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0. Introduction

Computer image synthesis can be defined as the sum of two components:
modeling, the specification of data to be viewed, and rendering, the creation of
an image depicting the modeled data. If the model varies over time, and a
series of images are produced, the result is computer animation. This definition
encompasses many disparate forms of computer animation, such as algorithm
animation and computer-assisted cartooning. One particular form of computer
animation is three-dimensional, in which the' models are three-dimensional
objects, and the task oi' rendering is to derive a two-dimensional representation

of the model for display.

Characteristics of Animation Systems

Several properties can be used to distinguish animation systems described
in the literature. The most important characteristic is the intended set of users.

Most systems can be placed into one of two ca.tegofies using this criterion:
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production systems versus research testbeds. Systems in the former category are
used typically by computer graphics production houses to create animations for
advertising and entertainment. Users of these system range from skillea pro-
grammers to artists with little or no computer training. Graphical interaction
and other non-programming interfaces are used to accommodale this varied

audience.

Because their users are often motivated by intense deadline pressures, pro-
duction systems must have a relatively fast turnaround time from concept to
finished product. Speed is usually achieved by limiting the modeling and render-
ing methods to a minimal set, which can then be highly optimized. 1t is often
the case that the need for high performance supersedes the desire to minimize

the user’s time and required expertise.

Research testbeds, on the other hand, are designed to allow skilled pro-
grammers to experiment with new modeling and rendering techniques. These
systems must be modular and flexible, allowing new code to be inserted for easy
testing. They must also be extensible so that the results of successful experi-
ments can be added. Researchers will put up with almost any interface, so
testbeds usually are not conducive to producing animation. Furthermore,
testbeds are often designed with a particular domain in mind, such as molecular

simulation or articulated figure animation. In these cases it may be very
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difficult or even impossible to produce other types of animation.

The means of model specification is a second identifying characteristic.
Using ¢nteractive, visual tools to define a model is probably the easiest and
fastest way to produce animation. It is also the easiest method for non-
technical users to learn; anyone with spatial design abilities can build a model

with a graphical tool.

Programming languages, including those designed explicitly for animation,
are harder to use because they require computer programming experience. They
are used most often to accomplish specific modeling tasks, especially those that
are inherently procedural, such as complex interaction between objects. The

programming language approach also facilitates system extension and testing.

Script languages lie between the extremes of graphical interaction and pro-
gramming. A script language is a problem-directed animation description for-
mat, differing from conventional programming languages in several ways that
make them easier to use. The data structures correspond to objects in the
scene, not abstractions. Control fiow constructs are often limited to linear
sequences, since that is how animation appears. The result is a language that
does not require a high level of programming expertise, but offers more precise

control and more power than interactive techniques.
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Another category of model specification tools includes simulation and simi-
lar rule-based approaches. A set of rules, such as physical laws, and initial con-
ditions is input to the simulation. Other variables representing changes to the
system may be introduced after the simulation commences. The result of the
simulation is a description of the changes made to each component object; this
description can be in one of the other forms of model specification, such as a
script language. Therefore, this approach can be thought of as a “front end” to
the modeling task. Simulation is very useful for special animation needs, but

does not address the general motion modeling problem.

Animation systems can also be distinguished by animation paradigm. Some
systems use keyframes, so the user must specify properties of objects in the ani-
mation at certain instants, and the computer interpolates intermediate frames
with some mathematical function. While this approach works well for two-
dimensional and simple three-dimensional models, it is infeasible for complex
animations. When two simple changes, such as a translation and a rotation, are
applied to the same object, it can be difficult for the user to specify the object’s
position at any particular frame. A;tion-based (or track-based) systems remove
this difficulty. Each change is described as a separate action, and the actions
are then composed. While each action is itself keyframed, the resulting complex

change is not.
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The last characteristic. described here is an implementation issue: the
storage interface between the modeler and the renderer. Most systems store the
model in a form that is acceptable to a particular renderer. Since most common
rendering metflods require polygonal approximation of objects, polygons are very
popular storage primitives. While this approach results in an increase in render-
ing speed, it introduces error and restricts both the range of possible rendering
techniques and the user’s creativity. If the model is stored as renderer-
independent primitives, rendering is not limited to any one method, and the user

does not have to be concerned with any particular representation.

The Problem

Computer graphics today is predominantly two-dimensional, static, presentation
graphics. Advances in computer hardware have now made animation possible in
high-performance workstations, making three-dimensional computer animation
the new frontier. With this trend, new groups of users are acquiring the means
to create animation. Educators can use dynamic images to accompany texts or
demonstrations. Scientists in all disciplines can take advantage of new ways to

visualize data for analysis. Artists have a new, unfamiliar medium to explore.

The upshot of this expansion is that computer graphics systems can no

longer be built with only graphics experts in mind. Non-technical users — i.e.,
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those with little or no computer graphics background — need a system that
allows them to reach their goals without having to become expert in another
field. In fact, they should be able to use whatever interface feels most comfort-
able. A scientist may feel conﬁdent in his or her ability to define models based
on équations or data points, while an artist may want to interactively model
interesting shapes. There should not be any restrictions inherent in 2 graphies

system that prohibit the use of a comfortable interface.

Rendering quality is another important interface issue. At times a stylized,
unrealistic representation of a model is more appropriate, while at other times
realism is important. The quality of the visualization should be chosen by the
user, not restricted by the system. This criterion is especially important in light
of hardware and software speed limitations. If a realistic image takes a long
time to compute, a user may want several quick, lower-quality, previeW render-

ings beforehand.

While the needs of non-technical users must be considered, computer graph-
ics researchers also need a suitable environment for their work. The state of
computer animation is constantly improving; a system should be flexible and
extensible enough to incorporate new techniques. A stable existing system to
augment is a valuable research testbed, while a system that accepts only one

type of model, or requires the model to be viewed in a limited set of ways,
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hampers experimentation. Similarly, a system that is fine-tuned to run well on

one particular type of hardware is one step away from obsolescence.

All of f;hese goals traditionally have been treated as being mutually
exclusive; this is evidenced by the lack of systems designed to achieve all of
them. The apparent contradictions between ease of ﬁse, power, speed, and
extensibility have caused system designers to sacrifice one or more of these
desired properties in favor of others, instead of incorporating all of them. The
aim of the work presented in this thesis is to accomplish all of these goals to an

acceptable level.

Thesis Contributions

The primary contributions of this dissertation are the following.

e BAGS, a framework for animation production and research. Unlike
other animation systems, BAGS combines the flexibility and extensi-

bility of a research testbed with the utility of a production system.

e SCEFO, a script language that is powerful enough to serve as the
interface between modeling and rendering in BAGS, and yet may be

used by non-programmers in defining animations.
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e Validation of an object-oriented approach in certain aspects of ani-.

mation system design.

o A flexible lighting model that, unlike other models, translates intui-

tive input parameters into realistic lighting effects.

e New extensions to the ray tracing rendering technique that provide

area-sampling solutions to the aliasing and caustics problems.

BAGS, the Brown Animation Generation System, is designed with non-
technical users in mind but is also a useful testbed for state-of-the-art graphics
research. We will show how the system reconciles the conflicting goals of power,
ease of use, and flexibility.

The interface between modeling and rendering in BAGS is a textual
language called SCEFO. A SCEFO script contains a description of the objects
in a scene, including lights and cameras, along with action-based changes to
those objects over time. SCEFO is designed to be an “assembly-level” language:
it is high-level enough to allow experienced animators to specify it directly, and
low-level enough that it can be produced as the output of interactive graphical
editors, simulations, and other front-end programs. The language also permits

advanced users to add C-language extensions for additional power and control.

Because SCEFO is a conceptual representation, it does not require objects

to be stored in any particular format and can be used as input to any rendering
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method. The model can be chosen to best suit the given application and render-
ing format. The renderer-specific knowledge is stored with the objects, as is
information about how to transform objects. This design is an example of an
object-oriented graphical approach. “Object-oriented” in graphics systems
means that the modeled objects found in animated scenes are treated as
abstract constructs and grouped into classes. Associated with object classes are -
methods (procedures) that affect an object in the class when prompted by the
reception of a message. The methods are inherited by all objects in the class.

Use of an object-oriented paradigm in this context adds consistency and extensi-
bility to BAGS, making additions of new rendering techniques and object classes

easler.

The design of BAGS also provides for extensibility in many other respects.
New modeling front ends can be added easily, as long as they produce SCEFO
output. Interpolation methods and object transformation operators can be
created by the user and can be incorporated into the system if desired. Addi-
| tionally, the lighting model used in BAGS is designed to be flexible enough to

allow testing of other lighting models.

BAGS.has proven to be a useful production system, having been used to
produce animations of architectural studies[9], molecular simulations]l],

mathematical visualizations[47,14], and general animation[39,40]. However,
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BAGS’s value as a research tool is even more significant. Several research
advances have resulted from the development of BAGS, including an improved
camera motion interpolation model[46] and a robust polyhedral constructive

solid geometry algorithm(54].

Another advance in research is the BAGS lighting model, which translates
a small set of surface material parameters into realistic lighting eflects. The
parameters are intuitive, so that a user with no materials research training can
describe a desired surface. The model also allows a user to modify any of the
parameters or computed values for more realism, stylized lighting, or other

effects.

Yet another important research contribution facilitated by the BAGS
framework is a new technique for rendering highly realistic images. This tech- v
nique consists of two important extensions to an existing rendering method
called ray tracing. The first extensio.n is a remedy for the aliasing (staircase
pixel) problem, which is an artifact of the point-sampling nature of the conven-
tional ray tracing algorithm. The algorithm provides area sampling for correct
antialiasing, but rec.;uires only the conventional object intersection tests found in
standard ray tracing. The second extension, which is similar in design to the
first, incorporates into an image the phenomena called caustics, which are the

reflection and refraction of light from one object to another. In many cases, this
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technique dramatically improves the realism of the rendered image.

Thesis Overview

The next chapter describes work on related three-dimensional animation
systems. This provides some context for critical analysis of the design of BAGS,
which is presented in Chapter 2. In that chapter we describe primarily those
design decisions that allow BAGS to succeed as an animation system, and only
touch on those topics common to most systems. Chapter 3 is a description of
the SCEFO language and its uses for modeling. Again, the emphasis is on
language features that are unique or that provide needed power or flexibility to

BAGS.

Chapter 4 examines the rendering portion of BAGS, including the range of
a;failable rendering techniques and the lighting model. The chapter ends with a
description of the ray tracing rendering method, which is the basis for the new
rendering techniques described in Chapters 5 and 6. Chapter 5 describes a way
to solve the aliasing problem for ray tracing, while Chapter 6 examines a
method for adding caustic effects to the rendering process. In Chapter 7 we

present conclusions and possibilities for future work.

Appendix A is a syntax reference for the SCEFO language. Appendix B is

a summary of the lighting model presented in Chapter 4. Appendix C contains
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some of the code used to implement the triangle tracing algorithm described in

Chapter 5.
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1. Related Work

In the next chapter, the advantages of the architecture and features of
BAGS are described. In this chapter we provide a basis for comparison by exa-
mining several animation systems that are described in the literature or avail-
able commercially. The systems are divided into two categories based on the
intended set of users. The systems that are primarily production systems are in
the first section, while those that serve as research testbeds are in the second.

Overlaps between the two categories are noted in the system descriptions.

We will attempt to use the other criteria developed in the first chapter to
further characterize the systems. Unfortunately, the literature is often incom-
plete in this regard. If a description in this cha;ter omits mention of certain
features, such as interactive interfaces or model specification, it is because there

is no mention of them in the literature. The result is therefore a summary of

the highlights of each system, although certain obvious drawbacks are noted
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when appropriate.

Several advantageous features of these systems are also present in BAGS.
The basic architecture of BAGS was designed before many of these systems

were; their development occurred in parallel.

Production Systems

The systems in this section are for use primarily as production systems.
They are designed to produce animations for any of a variety of applications,
whether commercial, entertainment, or scientific visualization. A common
theme in most of these systems is an emphasis on minimizing rendering time and
also on producing images that “look good,” whether or not these goals involve

extra effort on the part of the animator.

ASAS

ASAS[67] is a LISP-based language for programming animation. Objects to
be animated are defined as actors, each with a2 polygonal data definition and an
associated piece of animation code. The code for each actor is executed once
per frame, to determine the effect of that actor in the animated scene. Actors
may communicate with each other through message-passing, making it possible

to program objects that interact. ASAS is useful for modeling procedural
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animations, but is difficult for non-programmers to learn and use.

BBOP

The BBOP system([70] is a keyframed production system developed at
NYIT. The BBOP input model is a set of hierarchical, polyhedral, jointed
objects. The animator has control over transformation matrices at each of t;he
joints. An interactive program allows graphical specification of these transfor-
mations at each keyframe. A motion editor can be used to define interpolation

curves.

The keyframing setup makes a model difficult to modify. Changing the
duration of one action may require editing of several neighboring keyframes. In
general, this approach makes complex motions almost impossible to specify.
Dick Lundin[58] describes a way to add a motion simulation capability to BBOP.
The animator, who must be an experienced programmer, can specify simulation

routines that produce BBOP input.

Hanrahan and Sturman

Hanrahan and Sturman[44] describe a program that combines interactive
and programming language approaches to model specification. Scenes are con-

structed using a geometric surface modeling language. An interactive program
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reads the language and allows a user to change the model in real time.. Anima-
tion is defined by interpolating keyframed model parameter sets that are used in
object motions. The interactive nature of the system greatly aids productivity,

but the restrictions of keyframing often overshadows this advantage.

Anima Il and ANTTS

Anima II is an animation production system designed to accommodate ani-
mators, educators, and artists[41]. It is intended to balance the ability to pro-
duce high-quality, complex animation with production-level efficiency. The
Anima Il user interacts with a graphical polyhedral modeling program to create
objects to animate. The user then enters (textually) am animation script, writ-
ten in the Anima II language. This language contains primitive keyframed

operations on objects in the scene.

The ANTTS system described in[25] is an attempt to improve on Anima II,
which had implementation limits on model complexity and rendering quality.
ANTTS still views a model as a collection of polygons, but it is able to handle a
large number of polygons. The model specification is also in the form of a script

language.
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MIRANIM

Nadia Magnenat-Thalmann and Daniel Thalmann’s MIRANIM[59] is an
artist-oriented animation production system. It is designed to allow artists to
define animated models without any programming. However, its interactive
editing program, ANIMEDIT, requires the user to position and move objects by
entering textual commands; there is no graphical interface. The polyhedral
objects to be animated are built outside the editor, and are stored in files. The
MIRANIM system can be extended by programming in the CINEMIRA-2
language, which is an extension of Pascal. For example, a transformation that
moves an object along a particular path can be programmed and then accessed

from within ANIMEDIT.

TWIXT

Julian Gomez’s twirt animation system[34] is action-based and interactive.
Objects are specified as polygon meshes or bicubic patches and may be placed
into hierarchies. An interactive program with textual input and graphical
display allows the animator to define the changes to the objects over time.
When a useful input device such as a knob bank is available, twizt allows it to
be used for value input. The text input language combines modeling and anima-

tion primitives with rendering directives.
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S-Dynamics

Symbolics’s S-Dynamics[77] is a production system available to users of
Symbolics Lisp Machine workstations. It is primarily an interactive animation
editor that allows a user to define object motion graphically. The S-Geometry
modeling program|78| is an. interactive polyhedral modeler for creating objects

to be animated.

The animation model in S-Dynamics is action-based, so that the user
defines each subsequence (action) of an object separately, and the subsequences
are composed when the scene is animated. Each of the subsequences, such as a
rotation, scale, or translation, has keyframed endpoints. Interpolation is done
by one of several available methods, or can be defined by sketching the interpo-
lating curve. For extra flexibility and extensibility, advanced users of the sys-

tem can write LISP functions to be used in the animation.

Pacific Data Images

Pacific Data Images (PDI) is one of the leaders in commercial computer
animation. The system in use at PDI[15] is designed for efficient production of
animation for entertainment and advertising. Modeling is accomplished with a
C-based language; it is more like a programming language than a script format.

Most modeling tasks are performed by special-purpose programs that generate a
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set of polygons representing objects in the scene. Other programs are used for
adding special effects, such as perturbing surface normals to produce moving
highlights. An interactive editor is used for the difficult task of lighti'ng the
model. A range of renderers allow real-time previewing or high-quality imz;ge

production.
Reyes

Reyes|21] is a production animation rendering system in use at Pixar. It is
designed to accommodate very complex and diverse models and is dpt;imized for
speed. In Reyes, the model.is usually defined as surface patches, which are
“diced” into primitives called micropolygons. The micropolygons are shaded,
with texture being added if desired, and the results are added to a depth buffer.
The depth buffer stores the front-most polygons, thereby determining which sur-
faces are visible. All polygons visible at a pixel are stored in the buffer, with a
measure of how much of the pixel each polygon covers. This technique results in

antialiased images.

A “back door” into the depth buffer allows other rendering methods to con-
tribute to images, although it is not clear how a user would specify this. In fact,
there is little mention in the literature of the modeling aspects of the system in

use at Pixar. Most of their effort is concentrated on rendering speed and other
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methods for fast animation production. One important technique is image com-
positing, which allows several images to be combined to produce a single image,

much like optical processes used in conventional filmmaking.

OSCAR

OSCAR|57] is. a system designed at General Electric specifically for the ani-
mation of computer-generated industrial analysis experiments. Although it is
limited in its utility, it incorporates several important general design principles,
such as an object-oriented approach[56]. OSCAR uses this approach to direct
the actions of objects in over sixty classes, including scenes, cues (t.iming‘ infor-

mation), actors (geometric objects), cameras, and lights.

The actors are created with any of several compatible polyhedral modeling
programs. Objects called liaisons serve as interfaces with the rest of the system,
perfoxl'ming data conversions as necessary. Once the actor is known to the sys-
tem, any of several messages can be sent to it to change its position or color.
Animation is initiated by sending timing messages to cues, which in turn can
cause objects to move along predefined paths. A variety of rendering methods
can be specified, including real-time wire-frame preview and higher-quality

shaded display.
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OSCAR has its own animation language interface. The language allows
the user to define initial conditions such as position and color, to specify how the
animation should proceed, and how to render the scene. It is designed to be
high-level enough for direct specification, and OSCAR includes interactive pro-

grams that produce files containing transformation specifications.

OSCAR is a good example of l;ow an object-oriented approach can be used
effectively in animation. Because the system is designed primarily for industrial
analysis, however, it is limited in function. Actors are rigid polyhedra that can
be transformed only at joints. Motions are interpolated only linearly, and
methods for defining motion are limited to a predefined set. However. these are

Just limitations of the implementation, not the design.

Research Testbeds

This section describes systems designed for use by graphics researchers in
developing new modeling and rendering techniques. Of course, these systems
also allow for the production of animation, but that is not their primary func-

tion.
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Whitted and Weimer

The testbed described by Whitted and Weimer[84] allows them to test
different polygon shaders. It is designed to accommodate any objects that can
be approximated by convex polygons. Objects are described by the user in
terms of vertices, edges, and polygons. The system scan-converts the objects’
polygons into a span buffer, which holds information about objects intersecting a
scanline. This information is given to a shader, which produces pixels in the
final image. The system was intended to be extended eventually to include

interactive model editors and an animation language.

Hall and Greenberg

Hall and Greenberg developed an image synthesis testbed[43] for the
exploration of models to improve image reaiism. Modeling in the system consists
of a set of programs that generate geometric objects defined by bounding sur-
faces. An environment builder, anéther set of routines, is responsible for posi-

tioning the objects and defining their surface characteristics.

The system is implemented with only ray tracing rendering, although the
authors claim that any rendering algorithm could be added. This is one of the
few examples where the rendering and modeling are decoupled enough to allow

this extension, but it has not been implemented. The system has been



Chapter 1: Related Work 23

successful as a testbed, in that it has been used to develop an improved lighting

model.

GRAPE

The GRAPE system|[62] is a testbed for modeling primitives and rendering
techniques. The components of the system are implemented as proceéural nodes
which are connected into directed acyclic graphs. Communication between
nodes is in the form of standardized “appel” (appearance element) and syn-
chronization messages. This approach has several advantages. The message
scheme provides a great deal of flexibility, since any node conforming to the
standards can be inserted easily. Standardization also means that the system is

not biased towards any rendering method.

This system is intended for experienced researchers with programming skill.
In addition, it suffers from inefficiency due to the overhead of converting data to
standardized forms and the large number of procedure calls needed to transfer
data between nodes. Although the system is useful for experimentation, the

speed drawback prevents its use for production work.

FRAMES
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FRAMES|66] consists of a collection of tools, each of which is a program.
The tools are connected via linear UNIX* pipes. Input to the tools is specified in
a text file co;ltaining commands for each of the programs in th.e pipeline. The
programs can be considered “filters” that chaﬁge the input in some way and

output the result.

Modeling is performed by a set of filters that generate polygonal objects.
There are no interactive front-end programs in the system, only command-
directed generators. All other aspects of the modeling and rendering, including
transformationb;, shading, camera placement, visible surface algorithms, and

display, are specified by commands to the appropriate filters.

The pipeline system is designed to be flexible so filters can be swapped in
and out. However, the data flow requires a polygonal model. It is difficult to
determine how an alternate model, such as one required for ray tracing, could be
included. Furthermore, the nature of the pipeline prohibits feedback loops and

other non-linear control sequences.

UNC

A system under development by Bergman, Fuchs, et al., at the University

of North Carolina[8] has a unique approach to rendering a polygonal model. An

*UNIX is 2 trademark of AT&T Bell Laboratories.
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interactive, adaptive rendering system provides successively higher-quality levels
of rendering, starting with vertex and edge indicators, and progressing to

antialiased, Phong-shaded polygons with shadows.

Summary

Each of the systems described above has been designed to resolve the
power /friendliness/flexibility continuum by focusing on a small range of the
spectrum, although not all systems resolve it in the same way. In addition, most
systems are locked into one method for modeling, such as polygonal approxima-
tion, or for rendering, such as a depth buffer. This is done primarily to enhance
performance but prevents the systems from expanding or improving when new

techniques are invented.
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2. An Overview of BAGS

This chapter is an overview of the BAGS architecture. First, we state the
goals of animation system design, to provide a basis for the explanation of our
solutions. We then introduce some terminology that will be used in our descrip-
tions of the system. The last two sections are devoted to the exploration of the
modeling and rendering components of BAGS, with emphasis on the design deci-

sions that allow the system to achieve the desired goals.

The Problem

A general animation system should provide the means to do both produc-
tion work and computer graphics research, providing features for non-technical
animators and for graphics experts. The three most important attributes of

such a system are usability, flezibility, and extensibility.
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Usability includes providing an appropriate interface to each type of user.
An artist may require an interactive, graphical program to define a model; a
physicist may need the ability to simulate laws of nature; and a rﬁathematician
may feel most comfortable specifying complex equations. An animation system

should be able to accommodate all of these users.

Usability also means pfoviding reasonable default actions to the user, so
that the computer does the hard work. For example, an animator should not
have to spend much time to set up realistic lighting for a scene; this should be
done automatically. Furthermore, advanced users should be able to override

defaults when desired.

Flexibility in an animation system requires variety in modeling and render-
ing. For example, each of the modeling interfaces described above should be
available. Other aspects of modeling, such as available objects, operations on

objects, and interpolation methods, should be varied as well.

A variety of rendering techniques is necessary to solve the time/quality
trade-off. High-quality images often take too much time to render, wasting the
user’s time and leaving the user without any feel for animation timing. Lower-
quality rendering methods are typically faster but are inappropriate for final
products. If.severa] methods are available, an animator may choose one based

on the current need for quality and the amount of time available.
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Extensibility is perhaps the most important attribute. If a system is easily
augmented, none of its inadequacies is too harmful. In an animation system,
extensible areas should‘ include objects, operations on objects, interpolation
methods, modeling programs, and rendering techniques. Some of these areas,
like objects and interpolation methods, should be extensible by a user, while oth-

ers, such as rendering techniques, require the work of a system programmer.

No other system in the literature attempts to achieve these goals to the
extent that BAGS does. In particular, modeling in most systems is restricted té
a particular paradigm. For example, the PDI{15], ASAS[67|, and BBOP[70] sys-
tems all require the animator to program an animation in a high-level language,
while MIRANIM([59] and twizt[34] couple a simple, interactive, terminal-based

interface with a visual display.

Two systems stand out as being somewhat more general in the area of
modeling specification. Symbolics’s S-Dyramics[77] provides an interactive
graphical interface as the primary modeling tool and also allows an experienced
programmer to develop high-level systems to run on top of S-Dynamics.
OSCAR|57], on the other hand, uses a script language approach. A script may
be written directly by an animator or may be generated as the output of an

interactive program.
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- Full flexibility in rendering also is not attained by available systems. Most
systems provide a few different shading methods (faceted, Gouraud, Phong), but
only one or two rendering methods (wire-frame, z-buffer). A particular feature
missing from all of these systems is the ability to render the same model with a
polygonal-based renderer and a ray tracer. Ray tracing, a high-quality render-
ing technique, works best with procedural representations of objects rather than
collections of polygons. The reason for the lack of compatibility is that almost

all of the systems store objects in terms of approximating polygons.

The remainder of this chapter explores the ways in which BAGS solves
these problems. A brief description of the architecture of the system is followed
by a glossary of terms commonly used in BAGS. The remaining sections

describe the modeling and rendering components of the system.

Architectural Highlights

BAGS consists of about ninety software packages and about ninety execut-
able programs, all written in the C language for the UNIX operating system.
The software packages compose the bulk of the system, while the programs are
mostly drivers. The package-oriented approach is the result of an effort to
reduce code duplication, increase reusability, and maintain modularity. All code

adheres to a set of software standards(71] that allows the packages to be used in
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tandem without conflict. Part of the standard calls for documentation, so that
online manual pages are available for all system components.
The system is divided into four main areas:
e Object modeling
® Scene assembly
e Image rendering

o Image post-production and recording

Terminology

Many terms are used interchangeably in computer graphics literature,
often to the complete confusion of the reader. We include this section to avoid
this problem, at least within the scope of this thesis. These definitions are used
within BAGS; they may be different or even contradict those used in other

papers or systems, but we will try to use them consistently here.

An animation is the product of modeling and rendering; it is the final, view-
able sequence of moving images. It may be represented in any of several media,
such as film, video tape, or even a series of changing images on a graphics

display device.
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An animation is constructed from .one or more scenes, which are analogous
to scenes in a movie. Each scene lasts for some duration, in which motion or
o.ther changes occur. Scenes may be intercut, as they are in motion pictures,
during the editing proce'ss. However, it is natural to think of each uncut seg-

ment as an individual scene, regardless of the final editing.

Scenes can be broken down further into frames, each of. which represents
the state of the model at an instant or short interval in time, analogous to a
frame of film or video. A static rendering of one frame of a scene is called an
tmage. The sequence of frame images when displayed in succession simulates

motion, as in conventional (non-computer-generated) animation.

An object is a potentially visible component of a scene. In any animation
system certain objects are primitive; these are the objects that the system can
operate on at the lowest level. In many systems, polygons, polyhedra, or polygo-
nal meshes are the only primitive objects. Others also allow bicubic patches,
surfaces defined by parametric cubic equations. In BAGS, there are several
classes of primitive objects. Some are canonical solids, such as spheres, cubes,
cylinders, and cones, while others are solids that require some data for their
definition. In some uses, the word ‘“‘object” encompasses cameras and lights,

which are discussed below.
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Many systems allow primitive objects to be modified and combined in vari-
ous ways to produce more complex ébjects. BAGS uses a common combination
rﬁethod. called constructive solid geometry (or CSG), the application of the
Boolean union, intersection, and dz:ﬁ'erencé operators to solid objects. The result
of these construction operations on two cubés is shown in Figure 1. BAGS also
allows the use of the non-linear bend, taper, twist, and wave unary deformation

operators formulated by Barr[5].

A camera represents a view of a scene. It has a position and orientation in
space, and other attributes that define the film area, a two-dimensional rectan-
gle upon which the image of the scene is projected. There is typically only one
active camera at any frame, although this is not a restriction. A stereoscopic

renderer could have two active cameras, for example.

There are three basic types of lights that provide scene illumination.
Ambient lights illuminate all surfaces evenly, regardless of orientation. A point
light is an infinitesimal illumination source at a given location in space. It
illuminates outward from the point in all directions. A directional light can be
thought of as a point source that is an infinite distance away. It illuminates
along rays parallel to a given direction vector. Other types of light sources,

such as flood lights, spot lights, and area lights, can be created from the basic

types.
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Figure 1: CSG union, intersection, and difference operations

The basic unit of animation is a change, which can be applied to an object,
including light sources and cameras. It can be 2 change in position, orienta.tion;
geometry, surface characteristics, light intensity, or other properties of the
object. In an action-based system like BAGS, a change that occurs over 2 time
interval is defined by two or more control points, each of which is a value associ-
ated with an instant in time. The control points are interpolated over the inter-

val to attain the continuous change.
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Modeling

Modeling in BAGS results in the creation of SCEFO scripts or script frag-
ments. The scripts, as described in Chapter 3, contain specifications of object
transformations, constructions, and animation. The scripts can be created or
modified directly with a text editor, but this is not intended to be the method of
choice. Instead, “compiiers” can be used to produce the scripts. The compilers
are front-end programs that translate some other model description into
SCEFO. Examples of compilers are interactive modeling programs that
translate user input into scripts[35], translators that convert some other
specification into SCEFO[28], or simulation software that models some behavior

and outputs the results in SCEFO.

There are two conceptual phases to BAGS modeling: object modeling, which
consists of defining primitive objects, transforming them, and using CSG opera-
tions to create complex objects; and scene assembly, which consists of positioning
objects, lights, and cameras with respect to each other and specifying how each
changes over time. In many cases the division between these two phases is
vague. For example, pieces of a single object rﬁay change and move away from
each other, although they are conceptually the same object. The distinction is
made primarily to satisfly intuition, which tells us that actors (objects) in a

movie scene are distinguishable from other actors, although each part of an
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actor may undergo separate changes.

Each of the two phases is examined in more detail in the following sections.

Object Modeling

Primitive objects are categorized into classes, each of which represents a
collection of objects that have some properties in common. As is true in other
object-oriented applications, all communication with an object is transmitted
through the object’s class. Since classes in BAGS are responsible for the
transformation and rendering of their member objects, all objects in a class
must use similar methods for these processes. Therefore, the definition of each
BAGS object class is procedural: an object belonging to the class must be able
to be transformed and rendered by the same methods as any other object in

that class.

A software package called OFF (the object format format, for historical
reasons), is responsible for all object handling in BAGS. Part of OFF is a stand-
ardized format for object storage. Typically, each object is stored in its own
OFF file, although this is not a restriction. A header on each file specifies the

name of the object and its class, so that it can be read correctly.

Certain primitive object classes, such as sphere, cube, cylinder, and cone,

have only one member (and one OFF file}) each. Variations of each of these
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objects can be obtained by transformation. For example, the one sphere in the
sphere class is centered about the origin and has a radius of one unit. Other
spheres and ellipsoids can be created from this one by scaling, rotating, and

applying other transformations.

Other primitive object classes require data for complete specification. The
revolve class, for example, consists of objects of revolution: solids formed by
revolving a profile curve about a vertical axis. An object of this class must
include, in its OFF file, data defining the profile curve. However, one set of
transformation and rendering procedures can be used for all objects in the class,

regardless of profile definition.

Some classes require data to be specified in a different way. For example,
consider the tezt class, which contains objects that are three-dimensional
extruded text strings. It would be inefficient to create a unique OFF file for
each string used in an animation, especially since most files will never be used
again. Instead, the fext class contains only one object (in one file), a “generic”
text object. Any text object can be created from this one by sending a particu-
lar character string, through OFF, to the object. The string is specified from

within a SCEFO script.

There are approximately fifteen primitive object classes currently in BAGS.

These, when coupled with the ability to add complexity with CSG, provide a
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rich set of objects for use in animation. Occasionally, algorithms for a new class
of objects are developed and added to BAGS. Extending OFF to contaiﬁ a new
object class is straightforward and fairly easy. The procedures for transforming
and rendering objects in the class must be written. Once this is done, the new

class is registered with OFF and is available to animators.

The use of co.nstructive solid geometry greatly extends the range of objects.
For example, all of the objects in Figure 2 are derived from CSG combinations
of spheres, cubes, and cylinders. The CSG opelrations are all defined to be as
flexible as possible. A point on the surface of the object formed by Boolean com-
bination of two other objects has the properties of whichever surface it came
from. For example, subtracting a green cube from a red sphere to produce a
hemisphere causes the flat circular face of the hemisphere to be green, because it

1s derived‘ from a face of the cube.

The SCEFO language contains built-in operators for CSG construction (see
Chapter 3). The operations, as specified in' the scripts, are in terms of the origi-
nal objects. For example, the diﬁ'erer;'cé”of a sphere and a cube is stored as just
that: a sphere with a cube subtracted from it. This approach is needed to main-
tain SCEFO’s renderer-independence. If, for example, the CSG combinations
were computed by polygonal approximation of the operand objects followed by

Boolean polyhedral operations, the geometry of the original objects would be
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Figure 2: Complex objects created with CSG

corrupted, introducing error. Instead, the conceptual sphere and cube remain

unaffected by the CSG operations.

Another advantage to this approach is that the operand objects in a CSG
operation may move in relation to each other, since their geometry is not fixed
by the operation. For example, 2 cube that is subtracted from a sphere can be
directed to move in relation to the sphere. producing a dyramic slicing opera-

tion. This provides a great deal more flexibility than is found in systems that
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restrict motion to joints between constructed parts.

These features illustrate the differences between two of the most prevalent
forms of model storage, CSG and boundary representation. The latter, usually
referred to as “boundary-rep” or “B-rep,” requires th;a.t models be stored as
vertex-edge-face polyhedral descriptions. B-rep modeling systems are restricted
by this format, since the polygonal boundaries ma).r not be as accurate as the
original object description. The hybrid approach used in BAGS, where the origi-
nal CSG model is converted to B-rep for polygonal rendering, eliminates this
problem. However, extra processing time is needed to compute CSG combina-
tions for each frame of a polygonally-rendered animation. Because the added
time is considerable, every attempt to exploit object coherency has been incor-
porated into BAGS; a CSG combination whose components remain fixed in rela-
tion to each other is represented with the same set of polygons from one frame

to the next.

Scene Assembly and Animation

The task of scene assembly is to place objects in relation to each other and
to define how they change over time. This is inherently more difficult than
object modeling because a fourth dimension, time, is involved. In BAGS, scene

assembly results in the production of a SCEFO script that contains information
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about changes to objects in the scene.

When more than one change is applied to an object, the interaction
between the changes must be defined. For example, the result of a translation
followed by a scale is different from the result of the tra.nsfoxl'mations applied in
the opposite order. It is also desirable to keep the two changes distinct, so that
one may be modified without affecting the other. Therefore, defining animation
entails specifying each distinct change to an object and the order in which the
changes are to be applied. The SCEFO language is designed for this modeling

paradigm, as described in the next chapter.

The ability to apply the same change to several objects is also useful, esbe-
cially in the context of object hierarchy, when changing an item high in the
hierarchy affects all objects below it. For example, consider a hierarchical solar
system consisting of a sun, a planet, and 2 moon. To make the planet-moon sys-
tem revolve around the sun requires changing both the planet and the moon,
while making the moon revolve around the planet involves only the moon. This

animation is easy if the model is structured hierarchically.

Sometimes, however, hierarchies change. The moon in the above example
could break away from the planet to orbit a different planet, becoming part of
another hierarchy. Many animation systems restrict hierarchies to be disjoint

trees, so that an object could not be a leaf in two trees. BAGS does not have
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this restriction. SCEFO groups are hierarchically-defined collections of objects
and are not necessarily disjoint. Thus, the moon could be placed into two
different groups, one for each of the planet systems, and the motion could easily

be modeled as desired.

Interpolation is another aspect of specifying how objects change over time.
Many systems require interpolation to be linear, while some also provide splines,
parabolic paths, and a few other types. However, a change in these systems is
typically defined by a starting point and an ending point, with perhaps some
intermediate interpolation parameters such as spline tension. An interpolation
method, such as a Bezier spline, that requires non-local information about the

interpolation path would be difficult to implement in such a case.

BAGS provides additional flexibility by allowing for the specification of
control points and by not restricting interpolation methods. Any number of con-
trol points can be used to define a change, so that non-local interpolation data
can be specified in extra control points. Any interpolation method can be used
for any change, providing complete orthogonality. SCEFO also provides a way
for users to define their own interpolation methods, in case none of the various

predefined ones is acceptable for a desired change.

Just as objects can be structured into hierarchies, so can changes to

objects. SCEFO actions are procedure-like groups of changes. An action may
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be interpolated by any method when it is applied to an object in a scene. Since
actions may be nested, multiple degrees of interpolation can be modeled in this
manner. This feature provides extra flexibility to the animator during scene

assembly.

Cameras must be treated specially when assembling a scene. Motions that
look natural.when applied to regular objects appear clumsy when applied to
cameras[46]. Therefore, cameras in BAGS are handled differently, and there is a
specialized positioning operation that can be applied to them. This operation is
also interpolated differently, since the motion must be restricted to avoid discon-

tinuities.

Rendering

Rendering provides the means by which a model can be viewed. It is used
not only to display a completed scene, but also as an aid during the modeling
process. If the modeling is done with an interactive graphical program, the
rendering has to be fast enough to keep reasonable pace with the user’s input.
In such cases, rendering tends to be of lower quality than is desired for the final
animation because of the necessity for speed. With a few orders of magnitude
improvement in graphics hardware, it may be possible to render high-quality

images in real time, so viewing while modeling will be the same as viewing the
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final image.

With current techﬁology, however, there must be a tradeoff between image
quality and rendering time. BAGS includes several renderers that cover the
speed-realism spectrum. At one end are those methods that provide a fast, less-
realistic view of a model. Two renderers, an animation previewer and a single
frame viewing program, use tile Evans and Sutherland PS300, a high-speed vec-
tor graphics device, to provide real-time interactive capability. A relatively fast
shaded static image can be rendered with a faceted-shaded painter’s algorithm,
a Gouraud-shaded Z-buffer algorithm (for the Lexidata Solidview and Rastertech
1/380 devices), or a Gouraud- or Phong-shaded software Z-buffer algorithm. For
higher image quality, a scan-line renderer with transparency and anti-aliasing is
available[81]. The highest level of image quality (and typically the longest exe-
cution time) is provided by the ray tracing rendering method, which incor-

porates global lighting effects, such as shadows, reflections, and refractions[83].

A polygonal approximation of the model is used by all the rendering tech-
niques mentioned above except for ray tracing. Rendering with ray tracing
involves intersecting rays with objects, so objects are modeled by procedures
that solve the equation of the intersection. This requirement is why most sys-
tems do not provide ray tracing in addition to polygonal rendering methods: the

models are different. Of course, it is possible to ray trace a model after convert-
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ing 1t to polygons, but that would be slower, less accurate, and less attractive

than using the original representation.

Because it stores its model in renderer-independent SCEFO, and because it
uses object-oriented rendering, BAGS does not have this limitation. Procedures
provided by each object class can either produce a polygonal approximation of
an object in the class or compute the intersectién of a ray with the object. This
approach is extensible, as well. If another rendering technique were developed,
such as the one described in Chapters 5 and 6, it could be added by extending

each of the object classes to include procedures for that technique.

The object-oriented approach is used for object transformations, as well.
This may seem to be overkill: since in most cases all object classes will do the
same thing to implement a transformation, such as multiplying by a scale
matrix, the operations could be done at a higher level, outside the classes. How-
ever, there are types of transformations for which the object-oriented approach
is necessary. For example, the non-linear deformation operators developed by
Barr[5] are easy to implement for polygonal models, but are very difficult (and
slow) for ray tracing[6]. Therefore, classes can implement the deformations by
approximating the objects with polyhedra, and then applying the polygonal ver-
sion of the operators. While this does affect the model used for ray tracing, it

allows the deformations to be used in a consistent fashion, and does not affect
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the rendering efficiency too much. If someone developed good methods for ray
tracing deformations for a particular object class, then that class would not

have to convert to polygons.

Post-Production

Included in the category of post-production are image storage, compositing,
and recording. Compositing involves several techniques, including image overlay-

ing and dissolving[65], techniques which are standard in film post-processing.

Few if any of the post-production facilities in BAGS are different enough
from what is provided in other systems to warrant mention here. What is worth
noting, however, is the small degree to which a BAGS user must rely on these
facilities. In many animation production systems, image compositing is used to
a large extent to save rendering time. For example, a dynamic foreground
against a static background can be modeled and rendered in two pieces. Since
the background is unchanging, it can be rendered once, and the resulting image
composited with the foreground image for each frame. This approach saves
rendering time at the expense of user time, since the animator must separate
the models, render them separately, and specify that they are to be composited.
It is also renderer-specific: if the background contains shiny surfaces, for exam-

ple, a realistic renderer might show the changing reflections of the foreground.
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This means that changing the rendering technique necessitates a user-specified
change in the model. This requirement is contrary to the design philosophy of

BAGS, as is valuing computer time over the user’s time.

Summary

In this chapter we have described the overall design of BAGS and how that
design meets the goals required for a general animation system. We have shown
how use of the SCEFO script language allows a variety of modeling techniques
to be incorporated into the system. These techniques include direct textual
specification, interactive graphical programs, and simulation front-ends. Thus,

the system is not restricted to any single modeling paradigm.

Rendering is flexible as well. Any of the variety of rendering techniques,
from real-time animation previewing to photo-realistic ray tracing, éan be
driven from the same model. In fact, the render_scene command in BAGS is
used to produce all types of rendering; the rendering method is specified as an

option to the command.
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3. The SCEFO Language

In Chapter O, we introduced the idea behind script languages and how they
serve as a non-programming text interface for model~speciﬁcation. In this
chapter, we describe SCEFO, the animation script language used in BAGS. We
pay particular attention to the language features that allow BAGS to achieve

the animation system goals described in the previous chapter.

Animation Languages

What qualities are desired in an animation script language? Perhaps gen-
erality is the most important feature. A system should be general enough that
1t is easy for an animator to transfer a model from his or her mind to a script in
a straightforward fashion: the process by which the animator creates the con-
ceptual model should be duplicated when creating the computer model.

Methods that facilitate this process include object instantiation, hierarchical
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modeling, action-based animation, and hierarchical actions.

An animation language should be easier to use than a conventional pro-
gramming language. Animation languages are typically problem-oriented, so
that scripts are limited to a particular domain. That is, the data types in an
animation language are “concrete’ instead of abstract: they are objects, lights,
cameras, and animated changes. It makes sense to similarly limit the structure
of the language, rather than to use a high-level language (as in ASAS[67] or
MIRANIM[59] ), for several reasons. The animator should not be required to
have general programming abilities. Also, a limited language allows error check-
ing to be more extensive and precise. Furthermore, scripts can be generated
more easily by front-end modeling programs if the animation language syntax is

simple and straightforward.

An animation language should also be more precise and flexible than
interactive interfaces. Graphical interaction serves its purposes in most cases,
but there are times when more control is needed. That is, there are certain ani-
mation sequences that are difficult or impossible to describe adequately through
a graphical interface. For example, complex changes to surface properties of an
object are hard to model on a display device. Similarly, it may not be possible
to describe complex forms of motion interpolation in that way. An escape to an

animation language is useful in such cases.
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Another desired feature is extensibility. No matter how feature-ridden an
animation system is, an animator may require something else. 1t must be possi-
ble to add new features to the system easily. Even better is the ability for

advanced users, not just system programmers, to add features.

Other Languages

There are very few animation systems built upon a language that addresses
the issues outlined in the previous section. Research testbeds are usually
designed for programmers, so there is no need for a non-programming interiace.
Commercial production systems are often designed so that jobs can be done as
quickly as possible; demands are placed on the users, requiring a high degree of

experience.

Some systems have very tight coupling between modeling and rendering
and therefore do not use an intermediate script language. For example, the S-
Dynamics system|77] creates a polygonal model via an interactive interface, and
sends the polygons directly to the renderer. The model is defined by the actions
of the animator using the system, and translates directly into a collection of

polygons.

A tight connection between modeling and rendering is possible only in sys-

tems where the model must be specified in a particular manner. This can be an
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interactive interface, as in the case of S-Dynamics, or a programming
approach(15,59,67]. While this coupling leads to a well-integrated system, it

restricts modeling and rendering flexibility.

SCEFO

SCEFO is designed to incorporate the desirable features described above.
That is, the language serves not only as model storage and input to renderers,
but a tool by which animators may produce models. Although SCEFO is a rea-
sonable way in which to specify animation, it is designed to be terse and struc-
tured enough to be output by front-end modeling programs, such as interactive

interfaces and simulation software.

The descriptions in this chapter serve to illustrate certain features of
SCEFO and are not intended to fully document the language. Appendix A con-
tains a reference guide to SCEFO; a more complete language description can be

found in a tutorial guide[72].
Object Creation

The creation of objects used in a scene is an important aspect of modeling.
In systems like twizt[34] and OSCAR[57], all objects used in an animation are

created separately and instantiated as necessary in a script. This forces the
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animator to model all objects beforehand and to use those objects as they are
within the script. Geometric changes, such as rigid transformations and polygo-
nal displacements, are possible within an object, but the overall object assembly

must remain pretty much unchanged.

SCEFO, on the other hand, uses a more general approach. Primitive OFF
objects (described in the; previous chapter) can be read from their storage files to
create templates. A primitive object can be a standard canonical object, such as
a sphere or cube, or a user-defined object, like an object of revolution or a

parametrically-defined surface.

A template may be copied any number of times to create new templates.
The new templates may be copied as well, creating a tree of modeled objects.
(This should not be confused with hierarchical grouping of objects described in
the next section.) Changes in the tree propagate only towards the leaves: a
change to a template affects all templates derived from it. This means that
multiple copies of a template inherit any changes made to that template. The
reverse is not true: changes made to each of the copies do not affect the other

copies.

Templates do not appear in rendered scenes; they are used only for
developing models. However, an instance of a template does appear in a scene.

As with template copying, any number of instances may be made from a single



52 Chapter 3: The SCEFO Language

template. Changes to the template aflect the instance, but not vice-versa.
Thus, instantiation of templates is just another level of modeling, but it is one

that creates visible objects.

Consider the example in Figure 3. The read statement reads a primitive
object from an OFF file; in this case, the canonical cube is read from its stan-
dard file. This statement \creates a tem'plate named cube in the process. Two
more templates, big_cube and little_cube are created. from that template
through use of the template statement. Each of the two new templates is
modified by a change statement (described in a later section) to modify its size

by scaling in three dimensions.

Two instances are made from each of the two new templates. The
Big_red_cube and Big_blue_cube are both made from the big_cube tem-
plate, and therefore inherit the size change to that template. (The capitaliza-
tion of instance names is a stylistic convention that makes SCEFO scripts easier
to understand and is adopted in these examples.) Similarly, two instances of
little_cube are created. Each of the four instances has a color assigned to it.
The result of this (after instantiation of cameras and lights, and appropriate

changes to position) is shown in Figure 3

Templates may also be combined using the constructive solid geometry

(CSG) operations union, intersection, and difference. The template statement is
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read

template
template

change
change

instance
instance
instance
instance

change
change
change
change

(cube.off)

(big_cube)
(little_cube)

(big_cube)
(1ittle_cube)

(Big_red_cube)
(Big_blue_cube)
(Little_yellow_cube)
(Little_green_cube)

(Big_red_cube)
(Big_blue_cube)
(Little_yellow_cube)
(Little_green_cube)

cube;

cube;
cube;

scale <0, {4, 4, 4}>:

scale <0, {2,

big_cube;
big_cube:;

little_cube;
little_cube:

set_color
set_color
set_color
set_color

<0,
<0,
<0,
<0,

2, 2}>;

RED>;
BLUE>;
YELLOW>;
GREEN>;

53

Figure 3: Templates and instances, and rendered image
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used for this as well. If the right-hand side of the statement is a CSG expression
of templates, the resulting template is created from a combination of the named
ten.lplates. The example in Figure 4 shows how a simple rivet template can be
created from a sphere, cube, and cylinder. The cube is positioned with respect
to the sphere and is used to cut it in half with a difference (symbol -) operation,
creating 2 hemisphere. The union (symbol |) of the hemisphere and the cyfinder
produces the final rivet object. The component objects and the CSG rivet are

displayed in the image in the figure.

Note that the surface properties of the CSG object in the figure are derived
from the component pbjects. For example, the part of the rivet’s surface that
came from the sphere is colored like the sphere. This is true even for the face of
the hemisphere derived from the cube. This surface is colored like the cube,
which does not appear in the final image because it was subtracted from the
sphere. This rule used to determine the surface properties of a CSG object is
designed to be general, so that it is possible to show such effects as these. If the
system constrained the flat face of the hemisphere to have the same surface pro-

perties as the sphere, it would not have been as easy to create this image.

CSG templates may be treated like any other templates. They may be
copied, instantiated, or used in other CSG expressions. It is therefore possible to

create complex CSG hierarchies of objects. An example is shown in the image in
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read
read
read

change

change

change

("sphere.off")
("cube.off")
("cylinder.off")
(sphere)

(cube)

(cylinder)

template (rivet)

instance (Rivet)

sphere;

cube;

cylinder;
set_color <0,
scale <0,
translate <0,
set_color <0,
scale <0,
translate <0,
set_color <0,

(sphere - cube)

rivet;

BLUE>;

{2, 1, 23>,

{0. -1, 03>,

RED>;

{.4. 1, .4}>,
{0. -.9, 0}>,
GREEN>;

| cylinder;

Figure 4: Construction of a rivet object with CSG
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Figure 5, which is a view camera modeled as CSG combinations of spheres,

cubes, and cylinders.

Figure 5: A view camera modeled with CSG

Object Hierarchies

The ability to create hierarchies of- objects is found in many systems. One
of the more flexible implementations is found in fwizt[34], which allows a forest

of object trees to be created. The trees are dvnamic. so that an object can be a



Chapter 3: The SCEFO Language 57

part of one tree at one frame and a part of a different tree at another frame.

However, even the fwizt hierarchy model is too restrictive. There is no rea-
son that an object could not be considered to be part of two hierarchies at the
same time. For example, consider people marching in a parade. Each person is
“attached” to the rank and file in which he or she is marching. If either the

rank or the file moves or turns, the person should move with it.

Because of this, SCEFO allows overlapping hierarchies of objects. .An
object can be placed into one or more groups. Groups, in turn, can be nested
inside other groups. The group statement is used to create hierarchies, as in
Figure 6. The script fragment in the figure creates two groups, a
planet_system, composed of the planet and moon, and 2 solar_system, com-

posed of the sun and the planet-moon system.

group (planet_system) planet, moon;
group (solar_system) sun, planet_system;

Figure 8: A simple object hierarchy using groups

Once the hierarchy is created, changes can be made to any level in the
hierarchy. In the solar system example, changes could be made to just the

planet, moon, or sun; none of these changes would affect the other objects. A
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change to the planet_system would affect the planet and the moon. This
could be used, for example, to make the whole system orbit the sun. Similarly, a

change to the solar_system group would affect all three objects.

Groups can consist of templates or instances, but not both. A template
group can be treated like a template. It may be copied, instantiated, or used in
a CSG expression or template group. A CSG combination involving a group
operates on the union of all objects within that group. An instance group is just

like an instance; it can only be changed or included in another instance group.
. Action-Based Changes

Early attempts at computer animation, based on conventional forms of
animation, relied on a keyframe approach to interpolation. In cel animation,
which is used primarily for animated cartoons, the artist would paint or draw
certain “key” frames at which some action caused the picture to change. The
artist would then give the collection of keyframes to an assistant, who had the
repetitious task of drawing the frames between the keyframes. This process,

sometimes called “in-betweening,” is often well-suited to computer interpolation.

In three dimensions, however, the keyframe approach is more difficult.
Specification of a keyframe requires knowing the positions of all objects in the

scene at that frame. For a two-dimensional cartoon this is not a significant
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problem, but when there are many three-dimensional objects flying about, it is
harder to keep track. Also, the memory needed to store object states at each of

the keyframes can become excessive, as users of BBOP discovered(76].

Another difficulty arises when edi‘ting a keyframed animation. Consider
the case where the time interval of one particular motion must be lengthened or
shortened. Doir;g so requires that all keyframes involving that motion be
modified to contain the correct new data. This is not a trivial task, since other

motions to the object may be occurring at the same time.

An action-based approach is much more convenient for modeling. Each
change to an object is modeled as a separate action, which may be layered with
other actions to produce complex motions and other effects. This approach has
been implemented in other systems and has been proven to be effective. For

example, twizt uses actions called fracks to layer compound motions of objects.

In SCEFO, the change statement implements a similar, but more general,
‘scheme to modify the state of an object. The modification can be a geometric
transformation, a change in surface characteristics, or a change in any other
property that affects the object. The body of the change statement consists of
one or more change-ops {change operations}, each of which alters the object’s
state in some way. The parameters to a change-op are in the form of control

points, each with a time value and corresponding control value.
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The example statement in Figure 7 has three change-ops: a scale (change
in size), a translate (change in position), and a rotate. The scale opera-
tion has a single control point at time O, meaning that the change in size is to
take place instantaneously at that time. The control value for the operation
consists of a list of three values, representing the size change in three dimen-

sions.

change (box) scale <0, {1, 1.5, 23>,
translate <4, {0, O, O}>
<10, {5. 0, O}>
<20, {6. 5, 0O}>,

rotate <12, {{0.,0.0}. {0.1.0}, O}>
<22, {{0.0,0}, {0.1.0}, 903}>:

Figure 7: A sample change statement

The translate in the example has three control points, defining how the
translation is to occur over time. At time 4 the translation is by 0 in all three
dimensions, so no movement occurs. Between time 4 and time 20, the object will
be moved by 6 in z and 5 in y. The control point at time 10 indicates that the
movement is in the positive z direction until time 10, at which time the motion
changes to be in both the positive z and y directions. The translation is graphed

in Figure 9. The rotation in the example occurs between times 12 and 22. It
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rotates the object by 90 degrees around the axis defined by the origin and the

positive yaxis.

Time
20

Time Time

Figure 8: Translation graph of the previous example

These change specifications are action-based; the only keyframes that are
specified are on a per-action basis at each of the control points. The object
motions in the previous example are specified separately in each of the change-
ops, which are layered together automatically. Figure 9 is a graph against time
of these three motions. The translation and the rotation overlap in time and
therefore are ambiguous. Since these operations are not commutative. the order

in which they are applied is important, and must be known to the animator.
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SCEFO uses a very simple mechanism to resolve this ambiguity. The order in
which statements or change-ops are specified in the seript is the order in which
they are applied; in the example, the translation will be performed before the
rotation at each frame wheré they both have effect. This rule provides a clear, .

easy to remember, precise method for resolving overlapping changes.
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Figure 9: Time graph of the motions in the previous example

The time values in control points do not correspond to seconds, frames, or
any other “real” time units; they are merely figurative. When the scene is ren-
dered, these values are mapped linearly to real frame times as specified by the
animator. It is possible to define an entire scene between time 0 and time 1, for
example, and map that interval to any other time values for rendering. It is
typical, however, to have the SCEFO times correspond to seconds or frames, for

clarity.
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Similarly, the distance units in the script are arbitrary.. Whatever scale is
most convenient for the animator’s model can be used. As long as the relative
sizes éf the ;>bjects and camera in the scene are compatible, the script is valid.
This gives the animator more leeway in modél definition, since no size conver-

sions are necessary.

Interpolation

Interpolation is used to compute the state of an object between keyframes
or, in the case of an action-based system, within the effect of an action. In some
cases, such as a change in surface color, linear interpolation is sufficient. For
motion, however, linear interpolation is too “jerky,” because it ignores the
derivatives of the change. For this reason, most action-based systems offer a

choice of interpolation methods to apply to each action.

In turzt, a user has a choice of several interpolation methods, including
linear, parabolic, and cubic spline[34]. The system also allows ease-in and ease-
out specification for accelerated and decelerated motions. The S-Dynamics sys-
tem provides linear and exponentially-eased interpolation and also allows a user

to sketch an interpolation curve(77].

In SCEFO, a user can designate an interpolation method for each change-

op. A variety of methods are provided, including linear, eased, accelerating,
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decelerating, and spline. In cases where none of these methods is appropriate, a
user may define a new one, as described later. Each change operator has a
default interpolation methoa associated with it. For example, rotations of
objects are best interpolated with quaternions|69], so that is thé default method

for the rotate operator.

Action Hierarchies

Creating hierarchies of actions is a useful technique not found in other sys-
tems. It is clear that a hierarchy of objects is more manageable than an
unstructured collection. Similarly, a single complex action is easier to work with

than a list of many component actions.

The SCEFO action and apply statements implement action hierarchies.
A SCEFO action is a parameter-substituted collection of changes, somewhat like
a procedure in a programming language. The parameters, which may be objects
to change, time values, operator names, control values, or any other component
of changes, are substituted with real values when the action is applied in an
apply statement. A simple example of the application of an action is shown in
Figure 10. The action called grow_and_move is defined to take three parame-
ters: the object to change, the amount by which the objeét is to grow, and the

translation factors. Names enclosed in ampersands within the action are
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dummy parameter names that are to be substituted with values when the action
is applied. In the example, the object is scaled by the growth factor and then

translated by the movement vector, which should contain three values.

action (grow_and_move) object, growth, movement {
change (&objecté&) scale <0, {1, 1, 1}
<10, {&growth&, &growth&, &growthé&}>,
translate <O, {0, O, 0O}>
<10, &movementé&>;

}

apply (grow_and_move) Sled, 2.1, {3, 0. 0O} <30, 0> <90, 10>

Figure 10: SCEFO action and apply statements

The apply statement in the example changes the Sled object, scaling it
by 2.1 and translating it by 3 units in the positive x direction. The parameters’
values are substituted in the order specified in the action. Each value can be a
name, value, value list, or whatever the action requires; in the example, the
third parameter in the apply is a vector of three numbers, representing the

translation values in three dimensions.

The action in the example is defined to occur between times 0 and 10, but
these times have no correspondence to scene times until the action is applied.
The control points at the end of the apply statements determine how the time

interval of the action gets mapped to scene time. In the example, the two
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control points in the apply state that action time O corresponds to scene time
30, and action time 10 maps to scene time 90. By default, the times are interpo-
lated linearly in this interval, although the animator may specify a different

interpolation method, as is done for changes.

An action may have applications of other actions within its body, creating
a multiple-level action hierarchy. This also provides a way to impler'nent double
and higher-order interpolation. That is, an application of an action is interpo-
lated once, and inside the action is the application of another action, which is
interpolated as well. This may be used, for example. to define a spline motion
(one interpolation), which is then stretched or squashed in time (the other inter-

polation).

Object Communication

When designing an animation, it is often useful to think of objects acting in
concert, rather than independently. Because of this consideration, some systems
provide means to communicate information between objects. In ASAS, for
example, a user can program message-passing code into object definitions, such
as having an object ask another object for its position and use that inf;)rmation
to position itself(67]. In OSCAR, some of the methods defined for each object

deal with inquiring information associated with that object. This information
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may be used to direct the actions of other objects[57]. The approach used in
SCEFO combines the flexibility of the ASAS method with the user friendliness in
OSCAR. Any type of information may be communicated, as in ASAS, but the

user has an easy way to specify the message-passing, as in OSCAR.

In SCEFO, fields are used to store information with an object and to com-
municat;e information between objects. Figure 11 has an example of the use of a
field within a change statement. The value of the mass field is set for each
object with the set_field operator. The value of the field, referenced by
name, is used within the change to determine (using the TIME preprocessor
macro) the time necessary to accelerate each mass a given distance when apply-
ing a given constant force. The accel interpolation method is used to eni'orc.e
constant acceleration in the interval. The result is that the change takes
different amounts of time for the two objects in the group since they have
different masses: the marble will finish its translation at time 10, while the

cannonball will take 100 time units.

All objects have certain predefined fields set by default. These fields are
denoted by names beginning with underscores and include _position, which is
the three-dimensional location at which the origin would arrive if transformed
by all changes applied to the object so far; _color, the RGB color of the

object’s surface; and a variety of others that determine the object’s state.
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/* Amount of time needed to move object with mass = MASS by
* DIST units, if a2pplying constant FORCE. This is derived
* from the formulas f = ma and s = 1/2 a t*t. */

#define TIME (MASS,DIST,LFORCE) sqrt(2 * MASS * DIST / FORCE)

change (marble) set_field <0, {"mass", 10}>:
change (cannonball) set_field <O, {"mass", 1000}>;

group (masses) ' marble, cannonball;

#define FORCE 20 /* Constant force applied to masses */
#define DISTANCE 100 /* Distance masses are to move */
change (masses) translate <0, {0. O, O}>

<TIME (mass, DISTANCE, FORCE),
{DISTANCE, O, 0O}> : accel;

Figure 11: Using a field within a change

Predefined fields can be used to model interactions between objects, if the posi-

tion of one object is used to affect the behavior of another.

A field associated with object foo can be accessed within a change to
object bar as foo:fieldname. This is a simple mechanism by which one object
can influence another. It may be used, for example, to keep the camera pointed

at the center of a particular object, no matter how that object moves.

Fields are also used to send information to OFF object classes. For exam-
ple, the fext object class receives as a field the string of characters used to
create a particular three-dimensional text object. Another special operator,

send_field, is used to communicate this information to the OFF class.
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Fields are useful to simulation front ends that need to store nonstandard
modeling information, such as the object masses in the previous example.
Constraint-based interactive modelers are a type of program that must rel.y on
such'information. Constraints are used to help the animator position and move
objects in relation to each other. For example, a constraint can be defined
between two objects so that they remain z.z fixed distance from each other. The
information necessary to compute the constraint satisfaction criteria can be
associated with the objects via fields. Predefined fields are especially helpful to
these programs, since they allow the animator to refer easily to connection

points on various objects.

Other Features

In this section we describe some other features of SCEFO that increase its

effectiveness as an animation language.

Format. The format of SCEFO is designed to be as readable as possible
without being wordy. Each statement in a SCEFO script is denoted by a key-
word, which is followed by arguments for that statement type. White space
(blanks, tabs, and newlines) may appear anywhere between statement tokens
and is ignored. As is true for most free-format languages, indentation is not

enforced by the language parser but is used for clarity.
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SCEFO animation scripts are stored in one or more files. By default, script
files are filtered through the C language preprocessor[53] before they are parsed.
The preprocessor provides commenting, constant and macro definition, file inclu-
sion, and conditional .inclusion facilities. These features enhance readability,
provide flexibility, and allow SCEFO scripts to be defined in a modular fashion.
For example, an interactive object modeler can produce 'SCEFO files to be

#Hincluded inside an animation script.

Object Context. SCEFO provides a mechanism to refer to any object
within a context, such as a templaté used to create an instance, or an instance
used within a group of instances. Figure 12 contains an example of such a refer-
ence. The bike template is a CSG combination of three templates, a frame, a
front_wheel, and a rear_wheel. Two instances of the template are made.
The color of the bike template is then set to red; this affects both instances,
changing them (all three parts) in the process. The change to
Mike_bike'bike'frame (the apostrophes are used to separate names within a
context specification), however, affects only the frame component of the
Mike_bike instance of the bicycle. The other instance and all the templates

remain unchanged.

Changes within context allow the animator to make minor modifications to

one copy of an object without having to create an entire, slightly different, new
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- template (bike) frame | front_wheel | rear_wheel;

instance (Mike_bike) bike:
instance (Spike_bike) bike:;

change (bike) set_color <O, RED>;
change (Mike_bike'bike'frame) set_color <O, OCHRE>;

Figure 12: Changing an object within a context

object. Context is not restricted to a CSG component of an instance. Other
possible contexts include members of groups, templates within CSG trees, and

sub-instances created from template group instantiation.

Cameras and Lights. Cameras and lights are treated like ény other
objects, at least as far as the SCEFO language is concerned. They are read
from their own OFF files and may be transformed by any of the standard opera-
tors. There are also specialized operators defined for use only with cameras and
lights. For example, the set_intensity operator is used to define the RGB
intensities of a light source, and the cam_define operator sets the focal length,
film size, and film tilt of an orthographic or perspective camera. Because
smooth camera motion requires specialized modeling techniques, there is a
cam_position operator (with its own special interpolation method) that is used

to move cameras(46].
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Expressions. Any numeric value used in a control point may be an arith-
metic expression. SCEFO provides the standard arithmetic operations of addi-
tion, subtraction, mixltiplica,tion, division (integer and floating-point), and
modulo. There are unary negation and logical-not operafors and parentheses for
precedence. Vector arithmetic (i.e., operating on lists of values) and string
operations are also allowed. Any of a set of predefined functions may be used,

as well. The example in Figure 13 shows some of these features.

/* Translate 16 units along vector at 23 degrees to horizontal */
change (Climber) translate <0, {22, 43.1. 17}>
<10, {22 + 16 * cos(23),
43.1 + 16 * sin(23),
173>

Figure 13: A change statement using arithmetic expressions

Loops. Looping constructs — for-loop and foreach-loop types — can be
defined with the loop statement, as in Figure 14. The example in the figure is a
for-loop that is iterated 4 times, with the loop variable count taking on the
values 0, 1, 2, and 3. An occurrence of the variable name within at-signs in the
body of the loop is replaced by the current value of the loop variable. Each
iteration in the example loop produces a new instance of the turtle template,

named TurtleO, Turtlel, and so on. The first instance is translated by 15
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units, the second by 30, and the others by 45 and 60 units, respectively.

loop (count = O to 3) {
instance (Turtle@count@) turtle; .
change (Turtle@count@) translate <0, {15 * @count@, O, O}>:
}

Figure 14: A simple SCEFO for-loop

Prefixing. Another useful feature is provided by the prefix statement.
Since all names in a SCEFO scene must be unique, the animator must make sure
not to use the same name twice. If a scene is designed modularly, with perhaps
one main object per file, duplicate names may be used unintentionally. Name
prefixing is designed to avoid this problem. The example in Figure 15 shows how
the prefix statement can be used to ensure unique names. The first prefix state-
ment indicates that all template, instance, group, and action names in the fol-
lowing statements are to be prepended with boat_. (Obviously, they are all
related to the construction of a boat.) For example, the template defined in the
example is actually called boat_mast. The tilde in front of the name
cylinder is used as an escape mechanism, since that name should not be
prefixed. Finally, the last statement cancels the effect of the prefix. Prefixes

can be nested, so the prefix statement actually “pushes” and “pops” strings.
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prefix (boat_):

template (mast) “cylinder:
/* ... Other boat construction statements ... */

prefix ():

Figure 15: Using prefixing to avoid name duplication

Variables. The assign statement can be used to define SCEFO variables.
Variable values, which may be interpolated over time, can be accessed in any
change. An example is shown in Figure 16, in which the variable random_move
is set to a list of three random numbers, each ranging from 0 to 2. (Each
number will change value at each rendered frame.) This random vector is added
to a translation vector for each of two objects, moving in opposite directions.
The variable is used in this example to hold the random values, so that the same

vector can be added to both translations.

Extensibility

No animation system is complete without a way for a user to add features.
ASAS and S-Dynamics, for example, allow certain extensions to be added

through LISP programming[67,77|. This ability not only gives animators a
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assign (random_move) <O, {random(2), random(2), random(2)3}>:

change (Flyl) translate <O, {O, 0, O} + s$random_move>
. <0, { 100, O, O} + s$random_move>;
change (Fly2) translate <0, {0, 0, 0} + $random_move>

<0, {-100, O, O} + $random_move>;

Figure 18: A SCEFO variable

means for adding effects, but also allows researchers to test new techniques
easily and quickly without having to recompile the system or change existing

software.

There are three types of extensions that can be added to SCEFO: opera-
tors, interpolation methods, and vélue functions. Each requires some code to be
written in C and compiled. The resulting object code may then be loaded
dynamically into any program, such as a renderer, that is processing the SCEFO
script[63]. The SCEFO loadfile statement is used to make the executing pro-
gram load the object file. The calling sequence for each of the extensions is
defined uniquely. Unlike ASAS and S-Dynamics users, 2 SCEFO animator does
not have to worry about how f;he new code interfaces with the system, as long

as the procedure matches the sequence.

In the case of operators, the user must write code that applies the operator

to an object, affecting its state. The procedure is passed the necessary control
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values after interpolation at the frame being processed. A user-provided
specification ensures that these values are acceptable to the procedure. The
code can implement a complex motion, a change in surface characteristics or

geometry, a combination of these, or anything else.

An interpolation method is implemented as a procedure that takes a set of
times, control valués, and the frame time being interpolated. They may also be
passed extra parameters specified in a SCEFO script. An interpolation method,
like an operator, has an associated value specification so that it can check

incoming control values for compatibility.

The third possible user-defined extension involves value functions. These
are functions, like sin and cos used in a previous example, that take values as
operands and produce other values. The functions are defined in a format com-
patible with the VAL value-handling package[73]. New functions can be written

to perform complex calculations or any other non-standard functions.

Summary

In this chapter we have described the features of the SCEFO script
language that allow animators to define models in 2 consistent and straightfor-
ward manner. The template/instance distinction, CSG operators, grouping and

action constructs, contextual changes, and fields provide flexibility, while the



Chapter 8: The SCEFO Language 77

unambiguous statement-ordering rules ensure predictability. The extra syntac-
tic features, such as loops, prefixes, and variables, make scriptwriting a more
manageable task. Furthermore, any feature that does not exist in the language

but is helpful for a particular model can be added as a user extension.
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4. Rendering

Rendering produces a view of a scene, either for feedback while modeling,
or as part of a finished animation. An animator who wants a rendered scene for
immediate feedback is usually willing to sacrifice some image quality for fast
turnaround. When the model is complete, the opposite is often the case. For
this reason, and because of current hardware limitations, several levels of real-
ism and speed in rendering are required. The goal is to provide the best perfor-
mance for the current hardware but to be flexible enough that if hardware
improves, or if a new rendering technique is developed, the system does not

become obsolete.

To provide this flexibility requires that the modeling and rendering com-
ponents of the animation system be decoupled, so that one does not depend on
the other. If a model is stored as a collection of polygons or other low-level

primitives, for example, the renderer has no choice but to produce an image of
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polygonal objects. This particular situation is common to all other known sys-
tems, preventing them from producing smooth ray traced images. The twizt sys-
tem(34] and the system developed at the University of North Carolina[8] were
both designed with multiple re.nderer capabilities, but neither is set up to do

procedural ray tracing.

In BAGS, rendering must impose a particular view upon a mod;al stored in
the SCEFO language. Because SCEFO does not contain any renderer-specific
information such as polygons, a renderer is free to represent each object in
whatever way is best; the object-oriented OFF interface allows the objects to be
treated in this manner. Therefore, both polygonal and ray tracing rendering
methods work from the same model. Furthermore, this approach permits the
most accurate representation of a model to be created for a given frame. For
example, the number of polygons used to approximate an object can be selected
automatically for each frame, depending on the importance of the object in that

frame.

The choice of a lighting model for use in rendering is very important. A
significant amount of modeling time is devoted to lighting a scene, so it is neces-
sary that the lighting model be easy to use. The model should provide a high
degree of realism by default, but should be flexible enough so that advanced

users can override those defaults. The parameters for defining an object’s sur-
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face should be understandable and intuitive; an animator should not need a
degree in physics to create a new material specification. It should also be possi-
ble to interpolate the parameters, so that transitions between surface materials

can be animated smoothly.

The BAGS lighting model incorporates these features. The default model
produces lighting that is more realistic than that provided by the Phong model,
which is used in most other systems. Unlike other realistic models, such as
Torrance-Cook[17], the input parameters are intuitive and can be interpolated.
The model is also flexible, in that any of the parameters or computed lighting
va,l‘ues may be set or modified by user-defined functions. This is similar to the
flexibility built into Cook’s shade trees(18] and Perlin’s image synthesizer{64],

but is available to non-programming animators.

The BAGS Rendering Process

Rendering may produce a single image or a series of imagés thét becomes
an animation when displayed in sequence. Either way, rendering is the task of
representing a view of a scene at a single frame as a two-dimensional picture. If
an animation is to be rendered, the process is repeated for each frame of the

animation.
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Rendering a frame can be separated into four primary steps:
e interpolating changes at the given frame;
e computing the states of objects, lights, and cameras at the frame;
e determining visible surfaces;
e lighting and shading surfaces.

The last two items are necessary only for shaded images; wire-frame renderers

do not need to hide or shade surfaces.

Input to a renderer is usually in the form of a SCEFO script. The SCENE
software package[74] parses a SCEFO script and sets up data structures that
correspond to the scene. If the rendering is b;aing done by an interactive model-
ing program, that program is already working with a SCENE data structure,
and therefore does not need to parse a script. SCENE also includes code to
write out part or all of a scene to a file, so that modelers can create SCEFO
scripts. Figure 17 is a block diagram of the central packages in BAGS which are

involved in the rendering process.

Given a SCENE data structure, the FRAME package can access the con-
tents of a single frame. It uses the SOI (Standard Operators and Interpolation
methods) package to interpolate control points at the frame and to determine
what transformations result from each SCEFO operator. The result is a data

structure that corresponds to the contents of the frame. This includes the
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Figure 17: BAGS rendering block diagram

objects, lights, and cameras that are visible and transformations that are to be

applied to each of them.

Determining the state of an object is then a matter of applying its
transformations. Each object transformation is sent to the object-oriented OFF
package, which sends it to the appropriate object class. The class then deter-
mines how the transformation affects the object’s state and acts accordingly.
OFF stores state information with each object, so the information is available

when the object is rendered.

The remaining steps are all renderer-dependent. Currently in BAGS there
are two broad categories of renderers: polygonal approximation and ray tracing.
Polygonal approximation is used for several rendering methods, including wire-

frame. faceted. depth-buffered, and scanline. Each of these methods (except
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wire-frame, which displays all edges of all polygons) includes some mechanism
for determining which polygons, or pieces of polygons, lie in front of others. This
step is called wisible surface determination. The ray tracing tecilnique traces
rays from the camera to objects in the scene to determine visible surfaces. The
first objéct that is intersected by a ray is the one that is visible. Each of these
methods is described in more detail later in this chapter. Images produced from

the same model by four different rendering methods are shown in Figure 18.

There are OFF class routines for both of the rendering formats for each
class of objects. Every class must be able, upon request, to provide a polygonal
a.ppl';)xima.tion of an object in its class or to intersect a ray with an object.
Since these procedures are implemented on a class-by-class basis, they may be
tailored for maximum efficiency and quality. The OFF software package serves

as the interface between renderers and the object classes, as diagrammed in Fig-

ure 19.

The Lighting Model

For all but wire-frame renderers, lighting and shading are the next steps in
the rendering process. Lighting is the process of determining the light intensity
reaching the camera from a point on a visible surface. Shading is the process by

which each pixel (picture element) of the rendered image is set to some value
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Figure 18: Rendering comparison. Clockwise from upper left, software depth
buffer, hardware depth buffer, ray tracing, scanline
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Renderers
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« Intersect object with rgt;
« Approximate object with polygons
« Find object’s extent

ete.

Figure 19: OFF interface between renderers and object classes

related to the intensity reaching the corresponding point on the camera’s film
area. Shading is tied in with the particular rendering method, but all renderers

in BAGS use the same lighting model.

Other Models

The realism of an image is dependent largely upon the quality of the light-
ing model. Most models compute the light intensity reflected from a surface
point as a function of the relative geometry of the light, view, and surface. as
diagrammed in Figure 20. More complex models use additional information. as

described jater.
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i Surface
Light normal

# source N
Highlight

difaction

uV

V  Camera

Figure 20: Lighting geometry

Early renderers used 2 model based on Lambert’s cosine law, which states
that the light intensity, I,, reflected from a surface point to the eye is equal to
the incident intensity, J, times the product of the diffuse reflectivity. r,, of the
surface and the cosine of the angle of incidence, a:

I, =1 rycosa.
This model is still used in some graphics systems because it is easy to implement
and fast to compute. The cosine can be computed as the dot product of the sur-
face normal, N, and the unit vector, L, from the surface point to the light

source. An example of Lambert lighting is shown in Figure 21.

Since the Lambertian reflected intensity is independent of the view direc-

tion, this model tends to produce diffuse, “chalky™ surface shading. Specular
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Figure 21: Lambert lighting

(shiny highlight) reflections from smooth surfaces are ignored. The Phong light-

ing model[12] adds these reflections:

L =1 [rdcosa + r,cos"ﬂ],

where r, is the specular reflectivity of the surface, and 8 is the angle between
the direction of view and the highlight vector, H, the vector along which light
from the source will travel after reflecting from the surface point. The cosine

can be computed as the dot product of H and V. The exponent & is a number
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that corresponds to the “shininess” of the surface; the higher the exponent, the

shinier the surface and the smaller the spread of the specular reflection. Figure

22 is an example of Phong lighting.

6 s 0 w203 gy

-

Figure 22: Phong lighting

The Phong model is slower than the Lambert, since it is usually imple-
mented with Phong shading[12] for reasonable fidelity. Phong shading requires
the interpolation of the surface normal at each image pixel, a relatively slow

operation. Lambert lighting, on the other hand. can be used with Gouraud
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shading[37], in which pixel intensities are interpolated. Advances have been
made in improving the speed of Phong shading[10], and more hardware systems
with Phong capability are appearing. However, many hardware devices still

provide only Gouraud shading, even with Phong lighting.

One problem with Phong lighting is that a user of the model is required to
select the values defining a surface material and to make sure that they are con-
sistent. Because the values of r;, r,, and & are independent, there is nothing to
prevent a user from'creat,ing inconsistent, and therefore unrealistic, materials.
For example, a surface could be defined with 2 high specular reflectivity and a
small specular exponent, meaning that the surface material is very smooth,
causing most of the incident light to be reflected specularly, but is not smooth
enough to have a small (shinier) highlight. The sphere in Figure 23 is an exam-

ple of an inconsistent object.

Furthermore, the Phong model is not very realistic. Several improvements
have been made, each bringing image quality closer to photorealism. Blinn|11],
Whitted(83], Torrance and Cook[17], and Hall[43] have all developed improve-
ments to computer lighting models. One important inclusion is the Fresnel for-
mula, which accounts for the change in reflectivity of a surface as the angle of
incidence varies. This accounts for the effect known as grazing incidence, when

the light direction is nearly perpendicular to the surface normal, causing the
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Figure 23: Phong lighting of an inconsistent object

reflectivity to approach unity (perfect reflection). Torrance and Cook also
modeled the difference in reflection from metallic and non-metallic surfaces. An

example of Torrance-Cook lighting is shown in Figure 24.

Each of these advanced models represents a slightly different approxima-
tion of physical phenomena. based on some set of input parameters. In some
models. such as Phong, the input parameters are defined solely to make the

model work. without regard to user-friendliness. For example, the specular
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Figure 24: Torrance-Cook lighting

reflectivity and specular exponent are numbers that have to be guessed for a
particular surface. Furthermore, the guesswork can only be done by someone
familiar with the model. The more realistic models require more precise input .
parameters that are typically derived from materials science. For example, the
Torrance-Cook model requires the specification of the microfacet slope distribu-
tion for a surface, which is a measure of how rough the surface is at the micros-

copic level.
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One problem with these models is that a naive user would have difficulty
specifying the parameters for a surface. Most non-technical animators would
not know the microfacet slope distribution or even the specular reflectivity 6f a
surface. While most common materials used in images, such as copper and
glass, could be predefined by a system, these models would limit the animator’s

freedom in defining surface materials.

The BAGS Model

The lighting model used in BAGS is designed to be used by non-technical
animators. [t can be interpolated easily and is flexible. These two features are
very important in an animation system: the former is needed so that it is possi-
ble to animate changing surface properties, while the latter is needed to model

nonuniform and nonstandard materials.

The realism produced by the model is high when compared to Phong light-
ing, as shown in Figure 25. It is accomplished by modeling the following effects

in addition to conventional Lambertian/Phong lighting:

o Fresnel’s formula: The reflectivity of a surface increases as the angle of

incidence approaches the grazing angle.

o Geometric attenuation: Fresnel reflectivity is attenuated by the geometry

of the surface, so that rougher surfaces do not reach perfect reflectivity
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near the grazing angle.

o Metallic vs. non-metallic reflection: Specular reflections from metallic sur-
faces usually take on the color of the surface material, while those from

non-metallic surfaces take on the color of the light source.

e Snell’s Law: Light refracting through a transparent surface refracts
according to Snell’s law; in some cases the light is not transmitted, but

instead reflects internally.

o (Conservation of light energy: The sum of the light intensities absorbed by
a surface, reflected from it, and transmitted through it should equal the

incident intensity.

These rules are all internal to the system; the user does not have to make any
effort to obey them. The realistic effects are all derived from an intuitive set of
input parameters. The following description is intended to provide an overview
of the way in which these effects are achieved; Appendix B contains a more com-

plete description of the lighting model.

The input parameters to the model are the view direction, V: the red-
green-blue (RGB) light source intensity, I, and direction, L; the surface normal,

N; and a set of five material parameters. These are the RGB surface color, C;

*

smoothness, s; “metalness” ™ m; transparency, ¢; and index of refraction, n. All

(e

*We realize that “metalness” is not a real word. “Metallicity,” “metallicness.
“metallaceousness” are no better. .

metalositude,” and
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Figure 25: BAGS lighting

of these parameters are numbers ranging from 0.0 to 1.0, except for the index of

refraction, which is a physical constant (e.g., 1.5 for certain types of glass).

A smoothness of 0 indicates that the surface is diffuse and chalky, while a
smoothness of 1 gives a perfect mirror, re‘ﬁe‘cting all incident light along the
highlight vector. Figure 26 shows sixteen spheres of varying smoothness, from 0
at the upper left to 1 at the lower right. The smoothness parameter is used to

compute the diffuse reflectivity and specular reflectivity at normal incidence.
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Because Fresnel effects are modeled, the specular reflectivity is not constant, but

instead depends on the geometry of the normal, the view, and the light source.

The lighting model computes all of these effects from the smoothness and
the lighting geometry. Other models require extra effort on the user’s part to
make sure that the effects look correct together. With the Phong model, for
example, the diffuse and specular reflectivities are typiéally specified by the user,
as is the specular exponent. Finding the right combination of these parameters
to produce a realistic material can be time-consuming for an animator. With
the BAGS model, these effects are coupled by default; advanced users can decou-

ple them when desired.

The “metalness™ is used to differentiate between metallic surfaces (value 1)
and non-metallic surfaces (value 0). Specular reflections from metallic surfaces
take on the color of the surface material, while reflections from nonmetallic sur-
faces remain the same color as the incident light source. Figure 27 shows two
spheres, one plastic (metalness 0) and one metal (metalness 1). Metalness values

between O and 1, while non-realistic, are valid as well.

The transparency parameter denotes how much light passes through the
surface of an object. A value of O defines a cc;"mpletely opaque surface. How-
ever, a transparency of 1 does not mean that all light passes through the sur-

face. First of all, the surface may be smooth, and thus reflect some light from
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Figure 26: Spheres of varying smoothness: 0 at upper left, 1 at lower right
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Figure 27: Plastic sphere, metallic sphere

the surface. All surfaces reflect light specularly near the grazing angle, so tran-
sparency effects diminish in those circumstances. Figure 28 shows the effect of
varying the transparency parameter, again from O at the upper left to 1 at the

lower right.

The index of refraction is a physical constant that determines how a light
ray is deflected when passing through the interface of the surface material with

air. Since this number represents a ratio between the speed of light through the
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Figure 28: Varying transparency: 0 at upper left, 1 at lower right

two materials on either side of the interface, it cannot be constrained to lie
between 0 and 1. An index of 1 is that of a vacuum (or air, for all intents and
purposes); a surface with that inde); would not bend light rays at all. The
spheres in Figure 29 have indices of refraction varying from 0.1 at the upper left
to 1.6 at the lower right. The second sphere from the left in the second row

from the top has an index of 1.
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Figure 29: Varying index of refraction, from 0.1 to 1.8

The implementation of the BAGS lighting model computes the reflected
intensity in a series of steps. Each computation results in an intermediate value
corresponding to some aspect of the lighting model. Some of the more impor-

tant values are described below.

The diffuse reflectivity, r,, is the reflectivity of a surface with respect to

diffuse light. The equation
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rg=(1-s%1-1¢)

gives the value. Smooth or transparent surfaces have lower diffuse reflectivities,

since they reflect specularly or transmit more of the incident light. The product

of the diffuse reflectivity with the cosine of the angle of incidence (computed as a

dot product)

| = (N M L)Td
yields the Lambert lighting term, /. The diffuse contribution, K, is then

K, = IC,

the product of the Lambert term and the surface color.

Modeling the specular contribution is a little more complica.ted. The
highlight vector, H, is first computed from the light direction vector, L; the
angle of incidence; and the surface normal:

H=L +2(N-L)N.
This formula is used when computing the specular angle, B, between the
highlight vector and the view vector. The cosine of this angle is raised to the

power of the specular exponent h. This exponent is computed as

3

b= ,
1—s

which is an empirically derived formula. The result of raising the cosine to this

power is called is called the specular spread, p:

[

This value is, in effect, the amount by which the specularly reflected light will
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spread from the highlight direction and, consequently, determines the size of 2
specular highlight. The spread is similar in effect to the specular exponent in

the Phong model but does not require any guesswork on the user’s part.

Fresnel reflectivity is modeled by the f term, which is based on F, a func-
tion of the angle of incidence. The original formula was derived by Fresnel for
materials wit;h a known index of refraction. For other materials, some form of
approximation is needed. Torrance and Cook[17] suggest measuring reflectivity
at normal incidence and fitting a Fresnel-like curve to the results. Our

approach uses an approximation to the Fresnel formula:

11
(@ — k)2 K
Fle) = 1 : 1

(1- k)P ¥

where o' = =2 to bring it in the range from 0 to 1, and k; is a constant that
7/2 & g /

nfa

tailors the curve to fit the actual Fresnel curve. Figure 30 shows a comparison
of the Fresnel curve and the BAGS approximation, with a k; value of 1.12.
Because we already have found the cosine of a, the angle of incidence, we use a

slightly different version of the F function which takes the cosine as an operand.

The Fresnel reflectivity is attenuated for rough surfaces by geometric
obstruction of light. Torrance and Sparrow[79] formulated a theory to account
for this effect, and Blinn{11] applied the theory to computer graphics. Blinn’s

formulation was subsequently used by Torrance and Cook in their model.
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Reflectivity Reflectivity

0 pi/s2 0 pi/2
Incident angle Incident angle

Figure 30: Comparison of Fresnel formula curve and BAGS approximation

Unfortunately, the geometric attenuation factor based on. this theory
accounts for only certain lighting geometries; there are cases in which the model
falls apart drastically[22]. The geometric attenuation factor g in BAGS is based
on an approximation similar to that of the Fresnel curve, avoiding the discon-

tinuity:

1 _ 1

(1— Ic,)2 {o! — I:‘,)2
S RS S
(1— &) k?

G(e') =

where k, is another constant, again affecting the curve’s shape. The curve is

graphed against the incident angle in Figure 31 for a &, value of 1.01. As with
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the Fresnel curve, the geometric attenuation is computed from the cosine of the

incident angle, instead of from the angle itself.

The Fresnel term causes the reflectivity to increase as the incident angle
approaches grazing incidence, while the geometric attenuation factor attenuates
the reflectivity at the same time. Because the constants for the two curves
differ, the effects do not merely cancel each other out. The product of the two
factors

a=[g

is called the reflectivity adjustment, and is graphed in Figure 31.

] e 1
Attenuation Adjustment
Pactor
ot : 0
-] pi/2 [+] pis2
Incident angle Incident angle

Figure 31: Geometric attenuation curve and adjustment curve
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The adjusted reflectivity, r,, is based on the normal reflectivity, r,, but also
takes into account the specular spread and adjustment:
r, =1, + {1 = 1,)a.
Because the value of ¢ is 0 at normal incidence (i.e., when & = 0), the value of r,
is the same as r,, which is defined as the reflectivity at normal incidence. As the
incident angle increases, the adjusted reflectivity increases towards untty like

the a curve does.

The product of the adjusted reflectivity and specular spread
Tl = Tllp
is the specular reflectivity. It is the amount of light that reflects specularly

from the surface along the direction of view.

The color of the specular reflection depends on the metalness, m; the angle
of incidence; and the color of the surface. Specular reflections from metallic sur-
faces tend to be the color of the surface, except when Fresnel reflectivity
increases rapidly (we can use the attenuation factor to determine when this
occurs). The specular color is then

Co=Ci+m(1l ~d)(C-0C)),
where C, represents pure white, with red, green, and blue values of 1. This for-
mula gives a color somewhere between the color of the surface and pure white;
this color will be multiplied by the color of the light source to arrive at the final

specularly-reflected intensity.
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The specular contribution K, is then
Ka =1, Ou
the product of the reflectivity and the color. This value is added to the diffuse
contribution, and the result is multiplied by the incident light intensity,

I, = I(Kd + K‘),

to arrive at the reflected intensity.

The effects described so far have only been local. That is, the reflected
in