8111076

CARLBOM, INGRID BIRGITTA

SYSTEM ARCHITECTURE FOR HIGH-PERFORMANCE VECTOR
GRAPHICS

Brown University Pu.D. 1980

University
Microfilms
International . zes Road, Ann Arbor, M1 48106

Copyright 1981
by
Carlbom, Ingrid Birgitta
All Rights Reserved

PLEASE NOTE:

The negative microfilm copy of this
dissertation was prepared and inspected by the
school granting the degree. We are using this
film without further inspection or change. If
there are any questions about the film content,
please write directly to the school.

UNIVERSITY MICROFILMS

System Architecture for High-Performance Vector Graphics

by

Ingrid Birgitta Carlbom

Fil. Eandey University of Stockholm, 1968
MeSey Cornell University, 1971
Thesis

Submitted in partial fulfillment of the requirements for the
Degree of Doctor of Phllbsophy

in the Department of Computer Science at Brown University

June, 1980

ii

This dissertation by Ingrid'Birgitta Carlbom
is accepted in iis present form by the Department 6f
Computer Science as satisfying the

dissertation requirement for the degree of Doctor of Philosophy

. . //’
November 28, 1979 L‘“VSQZ£%’ bﬁ9~v)(i::2b“‘*

Date: e 60 6 06006000 VS OS OSSOQ....OQQQ...........l

Recommended to the Graduate Council

November 15, 1979

Da-'te= ® 0 00008 OO 0000V OFISEPSISES

"November 15, 1979

Date: © e 0 00 0OB G OO0 O OCOOOSTPSS

. November 28, 1979

Date: seesoenrtecresstases.

Approved by the Graduate Council

(d“'ﬂ

> 1‘9 z‘"‘('::“ 9) /ﬁ),
Date: %.\3.\.9.?0...,...%::‘”?‘.”:fﬁ?f’.@”w

iii

VITA

BPersonal Data

Education

Sept. 1271

June 1968

Full name: Ingrid Birgitta Carlbom
Date of Birth: May 25, 1945

Place of Birth: Hudiksval, Sweden
Citizenship: Swedish

MeSe in Computer Sclence, Cornell University, Ithace,
New York

Fil. Kand. in Applied Mathematics, University of
Stockholmy, Stockholm, Sweden

Professional Experiences and Activities

Co=-De of the SIGGRAPH proposed standard for a
Core Graphics System; Co—Author and Production Bd;tor

of the Status Report (Sept. 1976 - June 1977).

Vice-President and Co=Founder of Capital Advisors,
Incey Providencey Rhode Island, an investment
advisory comnpanye Developed and implemented a
technical stock market model (Nove 1975 ~ present)e.
The exclusive rights to the product were purchased by
Paine Webber Jackson and Curtis, Incey a major New
York Stock Exchange firm.

Research Agsistant, Division of Applied Mathematics,
Brown University, Providence, Rhode Island. Designed

and implemented a microcode simulator for a Digital
Scientific Corp. Meta 43 co-designed and developed an
experimental compiler for the Language for Systems
Development (Septe 1971 — Dece 1972; Septs. 1974 — May
1875).

Teaching Assistanpt, Division of Applied Mathematics,
Brown University, Providence, Rhode Islande Designed

and assisted in graduate courses in computer graphics
(Janes 1973 ~ May 1897335 Jane 1974 - May 1974).

te Programmers Brown University, Providence,
Rhode Islande. Designed and implemented a Student

Evaluation System, which was proposed as an
alternative to the grading system (Septe. 1972 - Auge.
1973).

Teaching Assistant, Department of Computer Science,
Cornell University, Ithacay, New Yorke. Assisted in

graduate courses in numerical analysis and picture
processing (Sept. 1969 - May 1971).

Computer Programmery Scholastic Megazines, Ince,
Englewood Cliffs, New Jersey (Aug. 1970 -~ Sept.
1970).

Research - Assocjate, Institute of Inorganic and
Physical Chemistry, University of Stockholm,

Stockholm, Sweden. Developed prograns for crystallo~
graphlc'calculatlons and for illustration of crystal-
lographic structures (Septe 1968 - June 1969).
Research Aggigign&, Computation Group, Stanford
Linear Accelerator Center, Stanford, Californiae«
Assisted in pattern recognition and graphical data
processing research (July 1967 - Jan. 1968).

Computer Programmexr, SAAB, Technical Department,
Stockholm, Swedene. Classified work for the armed

forces (June 1966 — Octe. 1966).

Vice=President of the Brown Univeersity Student
Chapter of the ACM (Septe 1971 — May 1973).

Theoretical Editorx, Brown University Computing
Reviewy, Published by the Brown University Student

Chapter of the ACM (Jen. 1972 — Dece. 1972).

Formal Publicetions

"planar Geometric Pro jections and Viewing
Transformations" (with Je Paciorek), to appear in

Computipz Surveygz 10y 4 (Dec. 1978)

"Status Report of the Graphics Stendards Planning
Caommittee of ACM/ SIGGRAPH (Part I1: General
Methodology and the Proposed Standard)!" (with D.
Bergeron, Je Foley, Pe Bono, Te DPreisbachy Je
Michenery, Es Sonderegger, A. van Dam), ngggign

Graphics 11, 3 (1977)

"A Microprogrammed Satellite Graphics System!" (with
G. Stabler, K« Magel), Proc. of SIGPLAN — SIGMICRO

Interface Meeting Harriman, New York (1973)

Internal Reports

UTHESEUS, Preliminary Reference Manual®", Brown
University, Providence, Rhode Island (Nov. 1977)
"Survey Report on Vector General 3400, Adage GP/40G0,
and Evans and Sutherland Picture System" (with J.
Foley; Ae van Damy Re. Burns, He. Webber)}, prepared for
Vector General, Ince (May 1976)

"A Compaerison between LSD2, Algol W, HAL/S end SUEY,
Brown University, Providence, Rhode Istland (Jane

1976)

"LSD2 Language Reference Manual', Brown University,
Providence, Rhode Island (June 1975)

"Algorithmg for Transforming PDL-Expressions into
Standard Form and into &a Primitive Connection
Matrix", Stantord Linear Accelerator Center
Computation Group, Stanford, Californiay, CGMT 38
(Febre. 1968)

rofessional Associlations

Association of Computing Machinery (ACM), ACM
SIGGRAPH

Honors and Awerds

Sigma Xi13 Scholarship from Thanks to Scandinaviag
Ince (Septe 1970 - May 1971)

vi

TABLE OF CONTENTS

1 Introducthﬂoooooocoooocoo-oooooooooooooooooooooo-ouoo-ooooo-ool

1.1 The Subject Area of the Th8818.ooocoooooooooooooco.o.oocool
The Preblem and Its Importance........o.....-.....-o......4
The AppPOQCh to the Prohlem.uoo-............c.............7
COntPibutiOﬂS-...ooooooo...o.ooocoo.oooo.oooooo.ooonoc..oog

Outline of the TheSISoooooooocooooeoooooooncooooooooooo.oll

L
[] [] ® []
N ON

2 Related Research......-....o.............a.-.............-....13

3 Functlona1 Modelooonoo-onoo.oooooooooooooooono.to000000000000022
3.1 Representations, Processes, and Input in the Functional
Modeloooocooo.ooooo-.ooooo.oo.oooooooooooooooo000000000000024
3.2 Output in the Functional MOdel.oooo.ooooooo-ooo000000000034
2.1 Appllcatlons Data Structure.........o..-.............34
2 Dlsplay File Compller.............-..-.......-......037
2 Structured Dlsplay Flleoooooooooo-o.o-oo000000000000037
2 Dlsplay Processing Unit.................o-..o........38
2. Linear Dlsplay Flle.....................u............39
2. Dlsplay Control Unltoo'oooooooaooooo0000000000000000039
T
C
4
4

U ON

nput in the Functional Model............................40
ase Studles.....oo-ooo-oooooo-ooooooot00000000000009000045
1 Evans and Sutherland Pic ture System DeeccsssssscssscseesdB
«2 Vector General 3400.00oocoooooooouo.ooooo.eoooooonoooss
4.3 A FPunctional Comparison of the EES PS2 and the

VG3400.. ooooooooo-ono-oouoooo.oooooooooooocoooooeoo.oo-oosg

W w
* o
WOWLWLRLLLOLOUOWW®
.

L]
@
[

4 Performance Modelling Techniques......-.......-o.o............63
4,1 Macro InStPucthﬂSocouoooo.ocoooooo000000000000901000100067
4.2 Hardware Parameters of a Performance ModeleocssscsccecccoeTl
4,3 Performance Measures.....................................76

4.3.1 Activity FlOWSoooaooc.oooonoooo000000000000000.00000076

3.2 Resource Contentlon...............o..................79

4.3¢241 Stretch.-......................o....o..........a.83

4.3¢2.2 Lag-........-...................................092

443243 Large Resource Requests.............a-...........94

4,3.2.4 Buffered Devlces.....-...........................94

5 Applicaticn of the Performance Modelling TechniqueSeceeceeccseesIb
5.1 Macro Instructlons.....o.........................-..-.-..97
5.2 Actlvity Flows-..-.-.........»-...................-.-...100
5.3 Timing Sequence Dlagrams.-...oo......-......o...........107
5.4 Applicatlon of DelaYSssoooooof}oooooooooooooooo.oo-ocooollz

5.4.1 Local Del&y.....olooo.oooooooooo-ooooooooeoooooooo..114
S5e4¢2 Combining Delays for Procemses......f....-..........118

5.5 Composlte Macro Instrucflons..oa........s...o........o..123

6 COmp&PiSODS of Graphics Systems.;-...............e....-......126

L vii

General Methodology of Comparison...........-,.....-..-.126
Introduction to the Case Study..-.................--..90128
e2.1 Selection of Devices for the Case StudYeeceeeesssseeel28
e2+2 Selection of Features for the Case Studyeceesssecesseeal30
«2e¢3 Collection of Experlmental Dnt&ooocooooooooooo-ooooolal
A Macro Instruction S“bsetooocoaooocooo.oo00000000000000132
«3.1 Line Macro Functions.o...-......-.........-......-a.133
3.2 A Modelling Transformation Macro Functioneesocseceosseseid2
Composite Macro Instructions for EES PS2 and VG3400eeees147
edel A Composlte Line Macro Instructlon................-.148
ed4.2 A Modelling Transformation Composite Macro
Instructlono..-....................................-....163
Results of the Comparlson.o........o....................166
«5.1 Polyline Comparlson......o.......................-..166
eS5+2 Modelling Transformation Comparison.o........-......173
eSe

3 Summary.e-...;.-o.........ee.;......................175

7 Methodology for Hardware and Firmware DesSigne ssssececcsccscceeasliB82
7.1 General Methodology of Design--..-.....o......o.....-...182
7.2 Effects of 1/0 Hardware Parameters on Performanceseseccs«185
‘7«3 User Instruction Set Design..............o............-.189

7¢3.1 Line Data Addressing MOdéSooooooowo-000000000000-000189

7.3.2 Summary......o.....................................-201

8 Graphlcs SOftW&reoo.oocc.oooooooooooooooo-oaooooo0000000-0000202
8.1 Introductiono.................................-.o.......ZOZ
8.2 Theseus =+~ A Graphics Systém Access Hethod...;}.....-..-.205

8¢2¢.1 An Overview of Theseus.................o............205
8.2.1.1 ObJects and SegmentSo..-..o.....................207
80201.2 Modelllng Transformations.......................209
8¢2e1.3 PPimltiVGS.-oooooooooooaoonocoo.oooocooooocopoooZlo
214 Interaction Handling.....-......................211

Namlng...................l‘o.........‘0....0...‘....213

2

3 Exteﬂtsooooooooooo.ooooc.o-ooooooocooooccooooo%oooonle

4 Viewing Transformatlons............o......o.........217

5 Summary.........o..e.............................-..220

9 ConCIUSionoo-o.oocooo.oooooooonooooooooo.oooooo00000000010000222
9.1 Summary of Rese&PChoooooooooooeooo.ooo.o.o00000000000000222
9.2 Future then810nSoo-o..oooooooooooooocoo0000000000000000225

Blbliography...228
A Appendix: Summary of Gf&phlcs System Capabilitles............242
B Appendix: PDP-11 Assembler COdCeoscesacssccscscscosscscscscsscsccccee2d?
C Appendix?® Theseus...............o............................257

C.1 Introductlon...o.-..........-......................-....257

Ce2 Hlerarchy........-........-o.....-..............-....-..258

C.2.1 ObJectB Q.....QO....O...............O........O000000259

viii

Ce2.2 Vlews............................-.....o..........o.266
Ce2.3 Segments.........................o..-.-...o.........269
Ce2.4 Naming.........................o......o.............271
Ce2e5 Extents...................-........o..........o.....273
C.3d TP&ﬂSfOPm&thns.....-oooooqooooooooooooo0000000000000000276
C.3.1 Range Of Vorld Coordlnates..e...-..o.............{..277
Ce3e2 Hodelllng Transformatlons......o....................278
Ce3e3 Viewing Transformatlons.......-...u..............-¢o282
C.4 Primitives.............-.........-..-.o.............o...291
Ced4e.1l Line and Point Primitlves.o......u..............---.292
Cede2 Text.........................o......................297
Ce4e3 Menu Text-...............................a..........299
Co.5 Attributes...o..o..........................o............aOO
Ca6 Interactlon....-.............-...o....o.................305
Cebel

006.2 Button&.O.l.’......‘......00’0.0.0.0.....0.310

P1¢kcoooocooooon.ooo-o..ooeono-ooooooooco.ooooeoooo¢306

Ce6.3 KGYbOBrdooooooooo.‘.cooooooooooo-oooqo10000006000000312
Ceb6e4 Locator..........-...........o............-oo-......314
Ceb6e5 Valuator...-...........a......................n.....316
Ce646 Event Handling.....................o..........o.....317
Ce7 COﬂtrOloooooooooooooooooooooooooooao-coooo00000000000000321
CeTel Initlalizatlon..........................o.........-.322
CeTe2 Terminatlon.-.......b.......a..............--.....-.323
CeT7e3 Clock..................e.....................-......323
CeT7e4 Defaults.....o-.....................................323
CeTe5 Picture Flles-.......................o-.............324
CeT7e6 Error Eandling...-.......o..-.....o.ca.o............325

ix

The research for this thesis could net have been
accomplished without my advisor, Andries van Damj his support is

greatly appreciated.

A very speclial thanks goes to: James Michener of
Intermetricsy Incey Wwhoy 'during Andries van Dam's sabbatical,
acted as my thesis advisore. His‘ guidance, encouragement, and
criticism of this work and his many careful readings of this

document were invaluable.

Many other people deserve mentione Robert Sedgewick of Brown
Uniferslty and James Foley of The George Washington University
gave this thesis’ critical reviews and provided many constructive
suggestions for its improvement., Dick Bulterman of Brown
University collected most of the data concerning the VG3400 and,
in additiony, gave many, very helpful suggestions. Jeffrsoy Buzen
of BGS Systems,y Incey pfpvided invaluable assistance regarding
the performance modell#ng techniques described in Chaptefs 4 and
5. Janet Michel, Russéll Burns, and Harold Webber, all of Brown
University, have, during this work, given many helpful

suggestions, in particular regerding the design of Theseuse.

It was a great pleasure to be able to use two existing,
commercial graphics systems as case studies for this work. I want

to thank Evans and Sutherland Computer Corporation and Vector

General, Incey for mékln“ the necessary information available,
and I want to thank individually Gary Watkins, Roy Keir, and
Mickey Mantle of Evans and Sutherland Computer Corporation, and
Allen Leinwand, Lou Schaeffer, and Neal Johnson of Vector
General, Ince.y for providing the material and for answering what

must have seemed to be an endless number of questionse

Finally, I want to mention the staff of the Computing
Laboratory at Brown University who provided a lot of special

service to help me meet deadlinese.

The rescarch reported here Wwas supported in part by the

National Science Foundation Grant Noe MCS~-76-04002, by the Office

of Naval Research Contract N14-75-C-0427, and by Brown

Universitye.

1_INTRODUCTION

Thls research 1s concerned with high:ngngggmgngg vector
graphics systems. The term "high—performance" is frequently used
in the literature, although rarely is it precisely defined.
Traditionally, graphics systems have been measured primarily by
the number of vectors or inches of vectors that can be displayed
without flickere. Although these measures are 8till relevant,

other distinguishing parame ters of current high-peirformance

systems are their functional capabilities. In this thesis,

therefore, a high—-performance graphics system should have

capabilities for:

° deflninglobJect primitives such as lines and text in 2D

and 3D user coordinates,

¢ hierarchical object definition, which includes an object

call stack for tranasformations, attributes, and status

information,

e 2D and 3D modelling transformations: rotatey scale,

translate,

¢ viewing transformations: perspective and orthographic

projections, clippingy, window to viewport mapping,

¢ interaction handling? sampling devices, event-causing

devices, and access to the object call stack,
¢ dynamic updating of 2D and 3D objects in real-time,

e dynamic updating of the views of 2D and 3D obgjects in

real—time.

The key features that distinguish a high—-performance
graphics system from a "médlum—performance" system are facilities
for dynemic updating of elements of a complex object and views of
an object in real-time. If a system combines the functional
capabilities 1isted- above with capabilities for flicker-free
refresh of a large number of lines and with the capabilities for
smooth dynamic motion of a large number of lires, then we shall
refer %o it as "high-performance'. In the following paragraphs

the functional capabilities will be elaborated upone

An object is defined in its own local coordinéte system,
independent of the coordinate system of the display screene.
Objects can be combined .into new objects. An object |is
constructed in a hierarchical fashionj each object consists of
primitives (eegey lines, text), and references to other objects.
A reference to an object (an instapce of the object) has an

associated modelling transformation that positions the instance

in the coordinate system of the higher—-level object. In order to

produce an image of an object, a viewing transformation maps the

portion of the object that is to be viewed to the display screene.

The view of an object as well as +the object itself can be
modified dynamically in real-time. In order to creaté a sequence
of views of the objecty, the viewing transformation is modified
repeatedly.“l In order to modify the object, either the
primitives, the subob ject references, or the modelling
transformations are changede. Thus a high—-performance graphics
system allows access to the viewing transformation and ell parts

of the object definition. -

Some simple types of user interactions are highlighting of

-

"picked" primitives, keyboard echoing, and light—pen trackinge

More sophlstlcafed functions would be smooth, apparently
continuous modification of coordinates or transformations
according to the value of some analog input device, or

conditional display of parts of an object depending on the state
of some binary valued input device. A high-performance graphics
system, as defined here, is capable of dynamic response to all

common sampling and event—causing devicese.

In the remainder of this thesis, the term "graphics system'"

will always refer to a high-performance vector graphics system,

unless otherwise notede.

1.2 The Problem _and Its Importance

In all sys%em design activities there are trade—offs between
functional capabilities and performance, and performance is often
sacrificed for better functional capabilities. In graphics
systems, as well as in other real-time systems, however, this is
generally undesirable. if '& graphics system cannot update the
regquired number of lines in real—time or refresh the required
number of lines without <flicker, the system is inadequate
regardless of its functional capab ilities. For this reason, it is
very important té be able to evaluate the cost of functional

capabilities in terms of reduced performancee.

Todey'!s graphics systems are archil tecturally very complex,
with processing power distributed over several processorss
Because of the complexity of these systemg, the trade-offs
between performance and functional capabilities ere generally not
well understoode. This section outlines briefly some of the
problems faced by designers, programmers, buyers, and users of

these systemse.

The processing of an object from 1fg representation in a
user application data structure to the image oﬁ the display
screen can be done in a pipelined fashione. Indeed, in the
graphics systems that are the +topic of this thesis, this is

always the case. Each stage 1in the pipeline meps one

representation og the object to another. By implementing each
stage of the pipeline in a different processory the processing of
the different stages can be overlappede This increases the rate
of processingy whichy in turn, increases the dynamic capabitities
of the systeme One side—effect of pipeliningy however; is that
the visual. effect of a change to a representation is delayed

because it must go through each subsequent mappinge

When an obJject is processed in several stages, the user
interaction with the system can potentially directly affect the
object'!s processing at any staée. The modification of the obJject
in one representation must then be reflected into the other
representations (at both higher and lower levels). Thus, one
" side—effect of processing objects in a pipelined fashion is that

interaction handling becomes mnore complexe

The variety in approaches to the design of the processing
pipeline and of the user interaction handling makes comparisons
of graphics systems very difficulte. There are no generally
accepted comparison c;iterla for graphics systems to aid in the
evaluation of the different types of systems. The alternatives
are described only by timings for the individual processors in
the pipeline, and these timings often do not correspond £from one
system to another. One vendor [VECT78b] provides measures such
as "everage time to process 3D line segments" and "average time

to process 3D clipped line segments", and another [ESCC77]

measures for "processing of non~-visgsible lines", "processing of

.completely viélble lines", Yprocessing of lines with one endpoint

clipped', and so one.

Even equivalent measures of processing power for individual
processofs would be cf 1little help in the evaluation of the
different types of graphics systems. The reason is that these
measures take neither the concurrent processlng in the pipeline
nor the memory and bus contention into consideration. Any
meaningful éomparlsons of graphics systems must be based not only
on the processing power of the individual processors, but alsoc on

the processing cepabilities of the system as a whole.

-

The evaluation of a graphics systenm is further complicated
by the fact +that most systems are micro—-programmable. The
evaluation cannot be limited to basic architecture, but must
cover any new,arehltecturés that are obtained by altering the
user instruction sef in one of the processorse. Furthermore, there
is no existing method for determining quantitatlvely 1£ the
performance for a particular application can be increased

significantly by changing the existing microcodee.

Up to this 4ime no methodology for the design of
high—-performance graphics systems has been published. The
perfqrmance issues concerning dynamic capabiltities and
interaction handling capabilities havé never been investigatede
For exampley there are no guidelines for what degree of

processing ability each processor in the pipeline should have, or

what is a good functional distribution between the'procesaors in

the pipeline.

The solutions +to these problems clearly depend on the
application programy, sSo a certain amount of flexibility in
dividing the processing emong the processors ‘should be left to
the applications programmerse Indeed, the programmer is faced

with "division of labor" problems similar to those of the system

designere.

o he A oac to_the Problem

One of +the key problems in both evaluation and design of
graphics systems |is the definition of performancees As was
discussed in the previous section, hardware measures such as
average llhe processing time, taken ‘aione, are inadequatee. The
performance is of course influenced by the processing speed of
the individual processors, but it is also influenced by the way

these processors are interconnectede.

Performance is also highly dependent on the task that the
system is to perform. Performance, therefore, can be discussed
only in the context of a particular application or, perhaps, a

class of applications. . To summarize, performance of a gystem is

determined by:

e +the performance of the individual components,
® the system structure, and
¢ the reguirements of the application run on that systeme.

This thesis presents a functional model and a set of
performance model ling technigques for gfaphics systems. The
functional model defines the logical structure of sucﬁ graphics
systems. The model forms a basis for understanding, comparing,
and contrasting graphics systems, and for 1illustrating the
functional similarities and differences between systemse. With
this tool it is also easy to identify the system components and

relationships that affect system performance.

The performance modelling techniques are used to define some
gquantitative performance measures for graphics systems. These
measures are functions of +the speed of individual hardware
components, of the processing and I1/0 overlap in each componenty,
of the processing overlap between components, and of the

application reguirements.

The performance modelling techniques are the basis for the
solution to many of the problems discussed in the previous
gectione. Performancenmodels are used to develop some comparison
criteria for graphics systems, and one particular model is used
to illustrate the differences in performance between two existing

systems that result from their different functional capabilities.

9

Another performance model is used to evaluate a proposed néw set
of user instructions and software constructs that qomblne fhe
functional capabilities of the existing systems. Flnaliy, the
performance modelling techniques are used as an aid in developing
a methodology for the design of hardware, firﬁware instruction

set, and software for high—-performance graphics systemse.

Al though the emphasls» in this thesis is on high—-performance
devices, much of the methodology could be applied successfully to
medium— and low—performance gystemse. Because of the many
similarities between the processing of an object in a vector and
a raster graphics system, it is also believed that the techniques
discussed here, after modification to account for different
internali object representations, could be applied to raster

graphics systems.
o Contributio

The major contribution of this thesis is a methodology for
the evaluation and design of graphics systemse. This methodology
addresses issues of hardware, firmwarey and software designe. The
methodology is used to evaluate existing graphics systems and to
propose features as part of the design of a new graphics systeme

In particular, issues concerning dynamics and interaction

10

handling are considered. The methodology is based on a

functional model and a set of performance modelling techniques.
The functional model is used:

° to illustrate the basic characteristics of

" high-performance vector graphics systems,

¢ to illustrate the functional similarities and differences

between two existing graphics systems, and

e +to define the structure of the graphics systems so that
the components of the systems and the relationship
between the components that significantly affect the

system performance can be identifiede.
The performance modélling techniques are used:

® +to develop performance models that express the
relaticnship between the performance measures and the

system structure and application requirements,

® +to define comparison criteria for existing graphics

systems,

¢ +to analyze trade—offs between functional capabilities and

performance in two existing systems,

L t0o evaluate a new set oOf user 1nstructlons and scftware

constructs for a graphics system.

11

1s5 Outline of the Thesis

Chapter 2 discusses research that relates to this thesis.
This work iIincludes performance models for graphics satellite
systemsy, methodologies for optimal distribution of functions
between a host and an intelligent display device, and a proposed
new architecture for interactive graphics systems. This chapter
also ‘glves a brief overview of some past and current work in

software design for graphics systems.

Chapter 3 presenté the functional model. It discusses two
existing high—-performance graphics systems, the Vector General,
Ince 3400 (Vve3400) and 'the Evans and Sutherlaﬁd Computer
Corporation Picture System 2 (EES PsS2), and illustrates how these
systems relate to the functional modele Chapter 4 discusses some
performance modelling techniques suitable for high—-performance
graphics syétems, and Chapter 5 discusses how to derive a

performance model using the technigues in Chapter 4.

In Chapter 6 trade—offs between functional capabilities and
performance are discussed, and the performance model is used +to
develop some comparison criteria for graphics systems. The

trade-offs are discussed using the EES PS2 and the VG3400 as

examples.

12

Chapter 7 treats the methodology for hardware and firmware
designe In Chapter 8 an access method called Theseus is
introduced for a hypothetical system that is suggested based on
the results of Chapters 6 and 7. The final chapter summarizes the
research presented in +this thesis and suggests some areas of

future worke.

Appendix A gives a complete 1list of architectural features
of the EES PS2 and the VG3400, and Appendix B contains a set of
PDP-11 assembly language code sequences that implement some
functions on the EES PS2. A complete description of Theseus can

be found in Appendix C.

This thesis assumes that the reader |is familiar with
computer graphics at the level of [NEWM79] and uses some of the

terminology of the Core Graphics System [espc77].

13

2 _RELATED_RESEARCH-

Tﬁis chapter discusses research that relates to the work of
this thesis. Very 11tﬁ1e has been done in the area of design
methodologies for graphics 'systems. Some notable exceptions
discussed below include performance models for graphics satellite
systems and methodologies for optimal distribution of functions
between a host computer and an 1ntelligent display devices. In the
area of hardware and firmware design, one attempt made in recent
years to develop a radically different architecture for

interactive graphics systems will be discussed briefly.

In contrast, there has recently been a lot of activity in
the area of software designe Much of this acliivity has centered
around the Core Graphics Sys¥em [esPCc77, GSPC79]. The Core
Graphics System and some graphics packages qn which the design of

"the Core" was based are reported on belowe

The most extensive work in the area of graphics systems
performance has been done by Foley [FOLE71], including work in
collabofatlon with others [FOLE74a, FOLE75a]Je The earlier work by
Foley [FOLE71] concerns the cptimum design of highly interactive
graphics terminals for use with time—shared computers. The
objective was to minimize a display system's response time
subject to cost constraintse. Foley developed a gqueueing model

that used as input parameters the capabilities of the graphics

14

hardware, such as disk file access time, data link transmission
rates, core and disk storage space, and execution rate both of
the host and the display controller. Additional input parameters
were application characteristics such as the instruction
occurrance frequencies, the user think time, the probability of
the occurrance nf eagh type of user interaction, the number of
disk storage accesses which are made as a result of an
interaction, and the length ‘of messages sent over the data link.
Foley used the model to establish an optimum configuration for
sever&lnappiications. Finally, these optimum configurations were
used to define general display system design gquidelinese. Foley
established that in order +to lower response time, the components

should.be upgraded in the following order:
1) deta link,
2) bulk storgge,
3) display controller, and
4) core storage.

Foley's work was ‘continued at the University of North
Carolina by Foley et ale. [FOLE74a, FOLE75a] The queueing model
of the earlier work was extended to treat issues of
hardware/software trade-offs in a satellite graphics systeme. This
extension resulted in algorithms for static assignment of tasks

and data structures for a given application to either the host or

15

the satellite, in order to obtain minimum response time to user

requests.

Algorithms for dynamic assignment of tasks in an application
program to either the host or the graphics sateilite in order to
minimize response time to user requests have been invegtigated by
Stone [STON77] and by Michel and van Dam [MICH77] Stone used
algorithms based on network flow analysis to show that there
always exists an optimal assignment of tasks bétween the host and
the satellite for any load on the hosty, and developed algorithms
t0o determine this distribution. Stone's work was experimentally
verified using the Brown University Graphics Systemy, BUGS,
[sTAB73], and the degree of performance improvement gained

through load balancing was investigated by Michel and van Dam

[MICHT77]

Cislo [cICcL72] developed a simulation model for the
evaluation of interactive satellite graphics systemse. The modeE
was used to study the effects of the mein CPU, the satellite CPU,
and the cdata transmission rates between the two CPU's on response
timee. The model produced quantitative results demonstrating that
the most influential hardware component was the satelllte CPU,
since the majority of time raquired to setisfy t+lie user requests
was spent in the satellite. Cislo also illustratzd that (for the

loads under congideration),; the rate of the data transmission

16

link had more influence on performance than did the speed of the

host CPU.

Another approach to the optimdl distribution of software
between a host computer and an intelligent graphics térmlnal is
demonstrated by Puk [PUK76]. Puk developed an integer programming
model that determines a division of graphics software support
between the host and the terminal that minimizes the

communicatlons over-the data transmission linke. The work assumes

3 t

that the response in the graphics system is constrained bﬁly by
the capacity of the data transmission link, not by any other
aspects of hardwaré or softwaree. As might be expected, the model
shows that as the data transmission rate increases, more
functions are assigned to the host compute*. Puk uses the model

to distribute a subset of the functions in Ges [MIDD74, PUK76]

between a CDC 6500 and a display processore.

A new and different vector graphics system architecture is
described by Stowell [sTOW78]« Stowell proposes a microprocessor—
based architecture with a shared memory systeme. The graphics
plicture processing pipeline was divided into nige stages, and
each stage was allocated to one general~purpose microprocessore.
Interaction handling has been ignored completely. The proposed
architecture was never implemented, and Stowell unfortunately

does not report any attempts at performance comparisons with

existing systems.

17

In the area of graphics software development chh attention
has recently been focussed on a proposal for a graphlcs sof tware
standard (the Core Graphics System) by the ACM SIGGRAPH Graphics
Standard Planning Committee [GSPC77, GSPC79]s The goal of this
effort is a system that allows program portability, le.ecy the
ability to transport application programs from one system to
another with only minimal program changes. The Core (as it is
known) is a Yiewing system: an object is defined in an
application dependent coordinate system (called the world
coordinate system),vand the obJject is mapped to the view surface
by a viewing transformation. Functions for building a model of an
chject (leeey @& modell;ng system) are not included in the Core,

but are the responsibility of the programmer using the Core.

The Core has the following features:!

1) Primitives — An application program describes objects to
the Core as a sequence of lines, text strings; and
markers. Geometrical aspects of primitives are specified

in two or three dimensional world coordinatese.

2) Attributes - Linestyle, linewidth, intensity, color, and
character font specification determine the attributes

(iecey essentially non—-geometrical aspects) of

primitives.

1This is a description of the Core as described in [esPc77]; some
changes have been made that are reported in [GSPC79].

3)

4)

5)

18

Viewing transformations — A viewing transformation
selects the region of the world coordinate space that is
to be displayed and specifies how objects in the
selected region are mapped to the view surfaces For 3D
quects the Core allows specification of all planar
geometric transformations [CARL78] as part of a vicowing

transformation.

Segments - Primitives +to be displayed are placed in
segmentse The segments that are associated with a view
surface determine the picture displayed on this view
surfacee. A segment is the unit of picture modification:
a segment can be added to and deleted from a picture,
and the attributes of a segment may be modifieds These
attributes are visibility, highlighting, detectability

and image transformation.

Logical input devices — The Core supports five classes
of logical \ input devices: picky, button, keyboard,
locatory, and valuator. Devices in the first three
classes are evepnt—ca s ieeey the use of one of these
devices cauées an event (sometimes called an attention),
that results in an event report containing input values
being placed on an event gqueue. The application program
can determine what user interaction takes place by
asking for event reports from the event queue. Locator

and valuator devices are, gampled devices, which means

19

that at any time the application program can acquire the
current values of tﬁese devicese. Event-causing and
sampled devices can be aggociateds When an event device
generates an event, the values of its associated sampled

devices are included in the event reporte.

Although most of the Core functions would be usefel in a
graphics support packeage for a high-performanée devicey as a
wholey, the Core would have sSome shortcomings 1if it were put to
such a ugsees First, the Core does not include modelling
transformations and does mnot allow easy access to powerful
transformation hardware. Second, the generality that is necessary
in a package designed for application program transportability
~and device independence has an associated overhead that will, in
most cases;g reduce its performance compared to software that is

" more closely tailored to a particular device or class of devicese.

Device independence is generally kaccompllshed by dividing
the package into a device independent part and a device dependent
parte The device independent part treats the display and the
input device as 1og;cg1 devices; the device dependent part is
usually implemented as separate device drivers, one for each type
of devlcé. Eaéh device driver acts as an interface between the
physical display and input dev;cas and the logical dovices. The

idea of device independence originated with GINO [WOOD71a] and

20

was later adopted by GINO-F [CADC75], GPGS [CARU75, VAND77], and

ccs [MIDD74, PUK76].

GINO-F is a set of FORTRAN-callable si1broutines. GINO-F
provides primitives, attributes, and segmentation much like those
in the Coree. The input devices, however, are entirely
event—drivene A set of low~level 1logical input devices are
supported in GINO-F, on top of which most of theVCore functions
could be builte GINO-F provides both modelling and viewing
transformations, although the viewing functions do not include

all parallel projectionse.

GPGS [CARU75, VAND77] was developed from many of the ideas
in GINO-F., It carries device independence a step further,
however, in that it provides support for all the logical input
. devices of the Core. GPGS has a modelling package and supports
the creation of a hierarchical representation of an object. The
object hierarchy is traversed by software. GPGS allows a user to

take advantage of transformation hardware in a limited way

through image transformations (as doez the Core).

6cs [MIDD74, PUK76] is a set of FORTRAN-callable sub-—
routines. The original package was two-dimensionaly but a set of
three—dimensional routies has been added. The package provides
good support for storage—tube displays, but only limited support
for refresh devices. GCS provides a large set of primitives,

1néiud1ng curved line and surface primitives, and extensive

21

primitive attributes. Input is handled through one subroutine,
which can interface to most common input devicess GCS alsb
provides modelling ard viewing transforﬁations, buty, as GINO-F,
does not include all of the planar geometric projections in its

viewing capabilities.

Past research in performance modelling of‘graphlcs systems
and in optimal distribution of tasks between processors in a
graphics system have been focused on intelligent terminals used
with time-shared computers and on satellite graphics system3,
also with time—-shared computers. There exist, up to this datey no
methods for evaluation of design trade—offs in high—-performance
systems, eegey the distribution of functions between the
processors in such a graphics systeme. Furthermore, no comparison
criteria for high—-performance systems have ever been developede
As a result, it is difficult to meke any realistic, meaningful
comparisons of high-performance systems, and existing such
systems are not optimal for a large class of applications. The
work in this thesis is intended to advance the oractice of design

and evaluation of high-performance graphics systems.

22

The functional model in this thesis illustrates the
operation of graphics systemse. It illustrates how output date is
mapped from one representation to another, starting with the
application data structure and ending with an imag= on the
display screene. The model &also illustrates how input data flows
from the input devices into the various parts of the processing

pipeline and how the processing is affected by the inpute.

There are many models that illustrate the operation of
graphics systemse. One such model is a block diagram of individual
hardware components and their connections. Such a §gggctgggl
' model?, hoﬁever, does not meet the requirements of a functional
model for several reasons. First, it is a model of only one
graphics systemn, and second, a structural model need hot
itlustrate the ‘data flow in the systeme In addition, it often
contains unnecessary detail that obscures the essential functions
of the system. A structural model does not show how a system
operates, but |1is ugseful in explaining how a functional model

applies to an actual system. \

The functional model chosen for this thesis satisfies

several requirements. First, it forms a basis for comparison of

2gtructural models and different types of functional models are
discussed in [SVOB76].

23

most /exlstlng vector graphics systemse. In this sense, it is an
abstraction of all these systems. Secondly, it represents the
graphics systems at a suitable level of detail for our purposetcs
With too many deteils availabley, the systems would be harder to
understandes With too few details, the performance evalnation
could not be based on this model since some factors that have a
significant influence on the performance of the systems would be
omittede Finally, the model is expandable to new architectures in

order that these may be evaluated and compared to existing onese.

The functional model 1in this thesis has two roles:
descriptive and prescriptive. It is descriptive in the sense that
it illustrates the operation of a graphics system and

egcriptive in the sense that it identifies +the important
parameters that ;ffect the performance of a systeme The
functional model will be used both as a tool for describing the
functional capabilities of graphics systems and as a basis Tor

performance modelling of these systems.

The functional model in this thesis differs from other such
models in, for example, [NEWM79], in three ways. Firast, one model
is used toc describe all graphics system;j in [NEWM79] different
models are used for different architectures which makes
comparisons between the architectures more difficult. Second, the
model in this thesis illustrates the flow of input data, which is
generelly not illustrated ian other models. Finally, this model

maps directly onto the hardware of most existing high—-performance

24

graphics systems, lecey the logical processors in the model

correspond to the actual physical processors in the graphics

systemse.

This chapter describes the functional model. The first
section gives a general, high—~level description of the modele. The
second section descrlbeg the output portion of the model in. more
detail and the third the lﬂput portion, also in more detail. The
last section illustrates how two existing high-performance vector
graphics systems, the Evans and Sutherland Picture Systenm 2 and
the Vector General 3400, are represented by the modeles The
following chapter discusses how the functional model is used to

derive a performance model.

e egenta S ocesses d in the Functional Model

The functional model has two aspects -—— output and input.
The output portion will be described £first ignoring input, and

then the input will be added to the modele.

The output portlion of the functional model is a pipeline
consisting of various representations of an ohJect3 and logical

processors that map one representation to another. This pipeline

3Conceptuelly, there |is only one highest level object in the
hierarchye.

25

starts with a description ¢f an object in the application cdeata
atructure and ends with the image of the object on the display

screene.e

It is immaterial if a logical processor in the functional
model corresponds to one or to more than one physical processor,
or if +two logical processors in the model share a physical
processor. Similarly, it is not important if the representations

reside in one memory or in different memories.

The output pipeline contains of four representations of

objects:

e ADS - the Applications Data Structure -—-— contains a
description of an object in a format that is determined

by the application.

e SDF - the Struc tured Display File —-—- contains a

hierarchical description of an ob,ect.

e LDF — the Linear Display PFile -- contains graphical

primitives and mode settings describing the objecte

¢ Display Screen — shows the image of the objecte.

The pipeline also contains three logical processors, each mapping

one representation to another:

26

e DFC - the Display File Compiler == amaps the ADS to the

SDF .

e DPU — the Display Processing Unit -—— maps the SDF to the

LDF.

e DCU - the Display Control Unit -- maps the LDF to the

image on the display screens

Each representation and processor |is described in more deteail ‘in

the next section of this chaptere.

The input portion of the functional model is described by
the data flow from the input devices into the different
processors in ‘“the pipeline. The mapping £rom one obJject
‘representatlon to another 1is always subdect to modification by

input. The input/output model is illustrated in Figure 3-1.

The input data is categorized at each processor with respect

to two aspects of its processing:?

¢ how it enters +the processor —= either directly from ean

input device or forwarded by another processore.

0 how it is processed by the processor —— either the input
is forwarded to another processor, it 1s used by the

processor to modify its outputy, or bothe

27

. [9POIN [RTOTIOUN]

1-¢ 3¥nsIg
uoylejuasaiday
10SS8901d
108599014 19Y}Q 0} papiemio} Indu| . <= ==--
indinQ Ajipow 03 pasn induj| —
sao1A8(Induj jeaisAud
1 i ¥ 1
- 1
| | i
i i i
1] |
i { i

'usalIog .

eidsig - noa |+~ 4071 p—| nda |[=—] 2as || o4a |[~— sav

e

= — > = e e]

e ot o = o e e o

= = o 0 o et e

e e i o e e e i

lossso0id Aq papiemiod induj

28

Each type of input is described in more detail in a later sectlon

"of this chaptere.

As for the output portion of the functional model, the
logical operation of the input portion is emphasized. Although an
input device mayA be phvsically connected to0 several processors
over a bus, on the level of abstraction of the functional model
it is only lgg;ggllx' connected to the processor that actually
processes the input datae A logical input device cany, of course,
modify the processing in several processors in the pipeline. The
change in one representation reflects in all following
representations 1h the pipeline and thereby changes the

processors! behaviore.

The functional model represents a unified approach to
describing graphics systems. Each representation contalné a
complete description of what is displayed. The representations
differ only in the level of abstraction of object descriptione.
Each processor operates on a representation, and may also receive
input from input devices either directly vor through another
processor; The .lnput dlffers from one processor to another
principally according to the level of abstraction of the
representation upon which the processor operatese. Input into the
DFC can cause changes in terms of application objects; ihput into
the DCU causes changes in terms of individual characters or

lines. Each processor maps one representation of an object to

29

another. The input may alter this mapping each time it takes
place, that is, the binding of some variables only takes place at

the time of mappinge.

The functional model is general enough to describe most
existing graphlqs systems. In each graphics system, aﬁ object is
repreSented in a graphics—system—lndependent fashion in an ADS.
Similarly, in each graphics system, an object is represented, at
the end of the pipeliney; as an image on the (conceptual) display
screene In order to map the ADS to the 1maée on the screen, a set
of successive reductions of the object representation in the ADS
must teke piace. As a first stepy, the object is represented in a
format such that it can be processed by the transformation
hardware. This representation is the SDF%. Also at some point in“
the vplpeline, the object must be represented in a format such
that it can be processed by the digital-to—-analog hardwere. This
representation is the LDF. The intermediate represehtatlons need
not all exist in the‘form of data structures, but do always exist
as a sequence of dgta in time, that is, the data is generated
regardless of whether this generated data is actually stoéed in a
data structure. It is easy to see that this modelling technique

can be extended to include more infernal representations should

this be required to describe new architecturese.

4Note that the hierarchy might have only one level.

30

The functional similarities and differences between existing
systems are best understood by th; number of object
represéntations actually occuring in the form of data gstructures
(as opposed to sequences of data in time), and by the complexity
of each repbesentqtion. One example of an object representatlén
that does not always occur as a data structure in a
high-performance system is the LDF. ‘The ve3400 haé a LDF as a

data structure, whereas the Adage 4100 does not.

The differences between the "display procedure approach! and
the "structured display file approach'" to object description have
béen debated much during the past few years. These two approaches
are easlly understood in terms of the functional models Display
procedures [NEWM71j is a method of defining the structure of
objects by nested procedures in the display file compiler rather
than by a graphical data structure. Pure &lsplay procedures have
no data structures at all. They are illustrated by the functional
model in Figure 3-2. In the structured display file approach the
complete picture is described in only one data structure, the

SDFe A structured display file system is illustrated in Figure

3-3 L]

All eight possible combinations of data structures allowed

by the model may be found in existing graphics systems.

31

TELIhIS
Aeidsiqg

wo1s4g armpasoig Aepdsiq

7-€ TWNDIJ

noa

Nda

8w} uj eyep se sisixa AjuQ

r~==""
e

o4d

===
!
I
i

%,

o

<
————————-]

r
|
I
I
L

32

" U9310g
| Ae|dsia

L

wa3sAS 91 Aefdsi(q [eInionais
¢-¢ TANDIF

Nnodad

! I
!] Sl

] 407 || nda |j+—]
I 1

4ds

a4d

9P
(]
<

r
1

i B
|
L

Data Structures

ADS, SDF, LDF

ADS, SDF

ADS, LDF

SDF, LDF

ADS

SDF

LDF

Graphics Systems

EES PS2 [Escc77, ESCC77al,

VG3400 [VECT78a, VECT78b]

Brown University Graphics System (BUGS)
[sTAB73]

Adage 4100 [ADAG75a, ADAG75c, ADAGT78]

Bvans and Sutherland Picture System [ESCC74]

(the system was manufactured with an

optional refresh buffer for the LDF)

Evans and Sutherland LDS-1 [EScCcC70]
(the system optionally allowed the user . to

create a LDF in the PDP-10 memory)

Evans and Sutherland Picture System [Bscc74]
(without refresh buffer)
Evans and Sutherland LDS—1 [ESCC70] (using

its general purpo se instruction set)

Evans and Sutherland LDS-1 [ESCC70]
(using only its graphics instructions;

a pure structured display file system)

Buler-G [NEWM71]
(implemented a modified version of the

"pure" display procedures with a refresh

33

34
butfer)

none Wpure" display procedures.

This section discusses the output portion of the functional
model. The properties of each data strucfure and processor in the
pipeline arc treated in detaile. The data structures and the

processors are illustrated in Figure 3-4.

3.2.1 APPLICATIONS DATA STRUCTURE

The applications data gtructure (ADS), 1is a -level,
gegéggl purpoge date structures It may mix graphical and
non-graphical data. The part of the ADS used by the DFC 1is by
definition the graphical data. It consists of output primitives,
attributes, transformations, and control information. The rest
of +the ADS is the non-graphical data; it mayy for example, be
information assoclated with part of an object or pointers
relating certain parfs of an object. The format of the ADS is

depe + of the graéhlcs system ﬁardware. If a higher~level
language like FORTRAN or PL/I is available in the CPU, an array

or an array of structures may be used to express the ADS.

35

uLalI0g
Ae|dsiqg

[9PON [eUOTIOUNY JO uoTiIod IndinQ

Noa

447

$-¢]ANDIJ

<—1| Ndd

4as

o4d

sav

36

Applications range from cases in which the ADS contains a
detailed description of an object to cases where no ADS is
needed. A detailed description of the object may be necessary for
several reasons. One reason wduld be that the object,y, for the
sake of precision, must be represented by floating point data.
This is not poss;ble in the SbF, since processing of floating
point data 1s very slow with today's technologye. Another re;son
would be that the object must be described by a data structure
not supported by e SDF, such as a ring structure. A third reason
would be that the object is very 1large and only a small portion
of it is visible at any one time. The SDF would then contain an
ADS "distillate". (This last problem can sometimes be eliminated
by extents, a cpnstruct that allows conditional execution of

parts of a SDF. Extents are discussed in a later chapter.)

An ADS may not be needed. The object could be completely
. described by pfdcedures in the DFC or by +the SDF. The latter
would be the caée, for example, in some CAD applications. The
object could be bui}t from subobjects that are all defined in the
SDF and there would be no need for a second representation of the

object in the ADS.

Of course, there are many ADSs that are between the two
extremese An ADS may contain only non-graphical data or it may
contain a highly compact description of the object. The contents

and format of the ADS are entirely dependent on the type of

37

application and the types of access that are needeed to the

various parts of the objecte.

3e¢2.2 DISPLAY FILE COMPILER

The display file compiler (DFC) maps the ADS into the

structure& dispiai filee The display‘flle compiler is implemented
by the usere It compiles the ADS using system—provided functions
to produce the various parts of the SDF. These system functions
usually include addy, modify, and délete for primitives,

attributes, ‘objects, and object calls in the SDF.

3¢2.3 STRQCTURED DISPLAY FILE

The gtructured display file (SDF) is a gpecjial purpose data
structure containing -a hierarchical definition of an object,
which is digplay device independent. The SDF is gpaphics gygtem
dependent, although the general format of the SDF is often quite
similar from one system to another. The SDF is analogous to a
program structure consisting of procedures which may call other

procedurese. A SDF consists of objects which may reference,y or

3

call, other objects.

An object in the SDF is represented by output primitives,

such as lines and text, object calls, attributes, such as line

38

stylé and intensity, and transformations. Modeliing
transformationgs, also called object construction transformations,

allow objects to be defined in a local coordinate systems such
thgt these obJects can be combined into new obJjects. Viewing
transformations define how aﬁ object or portion of an object is
mapped to the display surface. in some systems the SDF also
contains general purpose instructions such as arithmetic,
boolean, and flow of control operations. Systems vary a great
deal in their support for text primitives, addressing modes of

primitives and general purpose instructions.

The SDF, as was discussed in the last section, does not
always exist except as a sequence of deta in time. The object is
in this case completely described either in the ADS or by nested

procedures in the DFCe.

3¢2¢4 DISPLAY PROCESSING UNIT

The display procesging unit (DPU) maps the SDF into a linear

display file. The DPU traverses the hierarchy in the SDF
composing transformation matrices, applying these transformations
to the graphical data, and clipping the data to the specified
windowe As an aid in interpreting or compiling the hierarchy, the
DPU maintains a stack for transformations and attributes and a

directory oflthe ob jectse.

39

3425 LINEAR DISPLAY FILE

The linear display file (LDF) is a low-level, specjal
ggggggé data structure containing primitives and mode settingse.
The format of the LDF is highly dependent on the graphics system
and the display devicee. Some systems support a segmented LDF and
allow‘ modification of portions (segments) of the LDF. If two
segments are allowed, the recompilation of the SDF may be double
puffered for better dynamicse. If multiple segments are allowed,
some portions of the obJect can remain unchanged while other
parts are modified. In thls case only the parts of the SDF that

are altered need be recompilede.

The LDF, as was discussed in the previous section, does not
always exist except as a sSequence of data in time. The object is
then described by a SDF, ADS, by nested procedures in the DFC, or

by a combination of these.

3¢2.6 DISPLAY CONTROL UNIT

The display control unit (DCU) refreshes the picture to

maintain a flicker—free image on the display screen. It fetches
coordinatey text, and attribute -data from the LDFe. The DCU

contains a line generator and a character generator thet produce

40

analog signals which are used to position the electron beam and

cohtrol the intensity in the monitor.

3 t t 1 del

The foregoing discussion on output totally ignored the input
portion of the functional model. This section examines how input
fits into +the functional model. The physical input devices

considered are:

e data tablet — flat surface on which user draws with a

stylus and that produces (x,¥) coordinates,
¢ joystick — lever that produces (xyy92z) coordinates,

o 1lightpen — pen-1like device sensitive to 1light that

produces an interrupt,
¢ alphanumeric keyboard - text entry devicey

e control dial - potentiometer that produces coordinate

date,

e function key — key that causes an interrupt when pressed,

L hardware pick - hardware XxX-Yy comparator that produces en

interrupte.

41

It should be noted that one physical input device might
correspond to two logical input devices, each with a different
functione The two logical input devices can either bz connected
t0 the same processors or to two different ones. For exampley a
user may control the movement of a cursor with a tablet and also
read the (x,¥) coordinates of the tablet from the diplay file
compiler when some specific event occurse. This is considered to

be done with two logical devices:

e The DCU reads the tablet coordinates and updates the

cursor position. The tablet input is to the DCU.

¢ The DFC reads the tablet coordinates. Logically, the
tablet input is to the DFC. Depending on physical
connections, the DFC ma& access the input device
directly, or it may obtain the input data from a

lower~level processore.
i

Some input details of the functional model are illustrated

in Figure 3-5.

42

ndinQ pue indu] — [9pO [pUOTIOUN]

G-¢ TNDI

sAay uonoung

- pieoqiay
18jqel 19|1qe]
)Oold atemple] youshop

uadiybin : s|elq |1043uo0)

sAay] uojjound
pieoqiay
9lqel
yonushor

S[eiqg ojuo)

I !
| |
ie o

usa10s
Aejdsig

s s = o]

nod |l— da1 j—| nda |[=—

|

e =
g — =

LN

4as e—| 04a |fe

e e oo e e e]

¥

sav

. uoIpuo9D A8y U4

" ssaippe 4Q7 Bulys 8} :preoghay
4Q@7 ul # uawbas .o joe)s jjeo j08lqo :yaid
$81euip1009 (A ‘X) :)o1d (s)anyiea :o01n8g Hojeuy

uonRIpuod :Aay u4
Buiys 1x8} :pseoghayy
(tuswa|a ‘198[qo) :yoI1d
(s)enjea :a0i1m8q bojeuy

43

As was discussed in a previous section, input is categorized
at each procéssor with respect to two aspects of its processing;
by how it enters the processor, and by how it is processed by
that procegsor. Some input data is only collected by fhé
processor for transfer to a higher level processor possibly after
some transformation of the data. Other input data is used by the
processor to modify how it maps one representation into anothere
The first type of input is illustrated by the dashed lines in

Figure 3-5, the second type by solid linese.

All three processors can receive input datae The data may be
processed before it is passed on to a higher-level processor. For
example, characters may be formatted into a text string, control
dial values may be filtered, and lightpen data may be used to
identify the item in the next higher-level data structure that
corresponds to the item that was identified on the screen by the
lightpene. The input data may also be used to modify the output of
the processors The input data only varies among processors in

the types of changes it may cause to the output of the processor.

In principle, most physical devices could be connected to
each processor. Twoiexceptions are the lightpen and the hardware
pick that can only be connected to the DCU. The lightpen is a
light-sensitive device that glves ag interrupt upon a hite.
Because of the overlapped processing in the plpeline, only the

DCU can identify the item that was plckede. Similarly, since the

44

hardware pick uses the output of the DCU as the'input for the
comparatory, only the DCU can identify what item was hite Iu
practice, the input devices that are connected to the DCU are

quite restricted. Input into each processor 1s discussed belowe.

The input into the DFC can cause the most general type of
changes, loe." changes in terms of application objects. These
changes range from modification of individual items in the SDF to
modification of the structure of the SDFe The DFC can receive
input directly from all physical devices, except the lightpen and
the hardware pick, and can receive input forwarqed from

lower—level processors.

The input into the DPU is more restricted than that to the
DFC in the type of changes it may causee. The processing of
individual items, such asv coordinate data, transformation data,
ahd flags in the SDF can be modified, andy, as a result of a
change to a transformation, an entire instance of an object can
be affected. Flags may be used to select for compilation one or

another part of the SDF.

The input capabilities of the DPU vary a great deal from one
system to another. In some cases all devices except the lightpen
and the hardware pick may be processed. in other systems the DPU
may only malntaln a cursor and a text buffer, and, in still

others, the DPU may not do any input handlinge.

45

The input into the DCU affects the mapping of the LDF to the
image on the display screen. The input to the DCU can only cause
very restricted types of changes to the image. Only individual
coordinate positions and atfributes can be modifieds. For example,
primitives can be high—~lighted upon a pick, a cursor position can
be updated; or a lightpen tracking cross position can be updated.
The only devices that generally are attached 1o the DCU are the

lightpen and the tablete.

In the following section, both the output and the input
bprocessing in two existing graphics systems are described in

terms of the functional modele.

This section provides a summary discussion of the structural
models ot the ESS PS2 and the VG3400. The hardware components of
the systems are discussed and the relationships between the
structural models and the functional model are illustrated. The
structural model of the EES PS2 and its structure on the level of
abstraction of the functional model are illustrated in Figures
3-6 and 3-7, and the two models for the VvG340C are illustrated in
Figures 3-8 and 3-9, respectively. Only the features essential to
"this thesis are discussed in this sectionj; a complete list of

architectural features can be found in Appendix A.

46

ADS, DFC

PICTURE CONTROLLER
AN ’
PICTURE

CONTROLLER
- INTERFACE

<:: PICTURE SYSTEM DATA BUS {:>
A % |

PICTURE SYSTEM

INTERACTIVE
* DEVICES
MAP INPUT ||[MAP OWTPUT
CONTROLLER || FORMATTER ﬁ
REFRESH
CONTROLLER Y
MAP
MATRIX
ARITHMETIC | el LINE
PROCESSOR GENERATOR
]] CHARACTER |
PICTURE PROCESSOR GENERATOR
DPU "DICTURE SYSTEM
MEMORY " "PICTURE GENERATOR" *
SDF, LDF DCU

PICTURE
D1SPLAY

UP TO 5 ADDITIONAL
DISPLAYS

LIGHT PEN

FIGURE 3-6
E&S PS2 Structural Model
(Evans and Sutherland Computer Corporation, PS2 Reference Manual)

47

TSd SR ‘[SPOIN [euonIoung

/-¢€ TdNDI1g
sAay] uonyound
pleoqghay
v|qeL .
, : ssnshop
uadiybi ’ . s{el@ |osuo)
_]
_ _
o i
~ 1]
. |
34 ¥

usaios
\ Aeldsig

N0 le—] 1a7 ke—|1NdO|le— 4qs te—|CHD) |le—0o

5d | dd 17 od

S

av

1
“

— —
g~

UOIIPUOD :Aa8) Uy
Buisys 1xa} :pseoghay

m_o._ us # Juowbos C . # 1uawbas ‘p1ooo (A ‘X) :yoi1d

$91eUIp100D (A ‘X) :)oid

(s)anjen :00/a8q Bojeuy

48

Note that in general vendors' names for components refer to
hardware units, while the names defined above for logicatl
processors and representations are reserved for parts of the

functional model.

3e4.1 EVANS AND SUTHERLAND PICTURE SYSTEM 2

The ESS Ps2 [Escc77, ESCC77a] consists of six components:
¢ the Picture Controller Interface

e the Picture Data Bus

® <the Picture Processor

®¢ +the Picture Memory

e <the Picture Generator

¢ the Interactive Devices.

These components are connected to the Picture Controller, which,

as this thesls'is concerned, 1s part of the total display systeme.

The Picture Controller 1is a general purpose computer,
typically a mini-computer such as a DEC PDP-11. The Picture
Controller contains the application program, the ADS,y, and the

DFCe. The EES supplied software includes a set of FORTRAN-callable

49

subroutines, that are used by the DFC to build the SDF from the

‘ object representation in the ADS and to modify the SDF according

to input datae.

The Picture Controller interfaces with the EES PS2 through
the Picture Controller Interface. The interfece unit handles

communication between the Picture Controller and the EES PS2 over

three I/0 paths:
e the direct 1/0 path (DIO),
¢ the direct memory acceSs path (DMA),
¢ the interrupt pathe.

The DIO path is used to transmit e single word of data to or from
the ESS PS2 and the DMA path is used to tranfer blocks of data.
The interrupt path transmits interrupts to the Picture Controller

from the input devices and from other units such as the Picture

Generatore.

The list of components above includes a synchronous bus, the
Picture Data Buse. The interface enables the Picture Controller to

access all the components of the EES PS2 over this bus.
The Picture Memory has a dual purpose in the EES PS2:
e {0 store the SDF, and

L to store the LDF.

50

The SDF contains primitives, attributes, object calls, and
viewing and modelling transformations. The reader should refer to

Appendix A for a complete list of SDF featurese.

The Picture Processor is the DPU. It compiles the SDF in the
Picture Memory to a LDF, also stored in the Picture Memorye. The
Picture Processor composés transformations, applies the
transformations to the primitives, and clips the portions of the
transformed obJject that are outside the windowe The clipped
object is projected onto the projection plane, and the resulting

projection 'is mapped to the viewporte.

The LDF resides in the Picture Memory and contains
primitives and mode settingse. The LDF may be single buffered,
doubie buffered or segmented. Wﬂen the LDF is in double buffer
mode, the DCU continually reads one half of the puffer while the
DPU updates the other. In segmgnted buffer modey, the LDF is

divided into several segments, each of which can be individually

updatedes

The Picture Generator, Line Generator, and dharacter
Generator function together as the DCU. The Picture Generator
controls the processing of the LDF. It commands the Line
Generator to convert the data in the LDF to analog signals fhat
position the electron beam and control the intensity in the
display monitor, and it commands the Character Generator to

interpret the full ASCII character sete The user also has the

51

option of defining new fonts. Individual characters in a text
string are not subject to the viewing/modelling transformations,

only the starting point of a text string 1is transformed.

The EES PS2 supports seven interactive devices, all of which
are interfaced directly to the Picture Data Buse The input

devices are?
¢ Data Tablet
e Control Dials
®¢ Function Switches
e Alphanumeric Keyboard
¢ Lightpen
® Joystick
¢ Yighted Function Buttons.

With the exception of the Llightpen, all devices can be
accessed directly by the DFC in +the Picture Controller. Some
input data is passed on to the application programy and other

input data is used as input to the DFC.

The Picture Processor can not accept any input data at all,

and the Picture Generator has access only to the lightpen.

52

The EES PS2 is one in a series of graphics systems built by
Evans and Sutherland Computer Corpsration. The Picture System,
the first in "the series, did not represent the SDF as an actual
data structure. The first version of the Picture System 2 allowed
the user to build a SDF in the PDP-11 memory that did not contain
a hierarchy (the instances were expanded in the SDF). The second
version, which is the version discussed in this thesis, supports
a SDF with object calls. The latest version in the series, the
Multi-Picture System supports more sophisticated interaction
handling in the Picture Generator, a thierarchical description in
the device dependent instence representation {(called the LDF in
the functional model), but does not “support a device independent
hierarch;cal representation of the object (leeey SDF)e Such a
representation will, however, be added in later versions of the
system [WATK79]e In the following sections, the VG34OQ will be
discussed and then the functional capabllitleé of the VG3400 will

be contrasted with those of the EES PS2.

53

{Tenuey s3deouo) Surtumwe18oid GOYEOA "oUl JﬁonoU I03097) -

[PPON Te1n30oTLlS O0VYE DA
g-¢ TINDIJ
——————————e
“ NOIL4O |
I < (s)41N1 |
N3d
l NOILdO Hon _
i » mooNIM >] swia
| NDld I 10¥INOD
| |
i | WIANOD [
1 | - Wi9Ia-0l
_ i -O0WNY |
{ - |
“ o3 " 40) ADILSAOr
N3d 1HOIT - . liNn > {(s)INN _
c | N3O | NdQd | ossdous [
< INOA I DIHdV¥D
1 |
(shounow el I - 3OVaAINI 13191
i i - 1318v1 viva
_ i viva
1 (now) I
i - 1INA _ | NOISNVX3
1 < T0¥INOD > | 4471 3338
1 JOLINOW H53¥43¥
|] . xo8
| [HOLIMS
" _ NOIDNNA,
I } (taq) -
i . <« FOVIEINI
| Y =TT
“ non | — - w110
i - hv_mm - “ - 1NN -— Q¥VOBAN
¥344N8 SIEIWNNYHAY
¥O1D3A {noa) -
i s e m — HS3¥43y
| 10UINOD jsne aw
l AV1dSIQ -}
| |
" |
| sne N850 | <> DVIELINI
| 20NV i
b e H
Nnoda SN 49 WILNWOD

1SOH

4as ‘04a ‘sav

54

00VEDA [9POIN [eUOnIOUN] N

6-¢ TUNDIJ

SA9)) uojyound
pieoqAay
yonshop ~ 9IqeL
30ld aiempieH Isiqel yonshop
uadiybi . sielq |ojuod sjeiQ |ouoY

J I

|

_ |

I i

- I I

1 i

usalos
Aeidsiq |

(noa) | (Nda) |lo__| |lo1a) ||«
MOIN— -aa1 =—|'05s 4as sa

]
2]
o

I

____:_;—.’
I ———

= ——
el e

uoIpuUOD : A3y U4

: Buliys 1xa} :pieoqhayy

Jajuiod Juswsje (1usws|s “1oa[qo) oid

ssalppe 4q7 - ¥oid aweu 1038[qo :yoid (s)anjen :a01r8@q bojeuy

55

3.4.2 VECTOR GENERAL 3400

The VG3400 [VECT78a, VECT78b] consists of seven components:
L tbe Host Computer Interface

® the GP Bus

L the Graphics Processor

® the Refresh Buffer

¢ <the MD Bus

e +the Display Control Unit

@ the Peripheral Devices.

These components are connected to a host computer which, as far

as this thesis is concernedy is part of the total display systeme

The Host Computer® is a general purpose computer, and is,
as for the EES PS2, a mini-computer such as a DEC PDP-11. The
Host Computer contqins the application program, the ADS, the
DFC, and, in contrast with the EES PS2, also the SDF. The VG
sﬁpplied software includes a set of FORTRAN-callable subroutines

that are used by the DFC to build the SDF from the obJject

-y

SThis proper noun is the term [VECT78b] uses to refer to the host
attached to the VG3400; it is used with the same meaning here.

56

representation in the ADS and to modify the SDF according to the

input data.

The SDF contains primitives, attributesy object callsy and
modelling and viewing transformations. The SDF may also contain
general purpose instructions, such as arithmetic, boolean, an¢
control instructions. The roader is.referréd to Appendix A for a

complete list of SDF features.

The Host Computer interfaces with the VvG3400 through the
Host Computer Interface. The interface unit handles communication

betyeen the Host ComputerAand the VG3400 over three I/0 paths:?
L £he programmed I/0 path (PIO),
e the direct memory access path (DMA), and
o the interrupt pathe.

The PIO and DMA paths transmit single words of data between the
Host and the VG3400. The interrupt path transmits interrupts from

the input devices and from other devices such as the Display

Control Unite.

The interface wunit, the Graphics Processor,y the Refresh
Buffer, and the input devices (except the Lightpen and the

hardware pick) are connec ted to an asynchronous bus, the GP Bus.

57

The Graphics Processor is the DPU. It compiles a SDF in the
Host Computer memory to a LDF that is stored in the Refresh
Buffer. The Graphics Processor is a general purpose processor; in
addition to traversing a hierarch&, transforming and clipping

primitives, it also executes general purpose instructions.

The LDF resides in the Refresh Buffer and contains
primitives and mode settingse. The LDF may not be segmented, but
the VG3400 provides an edit-aid feature. - This feature allows a
user +to make tentative deletions, insertions, and modifications
to the LDF. The edit—-aid feature caﬁ, for example, be used as a
puffer where a part of the object is modified while the remainde=

of the object is unchanged.

The Display Control Unit together with the VGU, MCU, and the
FGU function as the DCU. The Dlsplﬁy Control Unit uses the MD Bus
to access the LDF. The VGU converts the data in the LDF to analog
signals that position the electron beam and control the intensity
in the display monitore. The FGU can interpret the full ASCII
character sete The Font Generator contains a transformation
matrix which is loaded with the current transformation matrixe.
The characters are thus subject to the viewing/modelling
transformation with the eXception that perspective foreshortening

is not applied to individual characters in a text string.

The VG3400 supports seven input devices:

58

® Data Tablet

® Control Dials

b Function Keys

L] klphaAumeric Keyboard
¢ Lightpen

® Joystick

¢ Hardware Pick

All the devices are interfaced directly to the GF Bus, except the
lightpen and the hardware pick that are interfaced to the Display

Contrcl Unite.

The input devices connected to the GP Bus can be accessed by
the DFC in the Host. Some input data is passed to the application

programy and other input data is used as input to the DFC.

The sampling devices, i.ee¢y the control dials, the Jjoystick,
and data tablet can be accessed 2irectly by the Graphics
Processor. Individual coordinates and transformation data can be

updated according to the value of the analog device each time the

SDF is compilede.

Only the lightpen and +the hardware pick are attached
directly to the Display Control Unite. Both devices can modify the

output to the LDF in that both may highlight a "picked" iteme The

59

data of the lightpen and the hardware pick can also be forwarded
to a higher level processor. The item in the ADS corresponding to
the item picked on the display screen is found through a two—-step
processs First the word in the LDF is used to find the
corresponding word in the SDF. The object call stack at the time
of execution of this word is passed to the DFC, which in turn

establishes the desired (objectyelement) paire.

The similarities and the differences between the two systems

are discussed in the next sectione

3.4.3 A FUNCTIONAL COMPARISON OF THE EES PS2 AND THE vG3400

The EES PS2 and the VG3400 are similar in that both systems
implement the SDF and the LDF as actual data structures. However,
the object representations and the processors vary a great deal
in complexitye. The VEGS PS2 Picture Processor (which functions eas
the DPU) is a special purpose processory whereas the vG3400
Graphics Prceccessor Unit (which plays the same role) is
completely general purpose. As a result of the differences in
object representations, the input processing also differs a great
deal between the two systems. So@e examples of these differsnces

between the two systems are discussed briefly.

60

I_The SDE

a)

b)

c)

Addressing Modes —— EES PS2 allows only immediate dataj;
the VG3400 allows both immediate data and referenced
data. The referenced data may access any location in the
Host, the general purpose registers in the Graphics
Processor, and the analog input device registerse. If£ the
SDF in the VG3400 contains references to locations in
the Host Computer, these Llocations are considered part
of both the SDF and the ADS by the functional model. The
application program can modify the data in the ADS and
thereby the contents of the SDF get modified as well. If
some of +the immediate data in the EES PS2 is to be
modified, (part of) tﬁe ADS contains pointers to these
data itemse. The actual coordinate data is located in the

SDF and another copy may be located in the ADS.

Object Calls — in the V63400 the objects are referenced
through a directory; in the EE£S PS2 object references
are direct pointers. The E&S PS2 stack cannot contain
the names of the calling objects; as a result, the name
of a picked object must be determined f£from a correlation
table or by placing each instance of an object in a

separa te segment in the LDF.

General Purpose Instructions —— The VvG3400 allows

arithmeticy, boolean, and control instructions; the

d)

e)

f)

61
EES PS2 does not allow any general purpose instructions.

Transformations =- In EBS PS2 all transformations are
represented as general 4x4 homogeneous matrices; the
VG3400 the rotation, scaling, and translation parameters
are stored individually and a transformation matrix is
composed each time the SDF is compilede The VG3400 does
not support shearing transformations and allows only

uniform scalinge

Text —-— In the vG3400 the viewing/modelling
transformations apply to text, with the restriction that
perspective transformations do not apply to individual

characters. In the EES PS2 only the starting point of a

text string is subject to transformatione.

Interaction —— On the VG3400 the compilation of the SDF
may be modified by input from the analog deylces by the
use of referenced datae The EES PS2 does not allow any
input from analog devices into the DPU; all input is
done to the DFCe Any modifications made to the SDF in
the EES PS2 on the basis of input from analog devices
are the results of modifications by the DFC using

pointers, stored in the ADS, to locations in the SDF .

I The LDF

Segmentation —— In the EES PS2 the LDF can be segmented
so that pleces of an object may be modified without the
DPU regenerating +the entire LDF. Thlsvls only possible
on +the VG3400 in a very Llimited fashion through the

edit—aid featuree.

In the next chapter, the functional model is used to develop
a set of performance modelling techniques for graphics

processorse

63

There are three common techniques [BEIZ78, SVOB76, FERR78]

used in evaluation of computer system performance:
® measurement,
¢ gimulation, and
¢ analysiS.

Measurements are obtained by hardware or software monitors
that measure the performance of a system running an applicatione.
Correct measurements are often difficult to obtain, in
particular for softﬁare monitors, because the monitor tends to
distort the measured performancee In addition, in order to
measure the performance of a system, the actual system must be
availablees This makes performance comparisons of several systenms
very impractical and eliminates measurements as a method for

making trade—off evaluations in the design stage.

Simulation is a technique by which the behavior of a systen
is reproduceds The performance of the simulated system is
determined by establlsﬂlng the resource requlrements.for the
system under a particular loade. Simulation does not regquire
access to the actual system and could be used both to compare
existing systems and to determine the impact of different design

decisions. Simulationy; howevery, can be quite costly in both

64

computer time and programming efforte. Changes to the gsimulated
system may reqguire changes +to the' simulatory, changes which
involve re-programming and debugging. Simulation methods are
hence not as flexible as is desirable to investigate various

trade—-offs during the design of a systeme.

Analytlcgl modelling uses only mathematical techniques.
These +techniques arey, for several reasons, well=guited for
graphics system modellinge. First, graphics systems are simple
enough +that the computational effort in the analysis |is
manageableo. Second, analytical techniques have the flexibility

regquired for a performance model to evaluate trade~offs in the

design processe.

The objective of performance modelling in this thesis is to
establish estimates for the time it takes to map an cbject from
one representation in the pipeline to the nexte At this level of
abstractiony, the behavior of a graphics system is predominantly
deterministice User input need not be considered as a source of
non-determinlsm. Although the user may make input requests at
irregular intervals, it can be assumed that he only makes zero or
one request during the time intervals under consideratione. These
two cases‘can be handled separately. Because of the deterministic
behavior, analytical modelling techniques are particularly

attractive for graphics systems; performance models can be based

65

only on elementary algebra, probability theory, and simple

aspects of queueing theorye.

‘The phrase "performance model" in this thesis refers to a
mathematical modql that treats the characteristics both of an
application and of a graphlcs.system as independent variables and
the performance measures as dependent variables. The performance

modelling technique consists of three steps:

1) The characterization of an application or class of

applicationsy i.esy the characterization of the load.

2) The definition of d set of hardware parameters that

characterize the operation of a graphics system.

3) The derivation of mathematical relationships in terms of
the load and the hardware paraméters; these
relationships characterize +the system behavior, and are

the performance measurese

The application of these mathematical relationships to a

particulaer system results in e performance model for that system.

A load in a graphics system is represented by an instruction
mixe An instruction in a mix |is referred to as a macro
instruction and repreéents an abstract unit of worke. It is
preferrable to describe a load in terms of macro instiuctions
rather than user instructions for two reasonse. First, macro

instructions are at the level of abstraction in which it is

66

natural to express an application's processing. Second, macro
instructions are graphics system independent, so they are more

suitable for system comparisons than user instructionse.

The processing time for a load is determined bY the
processing times for the macro instructions in that loade. The
processing time of a macro instruction is determined by mepping
that macro instruction 6nto the system under consideration, 1ecey
by implementing it in terms of user instructions. The processlng
time for a macro instruction is then a function of the sequential
processing in each processor of the pipeline, the I/0 requests by
each processory and the contention at the I/0 requests that is

due to concurrent execution in the pipeline.

In this chapter, the techniques needed for deriving the
processing time for a }oad are presented. The first section below
introduces the concept of macro instructionse. In the second
section, the functional model that was presented in Chapter 3 is
broken down into cdmponents, each of which is simple enough to be
modelled analyticallye. The revised functional model is used to
identify the hardware parameters that affect the performance
measurese. In the Llast section, methods for deriving the
performance measures are discussede These measures are functions
that characterize the concurrent activities in a graphics system,

as well as +the contention for the resources which occur as a

67

result of concurrent processinge Chapter 5 presents some methods

for applying the performance modelling techniques.

A load on a graphics system is characterized in terms of a
set of macro lnstruéxions. A macro instruction, in this thesis,
is an abstract unit of worke This unit of Qork corresponds to
some processing in one or more of the stages in the processing
pipeline. The units of work are called macro instructions to

distinguish them from user ingtructionse.

Definition 1: A user ingtruction is a unit of processing as

defined by the graphics system hardware/firmware/

software.

In the first stage in the pipeline, a user instruction is an
assembler instruction or a function that is part of a graphics
system access method. in the second stagey & user instruction is
one instruction in +the SDF, and it is generally interpreted by
firmware and hardware. In the third stage of the pipeline, a user
instruction is one instruction in the LDF and it is also

generally interpreted by firmware and hardware.

A macro instruction corresponds to operations in each stage

of the processing pipeline. These operations are on different

68

levels of abstraction than the user instructions. Some macro
instructions correspond to an operation that is oﬁ a higher level
of abstractiony, 1c0ey a set of user 1nsfructions. Other macro
instructiocns correspond directly to one user instruction in a
data structure. It is also possible for a macro instruction to be
at a lower level of abgtraction than a user instructiony i.eey to
correspond to only one of several processing paths of a user
instruction.. A macro instruction may also correspond to any

combination of these three casese.

More formally, we can now state the following definition:

Definition 2: A macro instruction is & unit of work that is

performed by one or more execution paths through a set
of zero or more user instructions in each stage of the
processing pipeline. These execution paths are called

the 1mglemegtgfgog of the macro instruction.

Before we state some properties of the macro instructions,

we have one more definition:

Definition 3: Given a set M of macro instructions describing
a systemy a load on that system is a mapping from M to

the non—negative integers.

Jf . is a load on the graphics system described by M, and
meMy L{(m) denotes the number of occurances of the macro

instruction m in the work being performed by the graphics system

69

in support of an applicatlbn program over some given interval of
time. An eapplication program is thus described by a sequence of
loads, but for practicality, we will deal only with a few loads

representing average behavior or worst case behaviore.
Macro instructions have the following properties:

1) Every occurance of a macro lnsirﬁctlon in a load is
independent of any | other occurance of a macro
instruction in the same loade. That is, the processing of
one macro instruction is lndependent of the processing

of every other macro instruction.

2) The unit of work performed by a macro insfructlon does
not 'chgnge with loade The behavior of the system may
changey, the resource contention will probably change,
but the processing of the indivlduai macro instruction

does not changee.

3) The implementation of a macro instruction has only one
sequence of I/0 requests. This means that any parallel

execution paths involve the same set of I/0 requestse.

The first two properties imply that the processing time of
an entire load is the sum of the processing times of the
occurances of the ‘1nd1vidua1 macro instructionse. (The
significance of the third property will become clear laters) The

processing times depend on the hardware parameters of the

70

resources in the grephice system. This dependency .is discussed in

the next sectione.

As was diScussed above, a macro instruction describes one or
more execution paths through a set of user instructions. It is
easy to see that there is potentially a very large number of such
paths and hence a very large number of macro instructionse. In
order to make it easier to speclﬁy the macro instructions, they
are defined via macro instruction functions (for brevity, macro
fﬁﬁctlons) that take a set of processing descriptors as
arguments. The value of a macro function for specific values of

its arguments is a macro instruction.

Definition 43 A processing descriptor is an argument of a

macro function whose values determine the possible
alternatives of some aspect of processing at one or

more stages in the pipeline.

Eech processing descripter can take a set of valuess A
value can select one in a set of alternate execution paths, or it
can describe theé processing in other ways, such as the humber of
iterations, or some other processing activity. A processing

descriptor takes only discrete valuese.

More formally we now have the following definition:

71

Definition 5: A macro function is a function whose domain is

the cross-product of the processing descriptor value

sets and whose range is a set of macro 1nstructlons.’

The full advantage of the macro functions as a "gshorthand

notation?” for the macro instructions will become evident in later

chapterse.
4, ardware Pa te of ‘ e

In order to identify the hardware parameters of the
performance model, the functional model is broken down into three

stages:
e the SDF compi}ation component,
e +the LDF compilation component, and
e the image generation component.

This is illustrated in Figure 4-1.

There 1s a slight notational change in this figure compared
with the figures in Chapteb 3. The interfaces between the data
structures and the processors are illustrated as resources. This
is to emphasize that the interface 1is a resource whose behavior

characteristics are parameters of the performance modele.

72

ADS DFC SDF

Structured Display File Compilation

SDF IF3 DPU @ LDF

Linear Display File Compilation |

Display |

LDF : IFg DCU Screen

Image Generation

. Interface |
FIGURE 4-1

Three Stages of Picture Processing Pipeline

73

In this thesis, a performance model is a ‘set of three
formulas that express the processing times Usy Uz, and Uz for the
three stages in the pipeline in terms of 1oad'and hardware
parameters. Uy is the total time required to map the ADS to. the
SDF, Uz is the time to @ap the SDF into the LDF, and the time to
generate the image on the display screen lé Uze Note that Uy and
U, are the times required to create a new or update an existing

image eand Uz is the time required to refresh the image on the

display screene

The processing times for each stage in the,plpellne can be
expressed as sﬁms of the processing times for each macro
instruction in ?he ﬁroceésing stagey where the processing times
for the macro instructions are functions of the hard;are
parameters. For each stage the processing time is an expression

of the form:
U = Zn]Q](SI’ b;, bay m, mw).
J
-In this equation,

denotes the number of occurances of +the Jj:th macro

instruction,

Ql denotes the total processing time in one stage of the
pipeline generated by the Jj:th instruction in the macro

instruction set (Ql is zero if the J:th macro

74

instruction involves no work in this stage of the

pipeline),

S, denotes a set of individual processing components in
one stage in the pipeline generated by the Jj:th macro
instruction. A processing component is a code sequence
that is not divided bY any requests for concurrent
activity. Tte tl@e for an individual processlng.

component is denoted %k ’

byy by denote the bus transfer rate of the bus over which

data is read or written, respectively,

m, y m, denote memory read time and memory write time,
respectively. (Note that the display monitor will be
considered a "membry" into which data 1is "written," and

the write time refers to line or text drawing rates for

the monitor.)
Several things should be noted regarding the functions % H

¢ All resource parametersy €.gey the bus transfer rates and
memory transfer rates, are the rates in absence of any

contention for the resource.

e If any of the intermediate representations only exist as
data in time, the corresponding I/0 parameters can

sometimes be ignored. I1f, however, there is a buffer

75 -

between the two processing stages, the buffer is treated

in a fashion similar to a data structure.

¢ The only part of interaction handling that is taken into
consideration is the. input which directly affects output
processinge. The collecting of input data which is to be
passed on to another processor may be ignorede. This
omission will not significantly affect the model, since,
in general, at most one input device need be serviced in
each procgssing stage during the time intervals of
interest, and the time required to servlée one device is
negligible. To be more precise, a term could be added to
the processing time in each stage to include the

interaction handling:
Ut = v + 0

where O is the overhead generated by any interaction

devices in one update or refresh cycle for that stage of

the pipelinee.

The Q!'s are functions of the hardware parameters and
characterize the concurrept processing in a graphics sygtem as
well as the contention for the resources that occurs as a result
of the concurrent processinge. In the next section, aigebraic

expressions for the Qj's are derivede.

76

+ This section derives analytical expressions for the
performance measures, which are the dependent variables of the
performance model; ?n the first subsection, activity flows are
introduced. These simplified flowcharts are used to derive
expressions for the macro instruction processing times ' as
functions of the hardwaré pgrameters and of the processing
overlap in each stage of the pipeline. Due to the simultaneous
execution of the three stages, there is contention for some of
the resourées. This contention results lnl a &elay in each
processing stagee In the second subsection. the different types

of delay are 1ncorporatgd in the performance measurese.
4,3.1 ACTIVITY FLOVWS

An gétivlﬁx.jlgﬂ [BEIZ78] is a flowchart representing one or
more execution paths‘through a programe It generally does not
corfesﬁond directly to =a process;ng flowchart for the program,
but corresponds to a trace through a processing flowchart for a
particular (set of) parameters of the program. An activity flow
shows computation and any relevant concurrent activities which
can elther be I/0 or processing by a parailel processor. Thus,; an

activity f£low contains the essential information for calculating

77

performance data related to a particular macro instruction. An
activity flow has a format as illustrated in Figure 4-2. (An
algorithm for deriving an activity flow from a processing

flowchart is described in Chapter 5.)

In order to derive the processing time in each stage fpr a
macro instruction, the implementation in each stage of that macro
instruction is represented by an activity flowe If thé execution
time for the k:th processing component of the J:th macro
instruction is denoted Sk and if the transfer time or execution
time for each concurrent activity (I/0 or processing) is Tkt then
the processing time, Q,, f@f the J:th macro instruction is the
sum of all procegsing componen ts that have no concurrent
activity, plus the sum of the maximum times for the alternate
paths +through each region of the actlvity' flow where there is
some concurrent activitye. Qj can be expressed as?

Q =Zs]k + Zm?x(Z s, * Z' T, o7 eee 9 Z s; + Z'P” |

k€K ME[] kM €Ly, €Ly, €L €L,
where K is the set of all integers k for which the kith
processing component has no concurrent activity, II is the set of
sequences of code where there is parallelism, M is any such code
seguence, Im“JIQM is a unique sequence of integers denoting a
path through one cade sequence where there is concurrent
activity, and L,MLJI4M...LJL;MLJLgM denotes all such paths

through the Mith code sequencee.

MOTJ £ITATIOY
T- 24NO1]

78

$S900Id

§83900.1d §§9001d

O/l

$S690.d

79

For each request of a regsource there is an associated delay
due to simultaneous requests by the other stages in the‘pipellne.
Thus, the processing time for a macro instruction includes a
delay at each I/0 request. MNethods for deriving these delays are

discussed in the next section.

4.3.2 RESOURCE CONTENTION

Contention for resources in a graphics system is the result
of the simultaneous execution of the three stages in the.
pipeline; this causes simultaneous requests for the resources
shared by the three stages. iIn this thesis two different measures
éf delays causéd by this contention will be use¢\—- gtretch and
lagbe. Stretch is a measure of the increase in execution time over
some time interval for a process demanding access to a resource
that it shares with another processe Lag 1s a measure of delay

for a.single resource accesse

If two processes sShare a resourcey, one of the processes must
have higher priority than the other, so that concurrenrt requests

can be resolved. The priority may manifest itself in three ways:

6gtretch and lag are terms that have been used to denote a
measure of the increase in effective execution time due to
multlprogrdmnlng and a measure of operating system dispatch
delay, respectively [MICH77]. The worst case stretch which is
discussed below has also been used by [BEIZ78] as a measure of
delay due to resource contentione.

80

the high priority process may preempt a resource request by the
lower priority process instantaneously, it may preempt the lower
priority process after some portion of a resource request is
completed (eegey iﬁe current memory acceés in the middle of a
multi—-access reguest), or it may not preempt the lower priority
process at all, in which case priority only matters when resource
requests by both processors occur at the same instante.
Instantaneously preemptive priority, the first kind, does not
occur in any situations studied in this thesis; the second and
third Xinds of priority, preemptive and non—preemptive, are both

discussedy, howevere

Stretch and lag are used as measures of delay for both high
and low priorlty processes. For a low priority process, the
measures of delay are independent of whether priority is
preemptive or non—preemptive. For a high priority process,
however, the measures differ in the preémptlve and non—-preemptive
cages. In general, the delay for the high priority process is a
function of thev service +time of the lLow priority process's
requests. With non-preemptive priority, this service time is
defined to Dbe the time to complete an entire request. On the
other handy; with preemptive priority, service time for the low

priority process is regarded as the maximum time it takes that

process to relinquish control of the resource.

81

Stretch and lag are discussed in the first two sections
below, respectivelye. As will be seen, the delays caused by large
resource requests are not always modelled adequately by stretch
or lage This is discussed in the third section. Stretch and lag
also cannot be applied to processes that are capable of buffering
resource requests. The effect of buffering on delay is discussed

in the last sectione.

The following variables will be used throughout the

remainder of this chapter:

T is the length of the observation intervale The time units
for T are also used to express all other time dependent

variablese.

a is the average time between requests to resource R by

process Pl in absence of any contention for R.

c. 1s the average service time for a request to resource R
by process PI in absence of any contention for R. A cycle
is a processing interval followed by a resource request
interval; the total time for a cycle in absence of

contention is al+ c, o
d is the average delay for one access to R by process g .

n is the number of requests by processcr P, to resource R

during time T

of T,

8,

82

is the rate of resource Re The variable c, is the average
gservice time for a request by ﬁ and corresponds to some
number of unit requests, each of length 1/r. Preemption
of a low priority process's request to R cannot take
place until R has serviced the low priority process an

integer multiple of intervals 1/re.

additional set of variables can now be defined in terms

T C, d;, + n; ¢ and re

is +the fraction of +time T resource R is busy due to
requests from process P‘ in absence of any contention for

Re The quantity b, can be expressed as b, = c'/(al+ci).

is the rate at which process Pl completes processing
between resource requestse. The quantity o can be

expressed as a; = 1/8a, .

is the completion rate for requests by process ﬁ to
regsource R in absence of any contention for Re. The

quantity B, can be expressed as B, = 1/c; or B, = n, /Teb, .

is the access rate by process P, to0 resource R in absence

of any contention for R« The quantity 7, cen be expressed

as 7, 1/(a; tc;).

is the relative demand for resource R by PI. The quantity

R, can be expressed as R, = YI/r.

83

P, is the stretch factor for processor P,y 1eeo, the ratio
between the effective time for one cycle and the time for
one cycle in absence of contention. The gquantity p; can

be expressed as p,= (a, *c, +d;)/ (a *c,).

e, is the lag for one request by processor P, to resource Ry
ieeey the difference between the effective time for one
cycle and the time for onev cycle in absence of

contention. The quantity ¢, is simply equal to d; .

443.2.1 STRETCH

This section derives analytical expressions for maximum and
minimum stretch for a process and also an expected:-value for
stretche In this section, stretch is derived assuming that the
contending process does not suffer any delayy ieeey that the
stretch for the contending process |is one?; in Chapter 5 an
algorithm is presented for deriving stretch when the contending

process does experience delaye

In the following theorem it is assumed either that Pi is the
lower priority process or that Py is higher priority but does not

preempt Poe

]
7This is equivalent to instantaneous preemption by the contending
processe

84

Theorem 4.1 If Py and P> are. two processes that make demands
on a resource R and during an observation interval T,
P, keeps the resource busy during bze*T of the interval
(bp<1), then the maximum stretch of the execution time

for Py, is given by pg = 1/(1-bz)e.

Proof: If Py demands R at rate 71, then the mean time between
accesses is 1/7; in absence of any contention. If x is the number
of completed accesses by P; during T when P2 is contending for R,
and if D is the total delay during the observation interval, then

the mean time between those accesses is

T 1

- = - + dly and

x Y
x

T = - + Xxeodye
LE!

Hencey

x

T = - + D, (4.1-1)
Y1

Assuming worst case conditionsy i.eey there is a conflict at each

access, the total delay is bzeT which implies

85

Ye(1l=b2)

The mean time between accesses in the presence of contention is

1

Yi(1=b2)

It 43

b

Thus the stretch is

!IO
x 1
py = == = —=——= which proves the theorem.
1 1-bo
Y1

In +the following +theorem, as in the previous one, it is
assumed either that Py is the lower priority process or that Py

has higher priority but does not preempt Poe

Theorem 4.2 If Py and P, are two processes that make demands
on a resource and during an observation interval T, P>
keeps the resource busy during bzeT nof the interval
(b2<1), then the minimum stretch of the execution time

for Py is given by p1 = max(1l, bg/(1-bz).

Proof: If B4 is the completion rate for requests by processor Py
40 R in absence of contentiony then the number of requests n; by

Py during T is

86

ng = bgeTepy o

Assuming best case conditions, the number of completed accesses X
by Py during T when Pz |is contending for R is the smaller of the
number of accesses in absence of contention and the number of
accesses that can be made in the time remaining after Pz has been

serviced by R:

x = min(bgeTef1, (1-bp)eTeBy) &

v

Thus the stretch is

T
X ng by
P = —— = == T —m—mossossoo- y and
T x min(bgy1l=bz)
ng
Pr = max(1l,-—-—) which proves the theorem.
1-b;

These theorems easily generalize to multiple processese.
Assume there are n processes and that Py is the process in
question. If each process uses the resource for time b, T during
T, then the maximum stretch for P; is p1 = 1/(1-Z;b,) and the

minimum stretch is pPp = max(l,bg/(le:b,)) provided +that the
i>1

87

total utilization by the other processes is less than one, that
ls; 2:b,<1. If this utilization exceeds one, the stretch for the

i>1
lower priority process is infinitee.

Theorem 4.3 Assume that Py and P ewre two processes that
make demands on a resourcey and during an observation
1ntefva1 T, P,y the process with the lower priority,
keeps the resource busy during byeT of the interval
(b3<1), and assume +that the relative demand for the
resource during T by the higher priority process, Pz,
is Rze If P, can preempt Py after an access to the
resource that is no longer than 1/r, then the maximum

stretch for P, is given by pz = min(1/(1-by), 1*+R2).

Proof: Using equation (4.1-1) abovey, we get the following

expression for T:

Assuming worst case conditions, we see that D is the smaller of
Py's utilization of the resource during T and a delay of 1/r for

each requeste. Hence,

b4 ' T

T = == + min(bgeTy====) .
Y 1
—+1

R2

88

The mean time between accesses is

T 1
- = - °
x Rz
Yeo(1l-min(byg y=——-))
Rot+1
Thus the stretch is
T
x 1
pz2 = == = min(—---—31+R2) which proves the theoreme.
1 1-bg
Y1

The minimum stretch for a high priority process is clearly

onee

It should be noted that in order to calculate the minimum
and maximium stretch, no assumptions need be made regarding the
distributions of either arrival or service rates for the requests
to the resourcee In order +to derive an expected value of the

stretch, however, such assumptions are obviously necessarye

Two processes Py and P sharing a resource R with P, always
gaining access to R without delay can be modelled as a simple
Markov process. The model has four states as is illustrated in

the state transition diagram in Figure 4-3:

FIGURE 4-3
State Transition Diagram

89

90

(p2yp1) both processes are processing!
(payry) P2 processingy P accessing R,
(ré,pg) Py processing, Pz accessing R,
(ra29r1) P2 accessing Ry Py waliting to access Re

In Figure 4-3 the state transitions are illustrated with the

associated rates of transition.

For each state the rate at which the system leaves the state
equals the rate at which the system enters the statee. This gives
the following equations (P(%*,%) is the probability of being in

state (%4%)):

P(payrz)es8s + P(rzyp1)epB2

P(pz2yp1) ¢ (aztas)

P{pz2ypa)deaz

P(rayp1) ¢ (a1%82)

P(rasr1) ¢ B2 = P(payrydeaz + P(rzypileas
The sum of the probabilities is one?:

P(pzvpl)+P(rzvpl)+P(Pévr1)+P(szr1) =1

The expected completion rate of resource accesses by Pj with P2
contending for R is B1*P(p2yr1)e Hence, the mean time between
completion of resource accesses is 1/(B81*P(p2yr1))e The mean time

between resource accesses by Py in absence of any contention is

91

1/a4t1/8q and the stretch is

1

Bi*P(p2yr1)

P2
1 1
-t -

ay B
Solving the simultaneous linear equations above for P(paery)

gives the following theorem:

Theorem 4.4 If Py and P, are two processes that make demands
on a resource and P can always gain access to the
resource without delay, and 1f the processing times
between resource requests for Py and Pz and the service
times of requests to R by Py and P are independently
exponentially distributed®, then the expected stretch
of process Py's execution time in the presence of

concurrent demands for R by process P is

1 a2 (1-by¢)

pr = —=== = === om——m== .

1-b, (agtaztpfz) (1-b2)

8This can be assumed valid if the ratio of the standard deviation
to the mean is in the range (1/10, 2). If the ratio is less than
oney the assumption leads to a somewhat pessimistic result; if
the ratio 1s greater than one, it is somewhat optimistic

[BUZE79a],

92

In practicey as will be seen later, there is often no need
to calculate the expected value for stretch since the difference

between the maximum and minimum stretch tends to be small.

2.3.2.2 LAG

This section derives analytical expressions for lag in one
process for two cases, namely, where the requests by the
contending process have constant or exponential service times.
The lag is derived assuming that the contending process does not
suffer any delay; in Chapter 5 an algorithm is presented for

deriving lag when the contending process does experience delay.

lag is used as a measure of the delay for a single resource
request by a process caused by the fact that the contending
process cannot relinquish the resource until the current request
is servicede. Lag is used for both high and low priority
processes, but, in the case that the higher priority process can
preempt the other process, the service time of the lower priority
process is the unit service timey, ieeey the minimum time that the

lower priority process is serviced before it is preemptede.

Theo 4,5 If Py and P are two processes that make demands
on a resource R and during an observation interval T,
Py keeps the resource busy during bieT of the interval

(by<1), and if the service time for the requests to R

93

by Py are a constant c3y and the times between reguests
to R by P, are exponentially distributed and inde-—
pendent from the requests by Py, then the expected lag

for one request by Pp is ¢2 = c3/2emin(1ly, bg/(1-b2))-

Proof: The probability of P, being delayed 1is the ratio of the
time that R is busy serving Py to the time that R is pnot busy
serving Pae (P2 may ngggggg R only when not already being gerved
by Re) This ratio is by/(1-bz)e The expected duration of the

delay is c1/2y, which proves the theoreme.

Theorem 4,6 If Py and P, are two processes that make demands
on a resource R and during an observation interval T,
Py keeps the resource busy during by *T of the interval
{(by<1)y and if the service times for the requests to R
by P; are exponentially distributed with an average
service time of cy4y and the times between requesté to R
by P, are exponentially' distributed and independent
from the requests by Pi, then the expected lag for one

request by Py is8 dp = cqgoemin(1l,b3/(1-b2)).

Proof? The expected duration of the delay is in this case cj9

which proves the theorem.

The next chapPter provides some simple algorithms for how to
derive the delay for cases where the contending process

experiences delaye.

94

4.3.2.3 LARGE RESOURCE REQUESTS

As was noted in section 4.3.2.1, the minimum and maximum
stretch can beu computed without regard for service time
distributions. The expected value for stretch, however, is based
on the assumption +that the service times are exponentially
distributed. If this assumption is inappropriate, a more careful
e#amlnatlon of the effect of a resource request may be necessarye.
This <can be done by considering the resource request as a
separate process running concurrently with the processes in the
three stages locking out some other process(es)e The calculations
of delay can be done when the combined delays for all three

stages are calculated, as is described in the next chaptere.

4+3.2.4 BUFFERED DEVICES

Two processes that share a resource are often capable of
bpuffering their requests to the resource. If the total resource
demand is less than the maximum resource rate, and if the buffers
are sufficiently large! there is no noticable delay for either
processe. In order to handle startup conditions pessimistically, a

delay of the maximum gervice time for the high priority process

95

can be added to the total processing time for the lower priority

processe

96

S _APPLICATION O P IQUES
The previous chapter discussed performance modelling

techniques suitable for graphics systems, and this chapter
discusses how to derive a performance model using these
techniqueses This chapter also introduces &a new construct, a
composite macro instruction, which is a weighted average of a set
of macro instructions. Composite macro instructions will be used

in the remainder of the thesis to discuss implementation

trade—~offse.

The first section of the chapter discusses some criteria for
how to derive a macro instruction set. In the second section a
simple, straight-forward algorithm for deriving an activity
flowchart from a program is presented, and in the third section
timing sequence diagrams are used to derive preocessing times from
the activity flowse. The fourth section shows how to apply lag
and stretch analysis to the macro instruction processing times

and the last section discusses the composite macro instructionse.

The performance modelling techniques are applied in the

remainder of the thesis

L4 to compare the performance of certain types of

applications on two exlsting systems and

97

e to develop & design methodology for determining the

effect of various design tradeoffs on system performance.

5.1 Macro Instructions

Macro instructions were formally defined in Chapter 4. In
this sectiony how to actually select macro instructions is

discussedes

The choice of a macro instruction set is an important onee
of coursey the macro instructions mnmust have the properties
discussed in Chapter 4. The choice also must meet the
requirements of the user. Complete rules for making the choice
are impossible to devise, but in what follows there are some
guidelines for the design of a macro instruction set. Some
examples of macro instructions can be found in the next chapter,
which contains a part of a macro instruction set in a performance

model for comparing two existing graphics systemse.

From the point of view of a user who wants to estimate the
performance of an application for a particular system, the macro
instruction set should contain instructions in which it is
convenient to express the applicatione. The macro instructions
should be at a level of abstraction that permits all capabilities
of the graphics system to pe taken advantage of. For example, 1f

a user wants his application to continually update a coordinate

98

according to a control dial, the instructions "read a dial" and
"uypdate coordinate" are at too low a level if the graphics system
allows a coordinate data type in the SDF that reads a dial value
directly. The appropriate level would be '"update coordinate
according to dial valuees" The implementation of +the macro
instruction may still, under certain circumstances, be two user
instructions that correspond to the two macro instructions above.
However, in order to use the performance modél to determine which
implementation is appropriate, the higher 1level instruction

should be included in the instruction set.

Ifl the intent of a particular performance analysis is to
compare the performance of two or more systems for a particular
application, care must be taken that the macro instruction set
does not favor one of the systens significantly. The macro
instruction set must be such that the application expressed in it
can be implemented in the most efficlent way for each systeme.
This may mean that, for one of +the systems being ccmpared, the
macro instruction set is at a higher level of abstraction than is

dictated by that particular system alones

Some further guidelines for the design of macro ingtructions
are derived <from the properties the macro instructions must
possesse First, recall that every macro instruction |is
independent from every other macro instruction. This means that

the processing of every macro instructien is independent of the

99

processing of every other macro instruction. User instructions
arey however, often interdependent since some user instructions
modally determine aspects of the processing of other user
instructions. For example, a viewing transformation user
instruction determines +the processing of subsequent line user
instructionse. In order +to create macro instructions that are
independent of each other, each type of processing of a user
instruction corresponds to one macro instruction. For example,
each type of line clipping (insidey, outside, and crossing the

window) gives rise to a different line macro instructione.

Secondly, the processing of each macro instruction is
independent of load. Such a dependence could rarely occur since
the user instructions are generally independent of loade. Howevery
there are instances when dependency among user instructions can
occure. For example, the contents of a buffer may increase as the
number of user instructions increases. If the processing of a
f"candidate" macro instruction changes as the number of macro
instructions increases, this candidate instruction is treated as
two or more different macro instructions with different
processing reguirements. The load factor is added as another
argument to the relevant macro functione. For any one load, the
appropriate macro instruction '15 obtained by using the

appropriate value for the argumente.

100

Third, there is only one possible sequence of I/0 requests
in the implementation of a macro instruction. If there are
multiple 1/0 sequences possible for a Y“candidate" macro
instruction, this instruction should be treated as several
different macro ingtructions, each with one type of I/0 request
sequencee. This is accomplished by adding another argument to the

macro function that distinguishes the I/0 paths.

Finally, since a processing descriptor can only take a
discrete set of values, there are only a finite set of macro
instructions. Tgus, it is necessary to categorize analog system
behavior by discrete processing descriptors. For exampley, line
drawing times are defined in a set of ranges of values, where the
line drawing time for each range is tﬁe_average line drawing time

for a line in thet rangee.

5.2 Activity Flows

The compute time for a macro instruction is derived from the
routine(s) in each stage of the pipeline for the associated user
instructionse For the first stage in the pipeline, the user
instructions would generally be programmed in assembler language;
for the second and third stages the user instructioas would

generally be expressed in firmware codee

101

An activity flow is derived from a processing flowchart.
Therefore, first, a processing flowchart for the routines are
drawne The flowchart uses some common flowcharting symbols for
processes, decisions, and junctions as illustrated in Figure 5-1.
Any initiation of a concurrent activity, either for I/O or for a
parallel process, is denoted by the (first symbol in Figure 5-2.
Similarly, the point where the result of a read operation is
needed or where the parallel process must be completed is denoted
by the second symbol in Figure 5-2, For simplicity, the third
symbol - in this figure is used when a Jolﬁ of some concurrent
processes is immediately followed by the initiation of some
concurrent processes.Q

Secondly, the processing flowchart is reduced in the

following manner:

1) RepPlace a sequence of processing boxes by a single
processing box denoting the number of instructions and

the total processing time.

2) At a decision point remove any path that does not

pertain to the current macro instructione.

3) At each decisicn point estimate the probability that
each brdnch will be executed and annotate the branch

with this probabilitye.

102

—_— ———-> . Process

Decision

Junction

FIGURE 5-1
Processing Flow Symbols

103

Initiate Concurrent Processes

- Join Concurrent Processes

Joining of Concurrent Processes
Immediately Followed by Initiation
of Concurrent Processes

FIGURE 5-2
Activity Flow Symbols

4)

5)

6)

104

At each decisidn point remove any branches that deal
with error conditions and remove any branch that has a
low probability of being processed, iecey the branches
that will not contribute significantly to the

performance measurese.

If all branches at a decision point only contain
processing ﬁoxes followed by a Junctiony replqce all
branches with one processing box denoting the average
processing time and average number of instructions,
weighted by the probabilities at the decision pointe. If
the processing t;mes in the different branches differ
significantly, it may be necessary to split the macro
instruction 1into two or more macro instructions, with
dissimilar branches correspdndlng to different maecro

instructionse This is to avoid introducing significant

errors in forming the estimates.

In case of a loop, estimate the number of times it will
be executede. It the loop does not contain any
concurrent activities, replace the loop with a
processing box denoting the total processing time and
number of instructions executed in the loope I£ the loop
contains any concurrent activities, expand the loop the
number of times it would be executede If the number of

times the loop is executed may differ significantly, it

105

may be necessary to split the macro instyruction inte two
or more macro instructions, with each resulting macrec
instruction corresponding to a different number of
iteration or to a different range of numbers of
jterations. . Again, this |is to avoid introducing

significant erfors in the estimatese.

7) At each subroutine call expand the calted routine

inline.

Repeat steps 1) through 7) until no further reductions are
possibles This results in an activity flo;. Because of property
3) in Section 4.1 an activity flow has only one pathe It
represeﬁts the processing of a macro instruction delineated by
I/0 requests and concurrent processes. A typical activity flow is

illustrated in Figure 5-3.

In order to adequately model system performance, an activity
flow for every statistically significant macro instruction must
be derivede The following sections show how activity f£lows are

used to to derive analytical estimates for macro instruction

processing timese.

106

9z:awig
Su:asu)
$S3204d

MO £3ATIOY
£-G 3UNDIJ

Ps:awny
Yu:nsy)
' §82004d

Ss:awi}
Su:nsy;
$S8201d

Cs:awy
Zu:nsu)
$53201d

€s:awn)
€u:nsu|
$S8201d

byt Asowapy
lg:sng

Yu:spiop
BIIM

by s Aoway
tg:sng
Cu:spiop
pesy

ls:auny
buinsyy
§53901d

—

107

. e ence a

A timing sequence diagram [BEIZ78] is a summary of the
implementation of one macro instruction in one stage of the
pipelines Such diagrams are used as an aid to derive algebraic
expressions for the processing times for the macro instructions,

loeo' the Ql 'So

A timing sequence diagram is8 derived from an activity flow.
(Figure 5-4 showé a timing sequence diagram for the activity fiow
in Figure 65-3.) The bottom line in the diagram represents the
compute time. The other 11nes represent other resources
(including any parallel process) accessed by the processor
represented by the bottom line. All physical resources such as
memories, buses, and parallel processors should have their own
lines in the diagrame (In Figure 5-4 the processor is reading and
writing one memory over one buse.) The heavy arrows represent the
time during which the resource is busy; in this example they
represent the compute time, the bpus transfer time, and the memory
access timee The length of the heavy arrows are proportional to
the time the resource is usede. The light arrows represent points
of synchronizatione In general, both kinds of arrows indicate
that the process initiated at any one point cannot begin until

all the processes represented by incoming arrows have been

completede.

108

we1der(q sousnbag Surwury,
-G 24NDIJ

Aiowsapy 10} o1ey Jaysuel] = (SpIom jo #) = ‘w
Asng sisngawlil = lq

10SS8001d

(*g)sng

(b)) Auowsy

109

(pauBisse ‘3 ‘sajqerrea swr qitm)
weider(q 2ouanbag Sutwiry,

G-G TUNDI]

10Ss8920.d

(kg) sng

e

- (h) Asowsy

110

Assuming that there are no concurrent demands on any of the
resources by the two other processing stages in the pipeline, it
is quite simple to compute Ql' First a time variable t, is
assigned to each arrow Jjunction in the diagram (see Figure 5-5).
The time variable at an arrow Jjunction is expressed as a function
of +the procesgses completing at this Junction and the time
variables just preceding each of these processes. Using the

example in Figures 5-4 and 5-5 the following set of equations

results:

Q; = tas
tzz = tzz t Se
tz2, = max(tz1y tzs + ss5)

tz1 = tao t* bs

t20 = tag

t19 = t1s + m3

tis = ma.x(‘tggy t17)
ti17 = t16v+ ba

tge = max(tgay t1s)

ti1s = tao t Sa

111

t10 = to t+ 83
t1a = tg3 + m2
t13 = ta2

ti2 = t1d * b3
t11 = tao

tg = max(tz + s249 tsg)
tg = t7 t bz
ty = te

te = tg + mg
ts = ta

ty = t3z + by
tz = to2

t, =ty t+ s
ty =0

By successive substitutions an expression for Ql can be

derived:

Q; = s1 + g3 + 8¢ + max(szy, by + my + by) + max(se + s59 m3

+ bg + max(mz + b3y, by *+ max(bzy S4)))y or

112

Q, = g9 + g + 56 + max(sgy by + my + bp) + max(ss4 t 859y

mz + bz + m3g + bg, m3 + bz * by * bsy ma t by + bg + s4)

The equation for Qj expresses the processing time for a
macro instruction as a function oéw thé processor execute time,
the memory and bus transfer times, the I/O~processor overlap, and
the overlap by parallel processlng- The equation does noty
however, take into consideration the simultaneous demands on the
resources vby the other processing stagese. In the next section,
the formulas for the Ql's will be modified to include the delay

induced by the concurrent demand on the resourcese

5.4 Application of Delaysg

In the previous chapter the formulas for stretch and lag
were derlved assuming that the processes contending for the
resource both were running the entire time interval of interest.
Howevery, thié is not generally the case for the processes in the

three stages of the pipeline. A typical situation is illustrated

in Figure 5-6.

In this figure, the time interval is 1/10th of a secondy
ieeey the length of one update interval in a typical application

program. The process in the first stage of the pipeline (the

113

$9383§ 9317 T, JO SUISSIV0IJ JUILINOUOD

9-G TANDIJ
o -
puODaS O}/ |
T oesoeir T
- P -} P -} —iiet
301 9noax3 207 21noax3 307 81noax3

4@s 21nodex3y

>t o
- 16014 “|ddy aynoax3 4as swepdn

¢ abelg

¢ obels

| abelg

114

"DFC) is eiecuted flrst,.l.e., the SDF is updated,y, and, at the end
of the update, the DPU starts executing the SDF. In this example,
the proéessor running the DFC next continues processing the
application program.‘The DCU executes the LDF three times during
the update interval, ie.esy it executes the LDF evefy 1/30th of a
seconde (Note that other types of synchronization of the three

stages are possibles)

If +the delay is applied globally over the entire time
interval, some very pessimistic performance measures may resulte.
In order to derive some better approximations of the delays,

formulas for local delay must be devisede.

An additional consideration is +that the expressions for
stretch and lag in the previous chapter were derived assuming
that the contending resource was not delayede. This may also
result in performance measures that are too pessimistice. The
first section below develops expressions for local delayy and the
second section presents an algorithm that combines delays for two

processeSe.
Se4e1 LOCAL DELAY

Iin order to derive some analytical expressions for local
delay, we return to the simple model of two processes and one

resource. The two processes are denoted P; and P, and the

115

resource 1is denoted R. The following variables will be used

throughout the section:
Tq is the elapsed time for P; in absence of delay.
T, is the elapsed time for P in absence of delaye.

D is the delay for P, assuming that Py delays Pp's
processing during all its (P;'s) processing, and can be

evaluated using either lag or stretch.
Eo is the elapsed time for Pp including delay.
by is the fraction of time Ty that R is busy serving Pje.
b, is the fraction of time Tz that R is busy serving Pae.

It is assumed that both processes begin at the same time,y, ieeey
that in the absence of contention, P; is processing during the
time intervel (0,Ty) and P, during (0,Tz)e In the case that both
processes do not begin at the same time, the delay should only be

applied from the first point where both are processinge.

Assume there are only two processes executing during (part
of) a time interval T, and that both processes access a resource
R. Assume also that P, gets delayed by P This delay only
applies to the portion of Pa's processing that is overlapped by

P4 's processinge. In order to find the delay in this situationy we

116

compare the time of Pg's processing to the time of Pa's

processing including delay.

There are two cases to considere Either the elapsed time for
Py is greater that the elapsed time for P2 including delay or it

is less®9.

Case 1: T312Ez.

In this casey, Py clearly delays P's processing during its entire

processing intervale Hence,
Ep = Tot+D>

where D, is calculated assuming that P, accesses R for time by T

during Tz

Case 2: Tg <E2 .

In +this case, Py delays Pz's processing during an amount x of
processing by Pz (in absence of contention) and x{Tze. Delay

affects Pp during all cf Pi's processingy ie.esy

xeDp
Tg = x t+ ——=
T2

where Do is calculated assuning that Py accesses R for time by T2

9The derivations for local delay are adapted from [BEIZ78].

117

during T« The portion of Tz that is not delayed is Tp-xy, and

xeDo
Es = x + === +Ta=x o«
Tz

Using the equation above,

Es = Tp + ———= .

According to our assumption, Ty is less than Ezy ieeey

which gives

Ty < Ta+D2

which was indeed the assumption in this case and is the

complement of the assumption in Casge 1.

In summary, if Tg2Tp*+D, then Ez = Ta+Dz and if T4 <{T2+D2 then

Eo = T2+(D2'T1)/(T2+Dg)o

118

Se4.2 COMBINING DELAYS FOR PROCESSES

The discussion above showed how to compute delay for P3
assuming P> was not delayed, and conversely; how to compute delay
for P, assuming Pq was not delayed. However, this may result in
performance measures that are too pessimistice. By applying the
following algorithm, a more accurate measure of delay for both P
and P, is obtained. (In what follows the notation of the previous

section is used.)
1) Set Ta' = Tz

2) Calculate the delay for P; using the formulas of Section
S.4.1« The delay is calculated assuming that Pz accesses
the resource R for the fraction ba'! = (bpeT2)/T2"' of the

interval Tjie. Set Tgq' = Ege

3) Calculate the delay for Pz. The delay is calculated
assuming that P, accesses the resource R for the
fraction bg! = (bgeTq)/T1' of the interval Ta. Set

Ta' = Eze

Iterate steps 2) and 3) until the values for E; and Ep stabilize.
It can be shown E3 and Ez always do stabilize. Ej decreases
monotonically with decreasing b and is bounded below by Ti1e.

Similarlyy Ez increases monotonically with increasing bi' and is

119

bounded above by TotDp', where Dp! is calculated assuming P; is

not delayede.

In graphics systems, as we hﬁve modelled themy, there are
three processes running in parallely, which makes the derivation
of the processing times for each stage of the pipeline, the Uy,
Uzy and Uz, more complicatede. The jdea is the same; first apply
the delay to the processing times pairwise and then iterate until

the values for the elapsed times stabilize.

Recell that each U is a weighted average of some QJ's that

are expressions of the form

k

Zsjk+ ZmaX(zsjk+ Ef'~k 9 eee Zs-k + Zr.k)y
ok k kY J o

where sﬂ denotes the processing time for a processing component,
and T denotes the time for a concurrent activitye. Some of the
rjk's represent resourée requests that have an associated delay
due to contention for the resource. In Theorems 4.5 and 4.6 it
was shown that the expected value for the delay d can be
expressed as d = p*X, where p is the probability that the
resource request is delayed and ¥ 1s the expected duration of the
delay. The objective in what follows is to derive an expected

value for each of the max terms in Ue

For simplicity let us assume that each max term in U has the

form

120

Y = max(dtsgey S)

where d represents the delay, s; represents the time a resource R
is servicing a request plus other processing time that iw
independent of Ry and s represents processing that is independentt

of Re

If 84 2 8y then the expected value of Y is ¥ =81 * peXe If

S8 2 dpax ¥S19 where dpax is the maximum delay, then Y Se If,

however, 81 < 8 < dpox t 819 then the expected value of Y can be

expressed as

¥ = (1~p)es + pe¥,y,

where Y3 is the expected value of max(s;txy s)y assuming that

there is some delay, xy, at each regueste
Assume that x has a distribution with a probability density

function

£(x) for 0 £ x £ by, and

g{x) =
0 otherwisee.

Then the expected value of Y, is

121

s—=8q b
¥y = f sef(x)edx + f (x+sq)e£(x)edx (5¢4.2-0)
0 s=8,

Cage 1: The service time for one request is a constant ce. This

means that x is uniformly distributed with a probabillity density
function of 1/c for x between 0 and ce« Hence, the expected va lue

of Yq is

S—Sq

L]
"»
)]

C
(s/c)edx + ./‘(x+sa)/c°dx
0 s=8q

which, simplified, yields
Yy = c/2 + s8¢ + (s=34)2/(2ec) (5.4.2-1)

Cage 2: The service time for one request 1s exponentially

distributede This means that x is elso exponentially distributed,
with a probability density function of (1/c)eexp(-x/c) for
non-negative x (0 otherwise)s The expected value of Yy is again

found by substituting into (5.4+2-0). The resulting value is

given by

¥y = coexp(—(s—sq)/ c) + s (5e¢4.2-2)

In summary, the expected value of Y is

]
i

and ?1

122

sq + pex if sq4 2 s
(1-p)es + pe¥y 1f 84 < 8 S dpgts: (5¢4¢2-3)
s : if s 2 dhxt St

is an expression as derived above that depends on the

distribution of xe. The delayy if the contending processor is not

delayed,

and zero

The

as:

1)

2)

3)

4)

is pex in the first case, p-(§1—s) in the second case,

in the third casee.

algorithm to calculate U for each stage can be expressed

Assign values to the I/0 hardware parameters { either .for
an existing system or for a system under design) and use

these values to substitute values for the ij'9°

Using eqﬁatlon (5.4.2-3), calculate the processing time
for each stage and the associated delay. The delay
calculation for each stage assumes that the contending
processors are not delayed, and that all processors run

during the entire observation interval.

Using the iterative procedure discussed above, combine
the delays for the processes pairwise, and calculate the

effective times for U in each stage of the pipelinee.

Repeat step 3J) until +the values for the elapsed

processing times stabilize.

123

As was mentioned in Section 4.1y, a very large number of
different macro instructions are needed to describe all possible
execution paths through the user instructions at each stage of
the pipelines. In order to make it easier to define a>macro
instruction set, mnacro functions were introduced as a shorthand
notation for a (sub)set of the macro instructions; the value of a
macro function for a particular set of arguments is a ﬁacro
instruction. Although the macro functions aid in the definition
of macro instructions, it is not always convenient to specify an
application in terms of the number of occurances of a macro

function for each set of argumentse.

It is often easier to think o¢f an application consisting of
some number of primitives of which a certain percentage are
visible, and the remainder is not, of which some percentage are
static and the rest dynamic, and SO Siie Ta other words, it is
convenient to attach a percentage, or fraction, to the occurance
of each of +the values of some or all processing descriptors. By
forming the products of all possible combinations of occurance
percentages for the values of the processing descriptors, weights

representing the occurance percentage of the macro instructions

124

are createde A welghted average of several macro instructions

will be called a composite macro ingiEQQILQQQ.

No te that there |is not necessarily a one to one
correspondence between composlteA macro instructions and macro
functionse A composite macro instruction can encompass several
: macrolfunctions or, alternatively, correspond to a subset of all

of the processing descriptor values for one macro functione.

More formally, we create a composite macro instruction the
following waye Assume that there is a macro function whose
.arguments are a, y k=1, eesy Mo For some of the a, 'sy there are
weights w, | 1=1y eeey N, associated with each of the N possible
valges of a,e (Note that ,g:"u =1.) In general some of the
arguments will be assigned a constant value, and the remaining
ap 's, with weights, will vary over all possible values. The
processing time for the composite macro instruction is an

expression of the form

Ewungm see szn .Ql(l,m,----nn) (ees)

| n

where I(ly,my eseey n) is an integer function‘that maps the indices
of the arguments to an integer denoting the ordinal number of the
macro instructione This composite macro instruction only
encompasses (part of) ohe macro function. By attaching weights to
two such composite macro instructions and adding the weighted

processing times, the processing times for a composite macro

125

instruction that encompasses more that one macro function is

obtained.

At first .glance it may appear as 1if an expression for the
processing time of a composite macro instruction could become
very longe However, the expression can generally be simplified a
great deale. QJ is zero for a large number of macro instructions,
in particular in the third stage of the plpéline. Futhermore,
many Qj's will be identical. This will occur whenever the
implementations of two macro instructions in one processor are

the same even though their implementation differ in a different

processore.

In the next chapter, composite macro instructions will be

used to compare features of two existing graphics systems.

126

6_COMPARISONS OF GRAPHICS SYSTEMS

Ge 1 t ol on

The performance modelling techniques discussed in Chapter 4
can be used as an aid in determining whicﬁ of several graphics
systems is the mcst suitable for a particular application from
the point of view of performancey as defined in this thesise
(Issues such as ease of use, reliability, costy etce.y are not
considereds.) The use of the performance modelling techniques for

this purpose is quite gstraightforwarde.

1) A set of macro instructions that is suitable for all the

grephics systems in question is derived.

2) For each graphics system the expression for the
processing times, the Q;'s, for every macro instruction

is derived in absence of any contentione.

3) All relevant loads for the application program are

expressed in terms of the macro instructions.

4) For each of these loads, for each systemy the delay is

computed and applied to the expressions for the QJ's.

1217

5) For each load, for each system, the total processing
times for each stage in the pipeline, the U's, are

derivede.

By comparing the resulting U's for the different systems it
is easy to determine which of the graphics system(s) meet the

application requirements.

By repeating this procedure for several applications that
are "typical" for an environment, one can establish a firm basis
for an opinion regarding which graphlcs\ system is the most
suitable for this environmente. This approach is suitable if the
needs of a particular environment are limited to a few types of
applications, but when the scope of applications is larger and
not well defined, this approach is not practicale Even in this

case, however, the performance modelling techniques can be used

for quantitative comparisons of graphics systems.

In order to make comparisons when the scope of the
application is not well-defined, one studies the trade—offs for
certain key features. For example, one could study static lines
versus lines +that change with a dynamically changing viewing
transformation, or the effects of different addressing modes for
lines, such as immediate data versus addressed datae. By
identifying the key features of interest for an environment dnd

by comparing their effects on performance for different graphics

128

systemsg one can establish some quantitative measures of the

relative performance of the systems under consiration.

One way to study trade-offs for a key _feature is via a
composite macro instruction. The weights of processing descriptor
values that are not of interest are held constant in the
composite macro instruction, while the' remaining weights are
variedo This technique will illustrate the effects the features
of interest have on performancee Composite macro instructions
will be used in this chapter to illustrate some differences

between the Evans and Sutherland Picture System 2 and the Vector

General 3400.

6.2 Introduction to the Casge Study

6+.2.1 SELECTION OF DEVICES FOR THE CASE STUDY

There. were four devices that potentially could have been
used for a case study in this thesis. All four are
"high-performance", as defined in this thesis, and data regarding
the internal operations of the systems was availablee. The four

candidates were: three commercial systems, the Adage 410010, the

10The Adage 4100 does not support perspective projection in the

129

Vector General 3400, the Evans and Sutherland Picture System 2,
and one non-commercial system, the Brown University Graphics
Systemes The Vector General 3400 and the Evans and Sutherland

Picture System 2 were chosen for the following reasons:
® both were developed in the same time frame,

¢ both were developed for the commercial market. As such,
neither had the financial constraints of a university
environment, nor were they guided by the special

interests of a university environment,

® both interface to the same set of host computers, the DEC

PDP-11's, (and more recently also to the VAX 780), and

e +these two systems employ radicaily different approaches

to graphics system designe.

The EES PS2 and the VG3400 arey as was Jjust mentioned, the
result of two different design approachese. The E&S PS2 DPU has a
limited instruction A set operating only on immediate datae. The
VvG3400 DPU, on the other hand, has a versatiley general purpose
instruction set and a large number of addressing modese. While the
EES PS2 DPU 1is very fast, the vG3400 has paid a price in DPU
processing speed for its versatility. These differences make the

comparisons of the two systems particularly interesting; not only

firmware, but, because of 1ts speed, can nevertheless be
considered a high—performance gsystem. '

130

will they serve as an illustration of the performance modelling
techniques in Chapier 4, bdut will illustrate some of the
advantages and disadvantages of ‘the two approaches from a

performance point of view.

In chosing the host, any of the PDP-~11's from the 11/34 to
the 11/70 [DEC74, DEC76, DEC78] could have been selected. The
analysis in this thesis uses the 11/45. Both graphics systems
were designed for the 11/34 and the 11/45, and, for this reason,
‘the vendors could cnly provide timing estimates for these hostss
The anelysis will,; however, be briefly extended to the 11/70, in
order to illustrate the effects +the choice of a CPU has on the

performance of these systems.

62«2 SELECTION OF FEATURES FOR THE CASE STUDY

A conclusive comparison between the two systems would
require that the performance for a very large set of loads
. covering all aspects of graphics programming be compared. It is
neither possible to 1illustrate all differences between the two
systems in this thesis, nor is it +the purpose of this thesis to
do sos. The goal is to illustrate quantitatively the difference in
performance between the two systems of some features that are

common in highly interactive and highly dynamic applications. In

131

order to do so; two composite macro instructions were chosen as

representative cases of these types of applications:

1) Polyline -- a composite macro instruction that
represents a 3D polyline with 11nés insidey outside, and
crossing the c¢lip window boundariese. The coordinate
values of the polyline either remain unchanged and only
the image of the polyline changes dynamically, or the
coordinate values are altered continually from the

application programe

2) Translation function -— a composite macro instruction
that represents a modelling transformation function that
translates an .obJect relative to its local origin. The
translation values either remain unchanged, or are

continually updated from control dial values.

6¢2¢3 COLLECTION OF EXPERIMENTAL DATA

The data upon which the analysis in this chapter was based
came from a variety of sSources. Although some data came from
reference manuals and hardware manuals, these sSources were
inadequate. Much of the detailed material was derived from
firmware code for the DPU user instruction sets, and from
hardware timing diagrams documenting I/0 sequencings. In addition,

there were numerous contacts with engineerers of Evans and

132

Sutherland Computer Corporation, Vector General, 'Inc., and
Digital Equipment Corporation in order to obtain the remaining
materiale Finally, some of the comparisons reéulred that
implementations of macro instructions be programmed, and timing

derived from these programse

In the first of the following sections, a subset of a macro
instruction set suitable for comparing some aspects of the two
syqtems is derivede. In the second sectiong a;composlte macro
instruction set is developed from the macro instructions, and the
performance figures for several features are determined apélying
the variable-weight technique described in the first section of
this chaptero The final section summarizes the findings in this
chapter and discusses validation and calibration of the

performance modele.

The macro instruction subset to be s;udled is represented by
three macro functionsj two for line drawing, "move!" and "draw'",
and one for modelling transformations, "model'. First, line
macro functions for each individual system are proposed, each of
which represents a set of macro instructions at a suitable level
of abstraction so as to take advantage of the capabilities of the

individual graphics systems. Second, the "move" macro functions

133

for the two systenms are combined into one functions and

similarly, the Ydraw" macro functions are combined into one
function; the new "move" and "draw!" macro functions represent a

set of 1Lline macro jnstructions for both systems. The same
procedure is then repeated to derive a modelling transformation

macro functione

The derivation of a macro function for a particular
feature(s) is accomplished as follows. The user instructions
relevant to the feature(s) of interest are examined at each stage
of the picture processing pipeline to establish which parameters
determine the different processing paths and processing
characterigtics. These parameters determine the processing

descriptors of the macro function.

6¢3.1 LINE MACRO FUNCTIONS

We'flrst consider the move and draw macro functions for each
system individually, and then we combine the +two sets of line

drawing functions into one set of functionse.

Starting with the E&S PS2 [ESCC77, Escc77a] we readily
identify the following parameters pertaining to line processing

in each stage of the pipeiine and their associated values. (The

134

parameters that correspond exactly to processing descriptors are

underlined.)

parameter values

STAGE 3

gggg length rangeé of values

move length ranges o; values

STAGE 2

clipping disabled
nonvisibie

vigsible ;— line completely visible
exit -- line exiting clip window
enter —— line entering clip window
enter—exit —— line both entering and

exiting window

dimensionality 2D
3D
4D
mode of data ebsolute —— value is an absolute coordinate

relative —— value is defined reletive to

the previous coordinate

135

offset — value is relative to a particular

value
iiggi line endpoint is first in a sequence of
lines
not first
beam on == ie.cey a draw

off —— jleeey a move

STAGE 1
alter no —— no addition or deletion
add — line endpoint is added to the SDF
delete —— line endpoint is deleted from
the SDF
modify no —— no modification

transform —~- change associated modelling
or viewing transformation
CPU —- change coordinate value from appli-

cation program

Some of the parameters require a brief explanat;on. WVhen
alter" has the value "add", the remalning parameters define the
type of line that is added to the SDF, as well as the type of
processing of the line in the DPU and DCU. When "alter' has the
value "delete'", "modify" has no meaninge. When "alter" has the

value '"add"', "modify" can specify a line whose image is not

136

altered at all ("no"), or a Lline whose image is changed by a
modification in a; viewing or modelling transformation
("transform"), or a tine changed by the application progran
("CPU"). In the first case the line could be stored ir. one
segment in the linear buffer without a copy in the SDF; in the

other cases a copy of the line must be stored in the SDF.

The parameter "first" refers to the first line in a sequence
of linese. This processing descriptor distinguishes a line macro
instruction that represents the first line endpoint in a polyline
and hence involves extra overhead in form of instruction
decodinge. "move length!" must be specified both for an explicit
move when clipping is disabled!!, and for a line that reenters

the clip window when clipping is enablede.

We now propose two macro functions "ESmove" and "ESdraw',
that together define 1line processing _for the EBS PS2: One
function could have been proposed that would have a "beam"

processing descriptor in addition to all the otherss But; because

fewer parameters are relevant to "Y"beam off" processing, two
functions are proposed, one for "“beam off" and the other for
"beam on". "dim" and "mode" need not be specified for a move

since their values do not affect the processing time due to the

horizontal micro instruction set in this devicee. These two macro

1iyhen clipping is enabled, a move instruction does not generally
result in a move of the electron beam, but only in a load of some

registers in the DPU.

137

functions have processing descriptors that correspond one for one

t0 the parameters above.

ESmove(altery, modify, clip,

first,

movelength)

ESdraw(altery modify, clipy, dim, mode, first, movelength,

drawlength).

For +the VG3400 [VECT78b]

parameters and associated values:

wve can

parameter values
STAGE 3
draw length ranges of values

move length

STAGE 2
clipping
dimensionality 2D
3o
mode(x,y,z)12 absolute
12This 1is equivalent to three
mode(y), and mode(z)y, each of

tgbgsolute!" and "relative®.

ranges of values

separate

which

identify the following

same values as for the EES PS2

parameters mode(x),

can take on the values

addressing modes

STAGE 1

alter

138

relative

line endpoint is first in sequence

line endpoint is not first in sequence

ony iee. a draw

offy, ieee¢y a move

word

by tes

byte/4

immediate
reference to list
reference in each coordinate value:
immediate
analog device
stack
register
external

local

no —— no addition or deletion

add —— line endpoint is added to the SDF
delete —— line endpoint is deleted from

the SDF

139

Host of the parameters for the V63400 resemble those for the
EES PS2. However, there are significant differences. For example,
while EBS PS2 only allows immediate data in the SDFy the VG3400
allows a large set of different addressing modes. The data can be
organized iﬂ three different ways: as immediate data, as a list
of data referenced by a pointer in the SDFy or as so-called
referencéd datay; i1e.eesy data where each coordinate can have oqe of

several addressing modes.

R In the VG3400 each referenced coordinate can have one of
eleven addressing modes, some of which are listed above. (Omitted
are modes which are not relevant to any of the applications to be
discussedes) Some of the addressing modes listed above require
explanation: "analog device" refers to data obtained from an
analog input device; gtack" refers to data in the object call
stack; M"register" refers to data in a general purpose GPU
register; Yexternal® refers to data addressed through the
directory; and “1ocal" refers to data referenced through a data
area called "local own" that is assoclated with each object. Each
value addressed in one of +the modes above may elther be
cobrdlnate data, or a pointer to some data, which in turn can be
a pointer, and so one This means there is potentially ar infinite
number of addressing modes. Modification of a line endpoint in
the VG3400 is made not through explicit changes to the SDF, but

through the modification of data referenced by pointers in the

SDF.

140

Other differences between the two systems should be noted.
First, whereas the EES PS2 allows line sequences that start with
a move or @8 dréw, the line sequences in the VG3400 always begin
with a moves. Therefore, the VG3400 draw function does not need a
processing descriptor "first", Secondly, whereas dimensionality
does not affect th9 ;rocessing flme for a move in the EES PS2 it
doés affect the move processing time in the VG3400. The same is
true for the mode of the coordinate data for a move. These

differences are reflected in the processing descriptors for the

macro functions below.

For the VG3400, separate move and draw macro functions are
also desirable. The processing descriptors of these functions are
the parameters listed above, except for the new modify(xsys2)

descriptor explained below.

VGmove(alter, modify(x,¥yz)y clip, dim, mode(x,yyz)y first,

packedy, movelength)

VGdraw(alter, modify(x,ysz)y clip, dim, mode(xys¥qsz)y packed,

drawlength, movelength)e.

The processing descriptor '"modify" takes a set of values
which represent the different types of modification that are

possible through the use of different addressing modese.

141

de to value

modify(x,y,z)13 no —-no modification

CPU ——- value is modified from the appli-
cation program and is addressed by
a pointer in the SDF

device ——~ value is modified by an analog
device

register —=- value is modified in a gene—
ral purpose register

stack —-—- value is modified in the obJject

call stack

There'are, of course, several more possible values for this
processing descriptor if all possible addressing modes are to be
includede The values listed above are, however, sufficient for
the purpose of illustrating the design and use of a macro

instruction set for comparison of the two systemse

In order to create move and draw macro functions for both
the systems, the processing descriptors for the two systems are
combined, that isy where a processing descriptor occurs in only
one systemy, it 1is included in the result, and where the same

processing descriptors appear in both systems, the value spaces

137his is equivalent to three separate parameters modify(x),
modify(y)y, and modify(z), each of which can take on the values

listede.

142

are unionede This insures that the functional capabilities
pertaining to 1lines in each B8system are included and that the
instruction set is not biased towards one of the systems, but
that all line features can be implemented as efficiently as each
system permitse. The format of the macro functions for the two

systems are:

move(alter, modify(x,ysz)y clipy dim, mode(xyy92)y first,

packed, movelength)

draw(alter, modify(x,ysz)y clip, dim, mode(Xyy9sz)y first,

packed, movelength, drawlength).

These two macro functions will be used in a later section to

compare some line processing features in the two systems.

6e3.2 A MODELLING TRANSFORMATION MACRO FUNCTION

The procedure for deriving a macro function for a modelling
transformation for the two systems parallels that for the line
functions. We first consider the "model!" macro function for each
system individually, and then we combine the two functions into

one function for both systems.

In the EES PS2 a modelling transformation does not generate
any code for the DCU. In the EES PS2 there is only one

instruction pertaining to modelling transformations: "concatenate

143

matrix", and all modifications of a modelling transformation take

place in the CPU.

In order that a modelling transformation be 1mplemen%ed in
the most efficient manner in the E&S PS2, matrices that are part
of +the same modelling transformation and that are not to be
modified should be concatenated in the CPU before they are added
t0 the SDFe On the other handg, matrices that are to be médifled
continually should be concatenated by the DPU,y, where matrix
concatenation is .much faster than in the CPU. Therefore, a
transformation matrix that is added to the SDF must be identified
as being either modifiable or non—-modifiable. If a matrix is
non—mnodifiable, it is also necessary‘ to specify 1if it is the
first matrix; the last matrix, or a matrix in the middle of a
sequence of non~modifiable matrices. The first matrix is simply
saved in the CPU, =a matrix in the middle of a sequence is
concatenated with the previous matrix in the sequence, and the

last matrix in a sequence is concatenated with the previous

matrices in the sequence and the result is written into the SDF.

From +these considerations, one determines that a modelling

macro function for the EES PS2 can have the format:
ESmodel(al ter, modify, sequencey, type),

where the processing descriptors have the following values:

144

desgc to value

alter no == no addition or deletion

delete ~- delete matrix

add —— add matrix

modify yes —— it 1s (to be) modified

no —— it is not (to be) modified

sequencel* first
middle
last
type scale(XyyyZy W)

translate(xyyysz)
rotate(xXyyys2)
all —— an entire matrix is to be added or

modified

The processing descriptor "modify" has different meanings
depending on the value of Nglter". If Halter" has the value
Nadd", '"modify" and gequence'" determine if the matrix is added
to the SDF or concatenated with the previous matrix, for reasons
described above. If "alter" has either the value "no" or "add",
"modify" determines if a matrix already in the SDF or just added

to the SDF should be modified. The processing descriptor "type'

140nly relevant " if "alter" has the value "add" and "modify" has
the value "no'.

145

specifies which scale, translate, or rotate coordinate(s}! are
added or modifiedo One or more values can be specified at each
"type" definition. For example, tgcale(xy99z)" means that the x
and z scale are added to or modified in the SDF and that the y
and w scale equal one in case of an add, and are unchanged in

case of a modifye.

In the vG3400, as for the ESS PS2, a modelling
transformation does not generate any code for the DCU. In the
vG3400, modification of a modelling transformation is
accomplished just as for line endpointsy ie.e.y through the use of
different addressing modes. A modelling macro function for the

¥vG3400 can have the format:
VGmodel(al tery, modify(xXyyy2zyw)y, type),

where the processing descriptors have the following values:

degcriptor value
altexr no —— no addition or deletion

add =- add matrix

delete —— delete matrix

modify(x,vszyw)tS no —— no modification

1Spach of the Xy3¥1Zy eand w coordinates can have the values
listed. The modes of modification selected affect the
corresponding parameters of the type processing descriptor.

146

CPU -- modification from the application
program

device =—- modification by an analog device

reglister —— modification in a general
purpose register

gstack =-- modification in the obJject

call stack

type scale(w)/translate(x,y,2z)16
translate(xy,yy,2)
rotate{ Xy yy2Z)

scalel?

By combining the processing descrlptors18 for the two

systems we get the following macro function:?

model(alter, modify(x,vyZyw)y sSequence, type),

where the range of values for the processing descriptors are the
union of the possible values for the processing descriptors for

the two systems.

16ygniform scale and translate can be combined for more efficient
execution times.

17vGe3400 allows only uniform scalinge.

18Since only uniform scaling is allowed in the vG3400 DPU,
non-uniform scaling is excluded from the combined macro function.

147

In the next section, cqmposlte macro instructions based on
this macro function will be used to compare the behavior of

certain transformation features in the two systems.

6. t o tructions for EES_PS2 and VG3400

In +this section implementations of some operations, common
in graphics applications, are compared for the E&S PS2 and the
VvG3400. The first set of operations concern line processing; the
features of interest are line drawing data 1in the SDF whose
coordinate values are modified from the application program and
line drawing data whose coordinate values are not modified but
whose image ;s modified through a change in a transformatione The
second set of operations concern modelling transformations; the
features of interest are modelling transformations that are not
modified and modelling transformations that are modified from
some analog device. The differences in prccessing times are

illustrated using composite macro instructions for lines and for

modelling transformations.

148

6.4.1 A COMPOSITE LINE MACRO INSTRUCTION

The move and draw macro functions from Section 6.3.1 will be
used to create a polyline composite macro instruction, where the
first instruction is a move and the remaining are drawse The
relevant macro functions from the previous section have the’

format:

move(alter, modify(x,yyz)y clipy, dim, mode(xyy92Z)y first,

packedy; movelength), and

draw(alter, modify(xyyyz)y clip, dim, mode(xXyyy2z)y first,

packed, movelength, drawlength).

A ""move" composi te macro instruction is obtained by
assigning the following values and weights to the processing

descriptors for the "move" macro function.

desc to value weight

alter no 1

modify(xyyyz) X=y=z=no 1-t, (OSfSI)
x=y=z=CPU t

clip enabled!? 1

19This is any value but disabled.

149

dim 3D 1
mode(x;yy2) x=y=z=absolute 1
first yves 1
packed fu11w0r¢ 1

For the ﬁurpose of this comparisony we are interested in the
trade—offs in the first two stages. Hence, only the CPU and the
DPU processing will be investigated, and the last two processing
descriptors of "-raw" will be ignoréd- By assigning the following
vatlues and weights to the remaining processing descriptors a

igraw" composite macro instruction resultse.

descrintor value ' weight
alter no 1
modify(xs¥yz) X=y=z=no 1-t, (0L£t<1)
x=y=z=CPU t
clip line nonvisible ‘ wg=e5
line completely visible wa=e25
line exiting clip window w3z=e10

line entering clip window wae=e10
line both entering and

exiting window ws=e¢05

dim 3D 1

150

mode(XyyyZ) x=y=z=absolute 1

first no 1

packed w&rd‘ 1

By assigning a weight «9 to the M"Ydraw! composite macro
instruction and a weight el to the 'move' composite macro

instruction and combining the two weighted instructlons into one,
the resulting composite macro instruction represents a set of 3D
polylines, with one move and nine draws in each sequence, and
whose coordinate date is absolute, packed one coordinate per
word, and of which 50% of the lines are outside the clip window
and the remaining lines are either inside the window or crossing
the window boundariese. The weights that are to be varied are

associated with the processing descriptor Tmodify".

Eliminating macro instructions that correspond to processing
descriptor values that have been assigned zero weights, we see
that twelve macro instructions remain for considerationes They

will be numbered 1 trouhgh 12 as follows:

1 move(no, (no, no, no), enabled, 3D, (abs, abs, abs),

ves, word)

2 move(no, (CPU, CPU, CPU), enabled, 3D, (abs, abs, abs),

yesy word)

3 draw(noy (no, noy no), nonvisible, 3D, (abs, abs, abs),

10

11

12

no, word)

draw(no, (noy

word)

draw(noy, (no,

word)

draw(noy (no,

-word)

draw(no, (noy,

noy word)

draw(no, (CPU,

abs),y, noy

draw(no, (CPU,

noy word)

draw(noy, (CPU,

word)

draw(no, (CPU,

noy word)

draw(no, (CPU,

abs)y noy

noy no),

noy nNoO),

noy no),

noy no),

CPU,

word)

CPU, CPU),

CPU, CPU),

CPU, - CPU),

CPU, CPU),

word)

visible,

exit,

enter,

enter—exit,

CPU),

151

3D, (abs,; abs, abs)y no,

3D, (abs, abs, abs), no,

3D, (abs,y absy; abs)y, noy

3D, (abs, abs, abs),

nonvisible, 3D, (abs, abs,

visible, 3D, (abs, abs, abs),

exit, 3D, (abs, abs, abs)y no,

enter, 3D, (abs, abs, abs),

enter—exity, 3D, (abs, abs,

152

Recall that macro instruction timings are denoted Qj for
each stagee. In what followsy, it 18 important to distinguish the
macro instruction timings in each stage; thus, these timings will
be denoted QU’ where i denotes the stage in the pipeliney, and J
the number of the macro lnstrﬁdflon. Composite macro instruction
timings will be denoted V, 4, in generaly, but when a specific
system is under discussion the letter E or the letter V will be
prefixed, in order to distinguish between the EES PS2 and the

VvG3400. The processing time for the composite macro instiuction

is then an expression

. 7
Vi = ele((1=t)eQ 1 +teQi2) + +9e((1-t)e ZTwi2¢Q; (6.4.1-1)
iz

12
tote Zw-7eQy) .

Since all updating of line endpoints in the vG3400 is done
through the use of addressed data, Vi for the VG3400 (ie.ec.y VVy)
is always zeroe In the EES PS2 it will be assumed that there is
no overlap between the updating of the SDF by the CPU and the
processing of the SDF by the DPU. Therefofe, in order to compare
the processing of the composite macro instructions in the two
systems, VVa plus any delay in the CPU due to memory contention
for VG3400 should be compared with EV4+EVz for the EE€S PS2. In
order to make this comparison, the values of the QU'S’ firgst for

the VG3400 and then for the EES PS2, will be calculatede.

In order to derive the QU'B for the VG3400, we first derive

the activity £flows for each of the macro instructions. The

153

activity flows for the first and fourth macro instruction are
lllustratéd in Figure 6~1 and the activity flows for the second
and ninth macro instruction in Figure 6—-2. The activity flows for
the VG3400 microcode are not very complex and the expressions for
the QU'S can be derived directly from the activity flows without

the use of timing sequence diagramse.

It turns out that, for the VG3400, each term in the QU'S for
which there is concurrent I/0 activity is similarly structurede.
In generaly the expected value, ?, for such terms can be

expressed as (see Section 5¢4.2)

Sg+p°& if s42s8
¥ =< (1-p)estpe¥, if se<s<stdmax (6.4.1-2)
s if s2sgtdna

wherey in +this case, s; is the data transfer time, s is the
prqcessing timey, p is the probability of simultaneous requests by
the PDP-11 and the GPU (see Figure 3-8) for memoryy d is the
delay at each request, d is the expected value of dy and dmax 18
the maxlmum delay. ?; is the expected value of Yy = max(s,tdys)
assuming that there is sone delay &t each requeste. As was
discussed in the derivation of Theorem 4.5, p can be expressed
as bg/(1-ba2}, where by 1is the fraction of time that the PDP-11
memory servicés its CPU, and bz is the portion of time the PDP-il

memory services the GPU.

154

(e3ep S3BIPIWIWI) MYVIADA 0] MOT ANATIOY

q1-9 3¥NdDI]
oasly 2981522 2381162 23srse 9 oasrly oasrp
Jaddjo z A z . A x
ux3 dnjag dnjag $S320.d $59904d $5300Jd
oasfg ge
dia
pue
wiojsuesy
4q10} Fley [Jgiol uotionsisut
z A . x 1X3U 30 z 3
wnding ndinQo inding X 189 B9 ¥

(e3ep s1BIpoTIII) FAOWDA 10] MOT] AITATIO
BT -9 T¥NDIg ’

29srGz"9 oasrly ‘oasry oasryy oasrly
z S x uoHanIISUl uoIdNLS UL
§5920Jd $5320.d §5990.d apooag ap0o23q
0asrig
298115 .
9asriG b1 E:Mom :ozmmﬁ_ﬁc_
uwLojsuRy
jsuelt ajenjeas usug
uolanIsut
1x8U 10 K X 1unod
199 139 189

X 199

(e3ep passaippe)

TAOWDA 10] Mmo[q L1TANOY

e7-9 TUNDIJ

n
[Ta

—t

oasrgz 9 oasHy
z =M A wem
$S820id §5320.d
. sasry oasrp oasipy 298
e JasA5'pL 2 ssaippe z A ssaippe A
unojsuelL apooag apoosag apoodag apodaq
uoINNSUY 2z .
~ 1X3U 10 z 10 Ssa1ppE A
ssasppe x 199 199 EElo)
19D
oasrly sasrigg oasily
X 2asr1G.°0 ssa001d uononSUl
$53201d apoosq
oasnfz
. sasMzL Jasrg 29srg'6 uononssui
uononIsul $S3ppE X wnos 15| o
apooag apoodsg aen|eAg ysiurd
A X x junod
JO ssaippe 99 0 Ssaippe 195
189 1 50)

(e3ep POsSAIPPE) MVUUDA 10§ MO £IATIOV

qg-9 140DI14
O
[Te)
—l
‘qi-9amnbry ui se ommﬂmm.w . oownv
umncmaxm = E:ocm $53201d em $5900.d
407 omMﬂM.m« oasfly Jasrg
: S%—_so urm wno~umo meMWMMN
wiojsues)
uoyonISul z
~ 1Xau 10 2z J0 s595pPE
ssaippe X 189 199
189
. o3sry
nem x dasrgL 0
L. £3820)4
sasiy ~ oasrg sasrp 2981
. et A ssaippe A X ssaippe x
2po23g apodag 8po3aQg apodag
A
A JO sSaippe x
189 19D

189

The

157

following assumptions are made regarding the behavior of

a PDP-11/45 and the VG3400:

STAGES 1

1)

2)

3)

4)

STAGES 2

5)

and 2

The service time for one request by the GPU to the
PDP-11 memory is s84=2.0 microseconds [DEC74, DEC79,

LEIN79].

The average instruction time on the PDP-11/45 is 3.0
microseconds [DEC74], +the average number of memory
cycles per instruction is 2.5 [BELL78a]; and the core
memory cycle +time is approximately 1.0 microseconds

[DEC74]. Hencey by = 25/3« = +83.

The maximum delay at each PDP-11 memory request by the

GPU 18 dpax = 60 microseconds [ARMS79, MOOR79, DEC79].

The delay for a request by the GPU to PDP-11 memory is
exponentially distributed with a mean of d=2.0

microseconds [ARMS79, MOOR79, DEC79].

and 3

The minimum transfer time from the GPU to the RBU is

sq4 = 2.5 microseconds [VECT78c, LEIN79].

158

6) The maximum delay bvefore a transfer of one word from the

GPU to the RBU 18 dmax = «9 microseconds [VECT78c,

LEIN79].

Using equation (6¢4.1-2), the values abovey, and the
microcode compute times [VECT78d], the following equations for
the QU'S (expressed in microseconds) can be derived from the

activity flows.29 (The last column contains the number of PDP-11

memory accessese)

Q21 43.3 + 3emax(2.0+tdy4+0) _ 5

02,2 85.3 + 3'&'p:+ ma.x(2-0+d,2-5) + 30max(2.0+d,4.0) 8

Q23 20.8 + 2emax(2.0+d,4.0) 3
Q24 44.3 + 2emax(2.0+dy4.0) ‘ 3
Q2,5 62.3 + 2emax(2.0+dy4.0) 3
Q26 84.8 + 2emax(2.0+d,4.0)) 3
Q2,7 91.8 + 2emax(2.0tdy4.0) 3
Qzp 65.8 + 3edep + 2emax(2.0+dy4.0) 6
Q29 89.3 + 3edep +k2-max(2.0+d,4.0) 6

20Note there may be a slight delay for transfers from the GPU to
the RBU, but these are ignored since the concurrent compute time
in the GPU almost always dominates.

159

02'10 107.3 + 3‘&‘9 + 20ma.x_(2.0+d,4.0) 6
Q211 129.8 + Sedep + 2emax(2.0tdy4.0) 6
Q212 136.8 3sdep + 20max(2?0+d,4o0) 6 .

Substituting into equation (6.4.1-1) gives the following

value for VV,3

VVay = 41.0 + 201'M&X(2.0+d,400) + te(44.7 + 3.&‘9 +

o1 emax(200+d, Z2¢5)).

Also, the number of memory references is 302 t+ Jet.

To derive the expected value for the polyline composite
macro instruction processing time we need the expected value of Y

wﬁen 8y <sld .+ Using equations (6.4.1f2) and (S5¢4.2-2) we get
Y = (1-p)les + pe(2.0cexp(—(s5-2.0)/2.0) + s)~-
Substituting into the expression for VVz we get
VV, = 49.4 + t044.9 + pe(1.6+6.0°t),

b1/(1-b2)e The last term D = pe(1.6+6.0¢t) represents

where ©p

the delays. In order to calculate bz, we recall that the number of
memory references for a polyline compo si te macro instruction is

3.2 + 3¢t and that the average service time is 2.0 microseconds,

which gives

bp = 2¢00(3.2+301)/(49.4%+t244.3)

160

in absence of any delay in the GPU.

In order to calculate the stretch for the application
program in absence of any delay in the GPU, we will assume that
the GPU program executes for the entire duration of the
application programe Using Theorem 4.1, the stretch |is
p = 1/(1-b2)e When t=0, the stretch factor is 1.15, and t=1 also

gives a stretch factor of 1.15.

Using the algorithm in Section Se4e2 to compute the stretch
when there is a delay in the GPU, the stretch factor for the
application program becomes p'= 1.14 The delay for the GPU when

there is a delay in the application program is D = 1.3 + te5.,0.212

This concludes the derivations of the processing time for a
polyline macro instruction on the VG3400. Next we will derive the
corresponding expressions for the EE&S PS2. In Section 6.5 these

equations will be used to contrast the two systemse.

The derivations of the macro instruction processing times
for the EES PS2 are much simpler than for the VG3400. This is due
both to the fact that the EES PS2 processors buffer their
requests to shared resources and that the resource requests and
the processing both at stage II and at stage III of the pipeline
are overlapped (see Section 4e3¢2e¢4)e The Picture Processor,

(stage II, see Figure 3-6) has an input buffer, and the Picture

21p can be approximated with a straight line because the gstretch
does not vary much with te.

161

Generator (stage III) has both an input and an output buffer. The
Date Bus transfer rate and the Picture Memory write rate are such
that even under worst case conditions no delays are experienced
due to contention for that memorye. Futhermore, the I/0 is always
completely overlapped by processing, except in the CPU at a DMA
transfer from the CPU +to the Picture Memory, so0 Qgj and Q3j

represent pure processing times.

The Qpzj 's and the Q3j 's can therefore be derived from the
processing times in [EScc77, WATK79]. However, the timings for
the implementations of the macro instructions in stage I, the
Qij 'sy must be derived from PDP-11 assembler code sequencese. The
PDP-11 assembler code for macro instructions 2, and 8 through 12
can be found in Appendix B together with the 1nétruction timings

for a PDP-11/45 [DEC74].

The QU'S have the following values (in microseconds).

Q1,1 0 Q24 9.8
Quz 153.3 Q22 9.8
Qq,3 0 Q23 9.5
Q1,4 0 Q24 11.9
01,5 0 Q2,5 16.4

Q16 0 Q26 20.5

162

Q7 O Qa7 24.7
Que 153.3 Qze 9.5

Qu9 153.3 Q29 11.9
Qs,10 153.3 Q2,10 16.4
Qua1 153.3 Q211 20.5
Qg12 153.35 Q212 24.7

Substituting into equation (6+4.1-1) gives the following

¢ values for EVy and EV3:
EVy = t¢153.3
EVy = 12.4.

This concludes the derivations of the processing times for a
polyline macro instruction on the EES PS2. In Section 6.5 we will
use these equations to contrast the two systemse. In the following
section, yprocessing times for .the model" composite macro

instruction are derived.

163

6¢.4.2 A MODELLING TRANSFORMATION COMPOSITE MACRO INSTRUCTION

A composite macro instruction for a modelling transformation
consisting of a translation of an object can be derived from the
modelling macro function in Section 6¢3¢2+« Recall that this

functicii has the following format:
model(alter, modify(xy¥yzyw)y sequence, type).

The processing descriptors for "model" are assigned the

following values and wéights:

degeriptor value weight
alter no 1
modify(X,y s2ZyW) (noynoyno) 1-t, (0St<1)

(analog, analog, analog) t
sequence - -
type translate(x,¥,2) 1

The resulting translation composite macro instruction represents
a set of translation modelling transformationse. The welghts that
are to be varied are associated with "modi fy"; some portion of
the values remain unchanged, and the remainder are modified from
an analog input devices Eliminating macro instructions that

correspond to processing descrlptor values that have been

164

assigned zero weights, we see that only two macro instructions

remain for consideratione. They will be numbered 1 and 2.
1 model(noy, (noy, no, nod)yy translate(xyyyz))
2 model(no, (analog, analog, analog)y translate(xyyy2))

The processing time for the composite macro lnstructloq is the

expression
V, = (1-t)e°Qy + teQ 2. (6e442-1)

On the VG3400, the analog values are read by the GPU (stage
II) and, as for polylines, VV; is zero. We will again assume that
in the E&S PS2 there is no overlap between the updating of the
SDF from +the CPU and the processing of the SDF by the DPU.
Therefore, the two functions that will be compared are VVz plus
any delay in the application program for the VG3400, and EV3+EV,
for the ESS PS2. In order to make this comparison, the values for

the Qu's are calculated first for the VG3400 and then for the

EES PS2e.

The Q..'s for the translate composite modelling instruction

i

are derived in a manner similar to that for +the polyline

composite instruction; only the results will be presented here.

For the VG3400:

Q21 50.3 + max(2.0+d,3.0) + 2.0+dep 4

165
Qa2 96.3 + 3¢(2.0+dep) 4

Substituting into equation (6.4.2-1) gives the following value

for VV3:
VVz = 55.3 + 47,00t + D,

where D is the delay and is given by
D = po(3.2 + 2.,8et) microseconds,

in absence of any delay in the host. The delayy Dy for the GPU

when there is a delay in the host is derived as the delay for the

.11ne ingstruction. -
D = 26 + 2.3t
and the stretch in the application program is
p=1e164 if t=0 and p=1.08 if t=1,
assuming both processors are delayede

For +the EBS PS2 (see Appendix B for the PDP~11 assembler

code):
Q39 O Q21 31.0
Q.2 262.4 Q22 31.0

Substituting into equationl (6e4.2-1) gives the following

values for EVy and EVa:

166

EVy = 262.4¢°t
EVya = 31.0
In the next section these . equations, together with the

corresponding equations for the vG3400, will be used to compare

the two systemse.

egults of the Comparison

6+.5.1 POLYLINE COMPARISON

In this section +the formulas for the polyline composite
macro instruction processing times will be used to illustrate
some of the dlffefences petween the EES PS2 and the VG3400.
Recall from the previous section that the values to be compared
are, for the EES PS2, the sum of the processing times in the two
stages, iecey EVy + EVp, and for the vG3400 the sum of the

processing time in stage IT (VVz) and +the delay in the

application programe

As a first step, let us compare the proceésing times
stage-by—-stage. In the first stagey the processing time for the
EES PS2 (EV;y) is the Jtime required to modify, as needed, line

endpoints in the polyline composite macro instruction. (Note

167

that in the analysis 1t is important to distinguish between s,
which is the fraction of line endpoints that get modified, and t,
which is +the fraction of line endpoints that are modi fiable.)

EVy, which is a function of s, is
EV4(s) = s5¢153.3 microseconds.

The VG3400 does not process any part of polyline in stage I, but
there is a cost in the form of a delay in stage I. This delay,
VV;y is calculated in terms of the stretchy, py in stage I and the

processing time, VVa; in stage II, according to the formula
VVy = (p = 1)eVVae

In this casey, VV3, as a function of t, is
VVe(t) = 7e1 + te7.0 microseconds.

In the VG3400, the delay in stage I caused by one modifiable line
endpoint is VV4y(1) = 14.1 microseconds. On the other hand, the
cost of modifying one line endpoint (for +the E&S PS2) is
EVi(1) = 153.3 microsecondse This means that the cost of
modifying one Lline endpoint in the ES PS2 corresponds to the

delay caused by heving 10.9 modifiable endpoints in the vG3400.

A similar analysis shows that modifying one endpoint in the

EES PS2 corresponds to the delay caused by 21.6 non-modifiable

endpoints in the vG3400.

168
In the second stage, the processing timg for the EES PS2 is
EVy, = 12.4 microsecondss
In the VG3400 the corresponding formula
VVa(t) = 507 + t249.9

shows that, as is expected, the EES PS2 is much faster regardless

of whether a ¥1ne is modifiable in the VG3400 or not.

To compare the total processing times, P34y we combine the

processing in stages I and I1I, yielding

EVy(s) + EV, = 801533 + 12.4, and

EP41(s)

VVe(t) + VVa(t) = te58.9 + 57.8,

VPe(t)

where s and t are as described above, and the subscript 1 on EP
and VP are to distinguish the analysis of the polyline composite
macro instruction from the analysis of the model composite macro
instruction, discussed belowe. There are two interesting cases to
consider, one in which all potentially modifiable line endpoints
are indeed modified (s=t) and +the other in which all 1line

endpoints are potentially modifiable (t=1).

The first case analyzes the behavior of the two systems in
terms of the fraction t of endpoints that are modifiable,
assuming all modifiable line endpoints are modified. To determine

which system is faster for what values of t, consider

169
Epl(t) - VPg(t) = te94 .4 = 45.4.

This formula is positive for t greater than 0.48, indicating that
the estimated processing time for the VG3400 is legss than that
for the EES PS2 if more than 48% of the line endpoints are
modifiable (under the assumption that all modifiable line
endpoints are modified), otherwise it is less for the EES PS2.

This is illustrated in Figure 6-3.

The second case analyzes the behavior of the two gystems in
terms of the fraction s of endpoints that are actually modified,
assuming all line endpoints are potentially modifiable (t=1). All
line endpoints must be implemented as addressed data points in
the VG3400, so that values are <fetched from their locations in
the applidatlon program whether these values are modified or note.
In the EES PS2, only the points that are modified would be

updated in the SDF. To determine which system is faster for what

values of sy consider
EPy(8) - VP3(1) = s¢153.3 - 104.3.

This formula is positive for s greater than 0.68, indicating that
the estimated processing time for the vG3400 is less than that
for the EES PS2 if more than 68% of the modifiable line endpoints
are actually modified, otherwise it is less for the EES PS2. This

is also illustrated in Figure 6-3.

200.0 —

150.0 —

100.0 —

170

EPo(1) .

EP1(1)

VP41 (1)

I
| I
! I
' |
|
| |
| ' '
VP;(0) | [!
50.0 = i : |
| I |
I 1 }
! | |
| | !
[| ,
| | |
.
EP,(0) | I !
EP,(0)| ; ! !
| I |

.48

t
1
s

FIGURE 6-3
Comparison of Polyline Composite Macro Instruction
on E&S PS2 and on VG3400

-

t

171

The processing times for +the polyline composite macro
instruction in the two systems doy of course, vary with the
parameters of the composite macro instruction. The time to update
a line endpoint on the EES PS2, EV,;, was calculated assuming that
the name of the object to be modified was the fifth entry in the
directory. If, for example, this is chdnged to the eighth entry,
the corresponding processlngk time for the composite line macro

instruction becomes
EPz(S) = gel189.5 + 12.4 .

Making the same comparisons as above between EP>(t) and
VP3(t) gives a crossover point of the two curves at t=+35. This
is illustrated in Figure 6-3«. A comparison of EP2(s) and VPe(1)

gives a crossover point at S=e¢55, which is also illustrated in

Figure 6-3.

The values of t and s are not as sensitive to variations in
the weights, w,, which determine the portion of the polyline
endpoints that are inside, outside, and crossing the clip window
poundaries. Assuming that all line endpoints are inside the'cllp
window, iec@ey wp=1, we get the following expressions for the

processing times in the two systemé:

EP3(s) = s+153.3 + 11.7

Vpa(t) te56.9 + 61,3

172

Again, we make the same comparisons and find that the
estimated proéesslng time for the VG3400 is less than that for
the EES PS2 if more than 51% (t=:51) of the line endpoints are
modifiable, (and all modifiable line endpoints are indeed
modified,) otherwise blt is less for the E8S PS2. Similarly, the
estimated processing time for the VG3400 is less than that for
the ESS PS2 if more than 69% (8=.69) are modified and all line

endpoints are potentially modifiable.

The EES PS2 processing times depend heavily, of coursey, on
the host CPU processing speedes The execution time for the PDP-11
code on an 11/70 is approximately 50% - 60% of that for an 11/ 45.

Thus for an 11/70,

s5¢92.0 + 12.4, and

EP¢(s)

VPy(t) te58.9 + 57.8

assuming an execution time ratio of 60% and the delay formulas
are unchanged)e In +this casey, the estimated processing times
indicate that EES PS2 out—-performs the v63400 for a 10 point

polyline even when all line endpoints in a polyline are updated.

173

6.5.2 MODELLING TRANSFORMATION COMPARISON

In this section the processing time formulas for the
translation matrix composite macro instruction will be used to
illustrate some of the differences between the EES PS2 and vG3400
that were not discussed in the ©preceding séctlon- The analysis
will proceed in much the same manner as for the polyline macro

instructione.

The comparisons of the individual stages give results
similar t; those for polyline. In stage II, the EES P52 is much
faster +than the VG3400. In stage I, having 29 translation
matrices potentially modifiable in the V63400 delays the CPU an
amount equal to the processing time for updating one translation

metrix in the ESS PS2,

The combined processing times for stages I and II for the

two systems are

-

EP4(s) = EVi(s) + EVy = 50262.4 + 31.0

p'VVZ('t) = te49.,3 + 66.9,

VP4(t)

where s and t have the same meaning as in the preceding sectiony

and p is the stretch in the host.

A comparison of the expressions for the two systems in the

case in which all modifiable translation matrices are changed on

174

the basis of values read from some analog input devices (s=t)
indicates that if t is greater than 17% +then the VG3400 is
faster. Recall that +the VG3400 aepproach is to update the
translation matrices locally in the DPU, which avoids using the

CPU for processinge. - -

A second interesting case for comparing the two systems!?
behavior with respect to the translation matrix composite macro
instruction is when all matrices are potentially modifiable
(t=1), and only some fraction (s) of them are actually modified
in any given update cycles In this casey, if s is greater than
32%, then the expressions indicate that the VvG3400 is. faster,

otherwise the ESS PS2 is faster.

In general, it is more efficient on the EES PS2 to recad the
analog device registers, compare the new values with those read
in the previous update cycley and, only if any of the values
changed,y update the pertinent transformation({s)e. A code sequence
implementing this for a translation matrix can be found in
Appendlx B. The processing time for this program can be expressed

as
EPg(8yr) = s°150.3 + re128.2 + 31.0

where s is the fraction of lines that are actually modified and r

is the fraction of lines that are potentially modifiable.

175

By comparing the estimated processing times for potentlatly
modifiable translation matrices in the two systems, EPs(0,t) and
VP4(t)y, we see that the estimated processing time for the VG5400
is less if t is greater than .46, otherwise it is leass for the

EES PS2.

6e5.3 SUMMARY

Some of the results reported in the preceding sections are
not particularly surprisinge In the two extremes of the polyline
macro instruction comparison, it was eXxpected that the E&S PS2
would out-perform the VG3400 if no modification takes place and
that the VG3400 would out-perform the EES PS2 if all the line
endpoints are being modified. Quantitative cut—-off points have,
however, been established. .Further, it has been illustrated that
the speed of the host can have a very significant zffcct o2n the

outcome of performance comparisons.,

One aspect of system performance that has not previously
been ' discussed is the effect of delay in the host f£rom memory
requests by the DPU. These delays are &a penalty paid for
off-loading the update processing from the host. Being able to
off~load the host is a great advantage. However, the analysis

shows that the delay incurred by memory contention may, for some

176

applications, be comparable to the time taken by update

processing by the host in the absence of memory contention.

In another area, input device handling, there has been much
debate regarding the advantages and disadvantages of doing the
interaction handling in the DPU. Although it seem: as if there
could be potential time savings by allowing the DPU to access the
input devices, the programmer often does not want to use the
analog device values directly, but rather use those values as
arguments to some functione. The value of the function, then is in
turn used to update some value(s) in the SDF. Only if the DPU has
a general purpose ingtruction set can such transformation

functions be executed in that processore.

At first glance, +the analysis of the translation matrix
composite macro instruction seems t0o indicate that there are
greater advantages gained from reading dials in the DPU than from

using addressed datae. However, these figures are somewhat

misleadinge

An application program must read only the analog devices
(dials, etc.) that are enabled, and at an average work station
this corresponds to no more than approximately 15 device
registers (10 dials, 1 joystick, and 1 tablet)e. Furthermore, in
most application programs, no;”all devices are enabled at oncee.
Although all enabled devices must be read in each update cycle,

in generaly no more than two input devices with three device

177

registers each will change in any one cycle (the user has only
two hands!)e This means that in each cycle only a couple of
updates are made. Hence, for most applications the savings in
processing time resulting from accessing the input devices from
the DPU rather than from the host probably fall to justify the
added software and firmware complexity that stems from having to

control and support the related features.

There are several other aspects of the two systems that must
be investigated before more conclusive comparison can be madee.

Some of these arel
¢ Changing individual lines, instead of 10-point polylinéé.

®¢ The effects of clipping——a further study of how the
performance varies with the number of lines that are

inside, outside, and crecssing the clip window boundariese.

® The effects of the different text processing
facilities-—the VG3400 DPU supports "medium quality" text
(as defined in the Core [6SPCc77], whereas the E&S PS2
directly supports only text that is comparable to that
referred to as "low quality". In the EES PS2 medium

quality text would have to be largely implemented in the

hoste.

e The effects of off-loading the CPU using the general

purpose instructions of the VG3400 DPU.

178

® The effects of matrix calculations in the DPU rather than

the CPU (lnclgding sine and cosine functions).

For the results of this performance comparison to become
credible, the accuracy of this model should be experimentally
verified, and, if fhis verification shows that the experimental
measures differ significantly from the ahalytlcal onesy the model

should bé calibrated until a sufficient degree of accuracy is

obtained.

If the systems are available, the model could be verified by
simple measurements for a set of loadse. Since graphics systems
are special purpose processors, it is comparatively simple to
derive some representative loads (in contras£ with, for example,
loads for an interactive operating system which may be very
difficult to characterize). Measurements could be obtained by
reading the clock in the processors before and after the update
and refresh cyclese. These measurements are then compared to the
U;,'s for the ceorresponding loads. If, on the other hand, the
systems are not available, the model can only be verified through
simulation (there exist no generally applicable procedures for
performance model verification [FERR78]), but, there is of course

no guarantee that verification of +the analytical model through

simulation implies that the analytical model is valide.

If +the empirical and the analytical measurements differ

significantly, this discrepancy must be found and eliminated,y ox

at Lleast reduced, to0 obtain a desired degree of accuracye
Inaccuracies in a performance model may be the result of three

types of errors [FERR78]:
1) formulation inaccuracies,
2) solution inaccuracies, and
3) parameter inaccuraciese

Formulation inaccuracies are generally the result of
modelling at too high a level of abstraction. The model in this
chapter is the result oi very deteiled analysis of the systems?
behavior, and the only part of the model where the approximation
of the system behavior may lead to non-negligible inaccuracies is
the modelling of +the PDP-11/45. If the simple stretch analysis
were replaced by more detailed modelling, the the analytical
measures might become more accuratee. Note, Qowever, that the
model gives a range of the stretch, and that this range is quite
narrowe In the next chapter we will see an example of a graphics
system for which this range is much wider, and, for which more

accurate modelling of the PDP-11's behavior might be necessarye

Solution inaccuracies may be caused by mistakes in the
mathematical derivations or by round—off errorse These
inaccuracies are quite simple to check for in a model as simple

as the one discussed in this chaptere.

180

Parameter inaccuracies are the result of approximations of
the input parameters to the model and of estimates of
distributions. Very few approximations have been made for these
graphics systemse Rarely have alternate execution paths been
averaged, andy in the few cases where this was doney the
difference in execution time in the two paths was less than one

microseconde.

For the PDP-11/45, on the other handy, the average
instruction . execution time and the average number of memory
references per instruction were used to determine the PDP-11
memory utilization. These estimates were the result of extensive
simulations by the Digital Equipment Corporation [DEC74,
- BELL78a], but | these simulations did not model 'graphics
applications in particular; gimilar simulations of graphics
applications may lead to, for our purposes, better approximations
of the PDP-11%g behavior. (Note that the delay in the model

discussed in_thls chapter is not very gsignificant compared to the

processing timess)

Finally, the delay at a memory request to the PDP-11 by the
VvG3400 is assumed to be exponentially distributeds As was stated
above, this cén be assumed valid if the ratio of the standard
deviation to the mean is in a certain range [BUZE79a], and, for
all situations examined in the course of this Qork, this
assumption has indeed been valide This range has, however, been

experimentally derived, and may not hold for graphics

181

applications; experimental studies with graphics applications may
give different resultse (Note again, the delay does not

contribute heavily to the total processing times.)

In the next chapter we will look at a hypothetical graphics
system; for this system the performance model could only be

verified through simulatione.

182

The performance modelling techniques discussed in Chapter 4
can be used to help control the process of designing a graphics
systemes The techniques can be used to study the effects of
particular design trade—~offs and to ‘determlne what factors have
the greatest effect on performance. The performance techniques
apply both to the choice of tecﬁnology and to the design of user

instruction sets for each of the processors.

The goal in graphics system design is to define a set of
functionel capabilities that are appropriate for some market area
and to- implement these func tional capebilities in a
well-balanced?2 system that maximizes performance, subject to the
cost constraints in the market area. The performance modelling
techniques can be used as an aid in choosing the hardware
components such that performance is maximized and such that the
components form a well-balanced system. The performance modelling
techniques can also be used as an aid in deciding what processiﬁg
ability each processor should. have in order to maximize

performance, and in deciding what functional distribution is

22) gystem is well—-balanced if no one component is the principal
bottleneck and no one component is significantly underutilizede.

183

desirable among the processors in order to achive a well-balanced

systeme

The design of a graphics system is an iterative process:
propose a design, study the performance for some "typical!" loads,
modify the design, study the performance of the modified systen,
and so on. One approach to the design process has the following

steps:

1) Choose a market areay, lecey define the application

area(s) and the cost constraints.

2) Choose a set of functional capabilities that seem
suitable for the application area(s) and express these

as macro instructions.

3) Design a set of user instructions +that are capable of
implementing the macro instructions and select specific
implementations of the macro instructions in terms of

those user instructionse.

4) Choose a set of hardware components that are within

limits of the cost constraints in the market area(s).

5) Apply the performance model and study the effects of the

hardware parameters and of the user instructions on

performances

184

6) Refine the user instructions and modify the choice of

hardware in such a way that

a) if there is a bottleneck in one of the processors,
either upgrade the hardware, simplify the user
instructions, or migrate (part of) the
implementation of one or more macro instructions to

another processor;

b) if any processor is used much below its capacity,
either add features to that component, decrease its
hardwaere capabilities, or migrate (part of) one or
more macro instruction implementations to it from

another processores

7) Judge the cost effectiveness23, and,y, if the system does
not meet +the cost requirements, reduce the hardware

components and return to point S

In the two subsections selow we shall see how the
performance model can be used to examine the effects of some
design parameterse. In the first subsection the effects of the
data structure access parameters (ieeey combined bus and memory
access rates) ‘are discussede In the second subsection some user

instruction design trade—offs are studied; the effects of

23cost and marketability are two important parameters that enter
into many of the design decisions. The effects of these
parameters on design decisions are, however, beyond the scope of

this thesise.

185

combining versatile addressing modes with the speed of parallel

transformation herdware are studied.

In Chapter 8, recommendations for some user instructions
that serve to maximize performance for applications that have
highly dynamic pictures are made, and software constructs that

support these user instructions are proposede.

7.2 Effects of Ha ar a meters o e o ance

As part of the design processy it is necessary to be able to
de termine the effect of the. hardware I/0 parameters on
performancees This need arises both in the choice of a CPU and in
the design of the remaining components of the graphics systeme. It
one sStage in the processing pipeline is the bottleneck, this
problem may be reduced by increasing the hardware I/0 ratesS.
Similarly, if one of the processors is used much below its
capacity, the associated I/0 hardware rates may be reduced

without a decrease in the overall performanceo.

The effects of the I/0 hardware parameter(s) can only be
studied in the context of a particular Lloade In this section it
will be assumed that the expressions for the processing times of

a loady, ie.ee¢y the U's for each stage of the pipeline, have been

186

derivede. Given these U's, the effects of modifications of the 1/0

hardware parameters on performance will be illustrated.

The processing time at esach stage of +the pipeline is a
function of the tlmé t0o read one word from a data structure, and
the time to write one word of the result of the processing to
another data structures The read time and write time are the bus
transfer time, combined with the memory read and write time,
respectively. The processing time can be expressed as a function

of these read and write times: U(ryw)e.

Assuming that w |is constant, U(ryw) can be expressed as a

constant plus a sum of a set of terms having the form
V,(r) = max(n, °r + d, t ot 9 S)

where ny is the number of words read, t| and s represent
processing times independent of (but not necessarily
independent of w; and d is the delay associated with the

resource request(s) in Vi .

For a first approximation, d, .can be agssumed to be a linear
function of r (either a constant or a constant plus a factor
times r)e. This assumption is reasonable because the delay is a
function of the reads and writes to the memory by the contending
processore Under this assumption, one observes that V, is a
piecewise linear function of re U, being the sum of various such

terms, is also a piecewise linear functiono. Similar arguments

187

hold for wy, if r is held fixede. Thus, U(r,w) is, in a sense,

"piecewise planar',

By choosingy, in a pessimistic fashion, the linear functions
of r and w that express the dy's (so that the maximum possible
&elay is estimated), an upper bound for U(r,w) is obtained. To
avoid +the assumption that d, is linear in r and wy; one can
perform a more detailed analysis, using equation (5.4.2-3) to
express the value of each term Vk(r). The function describing U
derived thereby is not piecewise lineary, but piecewise

e

differentiable.

Ify after the initial choice of hardware parameters, it is
established that the 1i:th stage of the pipeline |is the
bottleneck, one wants to reduce U for this stage by reducing
either the read time or the write time, but not both unless
necessarys. Let rg and w; denote the current choices for the read
and write times. The variable that is the prime candidate for
reduction, read time or write time, is the variable whose partial
derivative of U(r,w) evaluated at (rgywg) is the larger. Using
superscripts to denote partial derivatives, we write the two

values to be compared as
Ur(!‘11W1) and UY(rgawa)

If the derivative with respect to r is greater than the
derivative with respect to w at (rapews)y then the read time

should be the prime candidate for improvement, since a reduction

188

in r will result in a larger performance improvement than a

comparable reduction in we

If the cost of reducing U(ryw) to an acceptable value by
reducing the value of r is prohibitive, the possibility of a
reduction of w should be explorede If the processing time for the
i:th stage cannot be reduced sufficiently by re&uclng the data
structure read and write times, either basic processor speed
improvements should be considered, or some functions from this
stage should be migrated to another stage or eliminated

alltogether.

I£, after the choice of hardware parameters, the itth
processor is used much below its capacity, then an increase in
the read or write times could possibly be made without loss in
overall performance. However, since the read time and write time
for a data structure are related24, care must be taken that the
increase in read and write times do not affect the adjacent
stages to such an extent that the relevant processing times
violate design goalse. If it is not possible to increase the read
or write +times for the i:th stage without creating a bottleneck
in another processor, the possibility of migrating some functions

to the i:th stage should be examined.

24The bus transfer times are equal and the memory read and write
times are either equal ory for core memoryys read time is some
multiple of write time.

189

«3J Uger t o et D

7.3.1 LINE DATA ADDRESSING MODES

In Chapter 6, some of the differences between two graphics
systems were illustratede The comparison demonstrated that a
versatile, general purpose addressing scheme in the DPU can give
better performance for some applicationsy but that the cost of a
complex addressing scheme is very high for many other
applicationse Addressed data is, however, Vvery convenient; if
only immediate data is provided by the s8system, the burden of
continuous updating of coordinate data in the' SDF is placed

entirely on the programmers

In this section, the effects of combining the versatility of
addressed data with the speed of parallel transformation hardware
is illustratede It will be shown that by restricting the types of
addressing modes, the performance can be increased significantly.
This performance increase comes about for three reasons?! the
simpler addressing modes permit simpler address decoding, the
slﬁpler addressing modes permit coordinate data to be fetched as
triplets instead of one by one, and finally, and most

importantly, the proposed addressing mode makes it possible to

190

take full advantage of the speed of parallel transformation
hardwares In what follows, it ;111 first be shown that the
parallel transformation hardware can be used with immediate data
to improve performances; next the arguments for immediaté datea

will be extended to cover addressed datae.

Let us postulate a graphics systemy, which we will call X,
attached to a PDP-11/45 with the SDF located in the PDP-11
memorye. Assume further, that the X graphics system has parallel
treansformation hardware. One user instruction in the DPU is a
line instruction with immediate 3D coordinate datay, and with the
number of line endpoints specified as immediate datae. A
simplified activity flow2S5 for a move macro instruction
implemented using this user instruction could have the format
shown in Figure 7-1a, and the activity flow for a draw macro
instruction implemented using this user instruction could have

the format shown in Figure T7-1b.

By comparing these activity flows with the activity flows
for the VG3400 move and draw macro instructions in Chapter 6y one
sees that relativly little time has been gainede The instruction
decoding 1s shortery, and the parallel transformation hardware
will give some performance improvement. However, in the VG3400,

part of the coordinate transformation is done in parallel with

2SThe output to the linear buffer is not treated in detaile.

FiGURE 7-1b
Activity Flow for DRAW

Get' Get Get Get Getx
count x y z or next
. instruction
Decode Decode Set up Set up .
instruction instruction next read next read Transform
4usec Susec 1usec 1usec
FIGURE 7-1a
Activity Flow for MOVE
Get Get Get x
y 2 or.next
instruction
Output C
Loy to e
: LDF
Set up Setup Clip
next read next read and
1usec 1usec transform

Get next
Get Getdtllrst coordinate
count °°°'I 'nate triplet or next
triplet instruction
Decode Decode
instruction instruction Transform
4usec Busec
FIGURE 7-2a

Activity Flow for MOVE (immediate data)

Activity Flow for DRAW (immediate data)

Get next
coordinate
triplet or next
instruction
Transform Output
and 0 to
clip LDF
FIGURE 7-2b

192

193

the coordinate fetches, so the performance of the proposed system

Fl

is not significantly better than that of the vG3400.

By fetching coordinate data triplet by triplet, and by
overlapping the memory fetches and the processing, the activity
flow for a move and a draw macro instruction with immediate data
could have the formats 1illustrated in Figure 7-2a and Figure
7-2b, respectively26. As is seen in these activity flows, there
is now complete overlap between the processing of a line endpoint
and the coordinate fetches, with the exception of the first line
endpointe. These activity flows will be used later in this chapter
to develop tlmlngé for the polyline composite macro instruction
that was discussed in Chapter 6, implemented on system X. Before
we can study the performance of system X as the performance was
studied for +the VG3400 and the E&S PS2 in the previous chapter,

we must develop a line user instruction using addressed datae

Assume that another user instruction in the DPU of the X
graphics system is a 3D line instruction with addressed dataj; the
number of line endpoints 1is specified as immediate datae. For
reasons similar to +those for the line wuser instruction with
immediate data, simply performing transformations in parailel
with the fetch of the next address (or instruction) in the list

of coordinate pointers is going to result in an instructilon

26A processing descriptor "last" should be added to the move and
the draw functions to distinguish the last endpoint in ‘the
polyline; no coordinate data, only the next instruction, is
fetched during the processing of the last endpointe.

194

execution time comparable to that for the VG3400. However, if we
assume that the components of each (X,¥yyZ) triplet are located in
adjacent locations, we need use only one pointer to the triplet,
which cuts down' the total number of words fetched. Futhermore,
this allows the coordinate data for one triplet to be fetched
from memory by one DMA block transfer rather than by three
individual transfers, thereby reducing the total delaye. (For most
applicationsy, keeping the (xyy9z) triplet in adjacent memory
locations is not a severe restriction.) Simplified activity flows
for move and draw macro functions implemented this way are

illustrated in Figure 7-3a and Figure 7-3b, respectivelye.

These activity flows illustrate what is taking place
conceptually; between the fetch of the next address and the next
coordinate triplet a few instructions must be executed to start
the second reade. This can be done in one of two wayse. Either each
of the parallel paths are implemented in two different processors
and the input processor llssues the next read, or the main
processor is interrupted at the cqnclusion of the first memory

fetch and initiates a new read before continuing processinge.

One concern regarding these user instructions is that the
stretch in the host will be increased by fetching coordinate
triplets instead of fetching each coordinate value separately.

The increase due to the Llonger memory fetches is, however, not

Gel

Get® Get Get next address Get
count address o triptet or 1 next triplet
triplet instruction
|
Decode Decode -
instruction instruction Transform
4usec Busec

FiGURE 7-3a

Get
next address Get
or next triplet
Instruction
Transform
and Qutput
clip
FIGURE 7-3b

Activity Flow for MOVE (addressed data]

Activity Flow for DRAW {addressed data)

195

196

significant, as will now be shown using the formula for expected

stretch that was derived in Theorem 4.4.

Assuming that ®g4 and 87y are the completion rate for the
processing in the host and the completion rate for memory fetches
by +the host, respectively, and +that «2 and B2 denote the
corresponding rates for the 'DPU for single word memory requests,
and further making the somewhat pessimistic assumption that all

“e

memory requests are in form of triplets, the stretch can be

expressed ag follows:

1 a (1-b,3)
pe = - - == * *

i-bo (3agtaztpz) (1-bz)

If by is large, as is the case for the 11/45, the stretch is
close to the maximum stretch and fetching triplets is not going
to have any significant effect on stretch in the host. If, on the
other hand, by is small, as is the case for the 11/70, then a3 is
also small and +the increase in stretch will not be very
significant. As will be seen below, the user instructions in the
DPU of system X will cause a large delay in the host for other

reasonse

Now we are ready to develop timings for the polyline
composi te macro instruction discussed in the previous chaptere.
This is done in the same fashion as in Chapter 63 only the

results will be reported here. It is assumed that system x's

197

transformation hardware has approximately the speed of the
EES PS2 transformation hardwarey and that the speed of the

remainder of the system is comparable to the speed of the vG3400.

Using the same notation as in Chapter 6, XVq4 and XV2 will
denote processing delay in stage I and processing time in stage

II in X, our hypothetical graphics system, and

XVe(t) = 95 + ted.6

XVZ('t) 19.4 + tel.4

where t is the fraction of endpoints that are potentially

modifiable2?,

The first thing to notice is that the delay in the host is
quite significant; in the case all endpoints are specified as
addressed data, (t=1), the stretch factor is in the range 1.39 to

1.68.

As a first step, let us compare the processing times
stage—by—-stage to those for the EES PS2. After that, the toteal
processing times are compareds In the first stage, the processing

time required to modify one line endpoint in the EES PS2 is

EVy(s) = s¢153.3 microseconds,

27Note that these functions are approximated by straight lineso

198

where s is the fraction of lines that are actually modified. The
cost of modifying one line endpoint in the EES PS2 corresponds to
a delay in the host caused by our graphics system having 10.9

modifiable endpointse

In the second stage, the processing time in the X graphics
system of the polyline composite macro instruction is, as
expected, larger than the processing time EVz = 12.4 microseconds

in the E&S PS2.

To compare the total processing times Pj we add the

equations for the two stages which gives the equation
XPq(t) = 28¢9 + t6.0

for the X systeme. This equation represents the processing time.of
a polyline with some portion (t) of the 1line endpoints
potentially modifiable. The corresponding function for the

EES PS2 is
EPy(s) = 12.4 + s153.3.

Let wus consider the two cases that were discussed in the
previous chaptere In the first case, all potentially modifiable
line endpoints are indeed modified (s=t), andy in the second

case, all line endpoints are potentially modifiable (t=i)-

In the first case we consider

199
EP1(t) — XPg(t) = tel147.3 - 16.5.

This formula is positive for t greater than O.l1l1l, indicating that
the X graphics system 1is faster if more than 11% of the line
endpoints are modifiable (under the assﬁmption that all
modifiable line endpoints are modified), otherwise the EES PS2 is

fastere. This is illustrated in Figure 7-4.

In the second case we consider

EP3(s) — XPy{1) = s¢153.3 - 22.5.

This formula is positive for s greater than 0+15y, indicating that
the X system is faster if more than 15% of the line endpoints are

actually modified; otherwise the E&S PS2 is faster. This is also

illustrated in Figure 7-4.

Since system X is assumed to transform and clip lines at the
approximate speed of the E&S PS2, the values for t and s do not
vaery much with the weilghts, w; which determine the fraction of
lines +that are inside, outside, and crossing the clip window
boundariese. The values of t and s doy howevery vary with the
number of items in the E&S PS2 directory that have to be
searchede. The processing time for modification of the object

whose name is in +the eighth entry in the directory, EP2(s),y is

compared to XPj;(t) and XP4(1) in Figure T7-4.

200.0 —

150.0 =

100.0 ~

50.0 —

200

EPo(1)

EP1(1)

VP1(0)

EP5(0)
EP,(0)

09— e e e

RE
a2
A5

t
t
S
S

-
non
-0

FIGURE 7-4
Comparison of Polyline Composite Macro Instruction
on E&S PS2 and on System X

201

7632 SUMMARY

Our analysis has shown that the performance of the polyline
macro ingstruction in the hypothetical graphics system |is
significantly better than the performance of the same instruction
on the VG3400. The hypothetical system also seems to perform
better than the ESS PS2 for a certain, large class of
applicationse. The performance of the proposed graphics system
could be even further improved by pipelining the processing in
the DPU, such that the input, the transformationsy, and the output

are all completely overlapped, as is done in the E&S PS2.

The significantly increased throughput 1in the graphics
system does, however, result in a large delay in the host. This
problem could be reduced in two ways: by decreasing the host
memory utilization by increasing the memory rate or adding a
cache, and by storing the SDF in a separate memory. In the latter
case, only the actual coordinate data for addressed data would be
fetched from the host memory; all other data would be fetched

from the added memory, which would reduce the delay quite

significantly.

202

8 GRAPHICS SOFTIWARE

0 n d tOﬂ

Much emphasis on software design today 1is focused on
language fealtures and on quelities of the language such as

readability, ease of learning, and the likee

,,.running computer programs and measuring execution
time and storage consumption would tell less than half
the storye. For most programhlng projects, qualitative
aspects of _the lLanguage are far more important than

quantitative ones." [BLOO75]

Although qualitative aspects are important 15 real—time graphics
software, exgcution speed plays a relatively much larger role
than in other language designe Graphics software must give a .
programmer access to all hardware/ firmware features, and he must
be able to access all these features from the software without

significant loss of efficiency due to software overheade.

Recall from Chapter 3 that there are two levels of software
used for graphics applicationse First, therelis the applications
program that builds and interacts with the applications data
structure (ADS). Second, there is the display file compiler (DFC)

that scans the ADS and builds and interacts with the structured

203

display file (SDF)s. The DFC has two parts: the application
dependent part which scans the ADS and the SDF access method,
that is the routines that are used to actually build and interact
with the SDF. In this chapter an access method for a

high—-performance graphics system will be discussed.

The result of the design process that was discussed in the
beginning of Chapter 7 is a set of user instructiéns in each of
the three stages of the pipeline that implement the macro
lnstruéélons. By definition, an access method gives control over
all user instructions in stages II and III. The access method
provides direct control over all user instructions in stage II
and indirect control over the user instructions in stage III
through stage II. (Stage III will be ignored in.what follows.) In
addition, the access method should support some commonly occuring
user instructions in stage I. One example of this is routines to

set up transformation matrices.

In this chapter an access method, Theseusy for a
high—-performance graphics system is described. The features in
the DPU of <this graphics system are based on the findings in
Chapter 6 and 73 various important features of the graphics

system are listed bpelowe The supported features are:

204

Object hierarchy - support for objects, object directory,
and object call stack; transformations, attributes, and

names can be stacked.
Segments — one level of segmentation within objectse.

Transformations - a 4x3 transformation matrix; clipping
to a pyramid of vision (for perspective) centered around
the z—-axis and with the center of projection at the
origin and a 90 degree apex angle; clipping to a
parallelepiped centered around the z—-axises (The matrix
transformations allow gpecification of an arbitrary

viewing transformatione.)

Primitives — 1line primitives both as immediate and

addressed dataj text primitives.

Attributes - similar to segment and primitive attributes

in the Core Graphics Systeme.

Interaction handling — support for reading and writing of
all standard interaction devices from the host; access to

the object call stack from the hoste

Extents — a feature that can reduce processing time in a

hierarchical system.

205

e2 e - A a s em Acce et

Much of the emphasis in this discussion of Theseus is placed
on those graphics features that are the focus of this thesis:
features for dynamics and interaction handlinge. Theseus allows
access to applications data from the DPU by addressed data types
in the SDF, and it allows access from the DFC to the data in the
SDF through dynamose Theseus allows access to the interaction
devices ggix from the CPU; all updating of the display data from
interactive devices takes place from the CPU either actively,

through dynamosy oOr passively, through addressed datae

In the first section below an overview of Theseus is given
together with a ﬁrlef discussion of its general capabilities. In
the following sections, features that are new to graphics
software design are discussed in more detailj} the reader is
referred to Appendix C for a complete list of all functions in

Theseus, together with a discussion of each functione

8¢2.1 AN OVERVIEW OF THESEUS

Theseus 1is an access'method for a high-performance vector
graphics system implemented as a set of procédures callable from
Algol W [SORG77]. Theseus allows a programmer to build and
manipulate a hierarchical graphical data structure;y; i.e¢, a SDF .

This data structure is analogous to a program structure

206

consisting of procedures which may call other procedures. A
graphical data structure consists of objects which may reference,

ieeey cally other objectse.

An object consists of one or more segments. A segment may
be added to or deleted from an objecte A segment has a set of
associated attributess A segment may contain output primitives,
such as Llines and text, object calls, and attributes and
transformations that apply to these object calls. The modelling
transformations (object construction transformations), are
specified as part of object calls and allow objects to be defined

in local coordinate systems and to be combined into new objects.

An obJject is displayed by creating a view of that object.
This view has associated attributes and viewing transformations
that determine how the object or a portion of the object is
mapped to the display surface. When the graphical data structure
is processed by the DPU, the viewing and modelling
transformations are composed and applied to the local coordinate
data of the objects. Similarly, the DPU composes the view, the
object cally, and the segment attributes before applying them to

the output primitivese.

The elements of the graphical data structure may be
mahlpulated interactively. Theseus provides support for all

common interaction devicese.

207

Algol W was chosen as a source language because it is a
general purpose programming language which allows procedures to
be passed as parameters. Transformations, attributes, and extents
(see Section 8.2.3) are specified as procedure parameters of
routines that define obJjects, segments, views, and object calls.
This has +the advantage that the scope rules are self-evident:
attributes and transformations epply only to the features whose
definition they are part ofe. This syntax has the further
edvantage that it allows better error checking; any
inconsistencies in the +transformations or attributes will be
identified at the time #%of definition, not at the time when the
transformations and attributes are applied. Software systems that
specify viewing parameters and attributes modally cannot perform
-gome of +the requisite checking when the values are specified,

only later, when the values are appliede.

8¢2.1+.1 OBJECTS AND SEGMENTS

An object is defined ﬁlerarchically; each object may
referencey, or call, other objectse At an object call, the
environment, eJ«gey transformations, attributes, and names for
1dentificatlon (see Section 8.2.2) of the current object, is
saved, the transformation matrix of the call is composed with the
current transformation matrixy and the attributes of the call are

composed with the current attributes. Upon the return from an

208

object the environment of the calling object is restored.
Instances of an object are easily added +to and deleted from the
data structure, but induce significant overhead in DPU processing

timee.

Theseus allows the programmer to create and delete objects,
to modify objects by adding and deleflng segments, and to create
object callse. A dynamo (see Section 8+2.2) may be assigned to the
object call as a whole, which allows replécement of the
associated attributes and modelling transformations. Indlviduai
attributes may =2lso be updated through the use of this dynamo. By
assigning dynamos to individual modelling functions, each

individual transformation may be modified.

An object may have an associated extent (see Section 8.2.3),
and can be conditionally executed depending on the size of this
extent. The body of the object consists of the extent size, and

all segments in the object.

The creation of an object can be double buffered i.ec«y a new
version of the object:- can be created in the CPU, while the
previous version is executed by the DPU. The double buffering is
implemented by a routine that swaps the bodies of the new object
for the olde This method of updating an object is preferable from
a performance point of view both to using dynamos and to using
addressed. data when a Llarge portion of the object is to be

modified. This is because double buffering allows the creation of

209

the new obJject to be overlapped with the DPU processing of the

old version of the object.

An object consists of one or more segments that are made up
of primltlvés_ and object calls. A segment may be added to or
deleted from the open objecty, may have associated attributes, and
may be conditionally executed depending on the extent size of the
objects Primitives cannot be added to a segment once it has been
closed, but its attributes, its primitives and object calls may
be modified through the use of dynamos, and primitives defined as

addressed data can be modified by modifying their values in the

application programe

Segments are cheaper in DPU processing time than are ob jects
in that they are not referenced through a call and hence do not
require as much of a change in environment that is required for
an obJject call. Segments, however, do not offer the same
flexibility: they may not be referenced by otﬁer cbjects, and may

not have associated extentse.

8e2e1+2 MODELLING TRANSFORMATIONS

N

Theseus provides both modelling and viewing transformationse

Theseus maintains a logical separation between the two types of

transformations, but, in order to utilize the transformation

210

hardware/firmware, both modelling and viewing are part of

Theseuse.

The modelling transformations include routines for scaling,
translation and rotation of an object in its local coordinate
system, and can also be specified as any arbitrary 4x3 or 3x2
matrixe. Each modeillng transformation function invocation may
optionally have an associated dynamoe. If dynamos are not
specified with the transformation functions, the corresponding
matrices will be compose& in the CPU before being added to the
SDFe Ify; however, & modelling transformation function invocation
has an associated dynamoy the corresponding matrix is added to
the SDF and the composition takes place each time the SDF is
_executed. This alléws continuous update of the transformation
matrix, and the composition of the matrices takes place in the
DPU, where this operation 18 gsignificantly faster then in the

CPU.

8¢2.1.3 PRIMITIVES

Theseus provides liney point and text primitivese. The
primitives are added to the open segment, and are specified in
absolute coordinates of a coordinate system local to the objecte.
The coordinate data added to the segment consists either of
immediate datay, 1il.eesy, the actual coordinate values, or of

addressed datay ieesy & pointer to the coordinate data. Each

211

primitive may have an associated element name for identification
purposesy and a primitive specified as immediate data may have an

associated dynamo name for modification purposes.

The text primitives are part of two— or three—~dimensional
objectse. Characters in the text strings are individually
positioned, conforming to the programmer's specification as

closely as the hardware character generator permitse.

Individual primitives may not be deleted from a segment.
They mayy however, be altered either through an associated
dynamo, or by a change in the coordinate location pointed to by
an address in the SD%. The type of the primitive may not be
changed, but a point and an endpoint of & line may be replaced by
"another point, and a text string with another text stringe. Note
that the number of items in a primitive, ieeey the number of

lines or the number of characters; must remain unchangede.

8¢2¢1.4 INTERACTION HANDLING

Theseus supports five classes of logical interaction

devices:?

PICK - identify obJject, segment, or primitive
BUTTON - select function

REYBOARD -~ provide alphanumeric information

212

LOCATOR - provide coordinate information

VALUATOR - provide veluese

These logical devices may be implemented by one or more
physical devicesy, and the programmer may choose which physical
interaction device most conveniently implements a logical device

for his application.

The logical devices are divided into two clagsses: event
causing devices and sampling devices. Each event causing device
has an associated one—element event queuee. Upon an eventy an
event report with data related to the event |is placed on this
queue. The event report must be removed from the gueue by the
application program before a new event report may be placed on
£he queues The application program may poll any queue, or wait
for an event from one or more devicese. Sampling devices have
values that may be sampled by the application programe The pick,
button, and keyboﬁrd are event causing devices, the valuator aad

the locator are sampling devices.

The input handling in Theseus is similar to that of the Core
[GsPC77, GSPC79]s The differences are that the logical to
physical device mapping is explicit in Theseus, that each input

device has only a one element queue, and that associations are

not supportede.

213

8.2¢2 NAMING

As was seen in Chapter 7, it is important that modifyable
primitives can be specified either as immediate or as addressed
datae Line primitives, to be modified, should be gspecified as
immediate data when it is not convenient to keep the coordinates
for 1line endpoints in +three adjacent locations in the ADS, or
when a large number of line endpoints are potentially modifyable,

but only very few are indeed modified in each update cycle.

Theseus provides a pointer mechanism that allows the host
program to modify immediate data. These pointers in Theseus are
called dynamos. Dynamos may be assigned to items in the SDF at
" the creation of these items, or may be assigned by the operator
as he ildentifies an item on the display screen by a picke This
means that in addition to dynamos that are used for modi fication
purposes, a set of names for identification purposes must be
provlde&. The different kinds of names in Theseus are discussed

belowe

Names are used to identify parts of the date structure,
iecey to establish which item in the data structure was pointed
at by a pick device. Names are also used to modify parts of the
graphical data structure, i.es, fo add, to deletey and to alter

parts of the data structure.s Names may be associated with

214

objects, segments, views, object calls, primitives, attributes,

and transformation matrices.

An obJject name is used for the purpose of identification and
modification of the object. It is defined when the object is
defined or declarede An object name must be unique within the

display data structure.

A view npape is used for identification and deletion of a
view of an objecte A view name is defined when & view is added to
the display data structure, and must be unique within this data

structuree.

A segment name is used for the purpose of identification and
"deletion of a segment within an objects It is defined at segment
definition time. A segment name must be unique within an obJject,
but need not be unique within the entire graphical data
structure. A segment is, however, always uniquely defined by the

name pair: (object, segment).

Theseus provides one level of naming within segments:
individual primitives and calls may be named for identification
purposese. Such element names are specified as optional parameters
of procedures that generate calls and graphical primitives. An

element name need not be unique, even within a segmente.

Dynamo nameg (or dynamoS) are unique pointers to items such

as segments, primitives, views, object callsy, or to individual

218

transformations in a modelling transformation in the graphical
data structure, and are used to modify these items dynamically. A
dynamo can be a shorthand for the pair (object, segment), or for
the triplets (object, segment, element) or (object, segment,
modelling matrix)e A dynamo is either created when segments,
object calls, views, and primitives are createdy or when such

items have been identified by a picking devicee.

8.2.3 EXTENTS

An extent [FOLE76a] 6£ an ;bJect is a réctangular window
which surrounds the object and whose edges are parallel to the
axes of the local coordinate systeme. The extent is part of the
object body. When the object call is executed by the DPU, the
extent of the called object is transformed by the current
transformat;on matrixe. A new extent which surrounds the
transformed extent, but whose edges are parallel to the

sransformed coordinate axes, is calculated.

The transformed extent is compared with the clip window, and
an object whose transformed extent lies entirely inside the clip
window can be trivially acceptedy ieeey the entire object can be
processed without clippinge. Similarly, if the transformed extent
lies entirely outside the clip window, the object can be
trivially rejectedy ie.ee¢y no further processing of the object is

neededs The processing of one extent requires less execution time

216

that +the processing of one 1line, when both endpoints need
clipping. Hence extents can, in most cases, result in substantial

savings in DPU processing timee.

Extents not only decrease execution time by eliminating
lines from processing, but also provide facilities for
conditional execution of an 6hJect or a segment of an obJject
depending on the size of the associated extent relative to the
size of the display screen. This allows an object to be defined
with "levels of detail", where the amount of detail of an object
that is displayed depends of the size of the object extent
relative to the size of the display screene. éhé test to determine
if an object or a segment is to be displayed requires less time

than clipping of- one line segment and can be used to reduce

execution time by eliminating details from processinge.

Extents are specified at object definition time; it is the
responsibility of the programmer to determine the size of the
extent surrounding the object. The size limits for conditional

execution are specified at object and segment definition time.

217

8¢2+4 VIEWING TRANSFORMATIONS

The Core Graphics System defines a set of viewing functions
that allows gpecifications of all planar geometric
transformations [CARL78]. The Core viewing functions were
designed to provide a uni fied approach to the specification of
perspective and parallel projections. Futhermore, they were
designed to allow individual modiflcatlon of the parameters that
define a perspective projection [CARL78]. The Core viewing
fuﬁctions have, however, some disadvantagese. One is that the
window in the view plane is not fixed relative to the eyepoint,
but moves along with the view ptane as that plane is reoriented,
which may cause unpredictable results. The other disadvantge is

that they are very inefficient from a performance point of view.

As can be seen in [MICH79], the Core viewing transformations
can be implemented as a sequence of 4x4 matrix transformations,
followed by clipping to a pyramid of vision with its apex at the
origin of the world coordinate system and with a 90 degree apex
angle; or to an upright parallelepiped centered around the
z-axise The Core viewing functions are all defined relative to
the world coordinate system. As & result, the viewing matrices
cannot be modified independentlye. In order to modify one Core
viewing function the entire viewing transformation must be

modified!? This 1s very undesirable in a highly dynamic

application.

218

In what follows, a different set of viewing functions,
functionally equivalent to those of the Core, are proposeds These
functions allow individual modiflc;tions of each of the viewing
functions, and have the further advantage that the window is
fixed relative to the center of projection. These new viewing
functions have the disadvantagey, however, that the variables
determining a perspective projection cannot all be modified
independently, and that the specification of parallel and

perspective projections are qui te different.

In the Core, aLl viewing parameters are specified relative
to a single point in tﬁe world coordinate system, the view
reference point. In Theseus, only the view plane normal and the
.viewup vector are defined relative to the view reference pointe.
Furthermore, the normal and the viewup direction are specified in
one call; they . can only be specified and modified jointilye. For
perspective, the center of projection is defined relative to th;
UVN-coordinate systeme The window center is specified relative to
the center of projection, and defines both the view plane

distance and the position of the window in the view plane.

For parallel projections, the window center 18 defined
relative to the origin in the UVN~coordinate systeme Orthographic
pro jections are specified by a separate function; an orthographic
projectiocn isy, of course, entirely defined by the view plane
normal and +the viewup vectore Oblique projections are gpecified

in terms of the properties desired for the projected object, that

219

is in terms of the foreshortening ratioc and the angle between the
receding lines and the U-axis. For details of these functions,
the reader is referred +to Appendix Ce. The remaining viewing

functions are similar to those in the Core.

Finally, Theseus allows the specification of a general 4x3
transformation matrix, which, combined with facilities for
perspective transformations and clipping to the restricted view
volumes, allows any arbitrary viewing transformation to be

definedes

Some issues regarding the implementation of these viewing

functions still remain for consideraton. These are:

L Should the viewing metrices be constructed in the CPU or

the DPU?

e Should each viewing function have a separate dynamo, so
that those viewing matrices that are not going to be

modified can be composed before they are added to the

SDF?

The performance modelling techniques in this thesis could be

used to answer these questions.

220

8.2.5 SUMMARY

Theseus differs from the VG3400 and the EES PS2 software
[VECT78, ESCC77] in many respectse. One difference is that Theseus
provides a more structured approach to graphics system software.
Transformations are not specified modally, but are specified at
object calls. Similarly, attributes are specified at object calls
and at segment definition time. A user of Theseus is forced to
define his obJjects in an organized “fasglqn, and, ln“addition,

this structured approach to object definition permits better

system error checking facilities.

Theseus allows modification of immediate data in the SDP,y in
addition to support for generation of addressed data. The vG3400
software does not provide support for modification of immediate
data, which, undef certain circumstancesy may result in
cohslderahle performance improvements compared to the use of

addressed data for the modification of the SDF.

Theseus has support for extents, which never have been used

in any other graphics software package.

Finally, Theseus provides viewing parameters that allow
specification of all planar geometric projections, which are ﬁot
directly supported by either VG3400 or EE€S PS2 software.
Programmers of these systems must use modelling transformations

in combination with the limited viewing facilities provided by

221

the +two systems in order to achive +the effects of completely

general viewing transformationse.

222

9 CONCLUSION

The main objective of this thesis, to dévelop an evaluvation
and design methodology for hardware, firmware, and software for
high—-performance graphics systems, has been met through a set of
performance modelling techniquese. The issues of system evaluation
have been addressed by the development and use of a set of
performance measures for systen comparisone The hardware design
issues have been addressed by the illustration of how performance
measures that are functions of hardware parameters can be
developed, and of how the quantitative effects of modifications
of the hardware parameters can be determined. The firmware and
softwere design issues have been addressed by the 11iustration of
how to develop performance measures that can be used as an aid in
deriving a user instruction ‘set for a graphics systemy, and in

deriving software supporting the graphics system user

instructionse.

The design methodology develcoped in this thesis aids in the
design of a well-balanced system that maximizes performance for a
certain class of applicationse In particular, the mein focus of

this thesis has been on graphics systems for application programs

223

requiring continuous dynamic updating of the picture, either
because of the nature of the program itself, or because of

operator interactione.

A functional model has been developed that lllustrates_the
basic characteristics of high—performance graphics systems. This
model has been used to show the functional similarities and
differences between two existing high-performance graphics
systems, the Vector General 3400 and the Evans and Sutﬁerland
‘Picture System 2--Thé primary role of the functional model is as

a basis for the performance modelling techniques.

Similarly, the performance modelling techniques have been
used to compare certain aspects of the EES PS2 and the VG3400.
Although some results were not Vunexpected, other results were
more surprisinge. For example, some qualitative frade-offs between
the two systems had previously been identified; for some of these
trade~offs, the performance modelling techniques were used to
determine definite gquantitative cut-off pointse. Futhermore, new
light has been shed on sSsome issues regarding the effects of
certain features over which there has been considerable debate
but no general agreement; these issues have been greatly
clarifiedes Finally, the comparison of the two systems illustrated
that an organized comparison process draws attention to certain

aspects of the systems that previously had been entirely

overlooked.

224

The performance modelling techniques have also been used to
illustrate that by combining some of the functionel capabilities
of the VG3400 with the speed of parallel transformation/clipping
hardware Llike that of the EES PS2, an improved graphics system
can be derived for applications that require continuous updating

of graphical objects.

As a result, some graphics system user instructions for the
SDF that are well-sgited for dynamics and interaction handling
have been proposed, accompanied by a graphics system access
method +that allows a programmer to build and manipulate a SDF

having the proposed user instructions.

The access method provides support for features that are
necessary for dynamic updating of all parts of the SDF. It also
contains a new set of viewing transformation functions that are
functionally equivalent to the viewing functions of the Core
Graphics System, but can be implemented at a great reduction in
execution speedy, in particular when the viewing transformation is
upda ted dynamlcaliy. The graphics system access method also
provides support for extents, a construct that can result in

significant execution speed improvements.

In summary, it has been shown that a unified approach to the
design of graphics systems pased on a set of tools for
quantitative analysis of design trade~offs leads to graphics

systemns with significantly better performancee.

The

225

‘research presented in this thesis can be extended in

several arease

1)

2)

As a first step, the performance models used in this
thesis should be experimentally verified; if +the
experimental measures differ significantly from the
corresponding analytical estimates, the performance
modelling techniques should be refined so that a closer
correspondence between experimental and analytical

measures is obtained.

One obvioushextension of this work is the study of other
features of high-performance vector graphics systems in
order to derive firmware and software support to
maximize performancee. Some features that should be

studied are:?
a) viewing transformations,

b) text processing, both the type of text (sometimes
called "text quality") that should be supported, and

the implementation of these types of text,

3)

4)

5)

226

c) higher level prlmitives such as conicsy rectangles,

and spline functionse.

One aspect of high-performance graphics systems that was
not addressed 1s the use of microprogrammable control
store to increase performance for a given applicatione.
The techniques in this thesis could be used to suggest
which features should be implemented in firmware and

what performance improvements can be expectede.

This thesis has focused only on high-performance vector
graphicse It is natural to extend this work to medium-—
and low-performance devices; In all typés of graphics,
there is a pipeline where an object is mapped from one
representation in an application program to another
representation on the display screens. This pipeline can
be mapped onto the func tional modele. For medium— and
low—-performance graphics, however, the intermediate
representations and the processors may be different than
for hlgh—performance systems. .Despite this difference,

the same performance modelling techniques can be usede.

High—-performance raster syétems (eegey RAMTEK 9400) have
processing pipelines similar to +that presented in the
functional model. The contents of the <intermediate
representations are different, since they must represent

solid objectse. Futhermore, the processing of the

227

intermediate representation differs in that a scan
conversion 1s necessarye. However, it is believed that
the performance modelling techniques could be used as an

aid in the design of raster systems.

In addition to the areas for further work mentioned above,

the methodology 1in this thesis may be extended to examine other

architectures for graphics systems. For example:

1)

2)

A processing pipeline with more intermediate

representationse.

A processing pipeline with more processing in parallel,
QeZey concurrent processing of parallel paths in the

object hierarchye.

B oG

[ADAG75]

[ADAG7S5a]

[ADAG75b]

[ADAG75c]

[ADAGT78]

[ALLE78]

[ARMS792]

[BARB77]

[BEIZT78]

[BELL78]

228

H
Adagey Incey ADAGE GP/400 Graphics Peripheral System
Uger's Reference Manual, Revision E, Boston, MA

(February, 1975).

Adagey Incey GP/400 Graphics Programming Language and
Compilery GPL, User Reference Manual, Revision B,
Boston, MA (December, 1975).

Adagey Ince; GP/400 Product Description Manual, Boston,
MA (Octobery 1975).

Adagey Incey GPOTIS Graphics Peripheral Object Time
System User's Reference Manual, Revision A, Boston, MA
(May, 1975).

Adegey, Incey ADAGE 4100 Product Description Manual,
Boston, MA (August, 1978).

Allieny Ae. O+, Probability, Statistics. and Queueing
Theorys, with Computer Science Applicationsy Academic
Press, New York (1978).

Armstrongy, Rey Digital Equipment Corporation, Personal
Communication (1979).

Barbacci, Me Rey We E. Burr, Se He Fuller, and De Po
Siewiorek, (Eds.)y, Evaluation of Alterpnative Computer
Architectures, Department of Computer Science,
Carnegle—~Mellon University, Pittsburghy PA (February,
1977).

Beizery Bey Micro Analysis of Computer System Per—
formance, van Nostrand Reinhold Co, New York (1978).

Bell, Ce Gey Re Cady, He. McFarland, Be A Delagl, Je Fo
O'Loughlin, Re. Noonany, and We. As Wulf, WA New

{BELL78a]

[BELL78b]

[BELL78c]

[BERG76]

[BERG78]

[BERG76a]

[BERK72]

[BLOO76]

229

Architecture for Minicomputers--The DEC PDP-11", in

Computer Engineering. A DEC VYiew of Hapdware Systems
Designy edited by Ce Ge. Bell, Je« C. Mudge, and J. E.

McNamara, Digital Press, Bedford, MA (1978).

Bell, C. G. and Je C. Mudge, "The Evolution of the
PDP-11" in Computer Engineering. A DEC View of Hardware
Systems De ny, edited by C. G. Bell, J. C. Mudge, and
Je E. McNamara, Digital Press, Bedford, MA (1978).

Belly, Ce Gesy Je Ce NMudge, and Je E. McNamara, (edse),

Computer Engineering, A DEC View of Hardware Systemg
Design, Digital Press, Bedford, MA (1978).

Belly, Ce Gey Je Co Mudge, and Je Ee. McMamara, '"Seven
Views of Computer Systems", in Computer Engineering. A

VEC View of Hagrdware Syvstems Design, edited by Ce. Go
Bell, Je« C. Mudge, and Je. Ee. McNamara, Digital Press,

Bedford, MA (1978).

-

Bergeron, Re Dey "Picture Primitives in Device Inde-
pendent Graphics Systems", Computer Graphics 10, 1
(1976) 57-60.

Bergerony Re Dey Pe Re Bono, and Je De Foleyy "Graphics
Programming Using the Core System'", Computing Surveys
10, 4 (December, 1978) 389-443.

Bergman, Se. and Ae. Kaufman, "BGRAF2: A Real—-time
Graphics Language with Modular Objects and Implicit
Dynamics", Computer Graphics - 10y 2 (Summer, 1976)
133-138.

Berk, Te S«y The Design and Implementation of TUNA, A
High Level Graphical Programming Languages PhD. Thesis,

Purdue University, Lafayette, IN (August, 1972).

Bloom, He Je¢ and Ee Dedong, A Critical Comparison of
Several Implementations of Programming Languagesy

Department of Computer Sciencey, Mathematical Centre,
Amsterdam (December, 1976).

[BOEH69]

[BoUL72]

[BOoYS75]

[BREN78]

[BUZE76]

[BUZE79]

[BUZE79a]

[cADc75]

[cArRL78]

[CARU75]

230

Boehmy BeWe, VeRe Lamby, ReLe. Mobleyy, and JeEe. Rieber,
"pOGO: Programmer-Oriented Graphics Operation''y Proce
SJCC 34 (May, 1969) 321-330.

Boulliery Pey Je Gros, P. Janceney Ae. Lemairey Foe
Prusker, and E. Saltel, "METAVISU, A General Purpose
Graphic System", Graphic Languages, edited by F. Nake
and Ae Rosenfeld, North—Holland Publishing Co.,
Amsterdam (1972) 244-267.

Boysey Je We and De Re VWarn, A Straightforward Model
for Computer Performance Prediction", Computing Surveys
7y 2 (June, 1975) 73-93.

Brendery Re Foy "Turning Cousins into Sisters: An
Example of Software Smoothing of Hardware Differences',
in Computer Engineering., A DEC View of Hardware Systems
Design, editad 57 Ce Go Bell, J. C. Mudge, and J. E.
McNamara, Digital Press, Bedford, MA (1978).

Buzeny Je Pey "Fundamental Operational Laws of Computer
System Performance', Acta Informatica 7 (1976) 167-182.

Buzeny Je Pey, "Operational Anlysis: An Alternative to
Stochastic Modeling, in Performance of Computer
Installatjons, edited by De Ferrari, North Holland
Publishing Cosy Amsterdam (June, 1979) 175-194.

Buzeny Je Pey BGS Systenmsy Incey Personal Comm=-
upication (1979).

CAD Centre, GINQ-F, Ihe General Purpose Graphics
Package Reference Manual, Cambridge, England (1975).

Carlbomy, I. and Je. Paciorek, "Planar Geometric Progjec—
tions and Viewing Transformations', Computing Surveys
10, 4 (December, 1978) 465-502.

Caruthers, L. Ce and A. van Dam, GPGS Usger's Tutorjal,
Informatica Group, Faculty of Science, University of
Nijmegen, Nijmegen, The Netherlands (October, 1975).

[CHRI67]

[cisL72]

[corr73]
[coor72]

[coTT70]

[corT74]

[coTT68]

[DENET75]

[DENN78]

(pECT71]

[DEC74]

231

Christensen, Ce and Ee N« Pinson, Multi-function
Graphics for a Large Computer Systemy Eroce FJCC 31
(November, 1967) 697-712.

Cislo, Re Ay "Graphics Systems Performance Evalua-
tion", Proce. ACM National Conferences (August, 1972)
432-442.

Coffmany E. G., Jre and Pe. Je Denning, QOperating

Systems Theory, Prentice—Hall, Incey NJ (1973).
Coopery Re Bey Introduction to Queueing Theory, The

MacMillan Company, New York, (1972).

Cotton, I Wey '"Languages for Graphic Attention-

Handling'", Proce. Internatjional Symposium on Computer
Graphicsy Brunel (April, 1970).

Cotton, I. We, "Network Graphic Attention Handling', in
Readings in Computer Gra cgy to be published by

Academic Presse

Cottony, I. We and Fe S. Greatorex, '"Data Structures and
Techniques for Remote Computer Graphics", Proce FJCC
32-2 (December, 1968) 533-544. :

Denert, E.y; Ge. Ernsty, and H. Wetzel, "GRAPHEX68--
Graphical Language Features in Algol68", Computers and
Graphics 1, 2/3 (1975), 195-202.

Denningy, P.Je. and Je.Po Buzen, "The Operational Analysis
of Queueing Network Models", Computipg Surveys 10, 3
(September, 1978) 225-261.

Digital Equipment Corporation, Digitel PDPL1l1 Peri-
pherals and Interfacing Eandbook, Maynard, MA (1971).

Digital Equipment Corporation, Digital PDP11/45 Pro=
cesgor Handbook, Maynard, MA (1974).

[DpEC76]

[pEC78]

[DEC78a]

[DEC79]

[Escc70]

[Escc74]

[EscC77a]]

[Escc77]

[EWAL78]

(FELD69]

[FERR78]

232

Digital Equipment Corporation, Digital PDP11/70 Pro—
cessor Handbook, Maynard, MA (1976).

Digital Equipment Corporation, Digital PDP11 04/34/

45/55/60 Processor Hand s Maynard, MA (1978).
Digital Equipment Corporation, Digjital PDP11 Peri-

pherals Handbook, Maynard, MA (1978).

Digital Equipment Corporation, PDP-11 Unibuss Design
Description, Preliminary, Maynard MA (May, 1979).

Evans & Sutherland Computer Corpe, Line Drawing System

Model 1 System Reference Mapual U0800-1-1, Salt Lake
Cityy UT (November, 1970).

BEvans & Sutherland Computer Corpey IThe Picture System
User's Manual, ES-PS-S001-003, Salt Lake City,y, UT

(December, 1974).

Evans & Sutherland Computer Corp., PRicture Svstem

2/PDP—-11 Reference Manual, EES 901130-001~A1. Salt Lake
City, UT (November, 1972).

Evans & Sutherland Computer Corp.y Picture System 2
User's Manual, E&S #901129-001 N, Salt Lake City, UT

(Mayy 1977).

Ewald, Re He and Re Fryer, (eds.), “Final Report of the
GSPC State—of-the—Art Subcommittee", Computer Graphics
12, 1-2 (June, 1978) 14-169.

Feldman, Je¢ Ae. and P. De. Reovner, "An ALGOL—-Based
Associative Language", CACM 12, 8 (August, 1969)
439-449.

Ferrari, D.y Computer Systems Performance Evaluation,
Prentice-Hall, Inc.y Englewood Cliffs, NJ (1978).

[FOLE71]

[FOLE73]

[FOLE76]

[FOLE76a]

[FOLET76b]

[FOLET7S]

[FOLE76c]

[FOLE74]

[FOLE74a]

[FOLE7Sa]

233

Foleyy Je« Dey "An Approach to the Optimum Design of
Computer Graphics Systems", CACM 14, 6 (Juney 1971)
380-390.

Foleyy JeDey "Sofiware for Satellite Graphics Systems®,
Procs ACM Natiopal Conference 26y (August, 1973) 76-80.

Foleyy Jeo¢ Doy "picture Naming and Modification: An
Overview", Computer Graphics 10, 1 (1976) 49-53.

Foleyy Je Dey "Extents, Windows, and Instance Rec-—
tengles", Internal Reporty Department of Computer
Science, University of North Carolina, NC (1976).

Foleyy Je Dey '"A Tutorial on Satellite Graphics Sys-—
tems", Computer (August, 1976) 14-21.

Foleyy Je Dey Re Hogan, and Ce Dunham, Display-

Independent Graphics tem—— S, Department of
Computer Sciencey, University of North Carolinay Chapel

Hill, NC (1975).

FoleYy Je Dey Ae van Damy R. Burns, I. Carlbom, and He.
Webber, "Survey Report on Vector General 3400, Adage
GP/400, Evans and Sutherland Picture System', prepared
for Vector General, Ince.y Woodland Hills, CA (Hay,

1976).

Foleyy, Je« D. and V. L. Wallace, "The Art of Natural
Graphic Man-Machine Conversation', Eroc. of the IEEE
62, 4 (April, 1974) 462-471.

Foleyy Je Dey Vo Lo Wallace, E. Britton, E. Brownlee,
D. Mitchell, R. Zarling, and J. McInroy, Graphic System
Modelingy First Annual Report, University of North
Cerolina at Chapel Hill, NC (June, 1974).

Foley, Je Dey et al, Graphics System Modeling:

Verification and Applications, Second Annual Report,
University of North ' Carolina at Chapel Hill, NC

(Novembery 1975).

[6e1IL075]

/

[ePes75]

[GRrRO077]

[GRAY67]

[espc77]

[espc79]

{ HELL75]

[HELL70]

[HURW67]

[LEINT79]

[LEVY78]

234

Giloiy We. Key "On High-Level Programming Systems for
Structured Display Programming'", Computer Graphics 9, 1
(Sprlng, 1975) 61-69.

GPGS—-F Uger's Guidey RUNIT Computer Centre, University
of Trondheim, Norway (September, 1975).

Grooty Dey E¢ Hermans,y LeCe. Caruthers, and Je Schwartz,
GPGS Reference Mapual, Rekencentrum, Teche. Hoe. Delft,
and Informatica Group: Faculty of Sciencey, University
of Ni jmegen, The Netherlands (May, 1977).

Gray, Je Coy "Compound Data Structure for Computer
Aided Design: A Survey'", Proc. ACM Nat. Meeting (1867)
355-365.

Graphics Standards Planning Commi ttee, "General

Methodology and Proposed Standard!", Computer Graphics
11, 3 (Fall, 1977) II-1 to II-117a.

Graphics Standards Planning Commi ttee, =~ '"General
Methodology and the Proposed Core System (Revised)",
Computer Graphics 13, 3 (August, 1979) I1II-1 to II-179.

Hellerman, He and Te Fe Conroy, Computer Svstem Perpr-—
formance, McGraw-Hill, Incey New York (1975).

Hellermany, He and He Je Smithy; Jre, fThroughput Ana-—
lysis of Some Idealized Input; Output, and Computer
Overlap Configurations", Computing Surveys 2, 2 (June,
1970) 111-118.,

Hurwitz, Aoy Je Pe Citron, and Je Be Yeaton, HGRAF:
Graphic Additions to FORTRAN", Proce. SJCC 1967, (1967)
553-557.

Leinwandy, Ae.y Vector General, Ince.y Personal Commu—
nicatjon (1979).

Levyy Je Vey "Buses, The Skeleton of Computer Struc-—

tures'", in Computer Engineering. A DEC View of Hardware

[MALL78]

[MEGA79]

[MICH77]

[MICHT76]

[MICH79]

[MICH76a]

[MICHT78]

[MICH78a]

[MIDD74]

235

Systems Designy edited by C. Ge. Bell, Js Ce. Mudge, and
Je E« McNamara, Digital Press, Bedford, MA (1978).

Mallgreny We Re and Ae C. Shaw, Graphical Trangforma—

tions and Hieparchic Pjcture Structuresy Department of
Computer Sciencey, University of Washingtony Seattle, WA

(June, 1978).

MEGATEK Corporation, MEGATEK 7000 Display Format
Manualy, 0250-0005-01, San Diego, CA (Meay, 1979).

Michel, Je and Ae van Dam, "Evaluation of Per formance
Improvement in Distributed Processing!", Second Vorkshop
on Distributed Processing; Brown University, Provi-
dencey RI (August, 1977).

Michenery, Je Ceoy, The [GS Graphics Programming System.
Volume I: Concepts and cjilit ¢y IR-189, Inter-

metrics, Incey, Cambridge, MA (September, 1976).

Michener, J. Cey Some Viewing Implementation Conside=
rations for the 1879 GSPC Ceore Systemy, Notes for
Tutorial on Graphics Standards at SIGGRAPH 1979,

Intermetricsy Ince., Cambridge, MA, (1979).

Michenery, Jo ©C. and D. D. Struble, Ihe /GS CGraphics
Programming System, Volume JII: SPL/1/GS Referepce

Manual, IR-199, Intermetrics, Incey Cambridge, MA
(September, 1976).

Michenery Je Ce and Ae van Dam, "A Functional Overview
of the Core System with Glossary", Computing Surveys
10, 4 (December, 1978) 381-387.

Michenery Jeo Ce and Je De Foley, "Some MaJjor Issues in
the Design of the Core Graphics System'", Computing
Surveys 10, 4 (December, 1978) 445-463.

Middleton, Ne Cey et al.y, Graphics Competibility Svstem
(GCS) Programmer'!s Reference Manual, United States
Military Academyy West Point, NY, NTIS #AD779211

(April, 1974).

[MOOR79]

[MYER68]

[MYER78]

[NEWM68]

[NEWM71]

[NEWNT73]

[NEWMT5]

[NEWM73a]

[NEWM74]

[NEWM79]

[NEWNM78]

236

Mobre, Rey Digital Equipment Corporation, Personal
Communication (1979).

Myer, Te He and Ie¢ Ee Sutherlend, "On the Design of
Display Processors®, CACM 11, 6 (June, 1968) 410-414.

Nyers, Ge Jey Composite/Structural Design: van
Nostrand-Reinhold Co.y (1978).

Newman, We Mey, "A System for Interactive Graphics
Programming", AFIPS SJCC, 38, (1968) 47-54. '

Newman, We Me, "Display Procedures'", CACM 14, 10
(October, 1971) 651-660.

Newmany We Moy WAn Informal Graphics System Based on
the Logo Language', AFIPS Conference Proces 42, 1973

National Computer Conference and Exposition, AFIPS
Press (1973).

\

Newman, We M., '"Instance Rectangles and Picture Struc-—
tures'", Proce. Conference on Computer Graphics, Pattern

Recognition and Data Structures, University of
California, Los Angeles (May, 1975) 297-301.

Newmans, We M. and Re Fe. Sproull, Principles of Intepr—
active Computer Graphics., McGraw—Hill Book Company, New
York (1973).

Newman, We. Me and Re Fo Sproull, "An Approach to
Graphics System Design', Proces of the IEEE 62y 4
(April, 1974) 471-483.

Newmany We M. and Re Feo Sproull, Principles of Inter—

active Computer Graphics, Second tiony McGraw—Hill
Book Company, New York (1979).

Newman, We M. and Ae van Dam, "Recent Efforts Towards
Graphics Standardization", Computing Surveys 10, 4
(December, 1978) 365-380.

[NGe73]

[oBRI75]

[PARE77]

[PFIS76]

[PUK76]

[pPUk76]

[ROSS67]

[ROVNG69]

[sMIT71]

[sNow78]

237

Ng, Nam, An Environmepnt-Independent Graphics LitY,

PhDe. Thesis, Teche Report TR73-11, Department of
Computer Science, University of Alberta, Canada

(September, 1973).

O'Brieny CeDe and HeHe Bown, "IMAGE: A Language for the
Interactive Manipulation of a Graphics Environment",

Computer Graphics 9y 1 (Spring, 1975) 53-60.
Parent, R. Eey A System for Generating Ihree=
Dimensional Data for Computer Graphicss PhD. Theslis,

Ohio State University, Ohio (December, 1977).

Pfistery Ge Foy "A High Level Language Extension for
Creating and Controlling Dynamic Pictures", Computer

Graphics 10, 1 (1976) 1-9.

Puky Re Foey The Optimal Distribution of Device-=
Dependent Gravhics Functionss PhD. Thesis, Purdue

University, Lafayette, IN, (May, 1976).

Puky Re Foy The 3_2 Greaphics Qomgagibilltg System, Us Se

Army Corps‘ of Engineers, Waterways Experiment Station,
Vicksburgy,; MS (October, 1976).

Ross, De. Tey "The AED Approach to Generalized Computer-—
Aided Design", Procs ACM National Meeting, (1967)
367-385.

Rovner, P. De and Je A. Feldman, "The LEAP Language and

Data Structure', Informatjion Procesgging 68,
North—Holland Publishing Company, Amsterdam (1969)

579-585.

Smith, De N.y "GPL/I-—A PL/I Extension for Computer
Graphics", SJCC 1971 (1971) 511-528.

Snowy; Ee Ae. and De. P. Siewiorek, "Impact of Implementa-—
tion Design Tradeoffs on Performance: The PDP-11, A
Case Study", Computer Engineering. A DEC Yiew of
Hardware Systems Designy edited by Ce Ge Bell, Je Co

[sorG77]

[sPRO74]

[sTAB73]

[sTAC71]

[sTER74]

[sTON77]

[sTOowW78]

[STRE78]

(suLo75]

238

Mudgey and Je Es McNamara, Digital Press, Bedford, MA
(1978)e.

Sorgiey CeDey ALGOL W Reference Manual, BCL017-001-00,
Brown University, Providence, RI (January, 1977).

———

Sproull, Re Fe and Es« L. Thomas, "A Network Graphics

Protocol", Computer Graphics 8¢ 3 (Fall, 1974) 27-51.
Stablery Ge Mey, The Brown University Graphics System,

Brown University, Providence, RI (1973).

Stack Te Ro and Se T« Walker, "AIDS——Advanced Inter-—
active Display System", Procs. SJ¢¢ 1971, (1971)
113-121.

Sterny Re Ae«y Draft Report of GLYPH: A Graphical
Extensjion to (8-4, Intermetrics. Incey Cambridge, MA
(Ma.y, 1974)0

Stoney He Sey '"Multiprocessor Scheduling with the Aid
of Network Flow Algorithms", IEEE Iranse. of Software

Engineering SE~3, 1 (January, 1977) 85-93.

Stowelly, Go Wey Microprocesgsgor Based chitecture for

Interactive Graphic Computers, Research Report,
Department of Mechanical Engineering and Computer

Science, Purdue University, IN (1978).

Streckery We Doy "Cache Memories for PDP-11 Fanmily
Compu ters', Computer Engineerings A DEC JView of

Hardware Systems Design, edited by Ce G. Bell, J. C.
Mudgey and Je. Ee. McNamara, Digita® Press, Bedford, MA

(1978).

Suloneny Rey .A Study in Concept for an Interactive
Graphic Programming Languages PhDe Thesis, Helsinki
University, Finland (October, 1975).

[suTH63]

[SUTH69]

[svoB76]

[THOM76]

[TURR75]

[vanD72]

[vAND73]

{ VAND74]

[vAND78]

[vAND77]

239

Sutherlandy, I. E., "SKETCHPAD: A Man—Machine Graphical
Communication System", Proc. AFIPS 1963 SJCC, Vol 22,
Spartan Books, New York (1963) 329-346.

Sutherland, We Rey Jeo W. Forgie, and Me V. Morello,
"Graphics in Time—sharing: A Summary of the TX-2
Experience" Proce SJCC 1969 (1969) 629-636.

Svobodova, L., Computer Performance Measurement and
Evaluation Methods: Analvsis and Applicatijo ¢ American

Elsevier Publishing Coey Ince, New York (1976).

Thomasy Ee Ley "Methods <for Specifying Display Para-—
meters in Graphics Progrumming Languages'", Computer

Graphics 10, 1 (1976) 54-56.

Turrill, C. N. and W. R. Mallgren, "YXPLG—~—-Experiences
in Implementing an Experimental Interactive Graphics
Programming System", Computers and Graphics 1, 1 (1975)
55—63 .

van Dam, A., Some Implementatjon Issues Relating to
Data Structures for Interactive Gr s TR No. 72-1,

Center for Computer and Information Sciencesy Brown
University, Providence, RI (1972).

van Damy Ae and Ge M. Stabler, "Intelligent Satellites
for Interactive Graphics", Proc 1973 NCC,y, Spartan
Books, Baltimore, MD (1973) 229-238.

van Damy Aey Geo M. Stabler, and R. Je fHarrington,
"Intelligent Satellites for Interactive Graphics",
Proc. of the IEEE 62, 4 (Aprily, 1974) 483-492.

van den Bos,y, Jey Definjition and Use of Higher—-lLevel
Graphic Input Toolsy Report No. 5, Nijmegen University,
Nijmegen, Holland (February, 1978).

van den Bos,y Jey Lo C. Caruthers, and Ae. van Dam; "GPGS
— A Device—independent General Purpose Graphic System
for Stand—-alone and Satellite Graphics'", Computer

Graphicg 11, 2 (Summer, 1977), 112-119.

(vECT77]

[vECT78]

[VECT78a]

[VECT78b]

[VECcT78¢c]

[VECT784]

[wALL75]

[WALL76]
[WATK79]

[wEBB77]

[WEGN79]

240

Vector ' General, Inc., Series 3400 Technical
Yolume II; Graphjic Processor Unity Pube. No. M110380,
Woodland Hills, CA (September, 1977).

Vector General, Inc., FGP34 FORTRAN Graphics Package,
Woodland Hills, CA (1978).

Vector General, Ince., Graphics Display Svstem. Model
3404, Programming Concepts Manual, Pub. No. 113489,

Woodland Hills, CA (July, 1978).

Vector General, Inc.,'gngghigg Display System, Model
3404, Svystem Reference Manual, Pub. No. M110700REF,
Woodland Hills, CA (August, 1878).

Vector General, Incey Series 3400 Technical Manual,

Volume I, Graphics Display System, Pub. No. M110700,
Woodland Hills, CA (Marchy, 1978).

Vector General, Incey YG3400 Firmware Code (Juney,
1978).

Wallacey Ve Ley GRASP, A PL/I-Oriented Machine Inde—

pendent Graphics Structure Handlers, An Introduction,
Depar tment of Computer Sciencey University of North

Carolina at Chapel Hill, NC (February, 1975).

Wallacey Ve Leg "The Semantics o¢f Graphic Input
Devices", Computer Graphics 10y 1 (Spring, 1976) 61-65.

Watkins, Gey Evans € Sutherland Computer Corpey
Personal Communication (1979)..

Webbery, He and R We Burns, The SINMALE Standard
Graphics Package, Preliminary Description, Brown
University, Providence, RI (December, 1977).

Wegnery Py Editor, Research Directions in Software
Technologyy, The MIT Press, Cambridgey, MA (1979).

[WHIT64]

[wiLL75]

[woop71]

[(woop7tal

241

White, Pe, "Relative Effects of Central Processor and
Input—-Output Speeds Upon Throughput on the Large
Computer", CACM 7, 12 (December, 1964) 711-714.

William8, R. and Ge M. Giddings, "A Picture—Building
System", Proc. Conference on Computer Grephics, Pattern

Recognition and Data Structures, University of
California, Los Angeles (May, 1975) 304-307.

Woody De Co. and E« He Forman, "Throughput Measurement
Using a Synthetic Job Stream", FJCCy (1971) 51-56.

Woodsfordy Pey "The Design and Implementation of the
GINO 3D Graphics Software Package', Software Practice
and Experjence 1, 4 (1871) 335-365.

A _APPENDIX: SUMMARY OF GRAPHICS S

E APAB IES

242

This appendix presents an item~by—item comparison of the DPU

for the VG3400 [VECT78b] and the EES PS2 [ESCC77, ESCC77a]

EgS PS2

Line Primjitives

connected/disconnected
points (as attributes)

abs/rel different for Xxy,yy2

2D - in xy, xz, or yz plane
3D
packed/unpacked

auto incr x, yy and/or z

Text

packed/unpacked
rotation

start point transformed
all chars transformed
italics

clipping

margin control

connec ted/disconnected
points

abs/rel/abs—rel—releese

2D in - Xy plane

3D

based

packed

limited rotafion

start point transformed
and clipped

italics

clipping at right boundary

of screen

4 basic sizes, but these can

be transformed

8 standard sizes
ugser—defined fonts
subscript, superscript
conirollahle intercharacter
and interline spacing

microprogrammed - two fonts

Other Primitives

circle/arc

entire circle transformed
and clipped

cubic

rectangle

circle/arc

Transformations

rotation - angle
uniform scale
translate
perspective
2Dp/3D window

3D clipping

2D, square viewport

rotation — angle
Xy Yy Zz scale
translate
perspective
2D/3D window

3D clipping

arbitrary 2D/3D viewport

243

(3d provides depth cueing)

general 4x4 homogeneous matrix

244

ttribuyt
8 line textures 5 line textures
color S5 colors
blink blink
intensity intensity
depth cueing . 64 for depth cueing
constant 4 for constent settings
Stacking and Compounding of Data
hardware stack — size specified hardware stack — 14 levels

at initialization time

anything can be stecked matrices are stacked
program read/write program read/write
stack access stack access
Naming
for picking: object id and for picking: one level in
element within object buffer; hit testing in
object and anything else can window g}ves content of
be stacked. name register
for modification: for modification:
name in correlation table name in correlation table

pick: select/edit option

245

Addressing Nodes

instruction
immediate
referenced: 14 modes

object call: 2 levels of

instruction

immediate

object call: direct

indirection; basetdisplaces

addressing for:?
main memory

registers: 256

Elo

unconditional cally return,
break, interrupt

conditional call, return

addressing for:
main memory of PDP-11
refresh buffer

register file

of Control

unconditonal call, return

General Purpose I truct

instrs take 3 operands
plus, minus, times, divide
andy or, xor

shift, transfer

none

light pen
tablet
keyboard
Joystick
dials
function keys

track ball

Input Tools Sold By Manufacturer

light pen
tablet
keyboard
Joystick
dials

function keys

lighted function buttons

246

247

This eppendix contains some PDP-11 code fragments and
subroutinese. This code was developed in the course of
establishing the results for the E&S PS2 in Chapter 6+« The code
fragmenfs, once written, were analyzed to determine processing
times. It is assumed that this code is pert of a FéRTRAN programg,
s0 the subroutines digqi{:fd here conform to FORTRAN calling

conventionse. (The timings assume that a PDP-11/45 is in use, with

both program and data in 16K of core memorye)

This PDP-11 code fragment updates a line endpoint in the
Picture Memory of the EES PS2. It is assumed that the object name
is in OBJECT, the offset to the three Locations is in OFFSET, and

that PTR points to the new coordinates.

MQV '#PARA,RS ADDR OF PARAMETERS

-e

MOV #34(RS5) NUMBER OF PARAMETERS

MOV #OBJECT,2(R5)
MOV #OFFSET,4(RS)
MOV PTR,6(RS5)

UPVAL DOES THE UPDATING

JSR PC,UPVAL.

The total time is 153.3 microseconds.

This subroutine

upda tes

248

three consecutive locations

Picture Memorye. A typical call looks like:

UPVAL (OBJECT, OFFSET,

UPVAL: CMPB
BNE
MOV
JSR
TST
BEQ
TSTB
BEQ
MOV
ADD
MOV
MOV
JSR

RTS

(R5)+, #3
SERROR
D(R5)+, RO
PG,MAKDEX
R1

#ERROR
PSOBJ(R1)
#ERROR
PSBASE(R1),R0
2(R5)+, RO
#3,R1

2(RS),R2
PC, DMAOUT

PC

-e

-

-e

-e

- e

-e

-e

PTR)

CHECK # OF PARAMETERS

GET OBJECT NAME

FIND OBJECT IN DIRECTORY

IS NAME IN DIRECTORY?

NO. ERROR.

IS OBJECT REALLY IN DIRECTORY?
NO. ERRORe.

GET OBJECT PTR

ADD OFFSET

SET UP DMA COUNT

SET UP DMA ADDR

The total time for this subroutine is 131.3 microseconds.

in

249

This routine transfers data to the Picture Memory via a DMA «

It is an

method,

Parameters:

RO
R1
R2
DMAOUT: BIT
BEQ
WTIPS
MOV
y MOV
BIS
RTS

internal routine,

to be used ' by the graphics

not the application programe.

- PS2 address
- DMA word count

— DMA base address

#200,I0ST DMA READY?

DMAOUT

RO, #DMAPSA
RI,DMAWC
R2 4 DMABA

#1,1I0ST

START TRANSFER

PC

The time for this routine is 41.2 microseconds.

access

This

code

sequence defines

250

a macrogy used on the previous

pagey that writes from PDP-11 "SRC" to E&S PS2 Y“DST"

+MACRO

«END

WTPS
TST
BPL
MOV
TST
BPL
MOV

WTPS

SRC ,DST
I0ST

o—4
DST,DIOPSA
IOST

4

SRC , PSDATA

ae

TEST IF DIO READY

DIO NOT READY. LOOP BACK

SET UP ADDRESS

NOT YET DONE WITH ADDRESS

SEND DATA

251

This routine looks throﬁgh the directory (BUFBAS) fer a
given object. It is an internal routine, to be used by the

graphics access method, not the application programe
Parameters:

RO - Object name

Rl - Return value: directory pointer if object found; 0 if

object not found.

MAKDEX: MOV BUFBAS,R1 BEGINNING OF DIRECTORY

1$: CMP PSNAME(R1),RO IS THIS THE OBJECT?

-e

BEQ 4% YES. EXIT.

CMP PSNAME(R1),#-1 END OF DIRECTORY?

-e

BEQ 5% YES. EXIT.

-8

ADD #DIRLEN,R1 ADVANCE TO NEXT ENTRY

BR 1%
5% CLR Ri ; PREPARE 0 (FAILURE) RETURN CODE
45: RTS PC

The total timé to find the fifth object in the directory is 57.6

microseconds.

w

This program fragment reads

DIAL) and updates a translation
obtained. It is assumed that the
is 1located at a given offset
(OBJNAM).

MOV #PARALRS H

MOV #ONE, (RS) H

MOV #342(RS5)

MOV #DVAL,4(R5)

JSR PCy,DIAL

MOV #34(R5) H

MOV #OBJNAM y2(RS5)

MOV #OFFSET,4(R5)

MOV #DVAL,6(RS)

JSR PC,UPVAL

The total time for this code frag

252

three dials (via the subroutine
matrix according to the values
translate portion of the matrix

(OFFSET) within a given object

ADDR OF PARAMETERS

CALL DIAL(1,3,DVAL)

CALL UPVAL (OBJNAM,OFFSET,DVAL)

ment is 262.4 microseconds.

253

This program fragment reads three dials (via the subroutine
DIAL) and compares them with previous values. If any value is
changed, it updates a translation matrix according to the values
obtainede. It is assumed that the translate portion of the matrix
is 1located at e given offset (OFFSET) within a given object

(OBJIJNAM).

MOV #PARA,RS 3 ADDR OF PARAMETERS
MOV #ONE, (RS5) 3y CALL DIAL(1,3,DVAL)
MOV #342(RS)
MOV #DVAL,4(R5)
JSR PC,DIAL

MOV #DVAL,RO COMPARE OLD AND NEW VALUES

-e

MOV #DVALOLD,R1
CMP (RO)+,(R1)+
BNE 18

CMP (RO J+,(R1)+
BNE 18

CMP (RO),(R1)
BE NOCHNG

18: MOV #3,4(R5) CALL UPVAL (OBJNAM,OFFSET,DVAL)

MOV #OBJNAM,2(R5)
MOV #OFFSET,4(R5)
MOV #DVAL,6(RS)

JSR PC,UPVAL

The total time
the matrix 1is

changede.

for this code

not

changed

254

fragment is 128.2 microseconds if

and 278.5

microseconds

if it is

This

subroutine

reads

N

255

dial values, starting with dial

numbor DNUM, into the variable RESULT. A typical call looks like:

SUBROUTINE DTIAL (DNUM,

DIAL:

BNE

MOV

MOV

MOV

ADD

TST

BLE

RDPS

ADD

ADD

SUB

BR

RTS

The

CMPB

(RS)+,#2
SERROR
d(R5)+,RO
d(R5)+, R1
(R5),R2
#DIALADDR, RO
RrR1

28
RO,(R2)
#2,RO
#2,R2
#1,R1

is

PC

-e

-e

-e

Ny RESULT)

CHECK # OF PARMS

GET PARAMETERS

ADDR OF ZEROTH DIAL
TEST IF DONE

YES. EXIT.
READ NEXT DIAL

INCREMENT AND LOOP BACK

time to read three dials is 95.3 microsecondse.

This

code

sequence defines

256

a macroy, used on the previous

page, that reads from EES PS2 N"SRC" into PDP-11 Y“DST"

«MACRO

«END

RDPS

TST

BPL

MOV

TST

BPL

MOV

RDPS

SRC ,DST
IOST

-4

SRC ,DIOPSA
IOST

-4

PSDATA, BST

L 2]

TEST IF DIO READY

DIO NOT READY. LOOP BACK

SET UP ADDRESS

NOT YET DONE WITH ADDRESS

GET DATA

257

P DIX: TH S
Cel Introduction

In the description of Theseus that follows the routines are
grouped by topic: first the routines that_build and modify the
hierarchy are defined, next the transformations, followed by the
primitives, the attributes, and the interaction handling. The
last section describes some miscelaneous features regarding the

-

operation of Theseus.

The description of each routine is preceded by the syntax of
the Algol W declaration for the routine. Upper case symbols
denote Algol W and Theseus keywords; lower case symbols denote
parameters to be specified by the usere. Brackets ([]) indicate
optional parameters. In the declaration, the different data types
are separated by' semicolons; note that in actual calls, all
arguments are separated by commase. Optional procedure parameters
can be omitted at a call, but the preceding comma must be
specified, Optional integer parameters must be specified as

non—-positive integers, to indicate that they are to be ignored by

Theseuso

258

Transformations, attributes, and extents are specified as
procedure parameters of routines that define objects, segments,
views, and object calls. An actual parameter corresponding to a
procedure parameter can be any Algol W statement: a simple
statement, a begin block, or a procedure statement. However, the
only Theseus calls that can be used as part of any type of
procedure parameters are Theseus routines of the same typee. For
example, a modelling transformation parameter (usually written in
a declaration as "“PROCEDURE mtrans") may only contain Theseus
modelling +transformation function invocationse. Similarly, an
attribute parameter may only contain Theseus attribute function

invocationse.

The first three subsections below discuss those routines
that are used to build and modify the components of the
hierarchical data structure: objects and object calls, views, and
segmentse. Each of these constructs can have assoclated'names for
identification and modification purposese. Naming is discussed in
the following subsectione. Extents and conditional execution of

objects are discussed at the end of this gectione

259

Ce2.1 OBJECTS

Theseus allows +the user to create and delete objects, to
mpdlfy objects by adding and deleting segments, and to create
_object callse. Alllattrlhutes and all modelling transformations of
a call may be altered dynamically. In addition, an individual
attribute or an individual modelling transformation may be
altered dynamically, as will be discussed in Sections Ce5 and
Ce3e An object may have an associated extent and can be
- conditionally executed depending on the size of thls extente.
Objects may be save& in picture files, and retrieved from these
files for later use. ObJject creation, deletion and calling are
discussed in this section; the discussion of picture files is

deferred to Section C.7.

OPOBJ2D(INTEGER VALUE name; [PROCEDURE extent]; [PROCEDURE size])

OPOBJ3D(INTEGER VALUE name; [PROCEDURE extent]; [PROCEDURE size])

make +the object ‘'‘name" +the open object for addition and
deletion of segments. An object name must be unique within
the data structure. If the specified object name exists,
the existing obJject is modified; otherwise a new obJecthis
createde The object remains the open object until a call to

CLOSOBJ or DLTOBJ.

260

An extent, i.e.y a surrounding window of an object, can
optionally be specified as part of the object definitione
An object's extent can be modified when that object is
reopenede. The extent is used +to aid the clipping process,

and is further discussed in Section Ce2.5.

By speclifying a minimum and maximum extent size
relative to the size of the display screen, the object will
be executed conditionally, depending upon its extent size.
The procedure "size!" defines the minimum and maximum extents
(see2 Sec@ian Ce2+5), end can be altered as the object is
reopened., Note that if the object was created without an
extent and without o size specification, an extent and the

associated size cannot be added when an object ié reopenede.

Error Conditions:

1) No more core available for‘graphlcal data structure.
2) Dlménslonallty mismatche

3) An obJectvls already opene

4) Invalid name; must be a positive integer.

5) Invalid extent routinee.

6) Invalid size routine.

261

CLOSOBJ

The open object is closed, and cannot be modified until it
is again made the open object by a call to OPOBJ2D or

OPOBJ3D.

Error Conditions:
1) No open object.

2) A segment was open; it has been closed.

DCLOBJ2D(INTEGER VALUE name)

DCLOBJ3D(INTEGER VALUE name)

declare a 2D and a 3D object, respectivelyy ie.ee, enter an
‘object name in the directorye. These procedures enable the
user to generate an object call before the object is
created, thereby allowing him to create a picture "top—-down"
instead of "bottom—up'. The actual object may subsequently

be defined by calling OPOBJ2D or OPCBJ3D.

Although these procedures may be invoked while there is
an open obJect,' this should generally be avoided since it

causes inefficiency in DPU processing.

262

Error Conditions:?

1) Object name already existse.

2) No more core available for graphical data structure.
3) Invalid name; must be a positive integere.

4) Dimensionality mismatch.

NULLOBJ(INTEGER VALUE name)

deletes the body of the named objecty, but leaves the object
name in the directory. A new body for this cbject may

subsequently be defined by reopening the object with OPOBJ2D

or OPOBJ3D.

Error Conditions:
1) Object name does not existe.

2) Invalid name; must be a positive integer.

DLTOBJ(INTEGER VALUE name)

deletes the body of the object and removes its name from the
directory. If there are any remaining calls to this object
in the data structure they will be ignored until the

directory entry is used againe Since the programmer cannot

263

directly control allocation of directory entries, this can

cause unpredictable resultse.

Error Conditions:
1) Object name does not existe.

2) Invalid name; must be a positive integere.

RNMOBJ(INTEGER . VALUE oldname, newname)

renames the object "oldname" to 'newname'. All existing
calls to object oldname" will refer to '"newname', and the

object must subsequently be referenced by "newname'.

Error Conditions:?
1) Object newname already exists.
2) Object oldname does not existe.

3) Invalid name; must be a positive integere.

SWAPOBJ(INTEGER VALUE namel, name?2)

exchanges the bodies of the objects "namel" and "name2".
This routine can be used for double buffering. The object
can be built as object "name2" while displayed as obJject

"namel". When obJject "name2!" is completedy, the two objects

264

are swapped and a new version of the object is agein built

as obJject '"name2". No renaming is required!

Error Conditions:
1) Object namel and/or name2 does not existe.
2) Dimensionality mismatche.

3) Invalid name; must be & positive integer.

CALLOBJ(INTEGER VALUE name, [elemnamel], [dynamo]l; [PROCEDURE

attr]; [PROCEDURE mtrans])

adds a call of the object "name" to the open segment in the
display data structure. The element name may be specified
for identification of the object csll, and a dynaemo name may
be specified for modification of\ the object calle. The
attributes and transformations (see Sections CeS and C.3) of

the object call are specified by "attr" and "mtrans',

respectivelye.

If no attributes are specified, null attributes will be

appliedes If the transformations are omitted, a call without

a transformation is generated.

In order to delete a call to an object, the surrounding
segment must be deleteds Any component of the call may be

altered dynamically by CHGCALL, which is described below.

265

An obJject may call itself recursively.

Error Conditions:?
1) No more core available for graphical data structure.
2) Object name does not exist.

3) Dynamo name already existse

4) Dimensionality mismatche.

5) No open segmente

6) Invalid attribute routine.

7) Invalid modelling transformation routine.
8) Invalid namej; must be a positive integers

‘

g) A menu object cannot be referenced by an object call.

CHGCALL(INTEGER VALUE dynamo, [neme J; [PROCEDURE attr]s

[PROCEDURE mtrans])

replaces the called obJect; and can modify all the
attributes and the entire transformation of an existing
object call pointed to by the "dynamo" (see Section C.2.4).
“name', "attr" and "mtrans" are defined as for CALLOBJ. 1If
an cptional parameter of the call is a non—positive integer
or is omitted, the corresponding component of the object
call is 1eft~unchanged. Note that if the obJject call was
generated without a modelling transformation, such a

transformation may not be added.

266

Error Conditions:?

1) Dynamo does not exist.

2) Object name does not existe.

3) Dimensionality mismatche.

4) oObvject call 'does not have an associated modelling
transformatione)

5) Dynamo does not refer to an object call.

6) Invalid attribute routine.

7} Invalid modelling transformation routines

8) A menu object cannot be referenced by an object call.

Ce2.2 VIEWS

An object ig displayed by creating a view of the obJjecte.
Each view has a unique name; and has associated attributes and
viewing transformatlons. Views may be added to'and deleted f£rom
the display data structure, and the image of the viewed object
may be altered by changing thg associated attributes and viewing

transformations.

ADDVIEW(INTEGER VALUE objnamey, viewnamey [dynamo]3 [PROCEDURE

attr]; [PROCEDURE vtrans])

267

adds a view with the name "viewname'" of the specified object
to the display data structure. A dynamo may be specified for
modification of the viewe The attributes and the viewing
transformations are specified by "attr" and ?ytrans",

regpectively, and are discussed 1n Sections C.5 and Ced

belows.

If no ettributes or viéwlng parameters are specified
the null attributes and the default viewing transformation

will be applied.

Errbr Conditions:

1) Object objname does not exist.

2) Invalid name; must be a positive integer.

‘'3) Viewname already existse.

4) Dynamo name already exists.

5) Invalid attribute routine.

6) Invalid viewing transformation routines (A defeult

transformation has been used.)

CHGVIEW(INTEGER VALUE dynamoy [objname]; [PROCEDURE attr];

[PROCEDURE vtrans])

éhanges the view pointed at by 'dynamo". This routine can
change the view to refer to the object objname, and can

modify all the attributes and the entire viewing

268

transformation. "objname", "attr", and "vtrans" are defined
as for ADDVIEW. If an optional parameter of the call is a
non—-positive integer or 1is omitted, the corresponding

component of the view is left unchangede

Error Conditions:

1) Dynamo does not exist.

2) Dynamo does not refer to a views

3) Object "objname'" does not exist.

4) Dimensionality mismatche.

5) Invallid attribute routine.

6) Invalid viewing transformation routine. No change was

mades

DLTVIEW(INTEGER VALUE viewname)

deletes the specified view from the display data structure.

Error Conditions:?:

1) Viewname does not exist.

269

Ce¢2¢3 SEGMENTS

An object consists of one or more segments that are made up
of primitives and object calls. A segment may be added to or
deleted from the open obJject, have associated attributes, and can
be conditionally executed depending on the extent size of the
objecte A segment can not be reopened once it has been closed,
but its attributes, its primitives and object calls may be

modi fied through the use of dynamose.

BEGSEG(INTEGER VALUE name, [dynamo]; [PROCEDURE attr];

[PROCEDURE size])

makes the segment "name'" the open segment for adding
primitives and object calls, The segment name must be unique
within +the obJjecty but need not be unique within the data
structure. The segment remains the open segment until a call

to ENDSEG.

If one or more ettributes are omitted, null attributes

will be generatede

A dynamo name may be specified for modification of all
the segment attributes (see CHGSEG below)e The attributes

for ‘the primitives are defined by "attr", and are further

270

discussed 1in Section C{S. wgize', as for objects, defines

the conditions under which the segment is displayed.

Error Conditions:?

1) No more core available for graphical data structure.
2) No open objecte.

3) Segment name already exists in thlé objecte

4) Invalid name; must be a positive integere.

5) Dynamo name already exists.

6) A segment is already opena

7) Invalid attribute routine.

8) Invalid size routine.

ENDSEG

The open segment is closedy ieesy no more primitives and

calls may be added to the segment.

Error Conditions:

1) No open segmento

DLTSEG(INTEGER VALUE name)

deletes the specified segment from the open objecte

271

Error Conditions:
1) No open objecte

2) Segment does not exist in the open object.

CHGSEG(INTEGER VALUE dynamo; PROCEDURE attr)

changes all the attributes of the segment with the specified

dynamo nemes "attr”" is defined as for BEGSEG.

Error Conditions:?
1) Dynamo does not existe.

2) Dynamo does not refer to a sSegment.

Ce2.4 NAMING

Names are used to identify or modify parts of the graphical
data structure. Names may be associated with objects, segments,
views, object calls, primitives, attributes, and transformation

matrices. A name may be any positive integer.

An obp.ject name is used for the purpose of identification and
modification of the object. It |is defined when the object is
defined or declared {see Section Ce2el)e An object name must be

unigque within the display data structure.

272

A view pname is used for identification and deletion of a
view of an objecte A view name is defined when a view is added to

the display data structure, and must be unique within this deta

structure.

A segment pame is used for the purpose of identification and
deletion of a segment within an object. It is defined at segment
definition time. A segment name must be unique within an object,
but need not be unique within the entire graphical data

structures A segment is, however; always uniquely defined by the

name pair: (object, segment).

Theseus provides one level of naming within segments:
individual primitives and calls may be named for identification
purposes (see Section Ce6)e Such element napmpes are séecifled as
optional parameters of procedures that generate calls (see
Section Ce2¢1) and graphical primitives (see Section Ce4)e An

element name need not be gnique within a segmento

Dyname names (or dynamog) ere unigue pointers to items such
as segments, primitives, views, object calls, or to individual
transformations vln a modelling transformation in the graphical
data'structure, and are used to modify these items dynamically. A
dynamo can be a shorthand for the pair (object, segment), or for
the tripleté (object, segment, element) or (object, segment,
matrix)e A dynamo is created either when segments, object calls,

viewsy and primitives are createdy or when such items have been

273

identified by a picking device. (See Sections Ce2y Co4, and
C.6+) Dynamos should be deleted by the user when the referenced

item no longer is going to be modified.

DLTDYN(INTEGER VALUE dynamo)

deletes the specified dynamoe.

Error Conditions:

1) Dynamo does not exist.

Ce2.5 EXTENTS

An extent of aﬁ ;bJect is a rectangular window which
surrounds the object and whose edges are parallel to the axes of
the local coordinate systeme An extent iz optionally specified as
part of an object definition. When the object call is executed by
the DPU, the extent of the called obJject is transformed by the
current transformation matrixe. A new extent which surrounds the
transformed extent, but whose edges are parallel to the
transformed coordinate axesy is calculateds The extent aids in
the cilpplng procese in that an object whose transformed extent
lies entirely inside or outside the clip window can be trivially

accepted or rejected, respectivelye.

~ 274

An object can be conditionally executed depending on the
' size of its transformed extent. A sSegment can be condi tionally
executed depending on the size of the transformed extent of the
surrounding objects This makes it possible to define "levels of

detail" of an object with each level being one segment.

EXTENT2D(REAL VALUE xcenter, ycenter, xsize, ysize)

EXTENT3D(REAL VALUE xcenter, ycenter, zcenter, xsizey ysize,

zsize)

specify the center and size of the extent window in local
coordinates. The dimensions of the extent window are xsize%2
by ysize*2 (by zsize*2) and should be defined such that they
surround the entire obJjecte This routine is optionally
specified at object creation time. An existing extent of an
ob ject may be modified, but an extent cannot be added to an

object once the object is crea tede.

Error Conditions:

1) Object reopened with an extent but no extent was
specified when the object was first created.

2) This procedure can only be used as part of OPOBJ2D and
OPOBJ3D.

3) Dimensionality mismatch.

4) Numeric data out of range.

275

5) No more core available for graphical data structure.

SIZE(REAL VALUE min, max)

is optionally specified at object and segment creation. The
object or segment is displayed only if the ratio of the size
of the extent of the object (for a segment: the obJject
containing the segmént) to the length of the display screen
diagonal is in +the range '"min" to "nax"s The size of the
extent of the object is calculated as the length of the
diagonal of an extent surroun@lng the transformed extent
after +that surrounding extent has been mapped onto the
display screens Note that "min" and thax!" are always in the

range 0.0 to 1.0

Error Conditions:

1) Numeric data out of rangee.

2) Min must be smaller than maxe.

3) This procedure can only be used as part of OPOBJ2D,
OPOBJ3D, and BEGSEG.

4) Object has no extent. (An attempt was made to add a size
to the object or one of its segments.)

5) An existing object without an associated SIZE was
reopened with a non—-null size routinee.

6) MNo more core available for graphical data structure.

276

Cs3 _Transformatjons

Theseus provides both modelling and viewing transformationse.
Modelling transformations allow objects to be defined\ln locai
coordinate systems and to be combined into new objects. These
transformations include rotation, scalingy, and translation. In
addition, the user may specify an arbitrary 4x3 or 3x2
transformation matrix to obtain any nonstandard modelling

transformation.

The viewing transformations determine how objects are mapped
onto the display surface. In =2D, a window determines which
portion of the world coordinate space is to be viewed, and a
viewport controls the placement of the 1mage of the object on the
display surfacee. In 3D, a view volume determines which part of
the world coordinate space 1is to be viewed, a method of
projection defines how the object is projected onto a plane, and
a viewport controls the plecement of the image of the projected

object on the display surface.

Theseus uses a Lleft—-handed coordinate systems The world
coordinate system has the origin at (0.0,0.0,0.0) and a range

specified by the RANGE functione

271

Ce3+1 RANGE OF WORLD COORDINATES

The world coordinate data and the transformations are
specified as real fullwords. The DPU, however,y, only accepts
coordinate data in the range =1.0 to 1.0 The mapping from world
coordinate space to the DPU coordinate space must be specified by

the usere

RANGE(REAL VALUE xyzscale)

specifies the range of the xy ¥y and =z coordinates:
-xyzscale <= xyyyz <= xyzscale. The default is xyzscale = 1.
This procedure should generally only be invoked once in each
programg before the first invocation of a procedure that
uses coordinate datas Note, if the range is changed after
some coordinate data has been created, a locate (see Section

C.6) in world ccordinate space might return erroneous datas

Error Conditions?:

1) Parameter must not be 0.0

278

Ce3¢2 MODELLING TRANSFORMATIONS

Modelling transformations are gpecified at object call
generation, and their scope is thus the called objects A
modelling transformation is specified as a sequence of modelling
tr;nsformation function invocationss The matrices corresponding
fo the modelling transformation functicn invocations are compo sed
in +the order in which they are specified by premultiplying the
new transformation matrix with the existing matrixe. If no dynamos
are specified in +the function invocations, the composition takes
place in the CPU; if, however, a dynaqo is specified, the
composition takes place in the DPU each time the SDF is executed.l
Not only can a modelling transformation be modified by modifying

one of its component matricesy but the entire transformation can

be altered dynamically as wes discussed in Section Ce2.1,

SCALE2D(REAL VALUE xscale, yscale; INTEGER VALUE [dynamo])
SCALE3D(REAL VALUE xscaley, yscale, zscale; INTEGER VALUE

[dynamo])

specifies a modelling transformation matrix with x, yy and z
scale factorse. A dynamo may be specified if the matrix is to
be modifiede The scale factors must be in the range 0.0 to

1.0, The default scale is xscale = yscale = zécale = 140

Error Conditions?:

1)

2)

3)

4)

TRANS2D(REAL VALUE xtrans, ytrans;

Dimens ionality mismatche

This procedure can only be
object call.

Numeric data opt of rangee.

Dynamo name already exists.

TRANSJ3D(REAL VALUE xtrans, ytrans,

specified as

279

part of an

INTEGER VALUE [dynamo])

ztrans; INTEGER VALUE

[dynamo])

specifies a modelling transformation

translation amountse A dynamo may be

is to be modified. The default translation

ytrans = ztrans = 0.0,

Error Conditions?

1) Dimensionality mismatche

2) This procedure can only
object call.

3) Numeric data out of rangee.

4) Dynamo name already existse.

be specified as

matrix with xy yy and z

specified if the matrix

ig xtrans =

part of an

280

ROT2D(REAL VALUE angle; INTEGER VALUE [dynamo])

specifies a modelling transformation matrix for a 2D
rotation of "angle" radians. A dynamo may be specified if
the matrix is to be modifiede The default rotation angle is

0.0.

Error Conditions:

1) Dimensionality mismetche.

2) This procedure can only be specified as part of an
obJject calle

3) Dynamo name already exists.

ROT3D(REAL VALUE xcosy ycos, zcos, angle; INTEGER VALUE [dynamo])

specifies a modelling transformation matrix for a 3D
rotation of "Yangle" radians about the vector defined by the
direction cosines (xcos, ycosy zcos)e A dynamo may be

specified if the matrix is to be modifieds The default

rotation angle is 0.0.

Error Conditions:
1) Dimensionality mismatche
2) This procedure can only be specified as part of an

object calle.

281

3) Numeric data out of range.

4) Dynamo name already exists.

TRANMAT(REAL ARRAY mat(%*,%); INTEGER VALUE [dynamc])

allows the user to specify an arbitrary 3x2 (2D) or 4x3 (3D)
modelling transformation matrix to be composed with the
matrix specifying the modelling transformations A dynamo may

be specified if the matrix is to be modifiede.

Error Conditions:

1) Dimensionality mismatch.

2) This procedure can only be specified as part of an
object calle.

3) Illegal array bound.

4) Dynamo name already existse.

CHGTRAN(INTEGER VALUE dynamo; PROCEDURE mtrans)

changes a matrix which is a component of a modelling
transformation that has the specified dynamo names "wtrans"

is one of the modelling transformation functionse.

282

Error Conditions:
1) Dynamo name already exists.
2) Dynamc does not refer to the correct type of modelling

transformation matrixe.

Ce3+3 VIEWING TRANSFORMATIONS

The viewing transformations are specified when a view lis
added to or changed in the display data structure, and define how
the obJdact is mapped +to the display surfacee. A viewing
transformation may be changed by modifying individual viewing

parameterse.

The 2D viewing transformations of Theseus are very simitlar
to those of the Core Graphics System [6sSPC77]e 1In 2D the viewing
transformation is defined by a window and a viewport. The 3p
viewing parameters provide the same functional capabilities as
the Core Graphics System, but are specified in a different
manner. For perspective projections the viewing transformation is
defined by a view volume, a view plane, and a viewport, where the
view volume is a pyramid. For parallel projections the viewing
transformations are specified by a windowy, & viewport, a

projection plane, and by the desired properties of the projected

obJ ecte

283

VRP(REAL VALUE Xx,¥4z)

defines the view reference point in world coordinates. Some
3D viewing parameters are defined relative to this point,

The default point is (0.0,0.0,0.0)¢

Error Conditions:

1) This procedure can only be specified as part of ADDVIEW,
CHGVIEW, or CHGVTRAN.

2) Dimensionality mismatche.

3) Numeric data out of range.

ORIENT(REAL VALUE nXy,nyynz,uxX,uy,uz)

defines the view plane normal (nxyny,nz) and the "viewup"
direction (ux,uy,uz) as vectors relative +to +the view

reference point.

Viewup is a Vector whose orthographic projection onto
the view plane defines the direction in the view plane that
will be "up" on the displey surface (except for plan oblique
views; see the next paragraph)e. The viewup vector allows
the definition of a coordinate system called the UVN—system. .
The orthographic projection of the viewup vector defines thne

V—axise The U-axis is defined such that the U-~axis, the

284

V-axis and ‘the view pianc normal, N, form a left—handed

coordinate system.

In the case of plan oblique views, the viewup vector
defines a "preferred direction" whose orthographic
projection (on the view plane) will be at an angle
(PI/2 + gamma) radians from the up direction of the screen.
The angle gamma is the angle of the receding axise. The
preferred direction allows the definition of a new
coordinate system called the U'V!N-system. The orthographic
projection of the preferred direction defines the V'-axis.
The Ut—-axis is defined such that the U'V'N—syftem is
left—handede. The UVN-system is obtained by a rotation of

(PI/2 + gamma) of the U'VIN-system about the N-axis.

The window and the center of projection are defined in

the UVN-systeme

The default view plane normal is (0.0,0.0,1.0), and the

default viewup direction is (00,1.040.0).

Error Conditions:?

1) This procedure can only‘bé specified as part of ADDVIEW,
CHGVIEW, or CHGVTRAN.

2) Dimensionality mismatche

3) All elements of a direction vVector are zero. (The

default has been used.)

285

4) Numeric data out of range.
5) Viewup direction 1is parallel to the view plane normale

(The defaults are assumed.)

ELEVOBL(REAL VALUE len,gamma)

PLANOBL(REAL VALUE len,gamma)

define the foreshortening ratio "len" 6f the receding lines
and the angle "gamma" between the U-axis and the receding
lines for‘an elevation oblique, and the foreshortening ratio
"len" and the angle "gamma" between the U'-axis and the
receding axes for a plan oblique. "receding lines" are the
peréction of lines parallel to the view plane normal. "Len"
and "gamma" define the direction of the proJeétors of a
parallel projectione '"len" should be positive, "gamma" is

measured in radianse.

Error Conditions:

1) This procedure can only be specified as part of ADDVEEW,
CHGVIEW, or CHGVTRAN.

2) Dimenéionality mismatche

3) The foreshortening ratio is zero. (One has been used.)

286

ORTHO

defines an orthographic projections The projectors are
perallel to the view plane normale. The default pro jection is

orthographice

Error Conditions:
1) This procedure can only be specified as part of ADDVIEW,
CHGVIEW, or CHGVTRAN.

2) Dimensionality mismatche

PERSP(REAL VALUE Xy¥:2)

defines the center of projection of a perspective projection

in the UVN-coordinate systeme.

Error Conditioﬁs:

1) This procedure can only be specified as part of ADDVIEW,
CHGVIEW, or CHGVTRAN.

2) Dimensionality mismatche

3) Numeric data out of range.

287

VIEWUP2D(REAL VALUE dx,dy)

VIEWUP2D defines the direction in +the world coordinate
system that will be "up" on the display surface. The vector
(dx,dy) is defined relative +to the origin of the world
coordinate system. VIEWUP2D defines a rotation of the

window about the origine

The default viewup vector is (0.0,1.0).

Erroi Condi tions:

1) This procedure can only be specified as part of ADDVIEW,
CHGVIEW, or CHGVTRAN.

2) Dimensionality mismatche.

3) All elements of the direction vector are zero. (The
default has been useds)

4) Numeric data out of range.

WINDOW2D(REAL VALUE xcenter, ycenter, xsize,y, ysize)

defines the center and size of the clip window for a 2D
viewing transformation. The width and height of the window

are xsize¥2 by ysizeX*2.

The center and Size are defined in the world coordinate

systeme The rectangle whose center and size are the

288

parame ters to WINDOW 1is rotated about the origin of the
world coordinate system so that the vertical sides of the

window become parallel to the viewup vector.

The window and the viewport define the mapping of the
2D world coordinate space to the. display surface. If
clipping is enabled, only those parts of the object inside
the window will be mapped to the viewporte. If clipping is
disabled; the entire world coordinate space is mapped to the
display surface in such a way that the window is mapped to
the viewporte The default window is (0.0y 0.0, xyzscale,
xyzscale), where xyzscale defines the range of the world

coordinate systeme.

WINDOW3D(REAL VALUE xcenter, ycenter, zcenter, xsizey ysize)

defines the size of the clip window in the UVN—-system and
the center of the clip window in the UVN—-coordinate system
for perspectivey orthographic, and elevation oblique
projectionsy, and in the U'ViN-gsystem for plan oblique
prejections. The window center is defined relative to the
center of projection for perspective and relative to the
origin of the UVN-system or U'V!N-system for parallel
projectionse. The center defines both the distance to the
vlew-plane (Yzcenter") and the position of the window within

the view plane ("xcenter" and "ycenter")e The sides of the

289

window are always parallel to the U and V directions (not to
the U' and V' directions); the lengths of the sides of the
window are 2%xsize and 2%ysize. xsize is defined along the

U-axis, ysize along the V-axis.

If a perspective projection is selectedy, the center of
projection and the window define a semi-infinite pyramid.
If a parallel proJe;tlon is selected, the window and the
direction of the pro.jectors define a vseml-infinite
parelellepiped. If clipping is enabled, only the contents
of the view volume, the pyramid or the parallelepiped, are
proJected onto the window in the view plane. I£ clipping is
disabled, the entire world coordinate space is projected,y, by
a parallel or perspective projecticn, onto the view planee.
The view plane is tﬁen mapped to the display surface in such

a way that the window is mapped to the viewport.

The default window is (0.0, 0.0, 0.0, xyzscale,

xyzscale), where xyzscale defines the range of the world

coordinaete systeme.

Error Conditions?
1) This procedure can only be specified as part of ADDVIEVW,
CHGVIEW, or CHGVTRAN.

2) Numeric data out of range.

290

VIEWPORT(REAL VALUE xcenter, ycenter, xsize, ysize)

defines the center and size of the viewport in screen
coordinates, i.e.y fractional coordinates between -1.0 and
1.0 The dimensions of the viewport are xsize*2 by ysize*2.
The - default viewport is the entire screen, lecey

(00010.0,1.091.0)0

Error Conditions:

1) This procedure can only be specified as part of ADDVIEWVW,
CHGVIEW, or CHGVTRAN.

2) The viewport extends outside the screen areae (The

default has been used.)

VTRANMAT(REAL ARRAY mat(%¥,%))

allows the user to specify an arbitrary 3x2 (2D) or 4x3 (3D)
viewing transformation maetrixe. Note that if this matrix is
gspecified with other viewing functions, unpredictable

effects may result.

Error Conditions:?:
1) Dimensionality mismatche.

2) This procedure can only be specified as part of a views

3) Illegal array bound.

291

CHGVTRAN(INTEGER VALUE dynamo; PROCEDURE vtrans)

chafnges one or more viewing parameters in the view specified
by "dynamo". "vtrans" specifies the viewing transformation

functions that are to be modified.

Error Conditions?:

1) Dynamo does not existe

2) Dynamo does not refer to a view.

3) Invalid viewing transformation function requesteds. (No

change was mades)

Theseus provides Lline, point and text primitives. The
primitives are added +to the open segment, and are specified in
absolute coordinates of a coordinate system local to the objecte
The line coordinate data added to the segment consists either of
immediate datay, 1le.e.y the actual coordinate valuesy, or of
_addressed datay iecey a pointer to the coordinate datae. Each
primitive may have an associated element name for identification
purposes, and a primitive specified as immediate data may have an

associated dynamo name for modification purposes.

292

The text primitives are part of two- or three—-dimensional
objectse. Characters in the text strings are individually
positioned, conforming to the user'!s specification as closely as

the hardware character generator permits.

Individual primitives may not be deleted from a segmentoe
They meyy however, be altered either through an associated
dynémo, or by a change in the coordinate location pointed to by
an address in the SDF. The +type of the primitive may not be
changed, but a point and an endpoint of a l1ine may be replaced by
another point, and a text string with another text string. Note
that the length of a prlhitive, ieee the number of lines or the

number of characters, must remain unchanged.

Menu text is used for operator/machine interactione. Menus
are objects that can be added to the display data structure by
creating a view of the menu obJjectes A menu is displayed in a
user—de fined viewport, but the user has no control over size and

position of the menu text within the viewport.

Ced4e1 LINE AND POINT PRIMITIVES

Theseus provides procedures for simple primitives such as
points and lines, and for composite primitives such as polylines

and polygonse.

293

LINE2D(REAL VALUE x1, yl, x2, y23 INTEGER VALUE [elemname],
[dynamo], linestyle)

LINE3D(REAL VALUE x1, ¥yl, zl, x2, v2, z23 INTEGER VALUE
{elemname], [dynamo], linestyle)

LINEADDR(REAL VALUE pl, p2; INTEGER VALUE [elemname],

linestyle)?28

specify a line from (x1, y1) to (x2, y2) of a two-—
dimensional object, a line from (xl, yl, zl) to (x2, y2, z2)
of a three—~dimensional objecty, and a Lline from the
coordinates at pl to the coordinates at p2, respectivelyo

"linestyle" determines the type of line:

"0 - solid
1 - dashed

2 - dotted

An element name may be specified for identification of
the primitive. A dynamo name may be specified for
modification of the prinitive, if it 1is specified via

immediate datas

28p1gol W does not provide a pointer data type; pl and p2 are the
actual location of the X~coordinate values, and the address of pl
and p2 will be stored in the SDF.

294

Error Conditions:

1) No open segment.

2) No more core available for graphical data structure.
3) Dimensionality mismatche.

4) Numeric data out of rangee.

5) 1Invalid line styles. (Solid has been used.)

6) Dynamo name already exists.

POINT2D(REAL VALUE x, y; INTEGER VALUE [elemname], [dynamo])
POINT3D(REAL VALUE x, yy z; INTEGER VALUE [elemname], [dynamo])

PTADDR(REAL VALUE p; INTEGER VALUE [elemname])

specify a point at (xy, Vy)y at (xy ¥9 z)y and at the
coordinates at p, respectively. An element name may be
specified for identification of the primitive. A dynamo name
may be specified for modification of the primitive, if the

primitive is specified via immediate datas

Error Conditions:?

1) No open segmente

2) No more core available for graphical data structure.
3) Dimensionality mismatche.

4) Numeric data out of range.

5) Dynamo name already existse.

295

POLYLINE(REAL ARRAY xyz(%*,%); INTEGER VALUE [elemname], { dynamo],
linestyile)

PLINADDR(REAL ARRAY xyz(*); INTEGER VALUE [elemname], linestyle)

defines a sequence of connected lines starting at the first
coordinate point in xyz and ending at the lasts In POLYLINE,
xyz contains immediate da ta; in PLINADDR, xyz contains
addressed datae The dimensionality is determined by the
first array indexy which 1is either 2 or 3 depending on

whether a 2D or 3D polyline is to be generated.
"linestyle" is defined as for line primitivese.

An element name may be specified for identification of,

and a dynamo name for modification of the primitive.

Error Conditions:

1) No open segments

2) No more core available for graphical data structure.
3) Dimensionality mismatche.

4) Numeric data out of range.

5) Dynamo name already existse.

6) Invalid line style. (Solid has been usedes)

296

POLYGON(REAL ARRAY xyz(%,%); INTEGER VALUE [elemname], [dynamo],
linestyle)

PGONADDR(REAL ARRAY xyz(%*); INTEGER VALUE [elemname], linestyle)

abe identical to POLYLINE and PLINADDR except that the first

and the last coordinate points in xyz are connectede.

CHGPT2D(INTEGER VALUE dynamo, coordoffset; REAL VALUE x,y ¥)

CHGPT3D(INTEGER VALUE dynamo, coordoffset; REAL VALUE x4 ¥y 2)

modify one coordinate in a two—- and three~dimensional
primitive, regpectivelyes The primitive is referenced by the
dynamo, and the actual point within the primitive 1is
determined by "coordoffset", which is an offset into the set
of coordinates that determine the priﬁltive. coordoffset!
is always one for a poinf primitive or the position of a
text prlmitive, one or twe for a Lline primitive, and an

offset into an array for polylines and polygonse.

Error Conditions?

1) Dynamo does nét refer to a segmente
2) Dimensionality mismatch.

3) Numeric date out of range.

4) Dynamo does not existe.

5) Coordinate set number out of rangee

2917

Ce4.2 TEXT

TEXT2D(REAL VALUE x, yy dxy dy; STRING (120) VALUE chars; INTEGER
VALUE length, [elemname], [dynamo])
TEXT3D(REAL VALUE x, yy zy dx, dy, dz; STRING (120) VALUE chars;

INTEGER VALUE length, [elemname], [dynamo])

defines a text string of length "length" with the center of
the first character at (xy y) and (Xxy ¥y 2)y respectivelys.
The inter—-character distance is defined in world coordinate
units by_(dx, dy) or (dx, dy, dz) and defines the coordinate
position for the center of each of the following characters.
The coordinate positions are transformed by the composite
transformation matrix, and the individual characters are
displayed, in the screen plane, with the center of each
character at the transformed character position. A
character size appropriate for the transformed string length

is chosen by Theseus.

An element name mwnay be specified for identification of
the primitive, and &a dynamo name may be specified for

modificatione

298

Error Conditions:

1)
2)
3)
4)

5)

6)

No open segmente

No more core available for graphical data structure.
Dimensionality mismatche

Numeric data out of range.

Text length not in the range 0 to 120; 120 has been
usede.

Dynamo name already exists.

CHGTEXT(INTEGER VALUE dynamo, length; STRING (120) VALUE chars)

replaces the text string referenced by the specified dynamoe.

Note that if +the new string is longer than the original

string it will be truncated; ijf it is shorter it will be

padded with blanks.

Error Conditions:

1)
2)

3)

Dynamo does not refer to a segmente.

Dynamo does not existe.

Text length is either less that 2zZero, or greater than
length of string being modifiede (It has been set to the

length of the existing string.)

299

Ce+4.3 MENU TEXT

MENU(INTEGER VALUE name; STRING (120) ARRAY (*) chars; INTEGER

VALUE length, elemnamel)

defines a menu object with +the name "name'. A menu is a
gpecial object containing text strings and can only be
referenced <from ADDVIEW or CHGVIEW. The text strings are
displayed in the viewport defined by the viewing
transformation. All other viewing parameters of the view
are ignoreds A menu is treated 1like all other objects. It
can be added to the SDF, deleted from ity and its name can

be replaced and swapped.

"length" 1is the 1length of the longest string in
ichars", and "elemnamel" defines the element name of the
first menu text string in ohers"s. The following strings

have the element names telemnamel"+1, "elemnamel'+2, etce.

Each string will be displayed preceded by a bulletes A
text string is identified by a picke Upon a pick of a menu
itemy the attention gqueue will contain the trlpletl
(nameyO0yelemname)y and the picked text string will ©be

highlightede.

300

Error Conditions:

1) Object name already existse.

2) No more core available for graphical data structure.

3) Invalid name; must be a positive integere.

4) Text length not in the range 0 to 1203 120 has been

usede

5) A menu can only be referenced from ADDVIEW and CHGVIEVW.

Ce.5 Atirjibutes

Attributes allow the user to manipulate the images of
objects and segmen tse. These attributes are intensity,
pickability, blink, vector mode, clip enable, extent enable, and
size enablees The attributes are specified at generation of object
cglls, views, and segments. All the attributes of a call, view,
or segment can be altered by the procedures CHGCALL, CHGVIEW,

and CHGSEG, respectively, and one or more individual attributes

can be changed by CHGATTR.

When the hierarchical data structure is processed by the
DPU, attributes operate such that values at different levels
combines Rules for these combined effects are specified belows
If an attribute specification is omitted when a view, object
call, or segment |is generated, a null attribute is appliedes A

null attribute has no effect on higher— or lower—level, non—null

301

attributess At the highest level all attributes have default

values, specified below.

CHGATTR(INTEGER VALUE dynamo; PROCEDURE attr)

changes the specified attributes of +the segment, object
call, or view that has the specified dynamo name. "attr" is

defined as for BEGSEG.

Error Conditions:
1) Dynamo does not existe

2) UDynamo does not refer to an attsributee.

INTENS(REAL VALUE intens)

defines the intensity at which the image of a object or a
segment is displayed. "intens" can range from 0.0 to 1.0;
0.0 is the dimmest, 1.0 the brightest. When attributes are
composed at a subobject call or at the beginning of a
segment, the maximum of the two intensities is chosen as the

new attributes The default is intens = 0.5

302

Error Conditions:

1) Attributes can only be part of an object cally, a view,
or a segmente

2) Numeric data out of range.

PICKABLE(LOGICAL VALUE pick)

This attributey, when true, enables the object or segment for
picking (see Section 6)e When aftrlbutes are composed, the
or of the two attributes is chosen as the new attribute.
This implies that when an object is pickable, so are all its

segments and subobjects. The default is pick = truee.

Error Conditions?

1) Attributes can only be part ¢f an obJect'call, a view,

or a segmente

BLINK(LOGICAL VALUE blink)

This attribute, when true, causes the image of an object or
segment to blink until the attribute is set to false. When
the attributes are composed, the or of the two attributes is

chosen &as the new attributes This implies that when an

303

object is blinking, so are all its segmenté and subobjectse.

The default is blink = falge.

Error Conditions:
1) Attributes can only be part of an object cally, a view,

or a segmente.

VECMODE(LOGICAL VALUE vecmode)

This éttribute, when true, changes the Lline style for the
image of an object or a segment. Solid lines will change to
dashed, dashed to dotted, and dotted lines to endpointse
When attributes are composed the or of the two attributes is

chosen as the new attribute. The default 1s'vecmode =

falge.

Error Conditions:?
i) Attributes can only be part of an object cally, a view,

or a segmente

CLIP(LOGICAL VALUE clip)

allows the user to disable clipping of an object or segment
against the window or view volume. When the attributes are

composed the and of the two attributes is chosen as the new

304

attribute. The default is clipping enabledy ieeey clip =

't;:ge.

Error Conditions:?
1) Attributes can only be part of an object call, a view,

or a segmente

EXTCON(LOGICAL VALUE extcon)

allows the user +to disable extent processing. If disabled,
the DPU will process each primitive in an object for
cilpplng. This attribute is mainly used for debugginge
When the attributes are composed, the and of the two

attributes is chosen as the new attribute. The default is

extent processing enabledy ieeey extcon = true.
Error Conditions:

1) Attributes can only be part of an object cally a view,

or a segmente

SIZECON(LOGICAL VALUE sizecon)

allows the user to disable the conditional test that

determines if an object 1is too small or too large, relative

305

to the object extent size, to be processed for display. If
disabied, the segment or object will be processed regardless
of its size. This attribute is used for debugginge When

the attributes are composedy, the apd of the two attributes

is chosen as the new attribute. The default is size
processing enabledy i.edy sizecon = truee.

Error Conditions:

1) Attributes can only be part of an object call, a view,

or a segmente

Ce6 Interaction

Theseus supports five classes of logical interaction

devices:

PICK - identify object, segment, or brlmltlve
BUTTON — select function

KEYBOARD -~ provide alphanumeric information
LOCATOR - provide coordinate information

VALUATOR - provide values

These logical devices may be implemented by one or more
physical devices, and +the programmer may choose which physical

interaction device most conveniently ;mplements a logical device

for his application.

306

The logical devices are divided into two clagses?: event
causing devices and sampling devices. Each event causing device
has an associated one—-element event queue. Upon an eventy an
event report with data related to the event is placed on this
queues The event report must be removed from the queue by the
"application program before a new event report may be‘placed on
the «queue. The application program may poll any queuey, or wait
for an event from one or more devices. Sampling devices have
values that may be sampled by the applicatidn programe The pick,
button, and keyboard are event causing devices, the valuator and

locator sampling devicese.

Each logical device and its physical implementation is
described below. The event handling functions for polling and

waiting, and for accessing event reports are described laste

Ce6.1 PICK

A pick device is an event caugsing device that may identify a
viewy, object, segment; or primitive in the data structure. The
event report contains the DPU object cali stack of (objecty
segment, elemname) triplets at the time of the picke. The
programmer may obtain any triplet in the stack for identification
purposes, or assign a dynamo 'to any item in the stack for

modification purposess If viewports overlapy, a pick through the

307

use of a cursor will occur in the first viewport whose data is

executed by the DPU.

The position of the pick window may be explicitly controlled
by the programmer or implicitly controlled by attaching it to the

joystick or to the tablet.

PICKEXPL(REAL VALUE x, y, xscale, yscale)

enables the loglical pick device for explicit pickinge. A
pick-window of dimensions xascale*2 by yscale*2 is initially
positioned at (x,¥). Xy Y¥yy xscale, and yscale are all

specified in screen coordinatese.

Error Conditions:
1) A pick device is already enablede.
2) Numeric data out of rangee.

3) A locator device is already enabled.

POSPICK(REAL VALUE x, ¥y}

moves the center of the pick window to (xy ¥)e x and y are

specified in screen coordinatese

308

Error Conditions:
1) Explicit pick device has not been enablede.

2) Numeric data out of rangee.

PICKIT

performs an explicit pick at the current position of the
pick windowe If the pick is successful, the event report is
placed on the pick event queue, unless there is an item in
the queue ealreadye. This function and POSPICK allow the
programmer to use any combination of sampling and event
causing devices to perform a picke Notey this function may
be used to perform a pick when the Jjoystick or the tablet is

enahled as the pick device.

Error Conditions:

1) A pick device is not enabled.

PICKJOY(INTEGER VALUE fnkey, REAL VALUE xscaley, yscale)

enables the Joystick as a pick device. A pick—-window of
dimensions xscale%2 by'yscale*Z is positioned at the current
(xyy) Joystick coordinatese The function key specified by
"fnkey" is implicitly enabled and serves as a trigger. If

the pick is successful, the event report is placed on the

309

pick event queue, unless there is already an item in the
queuve. ''xscale" and tyacale" are specified in screen

coordinatese.

Error Conditions:?

1) A pick device is already emnableds

2) Function key is already enabled.

3) Numeric data out of rangee.

4) A locator device is already enabled.

5) Invalid function key number.

PICKTAB(REAL VALUE xscale, yscale)

enables the tablet as a pick device. A pick window of
dimensions xscale*2 by yscale*2 is positioned at the current
(x,y) tablet coordinates. The pick occurs when the
tip—switch is pressed. If the pick is successful, the event
report is placed on thé event qugué, unless there is an item
in the queue already. "xscale'" and "yscale'" are specified in

screen coordinatese

Error Conditions:?
1) A pick device is already enablede.

2) Numeric data out of rangeo

310
3) A locator device is already enabled.
DISPICK

disables the current pick device, and flushes the gqueue for

the pick device.

Error Conditions:?

1) A pick device is not enabled.

Ce6e2 BUTTON

A button is an event causing device that allows the
progtrammer to select a functione. The event report contains the
number of +the button. The buttons are implemented as function

keyse. '

BUTKEY(INTEGER VALUE number)

enables the specified function key as a button, and lights

the corresponding function key lighte

Error Conditions?
1) Function key is already enableds

2) 1Invalid function key number.

BUTKEYS

enables all function keys as buttons; except for

function key that 1is already enabled as a triggere.

corresponding function key lights are 1ite

DISBUT(INTEGER VALUE number)

311

any

The

disables the specified buttony, and flushes the button queue.

Error Conditions:
1) Button is not enabled.

2) Invalid function key numbers

DISBUTS

disables all buttons, and flushes each button queue.

312

Ce6¢3 KEYBOARD

The keyboard is an event device that allows the user to
enter alphanumeric text. The keyboard event occurs when the
carriage return is typed, and the event report contains the text
string that was entered and the number of characters in that

string-

Theseus maintains and displays a one—line character buffer
for prompt text and for input from the alphanumeric keyboarde.
The prompt text and the input text are displayed 1in a

programmer—deflned viewport at e programmer—-defined cursor

positione.

KEYVIEW(REAL VALUE xcenter; ycenter, xsize, ysize)

speclfies the center and size of the text input viewport in
screen coordinatese The dimensions of the viewport are
xsize¥*2 by 'ysize*Z. The default viewport is

(0s040e041¢0410)y ieces the entire screene

Error Conditions:
1) Numeric data out of range.

2) The viewport extends outside +the screen areas (The

default has been useds)

313

KEYBUF(INTEGER VALUE length)

specifies the total buffer size for the combined prompt
message/input linee. The meximum allowable buffer size is
120, and the default 1is 80 characters. The buffer size and
the viewport size determine the size of the characters; the
character size is chosen so that the entire buffer will f£it
on one line in the viewport. If the user tries to input

beyond the length of the buffer the input is ignored.

Error Conditions?

1) Parameter out of rangee

PROMPT(REAL VALUE x, y3; STRING (120) VALUE message; INTEGER VALUE

length)

enables the alphanumeric keyboard for input. A prompt
message "message" of length length" characters followed by
a cursor is displayed at the coordinate position (x,¥).
(x,vy) are specified 1n‘ the range =-1.0 to 1.0, and‘are
coofdlnates in the input vieﬁport defined by KEYVIEW. Upon
carriage return the event report is placed on the event

queue, and the keyboard is disabled for inpute.

314

Error Conditions:

1)

2)

Numeric data out of range.
Text length is either less than zeroy or greater than
the maximum buffer sizeo. (It has been set to the maximum

bufter size.)

Ce6+.4 LOCATOR

A

iocator is a sampling device that provides coordinate

information 1in screen coordinatese The Llocator may either be

controlled by the joystick or the tablet.

LOCJOY

enables +the Joystick as a sampling device. A cursor i8R,

displayed at the current (x,y) Joystick positione

Error Conditions:

1)

2)

A locator device is already enablede.

A pick device 1is already enablede.

3158

LOCTAB

enables the +tablet as a sampling devices A cursor is

displayed at the current (x,y) tablet positione.

Error Conditions?
1) A locator device is already enabled.

2) A pick device is already enablede.

READLOC(REAL RESULT xy V)

reads +the current Llocator. (x;y) is returned in screen

coordinatese.

Error Conditions?

1) A locator device is not enablede.

DISLOC
disables the locatore.

Error Conditions:?

1) A locator device is not enabled.

316

Ce6.5 VALUATOR

A valuator is a sampling device that allows the user to read
numeric values in the range 0.0 to 1.0. There can be several
one-dimensional valuators——the dials—-and 2 three-dimensional

valuators——the Jjoystick and the tablet.

READDIAL(INTEGER VALUE first, number; REAL ARRAY RESULT dial (%))

returns the =value of "number" dials, starting with dial

"firgt", in the array "dial'.

Error Conditions:

1) Parameter out of rangee.

READJOY(REAL RESULT xy yy Z)

returns the current (x,yyz) values of the joysticke.

READTAB(REAL RESULT x, yy INTEGER RESULT 2)

returas the current (x,yyz) values of the tablet. z

indicates the position of the tablet pen:

317

0 - out of range of tablet
1 - in range of tablet

2 - touching tablet.

Ce6.6 EVENT HANDLING

This section will discuss how the event queues can be
polled, how an application program can wait for an event, and how

to access the event reportse.

POLL(LOGICAL expr)

is en integer procedure that polls the event queues for one

or more devicese. expr" is a boolean expression of the

form:
BUTTON OR PICK OR KEYBOARD OR LOCATOR.

Theseus will poll the event queues of the devices in
the boolean expression in the order in which they are
specified. If an event occurred, an integer equal to the
index of the event device in the expression will be
returnede. If no event occurred, POLL will return the number
of devices in the boolean expression plus one. For example,

POLL(BUTTON OR LOCATOR OR PICK) would return:i

318

1 for a button event
2 for a locator event
3 for a pick event

4 if no event had occurede.

This function removes the corresponding event report
from the qgueue. The dequeued report becomes the current
event report for that devicey, and can be accessed by the

functions described below.

Error Conditions:?

1) Invalid routine in boolean expression.

WAIT(LOGICAL expr)

works much in the same fashion as POLL, except that WAIT
will not return until an event has occurred. The queues
will continuously be polled in the order in which the

devices are specified in the boolean expression.

Error Conditions:?

1) Invalid routine in boolean expressione.

319

STACK

is an integer procedure that returns the depth of the object

call stack in the current pick event report.

Error Conditions:

1) Current event report for the pick device does not existe.

GETPICK(INTEGER VALUE depth, INTEGER RESULT obJject, scgment,

elemname)

i

returns the triplet name (object, segment, elemname) at
level "depth" from the top of the object call stack in the
current plck event reporte The top (levell) item of the
stack contains (0,viewnamey0)e The bottom element contains
the (object, segmenty elemname) triplet for the primitive
that was pickede. Intermediate levels contain triplets for
the lntegvening callse. If an element name was not specified

for an object call or a primitive, an elemname of 0 is

returnede.

Error Conditions:
1) Current event report for the pick device does not existe

2) Parameter out of range. (Depth exceeds_number of items

on the stacks)

DYNELEM(INTEGER VALUE depth, dynamo)

DYNSEG(INTEGER VALUE depth, dynamo)

320

create o dynamo with the name "dynamo", referring to the

item corresponding to the triplet (object, segment,

elemname) and the pair (object, segment) at level Y"depth!"

from the top of +the object call stack in the current pick

event report. DYNELEM creates a dynameo for a primitive, a

view, or an object call, whereas DYNSEG creates a dynamo

for a segmente.

Error Conditions?

1) Current event report for the deslignated device does not

exigte.

2) Parameter out of range. (Depth exceeds number of items

on the stacke)
3) Dynamo name already existse.
4) 1Invalid name; must be a positive integero

5) No more core available for graphical data structure.

6) Object name does not exist. (It has been deleted since

the pickes)

7) Segment does not exist. (It has been deleted since the

picke.)

321

GETBUT

is an integer procedure that returns the number of the

function key that caused the button evente

Error Conditions:

1) Current event report for the designated device does not

existe.

GETTEXT(INTEGER RESULT number, STRING (120) RESULT text)

N

returns the length of input character string in the keyboard

event report and the characters in this stringe.

Error Conditions:

1) Current event report £for the designated device does not

existe
C.7 Control

This section discusses a set of unrelated issues rcgarding

the operation of Theseuse

322

Ce7e1 INITIALIZATION

A series of Theseus programs using the same graphical dafa
structure can be executed. Theseus 1s invoked by executing the

following command:?

THESEUS <filename> eeee <filename> [(<options>]‘

{filename”> represents a file.' The files are executed in the
order in which they are specified, and operate on the same
graphical data structure. The options can be specified in
any order, separated by blanks. Theseus has the following

options (in addition to the ALGOL W ones):

SD=x is +the maximum depth of the object call stackes The
stack depth must not be greater than 10; the default is

SD=5,

D=xxxx specifies the dimensionality of the objects as either

2D, 3D or BOTHes The default is DIM=2D.

PCF=xx specifies the amount of core in K-bytes that Theseus
uses for the largest object programe Theseus will
utilize the remainder of ccre for the graphical data

structure and the Algol W stack framee

GCF=xx specifies the amount of core in K bytes that Theseus

should use for its graphical data struc ture.

323

Note that only one of PCF and GCF should ire specified.
If both are apecified then the latter will be used,y, and 1if

both are omitted the defzult is GCF=4.

Ce7¢2 TERMINATION

Theseus is terminated and the space for the graphical data
structure freed up at the end of the execution of the last

program on a single command linee.

Ce7.3 CLOCK

The "frame" clock 1is not treated as an interaction device
and is not accessible by Theseus. However,y, Algol W provides

access to the CPU clock.

C.7.4 DEFAULTS

The attributes and the transformations have defaults defined
by Theseus. These defaults are applied at view and object call
generation if the attributes or +transformations are not
explicitly specified by the programmers. The defaults may not be

altered by the programmers

324

Ce7.5 PICTURE FILES

Theseus allows a user to save an object on disk and to
retrieve it for later use. Each obJject is saved in a separate

disk file.

SAVEOBJ(INTEGER VALUE name, STRING(8) VALUE file)

saves the object "name" and all its subobjects in a disk
file named "file". Note that the object is not deleted f£rom

the data s tructure.

Error Conditions:
1) Object name does not existe.

2) File with the specified name already existsoe

LOADOBJ(STRING(8) VALUE file) loads the object and all its
subobjects from the file with the name "fjile?, Care must be -
taken that there are no duplicate object names in the disk

file and the graphical data structiure.

Error Conditions:

1) PFile with the specified name does not existe.

2) Object name already eiists.

325

Ce7+6 ERROR HANDLING

Runtime errors in Theseus are handled as runtime errors in
Algol W. The error number and the coordinate of the Theseus
statement that caused the error are printed on the operator's

consolee.

There are two types of errors in Theseus: warnings and fatal
errorse. At a non—fataﬁ error the procedure call will be ignored
unless other action ig indicated in the error message, and
execution will continue. If an error occurs in a Theseus
procedure that is passed as a parameter, only that particular
procedure will be ignored. For example, if an error occurs in an
attribute routine, only that attribute routine is ignoreds. The
other attribute routines as well as the segment, viewy or object

call deflnitlon will be processeds

Note that procedures may return unpredictable values if the

procedure generated an errore.

There is only one fatal error: "No more core available for

graphical data structure."”

