold we first define a C* function f in a chart ¢, where
f and its first k derivatives are zero at the boundary of the chart. Next, we promote f to a
function on the manifold using the appropriate indicator function (see Equation 6.1):

F(p) = Z(p) f(ec (p))

We can apply a similar technique to define a function whose support is not contained in
a single chart. Suppose, for example, we defined a function F from two C* chart functions,
fi:e—>Rand fo:¢ 9 R, as follows:

F(p) = Ze(p) fr(a ' (p)) + Zes (p) faleZ* ()

This construction is illustrated in Figure 9.4. The continuity of F is more difficult to establish
than in the previous approach. The problem areas are the boundaries of the regions ac(c),
ac(c’), and a¢(Uer). Guaranteeing continuity in these areas is, in general, not easy. Suppose,
however, we define a set of blending functions, one for each chart. These functions are similar
in concept to the indicator functions except that they are C* and form a partition of unity.
Let B. be the blend function for the chart ¢, i.e.,

0<Bc(p)<1 Z(p) =1
B.(p)=0 Z.(p) =0
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Vp € MK, YeeaBlp) =1

Then we can define a function F by defining what F looks like in several charts and blending
between the results. Let f. : ¢ & R be the definition of F on the chart c. Then

Fip) = Y B.(p)fe(aZl(p)) (9-1)
cEA

This equation can be used to build functions that are C* and whose support lies across
multiple charts. The chart functions and the blend functions must be C*, but note that the
chart functions need not be zero at the boundary of their chart (since the blend functions are).
The techniques of Section 6.1 can be used to build the blend functions, since the support
of a blend function fSc is contained in the image of the chart c. A good chart function to use is
a C* B-spline basis function whose peak is at the origin and whose support covers as much of

the chart as possible.

9.3.2 Partition of unity

Section 6.1.1 presents one method of ensuring a partition of unity. In summary, this technique
produces a partition of unity from a set of proto-functions by dividing each proto-function by
the sum of the proto-functions. One problem with this approach is that the original shape
of the proto-functions can be greatly distorted by the division, especially if the sum of the
proto-functions varies greatly.

A feature of B-spline basis functions is that they form a partition of unity because of their
construction process; it is not induced afterwards. There are several different ways to construct
these functions; one that can be adapted to manifolds is convolution, a technique that produces
a set of C* functions from a set of C*~! functions while maintaining the partition of unity
property. We first describe convolution in general, then the problems involved in extending it
to the manifold.

Aside 9 Convolution of real-valued functions: Convolution on the real line is
defined by

(f *a)(s) = / _ flelats —rjar

where f and g are functions defined on R. This process produces a new function that
is defined on R and is a “blend” of f and g. If f and g are both “nice” functions,
then the function fxg will be smoother than f and g. Additionally, if we convolve g
with a set of functions f;, where ¥_; fi(r) = 1 for all points r € R, then the new set

of functions f; g also sums to one. This is summarized in the following lemma:
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Figure 9.5: “Flipping” g around the origin and translating by z .
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Figure 9.6: Using convolution to construct the B-spline basis functions.
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Lemma 2 Let g : R — R be a piecewise C° function with the property that

./a g(rjdr=1

Leti€ {0,...n} forn € Z. Let f; : R = R be a C*~! function with the property
that for allr € R

DAl =1
Then f; xg is a C* function and for all r € R
D (fixg)r) =1

To build the uniform B-spline basis functions using convolution, let the filter func-
tion, g, be a boz function of width one and height one. Let the f; be the C~! basis
functions, i.e., boz functions that are one on a unit interval. The new functions,
fi % g, will be the C° basis functions (see Figure 9.6).

This approach works only if our filter function g integrates to one and can be “moved” to
different parts of the domain via the operation 9(z — y). Normally, the function g is defined in
R" and the operation g(z — y) is defined by “flipping” g around the origin, translating by z,
then evaluating at y (see Figure 9.5).

In our case, the operation g(p — ¢) must be defined across the manifold, not ®*. Un-
fortunately, “flipping” and translating are not defined on the manifold. Instead, we define a
family of functions {g,(p) : MX — R},esx, one for every point ¢ on the manifold, and let
9(P—q) = g4(p). The function g, corresponds to the filter function “flipped” and translated to
the point q.

To define an individual filter function g,, we use the technique for defining a function across
the manifold described in the previous section (see Equation 9.1). This lets us describe what
the filter function looks like in each chart and blend between them.

The chart filter function (g,). for the chart c at the point g is defined to be nonzero on a
polygonal area centered at the point a=1(g). The shape of the polygonal area is determined by
the chart type; if the chart is a vertex or edge chart then the polygon is a square, otherwise it is
a regular polygon with the same number of sides as the chart (this is to preserve the symmetry
of the convolved functions). The height of the polygon is chosen so that the integral of (gg). is
one. The filter function on the manifold is then

94(p) = 3 B:(p)(9g)c(eZ(p))

ceA
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The function we are convolving with (f) is similarly defined by a blend of chart functions
Je :¢ = R (we define these later):

£(p) = Y B-(p)f(aZ ()
cEA

The convolution of a function f with g is computed by performing the convolution in each
of the charts and blending between the results (the blending being performed by the biend
functions {B.}cc4):

tra)) = [ fee-i
q
= [ o
qEMK
- ./eMK Z Be(p)fe(a () Z B::(p)(9q)e’ (@2 (p))dg
q

ceA c’€A

> B=(p) Y B:(p) FelaZ ' (p))(9g)er (5 (p)dq)
geEMK

c’€EA cEA

But B.(p) = 0 unless p € a.(c)

]

= Y B(n) Y Blp) £o(@,9)(90)e (pere(z, ) dzdy
c'€A cEA (zwy)€c
Each of these integrals is confined to R2.

Recall that we need to define the initial set of functions; in the B-spline case the initial
functions were the C~! basis functions, i.e., box functions. The only restriction on these
functions is that they must sum to one everywhere on the manifold. One possible set is the
indicator functions for the vertex charts, modified to include the part of the manifold that is
not in the image of the vertex chart.

In practice, computing these convolutions for anything but the linear case proved intractable.
It is that a recursive definition, such as the one developed for Box splines [DM84], might more
prove tractable.

9.3.3 Number of overlapping functions

The visual smoothness of the surface depends not only on the continuity of the functions but
also on the number of control points that are blended together. For example, consider an
immersion of a curve defined by basis functions and control points. If only two basis functions
overlap at any given point, then no matter what the continuity of the functions the “curve”

will consist of blends of two control points, i.e., linear segments.
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Figure 9.7: Defining a single basis function across two face charts, an edge chart, and a vertex
chart. The support of the function is spread across the four charts; no singe chart contains the
entire support of the function.

There are two methods for dealing with this problem: either increase the number of functions
overlapping at any given point or use more complicated geometry. Increasing the number of
functions that overlap involves increasing the size of the support of the functions or increasing
the total number of functions. If we are defining functions whose support lies in the image of a
single chart then the size of the supports of those functions is limited, so we increase the total
number of functions.

If we use functions which are not confined to a single chart then it might be possible
to expand the supports. We have not tried this approach, in part because defining basis
functions across multiple charts is complicated. The knot set used to define the basis functions
in Section 6.3 might also be used to define these functions by dropping the requirement that
all of the knots used be contained in a single chart. The chart functions used to build a given
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Figure 9.8: Top center: The basis functions used to create the two curves. Left: g;(t) is the
constant function. Right: g;(t) is a linear function.

basis function would consist of a projective transform to part of the unit square, instead of the
entire unit square (see Figure 9.7).

One other approach is to blend between some geometrical objects other than points, for
example, lines or planes. Aside 10 describes this in some detail for a curve.

Aside 10 Splines with lines: Consider the equation for a B-spline curve:

) = D bilt)as

In this equation only the basis functions b; depend upon the value of t; the control
points g; are constants and so do not depend upon t. We could, however, rewrite

this equation so that the “control points” do depend on t:

v(t) =Y bi(t)gi(t)
where gi(t) is the constant function, i.e., gi(t) = ¢ for some constant c. Suppose
that g;(t) is not a constant function but instead returns a point on a line. Let p be

a point and v be a nonzero vector:

git)=p+ut
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Now the basis functions are blending between points on a line instead of just points.
Figure 9.8 shows two B-spline curves, both having the same basis functions but
different g; functions.

The two difficulties with this approach are how to parameterize the geometrical object and what
shape it should take. This is not too difficult for a plane (although some care must be taken
with the orientation of neighboring planes) but extending this even to parabolas is difficult.

9.3.4 The shape of the basis functions

One problem with using division to create a partition of unity is that the shape of the final
functions can be greatly distorted from the shape of the proto-functions. If the sum of the
proto-functions is relatively constant, or if it changes slowly relative to the size of the supports
of the proto-functions, then this problem is lessened.
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Chapter 10

Implementation

A working interactive editor exists for the HP735, Sun SPARCstation 10, and the SGI Onyx.
The editor consists of a polyhedral modeler that lets the user interactively construct a general
polyhedron by creating vertices and connecting them together to form faces. A valence-four
polyhedron and its corresponding surface are automatically constructed from this general poly-
hedron. The desired continuity and triangulation of the surface are specified at startup time.
The user may manipulate the positions of the valence four polyhedron and the control points
of the surface (initial positions are chosen using the subdivision surface of the general polyhe-
dron). Existing model sizes range from 314 to 1112 polygons. Table 10.1 shows the times for
calculating a C* surface from scratch on a SPARCstation 10, triangulated with (2d)? triangles
per vertex chart. The first sample surface is shown in Figure 10.1, the second in Figure 9.1.
As a benchmark, the image in Figure 1.2 was created in approximately six hours and the
image in Figure 10.2 was created by a novice user in approximately four hours. The code
is a straightforward implementation, without any attempt at optimization, of the equations

presented here.

10.0.5 Results

Example control polyhedron and their corresponding surfaces are shown in Figures 10.3 through 10.5.
All of these models were constructed entirely by hand. The initial control polyhedron for Fig-
ure 10.6 was constructed by hand. The locations of the vertices for the corresponding valence-
four polyhedron were then adjusted, using a simple data-fitting algorithm, to bring the surface
closer to the laser-scanned polyhedron [TL94] shown on the left of Figure 10.6. The valence-
four polyhedron for Figure 10.7 was constructed automatically using the technique described
in [GH95].

Figure 10.8 illustrates the effect of moving the vertices of the control polyhedron. Figure 10.9
illustrates the effect of moving individual control points on surfaces of varying continuity.
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Figure 10.1: A spiderweb (761 polygons).

Figure 10.2: Alexander’s two-holed torus (396 polygons).
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Figure 10.3: Top left: The initial polyhedron. Top right: The valence-four polyhedron. Bottom:
The €' surface, tesselated with 52 triangles per vertex chart.
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Figure 10,8 Top left: The initial polyhedron. Top right: The valence-four polyhedron. Bottom:
The €' surface. tesselated with 37 triangles per vertex chart.
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Figure 10.5: Top left: The initial polyhedron. Top right: The valence-tour polyhedron. Bottom:
The (! surface. tesselated with 52 triangles per vertex chart.



Figure 10.6: Upper left: The laser scanned data. Upper right: The control polyhedron (built
by hand). Lower left: The surface before data fitting. Lower right: ‘The surface after data

fitting,.



Figure 10.7: Top: The initial isosurface. Bottom: The €' surface. tesselated with 3¢ triangles
per vertex chart.



Titnes for the spiderweb
(764 polygons)

k=0 [{k=1 k=2
d =3 33002 | 2:038:3% | T:LEST
d =3 | 3756 | 3:10:07 | 10:13:53
d =7 30:92 | 31719 | 11:54:02

Times for the stick tigtire
(264 polygons)

k=0]lk=1}k=2
I ]
1

d =314 713 ERIRA :05:51
d =3 %29 AT 1701
d =7 || o228 | 33:00 | 1:29:51

Table 10.1: Times (in minutes) for constructing a surface of continuity ¢ with o? triangles
per vertex chart. Tests were run on a SPARCstation 10.

Figure 10.8: Left: Before moving the vertex. Right: After inoving the vertex.
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Figure 10.9: Top left: Initial (" surface. Top right: Moving control points on the € surface.
Bottom left: Moving control points on the ¢! surface. Bottom right: Moving coutrol points
on the (" surface.
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Chapter 11

Future work

The technique presented here produces a C* surface of arbitrary topology that has many of
the properties of a spline surface. Several techniques exist for manipulating spline surfaces,
however, that we have yet to develop for manifolds. The existence of these techniques is part
of what makes splines a powerful modeling tool; developing similar techniques for manifolds is
a necessary next step for introducing manifolds into the mainstream.

In this section we first discuss several spline manipulation techniques, how they are imple-
mented for splines, and what the difficulties are in developing them for manifolds (Section 1 L.1).

Following this we discuss other, more general directions for this research (Section 11.2).

11.1 Spline manipulation techniques

We discuss four basic spline manipulation techniques. These four do not form an exhaustive
list; they do, however, illustrate some of the differences between manipulating functions defined
on R" and functions defined on a manifold. For each technique we describe the technique for
traditional splines, how one might approach the problem for manifolds, and what the difficulties

are.

11.1.1 Refinement and subdivision

Refinement is best illustrated using spline curves. Descriptions of refinement and further ref-
erences can be found in [BBB87] and [Far88§].

Let v : ® = R2 be a NUBS curve of degree k with basis functions defined by the knot vector
r (refer to Section 6.2.1). We can refine v to produce a new curve 7 with one more degree of
freedom (i.e., one more control point) than . This is accomplished by adding a new knot into
the knot vector r to produce a new knot vector ' from which the basis functions for ¥ are

constructed. Since r’ has one more knot than r, 4’ has one more control point than 5. This
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would not be terribly interesting except that we can chose locations for the control points of 7’
such that 9'(¢) = y(t) for all ¢ € R (and, in fact, these locations are unique). This is possible
because the basis functions for 4’ span the basis functions for 4. By this we mean that each
basis function for 7 can be written as a linear combination of the basis functions for v'. Exactly
how this is done can be found in [Far88].

Subdivision is a similar process used to produce two curves from a single curve, such that
the two curves together form the original curve.

The heart of refinement is being able to create a nested set of spaces of curves, WO C W!, ..
where each space W* consists of an infinite number of curves. An example of such a space is
the space consisting of all piece-linear curves with two segments. A curve in W is a linear
combination of the n; functions that form a basis for W¥. Let {wi}1<i<n, be a basis for the

space W'. An element v in W' is expressed as

ng
V() EW =Y ajui(t)
j=1
where a; € R*. Given a basis for the space W', an element of W' can be defined by the vector
a; € R,
Since W' is a subspace of Wi+! each element in the basis for W* can be expressed in the
basis for Wit!; e.g., for all j such that 1 < 7 < n; there exists a; € R such that

gt

wi(t) = ) dkuitly)
j=1

This implies that any element in W* can be expressed in the basis for Wi+!. This is exactly
what happened in the spline example above. Let {w_;:}lSiS“- be the basis functions for v and
{w§+1}15i5n. 4+ be the basis functions for v. Then each basis function w; can be expressed
as a linear combination of the {w}“}ls.-s,.,. +1; hence we can find a linear combination of the

41 . .
{w}"" h<i<n, 4, Which gives us v:

Nit1
wi(t) = ) afwitl(y)
i=1
n; )
1) = D gewh(t)
k=1
n, nl+l
= 2o 3wt
k=1 i=1

LTS

= > gwit()
i=l1
= 7()
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It is a property of NUBS curves that each of the basis functions w} created from the knot vector
r can be expressed as linear combinations of the basis functions w;'-'*'l created from the knot
vector 1.

Developing a similar property for manifolds involves developing basis functions which also
have this nesting property. In particular, given a set of n basis functions {BJ‘:}1_<_J-S,. we need
to find a new set {B§+1}15j$m of m basis functions with m > n such that each of the B;: can
be written as a linear combination of the {B;:+l}15j_<_m basis functions.

Recall that the manifold basis function B; is the result of promoting and normalizing a
chart function (bj-)c defined in some chart ¢ ((b;'-)c :c—>R). Let B;: be the chart function (bj—)c

promoted to the manifold:

By (p) = Z(p) (5} )c (! (7))

Instead of directly defining the basis functions {Bi*! }keqt,m}» We define a new set of chart
functions {(b;*)c : c — R}ref1,m] such that each of the old chart functions can be expressed

as a linear combination of the new ones defined in that same chart, i.e.,

(bi)e(t) = Z af(b;:“)c'(t)
1<j<m
b;.“ e+ R

and the corresponding functions on the manifold (the a;? not defined by the above equation are
set to zero):

m
B =3 dbain
i=1

To define the new basis functions B;*! we expand the following:

Bi(p)
Z?:L Bi(P)
E;n—l 53'“(1’)
Zl—l Zr—l al B'H (p)
e Bi*'(p)
- ; Zl_l Zr—l alB +1(P)

Bi(p) =

which means that Bj*! must be
Bi-(v-l Bl-l-l
Yoo Loty b BEY! z:— Bf
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2.9 2N

Original basis functions
] I ]
v /VXI\ DJQ
Refining first Refining second Refining third
Refined basis functions

Figure 11.1: Individually refining the basis functions of a curve. Note that pairs of functions
are identical.

We can therefore build the new set of basis functions by building a new set of chart functions
that forms a basis for the old chart basis functions. Note that the new set of functions is not
a partition of unity unless the denominator of the above equation is one, which happens only
when the original proto-basis functions summed to one at that point.

Recall that each chart function (b). is defined by a projective mapping ¢ composed with
a NUBS basis function b defined on the unit square (see Equation 6.5). Suppose we refine b
using standard spline techniques to form a set of n functions ! such that

b(s.t) En:ajbg(s.t)
j=1

Then the new basis functions
{65(¢(s, ) hcjicn

span the old chart function

b(s.t) = ) a;bi(s.)

i=1
—b(((s.t) = Y a;bi(((s.1))
j=1

Suppose we refine each of the old chart basis functions in this manner. [n the rectangular

regions of the manifold many of the new basis functions will be duplicates of each other: to
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=7 1.0
Knot grid for spline surface

Figure 11.2: Introducing a discontinuity into one of the knot vectors used to build the knot
grid for a a spline surface. This results in a duplicated knot line in the knot grid (the red line
in the knot grid) and a line of discontinuities in the surface (shown on the right).

see this, imagine refining the basis functions for a curve by refining each of the basis functions
individually (see Figure 11.1). This is because the knot lines in the supports of the old chart
functions are aligned with the knot lines of overlapping chart functions. In the non-rectangular
regions this is not the case and hence the number of new functions is dramatically increased.

11.1.2 Introducing discontinuities

Discontinuities are useful for modeling creases in curves and surfaces. One method for introduc-
ing a discontinuity into a curve is to duplicate a knot a sufficient number of times (BBB87]. Each
time a knot is duplicated the continuity of the curve at that knot drops by one. Another ap-
proach is to duplicate adjacent control points; the corresponding technique for subdivision sur-
faces alters the blend functions to introduce discontinuities along edges or at vertices [HDD+94].

Introducing a random discontinuity into a spline surface is not simple. One way to do it
is to duplicate the knots of one of the curves making up the spline surface. This produces
a discontinuity in the surface along a constant parameter, i.e., the curve S(s, to) where ¢ is
constant (see Figure 11.2).

This approach can be used in manifold surfaces in the four-sided regions by introducing a
discontinuity in each of the basis functions. Note that these discontinuities can lie only along

lines parallel to the axes of the charts.

11.1.3 Curves immersed in a surface

A curve v : R = R is immersed in a surface S : R? — R3 if every point of the curve lies on
the surface, i.e.. ¥(t) = S(u, v) for all ¢ in the domain of 1.
The ability to define a curve immersed in a surface is useful for a variety of techniques. such

as trimming surfaces. blending between surfaces. and constraining the surface to pass through



a curve. One method for immersing a curve in a spline surface is to define a curve § : R — R?
in the domain of the surface. The composition of this curve with the surface (y=So09)is
then a curve immersed in that surface. If 4 is C*° and S is C*! then the immersed curve v is
of continuity (ko + 1)(k; +1) — L.

We can use the same method to construct a curve immersed in a manifold surface, but
building the curve and determining its continuity are more complicated. Let v: R+ MK bea
curve lying in the manifold, and let £y : MX — R be an immersion function for the manifold.
Then the immersed curve is

Emov:R-> MK 5 g3

To construct v we build it in consecutive segments, each of which lies in a chart. The end
of segment i is blended with the beginning of the following segment, so as we move along the
curve we switch slowly from the definition in one chart to the definition in an adjacent chart.

More formally, define a set of n functions, {y; : [i — 1,i + 1] = ci}ieq,...,n}, Where ¢; € A.
Forallie([l,...,n - 1] define d; such that i < d; < i + 1. The set of functions must have the
following properties:

® The charts for adjacent functions must overlap, i.e., Vi € [1,...,n — 1], U..r, a F0.

e For each pair of functions 4; and +;41, the end of v; and the beginning of +;4+1 must lie
in the overlap region of the respective pair of charts, i.e., V¢ € [;,6], %(t) € Ue,c,,, and

Yi+1(t) € Ucigrci-

e 7; is C¥, where the continuity of the manifold is at least C* (7: can be of greater continuity
than the manifold but the blended function y will have at best the continuity of the
manifold).

To blend between the two functions v; and +;4; we need a blend function 3; : R — [0, 1]
with the following properties:

[ ] ﬂ.‘ is Ck.
® Bi(t)=0fort <i.
[} ﬂ.‘(t) =1fort Z 5,‘.

Then we can define « : [0, n] =+ MX as follows (1 <i < n):

e, (1(t)) t<1
1) =9 ac, (1= Bi(t)%(t) + Bi()pe.cop (Bi41(t))) i<t <i+1
ac,.(1(t) t>n

The continuity of v is the continuity of
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Exoy

which, by the definition of continuity on the manifold (Definition 5), is the continuity of one of
the following:

7(t) t<l
(1 =Bi(#)%(8) + Bi()pe,cop (Fitr (t)) i<t <i+1
7n(t) t>n

all of which are C* by definition.

There remains the question of building the individual functions ;. Ideally, the end of the
curve +;, when mapped into the chart ci+1 via the transition function, should look as much like
the beginning of the curve v,;4; as possible, or even be the same curve. One way to do this is
to map the end of +; into the chart ¢;4; and use that as the beginning of the curve Yit1-

Suppose we define ¥; to be a C¥ NURB with its endpoint in the overlap region U.,,, -
Then we refine v; so that the last segment of the curve is contained in the overlap region. Then
a good choice for the first k + 2 control points of v+, is @ c, +1 Of the last k + 2 control points
of ;. Additionally, set the first & + 3 knots to be a shifted copy of the last k + 3 knots of
7 (so that the (k + 2)th knot lies at the origin). Set d; to the first knot of the last segment
of v;. Some care must be taken to ensure that the first segment of v;4+; actually lies within
the overlap region U, ,c,; this can usually be guaranteed using the convex hull property for
NURBS.

Note that if the transition function ., +1 18 a projective transform then the last segment
of ; will be identical to the first segment of Y41 (which is why we chose NURBS instead of
the simpler NUBS). If this is the case then the blend function is redundant and, practically
speaking, we can simply string the curve segments together by setting the first k£ 4+ 1 control
points of ¥;4+1 to be the projective transform of the last k + 1 control points of 4;. v in this
case is just e, (%) followed by ac,,, (vi41)-

11.1.4 Parameter-space-based texture mapping

One way to introduce visual complexity into a scene is to color it by some texture. The texture
T is usually defined to be a map from a part of the plane, say the unit square, to a color triple:

T:[0,1] x [0, 1] = R : (u, v) = ((r(u, ), g(u, v), b(x, v)))

To apply this texture to a surface we need to establish a correspondence between points on the
surface and points in the texture: we need to assign a (u,v),u,v € [0, 1] value to each point
in the part of the surface to be covered by the texture. The color of the surface at that point
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is then T(u, v). Alternatively, if a surface S is already parameterized (S : D — R3) then we
can achieve the same effect by mapping the parameter values D into the domain of T. Let
Tp : D — [0,1] x [0, 1]. Then the color of the surface at a point S(d),d € D, is T(Tp(d)).

For spline surfaces (and a few other surfaces such as cylinders and tori) there is a natural
map from the domain of the surface to the domain of the texture. In some other cases, such as
spheres and surfaces comprised of multiple patches, there is a mapping that almost works. The
existence of these cases has resulted in the assumption that the domain of the surface should
always be used when doing texture mapping. In fact, it may be better to define a mapping
from the surface itself to the texture (and for surfaces without a parameterization, e.g., implicit
surfaces, it is necessary). Creating such a parameterization for arbitrary surfaces, however, can
be very difficult [Ped95).

Defining a single mapping for the entire surface is usually unnecessary (and sometimes
impossible); we really need only define a parameterization for the part of the surface to be
covered by the texture map.

One advantage of manifolds is that their parameterization is very flexible, which simplifies
defining a map from part of the surface to the texture domain. If the relevant part of the
surface is in the image of a single chart then we can define a map from part of the image of the
chart to the texture domain. In most cases, however, the texture will cover a larger portion of
the surface. The domain of the mapping will therefore contain the image of multiple charts.
Because the charts overlap, we can define a mapping for each individual chart and then blend
between the individual mappings.

11.2 Other directions

There are other research directions to explore in addition to those related to splines. First,
there may be alternative methods for constructing the manifold itself as well as the immersion.
Secondly, there are certainly better methods for specifying the desired surface than building a
polyhedron by hand. Finally, there is the interesting, open question of how to fit a surface to
a data set automatically or semi-automatically.

11.2.1 Building the manifold and the immersion

We have already discussed several other possible immersion functions. For example, an im-
mersion function based on wavelets would be ideal for surfaces having multiple levels of detail.
For a spline-based immersion function, is there a better set of basis functions than the ones
currently used? The current set of functions rely on division to produce a partition of unity
and do not have a natural refinement algorithm.

The transition functions are largely projective transforms, which have some nice properties.
Ideally, all of the transition functions would be projective transforms. It is not clear, though.
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whether there is a reasonable set of charts and overlaps that allow all of the transition functions

to be projective transforms.

11.2.2 Sketching models

Currently surfaces are constructed using a polyhedral modeler. Although this is sufficient,
deciding what set of polygons are appropriate to sketch the shape of the model can be time-
consuming and difficult. A better interface would be one that lets the user sketch the surface
in a natural way, for example by building the surface out of “clay.”

11.2.3 Data fitting

A different approach to acquiring a surface is to scan in a real object, using, for example, a
laser scanner [TL94] or an MRI scan [MBL+91a][MBL+91b][Lai95]. The resulting model is
typically a large collection of triangles or a volume data set (which can be converted to a set
of triangles). Although the data is often useful in its original form, there are many reasons for
converting it to a more structured representation such as patches or solids models: in order to
reverse engineer a part, include the object in an existing model, or to animate the data. This
is the subject of data fitting.

One advantage of manifolds is that the local topology of the sketch can be made to approx-
imate the final desired geometry. This makes data fitting much simpler because the individual
regions of the surface do not have to “stretch” themselves out of shape to fit the data. Choosing
the correct local topology, i.e., the polyhedron, to begin with can be difficult to do automati-
cally, especially if the final model will be animated. Creating the model by hand is usually fairly
simple but automating the process is difficult for many of the reasons that artificial intelligence
has proven difficult.

A standard way to reduce a model is to perform triangle reduction [SZL92][HDD93]. If the
desired effect is to reduce the geometry of the model, i.e., the number of triangles, then this is
an appropriate method. If, however, the desire is to capture the basic structure or topology of
the model then we need a technique that simplifies or reduces the topology and does not rely
on triangles. For example, consider reducing a cylinder, which can be modeled using a single
patch but which reduces at best to twelve or so triangles.
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Appendix A

Projective Transformations

We construct a projective transformation that takes four non-collinear points in the plane to
any four non-collinear points in the plane (see Figure 5.17).

A.1 Computing the transform

Let By = (1,0,0) Bz = (0,1,0)%, B3 = (0,0,1)", and By = (1,1,1)* and let P;...P; be the
(column vectors of) homogeneous coordinates of four points p; in the plane, no three of which
are collinear. Let Mp be the 3 x 3 matrix whose columns are Py, P;, and P;. Note that Mp is
invertible because the three vectors P;, P;, and P; are non-collinear and hence form a basis for
R3. Since Py is also an element of R3, we can write P4 as a linear combination of P, P, and
P;. Let

Py = APy + AP, + A3P; = ﬁfp(/\y\zz\a)t (A.1)

Since Py is non-collinear with any pair of Py, P;, and Ps, all of the A; are nonzero. We can
rewrite Equation A.l in the form

A=M;1P4

where A is a column vector with entries A;.
Let Tp be the matrix whose columns are A, Py, A; P;, and A3Ps; then Tp (B;) is a nonzero
multiple of the vector P; and Tp 1p. is B;. For example:

TP(B[) = TP(L 0, O)t = ’\I(PI)

3
Tp(Bs) = Tp(1,L,1)' =) _X(P) = P,

i=1
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To find a projective transformation on the plane taking any set of four points {pi}, no three
collinear, to any other such set {g;}, compute the matrix L = ToTp!. To show that LP; is a
nonzero multiple of Q;, note that L first takes the point P; to the point B;, then maps B; to a
nonzero multiple of Q;.

Multiplying L by the vector (z,y, 1) gives a vector

(X(z, ), Y(z,y), W(z,y))

The projective transformation we seek is just
X(z,y) Y(z,y
¢palz.g) (W((x, y)) ’ W((z, y)) )

This transform is unique for each distinct pair of polygons and maps lines to lines (note
that the parameterization of the lines is not, in general, preserved). If the edges of the polygon
{p:} do not intersect themselves (and similarly for {g;}) then the transformation restricted to
the polygon {p;} is one-to-one, onto, and C*° continuous.

A.2 The discontinuities of the transform

This transformation is undefined when W (z, y) = 0, i.e., when the last element of L{z,y, 1)t is
0. If (L2,0, L2,1, L2,2) is the last row of L, this becomes

Loz + Lapy+ La2=0

which is a line provided the last row of L is nonzero. If the last row of L was zero then

L=TyT}
LTp = TQT;]‘ =Tg

The last row of LTp = Tq would also be zero, implying that T was not invertible (which it
is). Therefore the discontinuity is a line.
Figure A.1 shows an example transform and its corresponding line of discontinuity. The
function, in general, is of the form
Looz + Lory + Loz Lioz+ Luy+ L1z
Loz + Laay + L2g’ Laoz + Layy + Laa
which is C™ everywhere that the denominator is nonzero.

A.3 Inverting the transform
To invert the transform we invert the matrix L = ToTp":

L' = (TTpY) ' = T T
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Figure A.2: The lines where the transition functions pvp (top) and ¢pyv (bottom) are not
defined. From left to right: The number of sides is three, five, and six. (For four-sided face
charts the line is at infinity.)

A.4 The transition functions ¢y and gy p

The transition function g v is the restriction to Uy of the projective transform taking a corner
of a unit polygon to a quadrant of the unit square. The lines of discontinuity for this projective
transform and its inverse are shown in Figure A.2.
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Appendix B

The polyhedron

The user specifies the rough shape of the surface with a polyhedron, providing as much detail as
desired. This sketch contains two separate types of information - topological and geometrical.
The topological information is contained in the interrelations between the elements, e.g., which
vertex is contained in which face. The geometrical information is contained in the locations of
the vertices in 3-space.

Informally, the sketch is an oriented polyhedron with two restrictions placed on it; the faces
meet four at a vertex, and the faces have three to six sides. The first restriction simplifies
building a domain from the polyhedron without limiting possible topologies. (In fact, the dual
of the first subdivision surface of any general polyhedron meets this restriction.) The second
restriction is simply for implementation convenience.

We now provide a formal definition of the polyhedron. This definition is divided into two
steps; we first define a restricted compler, which contains only topological information and
then an abstract realization of the complex. The abstract realization allows us to immerse
the restricted complex into three-space, thus adding geometrical information. This immersed
object is what we call the polyhedron.

B.1 The restricted complex

This section defines a cell complezr and gives the additional restrictions placed on the cell
complex definition to produce a restricted complez. The cell complex definition given here is a
simplification of that in. [CF67]' A cell complex C is a triple (V, £, F), where

1. V is a finite subset of Z. An element of V is called a vertex. We denote the elements of
V by the symbols vg...v,—;.

! We are essentially defining an abstract two dimensional surface.



Figure B.1: A visualization of a complex C = ({vo, ..., v4}, {eo,---,e5}, {fo, fi}) where fo =
[vOy vy, 04] and fl. = [vlr v2, U3, 04]'

2. £ is a set of subsets of V, each containing two distinct vertices. An element e € £ is called

an edge and is written e = {v;, v }.

3. F is a set of ordered subsets of V, each containing three or more distinct vertices. An
element f € F is called a face. We write f = [v;,,...,v;,] to indicate the vertices of f
and their order. If f = [v;,...,v;,] then {vi,,v;,}, ..., {vi,_, v, } and {v;,,v;,} must
all be in £. These elements are the edges of f. If f is a face, let f be the unordered set
with the same vertices as f.

4. VU # I (i.e., every vertex is in some face).

5. Ve € £, 3f € F such that e is an edge of f.
Additionally, we require that two faces that meet do so in a vertex or an edge, i.e.,
6. Vfi, f2 € F, either

(@) Anf =0
(b) fiNT; is a vertex of both f; and fa.
(c) finTz is an edge of both £, and f,.
Figure B.1 shows a visualization of a particular complex. Note that no geometry is associated
with this definition: a complex is just a set of symbols and subsets of symbols.

The previous definition allows multiple faces per edge. An oriented 2D surface is a complex
that also satisfies:

7. If e = {vj, vx} € € then there is at most one face containing the sequence ..., Ujo Ukonne

and at most one face containing the sequence ..., vk, v;....
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A boundary edge of a complex is an edge that does not lie in the intersection of any two
faces. A boundary vertez of a complex is a vertex that is contained in exactly two boundary
edges.? If a vertex (or an edge) is not a boundary vertex (or edge) then it is an interior vertex
(or edge).

The definition of a restricted complex is based on this definition with three additional

restrictions:

8. If v is an interior vertex then there are exactly four distinct edges e and four distinct faces

f such that en {v} #0 and FN {v} £0.

9. [f v is a boundary vertex then there are one, two, or three distinct faces f (and two, three,
or four distinct edges e) such that e N {v} # @ and f N {v} £ 0.

10. Each face has three, four, five, or six edges.

B.2 Immersing the restricted complex in R3

To immerse the restricted complex into 3-space we first need to define an abstract realization
of the restricted complex. We then define a mapping from the abstract realization to R3.

Definition 1 An abstract realization of a complez C = (V, £ , F) is a set E(C) of formal
linear combinations of the symbols vo . ..v,—1. The elements of the set are of three forms:

1. For each v; € V the combination Ovg + ...+ lv; +...0v,_1 € E(C).

2. For each e = {v;,v;} € £ the combination Ovo + ... + a,v; +oazv;+...+0v,_; € E(C)
for every a1, az € R such that a; + a3 =1 and 0 < @y, < 1.

o

. Foreach f = [v;,,...,v;_] € F the combination 0vo+. . Aoty +. . Aont; +...0v,_1 €
E(C) for every a; € R where Y T'ai =1 and 0 < o; < 1.

We immerse this set E(C) into ®3 by choosing locations for the vertices and then immersing
the edges and faces on the basis of these choices:

1. Define a function P : V — R3 which associates a point in 3 to each vertex in C.
2. An element of the form ¥7"j a;v; is taken to the point Yico ;i P(v;).

Informally, the vertices go to points in 3-space, the edges go to straight lines between the
vertices, and the faces to a “sheet” stretched between the edges. In practice, we triangulate the
face using the centroid of the immersed vertices of the face and then immerse the triangles.

Note that there are no restrictions on the locations of the vertices.

2If a vertex is contained in any boundary edge. it must be contained in exactly two boundary edges.
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We now have three different structures that are all related; the polyhedron (built by the
user), the restricted complex (a geometry-free formalization of the topology of the polyhedron)
and this abstract realization of the restricted complex. The latter is the link between the
informal concept of a polyhedron and the abstract notation of the restricted complex. In this
work we use the more informal terms polyhedron, verter, edge, and face to refer to both the
structure and geometry of the abstract realization of the restricted complex, disambiguating
the two where necessary.



Appendix C

Theorems

C.1 ~ is an equivalence relation

Theorem 3 Let K = (A, ¥) be a proto manifold. Define a relation ~ on Uceac such that if
T Eci, y€Ecj, thenz~y iff ;j(z) = y. Then ~ is an equivalence relation.

Proof:
L. z ~ z for z € c since z = P .(z).

2. Letz€ec,yed. If

z~y
then
Yeer(T) = y
take .. of both sides
'/’c’c('/’cc'(z)) = ¢c’c(y)
Yot (Yeer(2)) = Yere(y)
z = '/’c’c(y)
>y ~ z

3. Letz€csyy€cy,and z €c,. fz ~yand y ~ z then
w'—'zcy('t) = ¥y
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¢c,c, (¢°:Cy (:L‘)) = wc,c, (y)
(¢c,c. o '/’c,c,)(l) = z
wc,c, (z) = z

>r ~ z

C.2 M¥ is a Hausdorff space

Theorem 4 Let K = (A, ®) and MK be the quotient of Uiceayc by ~. Then MK is

a Hausdorff space.

Proof:
Recall that X is a Hausdorff space if:

e For every p € X there exists an open set containing p.

e For every p,q € X, p # g, there exists an open set b, containing p and an open set b,
containing g such that b, (b, = @.

Construct a ball b, around p € M¥ as follows. Let B be the set of charts ¢ for which
3z € c: Ik (z) = p. For each of these charts construct a neighborhood ° € ¢ around z (cisan
open set in R so b exists) and a corresponding set b, = [1x (5°) on the manifold. Recall that,
by definition, the . are open sets. Let b, = Neep be- Since b, is a finite intersection of open
sets, each of which contains p, b, is an open set containing p.

Next we show that if p,q € MX, p # ¢, we can chose neighborhoods b, b, C M K such that
PEby, g €bg, b6, = 1.

[f3c:z,y €c, Ok(z) = p, Mk (y) = q, then we chose two neighborhoods b, b, € ¢ such that
bz (Yby = 8. The corresponding subsets in M¥ will also be disjoint, i.e., Ok (b5) Nk (by) =0
because the map a. is injective.

If Ac: z,y € c, Uk(z) = p, Hx(y) = q, then Jc1,c2 € 4, ¢; # ca with p = Hg(zp),
Zp € 1, and q = [Ix(zq), 24 € c2. Recall that there exists an embedding &, : Koo = R".
Let e, = &c,c,(zp) and similarly for e;. Construct two neighborhoods I;,, C &cpe,(c1) and
by C Eeycy(ca) around e, and e, such that b, (b, = 0. Let b, = by () £s.c, (c1) and similarly for
bq (b and by exist and are both open sets because £.,., is an embedding and R" is Hausdorff).
Then g (€52, (bp)) and Mk (€L, (b,)) are both open sets in M and their intersection is empty
by construction. O

Item 4 of Definition 2, the requirement that the charts be pairwise embeddable, simplifies
the last step of this proof. It is, however, a stronger requirement then necessary because it

excludes some cases that are Hausdorff spaces. [t is possible that a less stringent condition
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Figure C.1: An example embedding of a sphere built from two charts.
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Real line with two origins

Figure C.2: The real line with two origins. The charts are glued together everywhere but at
their origins.

would suffice; the following are some positive and negative examples that should be considered
when trying to derive such a condition.

o Hausdorff space excluded by the condition: The atlas consists of two charts, both disks of
radius 2. The overlap region for both is the annular region r > 1, where r is the radius.
The transition function for both is (z,y) — (Fi—y” :—,_”ﬁ,—). This object is topologically
a sphere (which is clearly a Hausdorff space). Figure C.1 shows an example embedding
of this object.

* A non-Hausdorff space: The real line with two origins (see Figure C.2). The atlas consists
of two charts, both consisting of the real line. The overlap region for both charts is r-{0}.
The transition function is £ — z. To show this region is not a Hausdorff space, let p be
the origin of the first chart, and ¢ be the origin of the second chart. Then there is no
neighborhood of p that does not also contain a part of the neighborhood of q.

¢ A non-Hausdorff space: A Y-shape (see Figure C.3). The atlas consists of two charts.
both consisting of the real line. The overlap region for both charts is z < 0. The transition
function is £ — z. To show this region is not a Hausdorff space, let p be the origin of the
first chart and q be the origin of the second chart. Then there is no neighborhood of p
that does not also contain some of the neighborhood of gq.
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Figure C.3: A Y-shape formed by gluing the negative part of the charts together.

Note that if we take the overlap region to be z < 0 then the object is a Hausdorff space.
but it is not locally R at the origin.



Appendix D

¢gy 1s one-to-one and invertible

In this appendix we prove that the edge-to-vertex function is one-to-one and onto and therefore
invertible. The function is onto by definition; it remains to show that it is one-to-one. We first
describe a general technique for proving that a function is one-to-one, given certain conditions,
then show that the edge-to-vertex function meets these conditions.

D.1 Proving a function is one-to-one

We discuss the technique informally and then provide the theorem and its proof. Let f :
D C R? — R? be the function we want to prove is one-to-one, i.e., we want to show that if
(z,9), (2, ¥') € D are two district points then f(z,y) # f(z', ¥’). Obviously, not every function
is one-to-one. We require that f meet the following conditions:

e All of the partial derivatives of f with respect to z point in roughly the same direction.
¢ All of the partial derivatives of f with respect to y point in roughly the same direction.

e The set of z derivatives and their negatives do not overlap with the set of y derivatives

and their negatives.

For example, let X = {gﬁ(z, ¥) }z.yep) and similarly for Y. Suppose that X consists of
vectors that point mostly to the right and Y consists of vectors that point mostly up (see
Figure D.1). Let (z,y) be a point in the domain and let (z + Az, y) be a nearby point. If
Az > 0 then the approximate location of f(z + Az, y) is f(z,y) +A.t§£(z, y), which is a point
to the right of f(z,y). This is true at every point in D, since all of the z derivatives point
to the right. Therefore, if we take any two points (z,y), (=’ \¥) € D, such that z < z’, then
f(z,y): < f(z',y). We can do the same analysis in the y direction; the points f(z,y) and
f(z,y') are separated in the y direction.
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Figure D.1: The derivatives of f in the z direction all lie within the blue cone and the derivatives
of f in the y direction all lie within the red cone.

of

(x.y)
By

Ovedap

Figure D.2: The relative locations of f(z. y). f(z', y) and f(z', i) where the z and y derivatives
overlap. Note that f(z,y) = f(', ).



y<y y>y

Figure D.3: The relative locations of f(z,y), f(z’,y), and F(z',y'). The slope of v; is greater
than the slope of v, because the = and y derivatives do not overlap.

Now let (z,y), (z',3/) € D be two points such that z < z’ and y < y’. We know that the
point f(z’,y) lies to the right of f(z,y), and that f(z',y’) lies above f(z',y). This alone does
not, in general, guarantee that f(z’, y’) lies above and to the right of f(z,y) (see Figure D.2). If,
however, the z and y derivatives meet the intersection condition given above we can guarantee
that f(z', ) # f(z,y)-

More specifically, suppose each of the sets X and Y is contained within a cone, as shown in
Figure D.1, and that these cones, when extended to the opposite direction, do not intersect. If
this is true then we can bound the possible locations of f(z', ') with respect to f(z,y). We
first note that

:I

s =t + [ Liyas

z

If z < z’ then the point f(z',y) must lie somewhere to the right of f(z,y), or in the cone
containing X (see Figure D.3). To get from f(z',y) to f(z’, y’) we integrate from y to ¥ using
an analogous formula. (If y <  then f(z’, i) lies somewhere in the ¥ cone placed at the point
f(z',y).) If ¥ < y then we place the inverse cone at the point f(z', y) instead. In either case,
the absolute slope of the left edge of the second cone is greater than the slope of the top or
bottom edge of the first cone; therefore the second cone cannot contain the point f(z',y).

To see this more clearly, shear the cones so that one boundary of each of the cones lies
along one of the axes (see Figure D.4). Each of the cones is now contained in a single quadrant:
therefore the derivative in the z direction has a positive z-component (and a non-positive
y-component). Similarly, the derivative in the y direction has a non-negative z-component.
Therefore the image of the point (z’, y) must lie to the right of the image of the point (z.y)
(for ¢ < 2').
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Figure D.4: Shearing the cones so that one boundary of each cone lies along an axis.
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We formalize this idea in the following theorem.

Theorem 5 Let D be a rectangle, f : D C R2 — R? be a C! function, and let

ad
% = {2
(z,9)ED,aeRt

b = {03—(3, )

(zy)eD,xeR~

}(t,y)ED,aeﬁ‘*

(’-‘:!I)GD,CIEQ"
Y = YUY,
X = X,uX,
If the following hold:
Xny =9
XxnX, = 0@
o,nX, = 0

then f is one-to-one on the region D.

Proof: Observe that Xp, Xn, Yy, and ¥;, are all cones since f is C! and (0, 0) is not in X
or Y. Let T : % — R? be the unique linear map taking the counter-clockwise boundary of X,
to the r-axis and the counter-clockwise boundary of Y, to the y-axis. We show that T o f is
one-to-one, and since T is one-to-one and onto, then T~ o T o f = f must also be one-to-one
and onto.

Let (z,y), (z',¥') € D be two distinct points in D; without loss of generality let z < z’.
Case 1: If z = z’ then

To @)= o e =To o)+ [ 2L2D (e par

y

Since (1%"&(2, y))y > 0 for all points in D the images of the two points must differ in their

y-coordinates:



(Tof)z.9)y < (To f)(z'.¥)y ify<y
(To f)(z.y)y > (To f)z',¥)y Hy>y

Case 2: If z < z’ then

T = Tonen+ [ 22D s

(To )=, Y)

To &)+ [ DAL o
v

Since (2321 (z,3)). > 0 and (252(z,y)), > 0 for all points in D the z the images of the two

points must differ in their z-coordinates:

(To )= y)e <(To f)(z',y): < (To f)z',¥)=

Therefore (T o f) is one-to-one. O

D.2 Proving gy is one-to-one

In this section we show that the edge-to-vertex function meets the conditions given in Theo-
rem 5. The steps of the proof are as follows:

o Partition the domain Ugy of pgv into three sections D,, Dy, and D; as follows: let D,
be the blend region in the middle of Ugy and let D, and D; be the two non-blended
regions adjacent to it (see Figure 5.18).

e Establish that the images of the three sections do not intersect, e.g., pev (Dy) Neev(Ds) =
0.

e Show that gy is one-to-one on each of D, Dy, and D;. This is trivially true for D,
and Dy; for Dy, we apply Theorem 5.

For the following discussion let Ugy be the right half of an edge chart and Uy g be the
left half of the vertex chart (i.e., the configuration shown in Figure 5.18). It suffices to prove
invertibility for this case since the other cases are simply rotations and translations of this one.

Recall that there are four different ¢, functions (the overlapping upper face has three, four,
five, or six sides) and four different ¢; functions, for a total of sixteen different gy functions.
The discussion here refers to any one of those sixteen functions. The specific numerical bounds
generated for the different cases may be different, but the technique for generating them is the

same.
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D.2.1 The domain

The function is clearly one-to-one on the non-blended regions, since it is the composition of two
projective transforms. We therefore restrict the discussion to the blend region between them:

Dy = {(z,3) € Upy : ~hcot(-) < y < heot(-)}

To simplify the proof we use the slightly larger domain

Dev = [0,0.5]x [-m(h), m(h)] (D.1)
where m(h) is the smallest number such that D, C Dgy:

T

m(h) = max(heot(3), hcot(%), h cot(%), h cot(%))
max(0.57735 h, 1. h, 1.37638 h, 1.73205 h)
= h cot(-;-r-)

The function pev is not defined on all of Dgy. Recall that the definition of pgy is

vev(z,y) = (1 - By))prv o veEF + BY)9F.v © PEF,

Clearly, we can extend the definition of gy to the region Dgy. If the extended definition is
one-to-one then ppv is also one-to-one. In the following proof we will show that this extended
definition is one-to-one on DEgv; to simplify the notation, however, we will use pgv to refer to
the extened definition.

D.2.2 The image of the blended region

We show that wgv(Dp), the image of the blended region, does not intersect wgyv (D) or
wev(Dy), the images of the non-blended regions. The region D, is contained within the four
lines

y = hcot(-)
z=0 z=0.5
y= hcot(:—T)

The left boundary, £ = 0, is mapped to the line £ = —0.5 in the vertex chart. The upper (and
lower) boundaries are each mapped to a line in the vertex chart (see Figure D.5). If the function
is one-to-one on Dey then ppv(D,) must lie between the two lines in the vertex chart. Since
pev(Dy) and pgv (D;) lie entirely either above or below these lines the three regions do not

intersect.
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Figure D.5: Bounds on the image of the blended region.

D.2.3 Abbreviations and definitions

We abbreviate the upper and lower composed functions from which gy is defined as follows:

Pu = PF,VOPEF,

PIL. = PRV OPER

Let f: D C R? =+ R? be a C! function and let

a
Xy = {5—5(:, Y)}aer+ (z,v)€D

a
Y, = {%(z, Y)}aer+ (z,9)eD

If the z and y derivatives of f are never the zero vector then X; and ¥; are cones. We define
the ertremes of the z derivatives of f to be those vectors that lie on either boundary of the cone
X/, and similarly for the y derivatives. We note that the slope of the line containing the vector
{vz, vy} is vy /v;; to find the vectors lying on the boundary of the cone it suffices to compare
the ratios vy /v of the derivative vectors. If the cone is contained within a half plane then the
smallest and largest ratios are the slopes of the boundaries of the cone.

In summary, to find the extremes of the z derivatives of f we must show the following:

e For all (z,y) € D, (z,y) # {0,0}.
e X; is contained in a half plane.

o Let r; and r, be the slopes of the left and right boundaries of the cone X t. Then r; and r,

must be the largest and smallest possible ratios vy/v., where v is an r derivative vector.

Finding the extremes of the y derivatives of f is a similar process.
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Figure D.6: The relationships between the z derivatives of ©Yu, P1, and ppv.

D.2.4 gy is one-to-one on Dgy

We first bound the derivative in the z direction, then the derivative in the y direction. We then
show that these bounded sets of derivatives do no intersect.

Bounding the derivative of gy in the z direction

The derivatives of wgy in the z direction are a blend of the derivatives in the z direction of

the two composed functions:

2B (2,1) = (1~ B P2 (2.9) + 800 22

Since the z derivative of pgy is a convex combination of the z derivatives of wu and ¢ the
extremes of its z derivative must lie between the extremes of the z derivatives of ¢y and ¢
(see Figure D.6). It suffices to find the z derivative extremes of both vy and p; and take the
greater. To find the extremes we use the technique described in Section D.2.3. Both Py and ¢;
are projective transforms with z derivatives of the form:

;(xv y)

{ ao +a1y +ary }
(b0 + b1z + bay)?’ (bo + b1z + bay)?
where
ag =18 a =12V3 fn=3
a=1 a;=0 ifn=4
ap =.763932 ay, =0.496433 ifn=>5
a =6 a =4V3 ifn=26
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The functions ¢, and ¢; are both C! on Dgy. The derivative is never the zero vector because ag
is non-zero. The z-component of the derivative is positive provided ap+a1y > 0, or ap > —ayy.
Since [y] < m(h) < 1 and a; < ag this is clearly true and therefore the cones X 1. and X, exist
and lie in the z > 0 half plane. The extremes are the points at which the ratio (a1y)/(ac +a1y)
is biggest and smallest. Since (ag +a1y) is always positive and —m(h) < y < m(h) the extreme
values occur at y = +m(h).

A note: in the 4-sided case the derivative is everywhere {1,0}

Bounding the derivative of ey in the y direction

The derivative of ppyv in the y direction is a blend of the derivatives in the y direction of the
two composed functions plus the difference in value of the two functions, scaled by 8':

dulz,y) = (1-Bly)) %i; + B(y) a;’;‘

fulz,y) = ‘;—j(yxm-wxz,y)

S5 )~ e Ao

We bound this derivative by bounding df,; and f,; individually. Bounding df,; is accom-
plished by finding the extremes of the y derivatives of ¢, and @1. fur is bounded by extremizing
the derivative of 8.

Since dfy; is a convex combination of the y derivatives of ¢, and @1 the extremes of its y
derivative must lie between the extremes of the y derivatives of vu and ;. It suffices to find
the y derivative extremes of both ¢, and @1 and take the greater. To find the extremes we
apply the technique in Section D.2.3. The y derivatives of wu and g are of the form:

{ +a;z ap +aizx }
(bo + b1z +b29)? " (bo + b1z + bay)?

where
ag = 63 a; =123 fn=3
ap =1 a =0 fn=4
ao = 4.71693 a; =2.22703 ifn=>5
ao = 6v3 a; =4v3 ifn=6

The functions ¢, and ¢; are both C! on Dgy. The derivative is never the zero vector because aq
is non-zero. The y-component of the derivative is positive provided ag+a;z > 0, or ag > —a;iz.
Since z < 0.5 and ap < a; this is clearly true and therefore the cones Y, and Y}, exist and
lie in the y > 0 half plane. The extremes are the points at which the ratio (a12)/(ap + a1z)
is biggest and smallest. Since (ao + a;z) is always positive and 0 < z < .5 the extreme values

occur at £ = 0 and £ = .5.
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Figure D.7: The general locations of the derivatives making up the derivatives of pgy .

In all cases, the y derivative at the points (0, y) is of the form {0,¢}. In the 4-sided case the
y derivative is everywhere {0, 1}.

The function fu; can be bounded by bounding the derivative of 3. Recall that the one of
the conditions on the blend function is that it be bounded (Equation 5.2):

(Pu(z,) = p1(2, 9)) 2EEL ify <0

(pulz,9) —pr(z,y) 2= iy >0

ful(zv y) < {

Summary

Figure D.7 summarizes the locations of the various derivatives.
The extremes of the r derivative are two of the following four vectors, each of which is a
function of m(h):

ey dpr
a: (O‘im(h)). E—

(0, £m(h))
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Labeling of the vectors All vectors dy for which

dy*nx, and dynx,
are positive

Figure D.8: Showing that the two cones do not intersect.

Which two of the four vectors are the extremes depends only upon the number of sides of fu
and f;; it is independent of the actual value of h. If %%-(0, m(h)) is an extreme for h = hg it
is also an extreme for h = h;.

The extremes of the y derivative are the sum of the extremes of df,; and f.;. The extremes
of df,; are two of the following four vectors, each of which is constant:

0oy
dy

i dpy dpy
(0,0), 9y (0,0), 3y (0.5,0), 9 (0.5,0)
Which two of the four vectors are the extremes depends upon the number of sides of fu and fi.

The extremes of f,; are split into two cases, each of which is a function of the three variables

s,t, and m(h).

(pulz,9) — pu(z,y)) ¥ iy <o
(pulz,y) — @u(z,9)) Z5L  ify>0

D.2.5 Proving the cones do not intersect

To show that the cones do not intersect we show that the angular distance from the boundary
of one cone to the boundary of the other is positive. This analysis breaks up into eight cases:
both boundaries of the z derivative cone, both boundaries of the y derivative cone, ¢t < 0, and
t>0.

We measure the angular distance between two vectors by taking the dot product of one
vector with the normal to the other vector (see Figure D.8).

Note that the gap A is at most % (see Section 8.1); therefore m(h) < 0.03125 cot /6 <
0.0541266). Let
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dzy(m) : [0,0.0541266] — R*
dza(m) : [0,0.0541266] —» R?

be the two extremes of the z derivative and let

dypi(z,y,m) : [0,0.5] x [0, m] x [0,0.0541266] — R?
dypa(z,y,m) : [0,0.5] x [0, m] x [0,0.0541266] — R?
dyny(z,y,m) : [0,0.5] x [0, ~m] x [0, 0.0541266] — R?
dyni(z,y,m) : [0,0.5] x [0, —m] x [0, 0.0541266] — R*

be the four extremes of the y derivative. Let

(—dzy(m)y,dz,(m);)

nz;(m)

nzz(m) = (~dzy(m)y,dzs(m);)

be the normals to the boundaries of the z derivative cone. If the dot product of each of the
two normals with the four y derivative extremes is positive, e.g.,

dist(z,y, m) = nzy1(m) - dyp1(z,y,m) > 0

for all eight variations then the two cones do not intersect. (Note that we do not have to
normalize these vectors since we are only interested in their relative orientation.) The function
dist is a rational polynomial in three variables. To prove that it is positive on the domain we
show that the numerator and denominator have the same sign. To prove that the numerator (or
denominator) is of a particular sign we gather terms of the polynomial and show that groups
of coefficients are of the correct sign. For example, if all of the coefficients of m are positive
then the m terms must be positive, since m is positive.

D.2.6 A specific example

We now trace through the calculations for a particular example. These equations were generated
using Mathematica [Wol91]. Refer to Figure D.7.
Let the upper face have three sides and the lower face have six sides. Then Py IS

3(~05+z+ %) 23y
3+6x-2v3y -3-6z+2V3y

wu(z,y) = { }
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and ¢y is

s(05-2-%) vy
-3+2z+2V3y’ -3+2z+2V3y

wi(z,y) = { }

The z derivatives of f, and fi:

Ipu _, 12(1.5-V3y) ~123y

oz (z’y)—{(3+6z—2\/§y)z’(3+6z—2\/§y)2}
Q‘fi(z )={ 4 (1.5 - V3y) 43y }
oz " (—3-!—2.‘|:+2\/§y)2’(—3+2.1:+2\/?-'y)2

which are extremized at (0, £m(h)). Recall that the extremes are found by finding the vectors
with the largest and smallest slope. To determine which two of the four vectors are the extremes
we evaluate the derivative vectors at (0, +0.0541266), the largest and smallest possible values
of m(h), and see which of the four are extremes:

aa‘:" (0, -0.0541266) = {1.88235,0.110727}
aai" (0,0.0541266) = {2.13333,—0.142222}
dpi

(0, —0.0541266) {0.627451, —0.0369089}

i

9z

% (0,0.0541266) = {0.711111,0.0474074}

Comparing the two vectors with positive slopes:
arctan(%“‘;—"(o, —0.0541266)) = 0.0587558 > 0.0665682 = arctan(%%(o, 0.0541266))
Comparing the two vectors with negative slopes:

arctan(G2.(0, —0.0541266)) = —0.0587558 < —0.0665682 = arctan(22:(0, 0.0541266))

The two extremes are therefore

12(L5+v3m) 12(3m
B+2v3m)’ " (3+2v3m)’

dea(m) = 222(0, —m) = {

4(15+v3m) —43m
B+2v3m)’ (3+2v3m)’

The derivatives in the y direction of ¢, and ¢; are

dzi(m) = %‘%(0, -m) = {
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3%( 0= 12v3z 6 (V3+2v32)
S 3 6z 12vAy)” (-3—62+2v3y)

7}

and

43z 2 (3v3-2V3z)
(-3+22+2v3y)° (-3+2z+2V3y)°
which are extremized at (0, 0) and (0.5,0). The vectors at (0, 0) both point straight up, while
the other two vectors both have a positive z component.

”%,){

dy, = a"" -(0.5,0) = {0.288675,0.57735)

arctan(dy,) = 1.10715

dy = a‘*" 3, (0:5:0) = {0.866025, 173205}
arctan(dy;) = 1.10715

Therefore, the left and right extreme of df, occur at

6"‘ 3,050 = {0.866025, 1.73205)

a“"(o 0) = {0.,1.1547}
The equation fy; for £ > 0 is:
m—
ful(zvyvm) < _m_y’(wu(zvy)_sol(zvy))
_ met 24 (052 - 2% — %) 16V3zy
m (-3-6z+2v3y) (-3+2z+2Vv3y) (3+6z—2v3y) (-3+2z+2V3y)
= dyp(zayrm)
and for ¢ < 0 is:
m+

pulzy) - 0i(2, 1)
24 (052 -2 - 2¢) 1632y

ful(-ty Y, m) <

m+t

= dyn(-"' y,m)

= {( 3-6z+2V3y) (-3+2z+2v3y)" (3+6x-2V3y) (- 3+°z+"\/_y)

}



These are the normals to the boundary of the z derivative cone.

nzu(m) = {-‘(dzu(m))yv (dzu(m))z’}

nzi(m) = {—(dzi(m))y,(dzi(m)):}

We must show that the following eight functions are positive on one of the regions [0,0.5] x
[0, £m] x [0, 0.0541266]. To fit the equations on the paper the numbers have been rounded to

the third decimal place.

nzy(m) - (dyr + dyp (s, t, h))

n.tu(m) . (dyr + dyn (37 t, h))

nzy(m) - (dy + dyp (s, t, b))

nzy(m) - (dy + dyn (s, t, h))

nzz(m) . (dy.- + dyp (sv t, h))

nzi(m) - (dy. + dyn(s,t, h))

27.7 -1.
12. (L5 + 173m) (06124 e imimtuly ) .

(3. + 3.46 m)?

24. (m-1.y) (0.5z-1.2°-0.577< v)
—-20.8m (0.306 t m e =348y (C3F2.55.469)

(3. +3.46 m)?
7.7 +
12. (1.5+ 1.73m) (0-612 + 73 (3.+6.:-3.4;:)(T":3f1-{)-2.::+3.46y)) N

(3. + 3.46 m)*

24. (m+y) (0-52-1.22-0.577Tz y)
-20.8m (0‘306 + AT (36 c43.469) (3. 12.773.463)

(3. + 3.46 m)?
7.7 ~1.
12. (L5 + L73m) (2.08+ oy sdo i e )

(3. 4+ 3.46 m)®

24.{m-1.y)(0.5r-1.22-0.577zy
~20.8m (1-04 + 73 (—3.—6.z+g.46y) (—3.+2.:+3.4%)y7)

(3. + 3.46 m)*
27.7 -+
12. (1.5+ 1.73m) (2-08 + o3 (3.+6.:-3.4;5)((Ts.y-£2. :+3.46y))
(3. +3.46m)*

24. (m+y) (0.52-1.27-0.577zy
~20.8m (1'04 t ST TE c43 ey (55T :.-+3.4)sy))

(3. + 3.46 m)*
37.7 -1.
12. (1'5 - 173 m) (0‘612 + md (3.-{-6.:—3.:6(3; (—35.,-):;. z+43.46 y)) +

(—3.+3.46 m)*

24.(m-1.y) (0.5z-1.2-0.577zcy
2.31m (0'306 + 53 (—3.-6.z+£3.46y) (-3.+z.:+3.4s) y))

(1. — 1.15m)?

27.7 +
12. (L5 - L73m) (0.612+ moisrarage s P rrreyr)

(-3. + 3.46 m)*
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24. (m+y) (0.52-1.27-0.577zy)
2.31lm (0'306 + S T3=6.243469) (S3.32.7F3.46y)

(1. - 1.15m)?
27.7 —-1.
12 (L5~ 173m) (208 + oyl siilaly ) .

(=3. + 3.46 m)®

24.(m~1.y) (0.5z-1.22-0.577cy
2.31m (104 + m3 (-3.-6. z+g.46y) (—3.+2.z+3.46)y))

(1. - 1.15m)?
27.7
12. (1.5 - 1.73m) (2-08 pare (:s.+¢s.z-3.4:;yy)i (":gy}-z :+3.46y)) +

(-3.+ 3.46 m)®

24. (m+y) (0.5z-1.2%-0.577z y)
2.31m (1°04 + T3 6o 43463 (3. 42.773.467)

(1. - .15 m)?

nzi(m) - (dyt + dyp(sv t,h)) =

i

nzxi(m) - (dy + dya (s, t, k))

To analyze these functions we show both the numerator and the denominator have the same
sign. For example, the first equation is:

27.7 ~1.
12. (L5 + 1.78m) (0.612+ rorpmaatamimrtlt ) .

(3. + 3.46 m)?

24.(m-1.y) (0.5z~-1.27-0.577zy
~20.8m (0°306 + & (—3.-6.:+g.46 V) (-3.+2.z+3.46)y))

(3. + 3.46 m)*

We can put this over a common denominator, which is:

m? (0.866025+ 1. m)? (0.5 + 1.z — 0.57735y) (—1.5+ L.z + 1.73205 y)

The first two terms, m? and (0.866025 + 1. m)?, are clearly positive. The third term, 0.5 +
L.z - 0.57735 y, is positive because | — .57737y| < | ~ .57737(0.0541266)| < .5. The last term
is negative because 1(0.5) + 1.73025(0.0541266) < 1.5. Therefore the denominator is always
negative.

The numerator is:

—2.33557 m? — 1.34844 m3 — 1.38205 m2z — 1.79793 m3z — 0.350004 m? z2 + 1.79793 m3 z2 +
5.39378 m?y + 3.1141 m3y + 1.73205 m z y + 5.59585 m2 z y + 2.07607 m3z y ~ 3.1141 m2 y° +
2.07607 m*zy — 1.79793m3y? — 3.4641z y® — 2. mz ?

We split the numerator into four parts by separating the terms into the different powers of m.

Starting with m©, these coefficients are
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mo(z,y) = -—3.4641zy>
mi(z,y) = 1.73205zy+3.4641z%y —2.z4?
my(z,y) = —2.33557 — 1.38205z — 0.350004 22 + 5.39378 y + 5.59585 z y — 3.1141 y°

The coefficient my is clearly negative, since z and y are both positive. The coefficient m, is
positive, since we can factor out the positive term zy leaving us with

1.73205 + 3.4641 5 — 2.t > 1.6238

which is positive. The coefficient m; is negative; setting = and y of the positive terms to their

maximum values:

m2(z,y) < -2.33557+ 5.39378(0.0541266) + 5.59585(0.5)(0.0541266)
~1.89218

i

The coefficient mg3 is negative; setting z and y of the positive terms to their maximum values:

m3(z,y) < ~1.34844+1.79793(0.5%)+3.1141(0.0541266)+2.07607(0.5)(0.0541266) = —0.674222

All of the coefficients of m except for m; are negative. We now show that

numer(z,y,m) > mo(z,y) +mmy(z,y)+ mzmz(z, y)
= —2.33557m? - 1.38205m? z — 0.350004 m? z% + 5.39378 m® y + 1.73205mz y +

5.59585 m*zy + 3.4641 mz?y — 3.1141m?y? — 34641z % — 2. mz y?

For the positive coefficients, set z = 0.5 and ¢t = m, which are the maximum values they can
take.

—0.603523 m? +8.1917 m® — 1.38205 m? z — 0.350004 m? z? —3.1141 m? y — 34641z y— 2. mz y
The only positive term left is 8.1917 m3, and since
| - 0.603523| > 8.1917(0.0541266) = 0.168556

The entire numerator is negative. Therefore, since the denominator is also negative, the original
equation is positive.
The other cases can be dealt with in a similar manner.
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