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Abstract of
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by
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An important question in the analysis of algorithms is the nature
of Space-Time exchanges for various computations. We use a pebble game
played on directed acyclic graphs as a model for studying Space-Time
tradeoffs for straight-line programs. These tradeoffs are generally
expressed as hyperbolic functions in Space and Time with the number of
inputs to the algorithm as a parameter.

1) We show that the number of pebbling moves, T, to compute the Fast
Fourier Transform (FFT) algorithm ﬁsing S pebbles is bounded as

2
n_

2n2 2 (T-nlogzn)(s-logzn) 2 33

A more detailed expression than the above indicates that the upper and
lower bounds differ by about a factor of 4, for large n.

2) We model a linear recursion implementation that uses a stack of
height n by a pebble game played on a directed acyclic graph of n
vertices. The number of pebbles used, p, represents the maximum height
of the stack allowed and Tp(n),the number of moves in theﬂpebble game,
represents the number of recursive calls made. We obtain an exact

expression for Tp(n).



The rates of growth of Tp(n) are

P n1+1/p(P/1+P) P << log,n
Tp(n) = k1 nlog,n p = k,log,n
nlogznllogzp P 2 log,n

where k1 and k2 are constants.
We present in simple terms an analysis of the space-time tradeoff

which allows us to determine the entire class of optimal algorithms for
linear recursion for the entire range of values of space and time. We
also provide in pseudo-ALGOL simple implementations called Partial Stack
Algorithms of one of the optimal algorithms.

3) We present an analysis of the space-time tradeoff of all oblivious
Sorting algorithms that use the operations Minimum (a,b) and Maximum (a,b)
where a and b are elements from the list to be sorted. Unlike the FFT

or Linear recursion, the results apply to any straight-line algorithm of
the above class. If S is the number of items temporarily stored during
the execution of the algorithm and T the total number of operations

performed, we show that

n2
T2 w=—-n+38

4) For the class of straight-line algorithms we show that a RAM
computation that uses time T and space S can be simulated by a TM in
time O(T(logT)s) and space O(TlogT). We discuss the significance of
such transformations as it pertains to tne idea that Space and Time are

canonical parameters of computation.
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ChaEter 1

Introduction

An important question in the analysis of algorithms is the nature
of Space-Time exchanges for various computations. For example, consider
the computation of finite functions viz., functions with finite domains
and ranges. One way to compute such functions would be to store the
value of the function for each point in its domain. The computation
process would then consist of a table look-up algorithm to retrieve the
required output. Another way to compute such functions would be to
compute the value of the function from its formula each time an input
is presented. The first method may require more Space than the second
while requiring less Time.

In this dissertation we consider the class of Straight Line Programs,
These are algorithms which contain no loops or jumps, conditional or
unconditional. They are also known as Oblivious Algorithms [1], to denote
the fact that the computation is oblivious to the value of the input
involved. Many common algorithms are either of this type or can be made
so by unraveling loops. The oblivious property of the algorithms
makes it possible to derive precise Space-Time tradeoffs. The maximum
number of references to temporary storage locations and registers is
considered as the Space parameter and the total number of statements

executed is the Time parameter.
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A more useful idea of the same process as above is that of the
pebble game, due to Paterson and Hewitt [12] and Hopcroft, Paul and
Valiant [1]. ‘The pebble game is played on directed acyclic graphs which
represent the straight line algorithm. The rules of the pebble game
mimic the computation process of the straight-line code. The number of
pebbles used in the game is considered as the Space constraint while
the minimum number of moves made during the game is considered as the
Time. We observe that the computational model does not differentiate
between operations in computing the total Time necessary. This leaves
the algorithm uninterpreted, with the topological relationships of the
steps the only significant factor. However we point out that the
significant Space-Time relationships found in the thesis are in the form
of lower bounds which are therefore still valid in even more complicated

models of computation processes.

1) *‘We show that the number of pebbling moves, T, to compute the Fast
Fourier Transform (FFT) algorithm using S pebbles is bounded as

2
n_

2n2 2 (T—nlogzn)(S-loan) 2 33

A more detailed expression than the above indicates that the upper and
lower bounds differ by about a factor of 4, for large n.

2) We model a linear recursion implementation that uses a stack of
height n by a pebble game played on a directed acyclic graph of n
veftices. The number_of pebbles used, p, represents the maximum height
of the stack allowed‘and Tp(n),the number of moves in the pebble game,
represents the number of recursive calls made. We obtain an exact

expression for Tp(n).



The rates of growth of Tp(n) are

P n1+1/p(p/1+p) p << logzn
Tp(n) = k1 nlogzn P = kzlogzn
nlogznllogzp P2 10g2n

where kl and k., are constants.

2
We present in simple terms an analysis of the space-time tradeoff

which allows us to determine the entire class of optimal algorithms for
linear recursion for the entire range of values of space and time. We
also provide in pseudo-ALGOL a simple implementation called Partial Stack
Algorithm of one of the optimal algorifhms.

3) We present an analysis of the space-time tradeoff of all oblivious
Sorting algorithms that use the operations Minimum (a,b) and Maximum (a,b)
where a and b are elements from the list to be sorted. Unlike the FFT

or Linear recursion, the results apply to any straight-line algorithm of
the above class. If S is the number of itéms temporarily stored during
the execution of the algorithm and T the total number of operations

performed, we show that

n2
T2 = -n+38§

4) For the class sf straight-line algorithms we show that a RAM
computation that uses time T and space S can be simulated by a TM in
time O(T(logT)s) and space O(TlogT). We discuss the significance of
such transformations as it pertains to the idea that Space and Time are

canonical parameters of computation.
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Chapter 2 begins with a comparison of Space-Time parameters for
a computation on the Turing Machine and Random Access Memory machine.
These two modéls represent different aspects of real computing machines
and are two popular models of computation in the analysis of algorithms.
We prove that for oblivious algorithms the Space-Time parameters-for
both models have values which are bounded above in terms of each other
by almost linear relationships. le describe the pebble game in Sec. 2.2
and provide methods to compute the minimum number of pebbles necessary
to play the game on Trees and Synchronous Graphs. These graphs are
important because they are used in deriving the Space-Time tradecoffs
for the Fast Fourier Transform algorithm in Chapter 3. Section 2.3 deals

with the pebble requirements of arbitrary acyclic graphs. Ve

derive an upper bound on the number of pebbles required by a graph G
of fan-in at most r.  The result oBtained is an improvement over that
of Hopcroft, Paul and Valiant [1}. We conclude the chapter with some
general remarks, in Section 2.4, on the NP-completeness of finding the

exact pebble requirements.

Chapters 3, 4 and 5 provide Space-Time tradeoffs for the Fast Fourier
Transform, Linear Recursion and Sorting problems fesPectively. These
tradeoffs are in the form of upper and lower bounds for Time as a function
of Space. The bounds obtained arc shown to be close. An impor-
tant aspect of these chapters is that each one embodies not only a
Space-Time result for an important problem but also the methods used
to obtain these results are different in each case and thus illustrate

the potential richness of the area of Space-Time tradeoffs.



Chapter 3 demonstrates a hyperbolic Space-Time tradeoff for the
Fast Fourier Transform algorithm. We show that the tradeoff can be

expressed as

2

2
5 < (S-logzn)(T—nlogzn) < 2n

u‘:i

where n is the number of inputs of the algorithm. A better, though more
elaborate expression, is derived for both upper and lower bounds which
differ by a factor of 4 for large n.

Chapter 4 concerns Linear Recursion. Illere we illustrate the massive
decrease in storage Space that can be achieved with only a relatively
small increase in the number of recursive calls. The unit of Space is
a section of the storage space that is used to hold a record of each
recursive call. Time is reckoned as the number of recursive calls made
during the computation. Our approach to determining the tradeoff is one

introduced by Paterson and Ilewitt [12] and Chandra [18]. We present

in simple terms an analysis of the Space-Time tradeoff which allows us
to determine the entire class of optimal algorithms for the entire range
of values of Space and Time. We also provide simple implementations of
some of the optimal algorithms. As an example of the kind of results
obtained we show that for a depth of recursion n, Space can be
reduced to v2n from a nominal n with a corresponding increase of Time

to 2n from a mininum of n.
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Chapter 5 treats the problem of Sorting for a whole class of
algorithms. Assuming that the algorithm uses compariéon-exchanges or
any other monétone operations we show that the product of Space and Time
grows at least as nz, where n is the number of items that are sorted.

Chapter 6 concludes the dissertation with suggestions for further

research.



Chapter 2

We discussed in general terms in the last chapter the use of Space
and Time as ﬁarameters to characterize computational processes. We
believe that these parameters are canonical in that the values they
assume do not depend crucially on the particular model of computation
which is used. To support this contention two well known models of com-
putation are examined, that is, the multitape Turing Machine (TM) and
the Random Access memory Machine (RAM). These models represent different
aspectg of real machines and are two modeis which are commonly used in
analysis.

For a large class of algorithms known as''obliviousd'algorithms it is
_shown that parameters of Space and Time obtained using the TM model
of computation are related to the same parameters obtained using thé
RAM as a model of computation. The results are used in a discussion
comparing non-oblivious and oblivious algorithms with respect to Space
and Time. )

Section 2.2 begins with a description of a pebble game played on
directed acycliﬁ graphs. The rules of the game model computational
processes with limited space or time and thus make it possible to
discuss space-time tradeoffs for specific algorithms in later chapters.
Upper bounds are provided on the number of pebbles required to play

the game on binary trees and a class of graphs known as synchronous
graphs which are defined in Section 2.

Sections 2.3 and 2.4 consider the general problem of computing
pebble requirements for arbitrary acyclic graphs. We prove an upper

bound on the pebble requirement as a function of the number of nodes



or edges in the graph. This is an improvement on earlier published
bounds | 1].‘ In doing so we explicitly show the influence of fan-in
on the minimal space requirement. Section 2.4 mentions a relevant
result on computing exact pebble requirements and briefly discusses
its impact on finding optimal ways to execute an algorithm using

limited Space within this model.

2.1 Models of Computation

In this section we examine two well known models of computation,
that is, the multitape Turing Machine (TM) and the Random Access memory
Machine (RAM). The TM and RAM computations consume resources such as
Storage Space and Computation Time. RAM oblivious computations are sim-
ulated on a T™M to show that the values of the parameters Space and Time
based on a TM model of computation are related to the values based on a
RAM model of computation. We use these results to compare non-oblivious

and oblivious algorithms with respect to their Space and Time parameters.

2.1.1 Preliminaries

A k-tape, (k22), Turing Machine [30] consists of k semi-infinite tapes

divided into cells, a tape head for each tape, a tape alphabet I which
consists of a finite number of distinct symbols, a set of S states with

an initial state Sy € S and a finite control defined by a ''transition

function" § : S x K o S x Zk x {L,N,R}k, where L,R,N denotes a head

movement
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left, right or not at all. The transition function specifies the next

state of the machine, the symbols to be written into.tape cells under the

heads and thé next cell to which the heads move. The machine has a

special state called a halt state, which if entered terminates further

state transitions and head movements. The input for the computation
appear§ on one of the tapes called the input tape. Other tapes

are work tapes and an output tape.

It is assumed in the following discussion that the TM is determin-
istic, the tapes extend to infinity to the right. The TM halts for all
computations that are considered below.

A TM computation begins with all tape heads at the leftmost entry,
if any, on their tapes and its state at Sy The machine then undergoes
a sequence of state transitions of its finite control accompanied by
head movements and possible changes in the tape contents. Thsse are de-
fined by the transition function and computation continues until the halt
state is reached. Time is the number of transitions and Space is the

. number of non-blank tape cells visited by the tape heads.

A Random Access Machine (ﬁAﬁ)lconsists of a read-only input tape,

a write-only output tape both over a finite tape alphabet I, an
arithmetic/logic unit (ALU), a set of M memory locations, and a finite
control called the program. The arithmetic/logic unit gomputes‘
arithmetic (e.g.-additionrand multiplication) and Boolean functions

on arguments stored in the memory. Each memory cell is of a fixed

size. The program is a sequence of instructions each of which specifies
either a binary arithmetic or logical operation to be performed by

the ALU, an input operation specifying the transfer of
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symbols in I from the innut tape to the memory, an output opera-

tion specifying the transfer of symbols from I from the memory to the
output tape or a Jump (conditional or unconditional) operation indica-
ting a change in the sequence of execution of the instructions in the
program. A halt instruction implies no more change§ in the contents of
the memory M or the output tape.

A RAM computation begins with the ALU executing the first
-instruction of the program. Other instructions of the program are
executed in Sequence unless a Jump instruction specifies a break in
the sequence. The computation ends when the halt instruction is
executed. The total number of instructions executed by the ALU
during the computation is a measure of the running-time of the program
while the maximum number of memory cells used during the computation

is a measure of the space needed by the program.

Definition 2.1

A TM computation P is oblivious if the position of the jth head
at step i in the computation on an input X is solely dependent on

i, j and the length of x, for all i and j.

Informally, an oblivious aleorithm is one where the seauence of

steps in the computation does not depend on the value of the input,
t

Definition 2.2

A RAM computation is said to be a straight-line computation if

the set of instructions does not contain any instruction indicating that a

JUMP operation jis to be executed.
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2.1}.2 The Simulation

We now consider some details of the simulation  of -a RAM computation
of a straight-line program by a TM computation of an oblivious algorithm.
As stated before our objective is to compare the amount of space and
time needed on the TM and RAM models of computation,

Let P be a straight-line program requiring space S and time T on
a RAM. We simulate program P on a TM in about T(logZT)3 steps and
0(jiog2T) space, with the constant implied in the big O notation
depending on the TM. Without loss of generality we assume that every in-
- struction of program P has fan-out two. [6, Chapter 2]

Program P is represented on the input tape of the TM as a sequence
of records, one record per instruction. A record for the 1th instruction

of the program is of the form
{u(1), u(@), £(2), v(1), v(2)}

where g(g) , (£(2):is a binary operation on a finite domain), denotes

the gth operation with u(l) and u(2) being symbols used as place

markers for the values of the arguments, and v(1) and v(2) are addresses

of instructions which use the output of the lth instruction in their
computations. The output is attached to v(1) and v(2) in the form of
lébels, using a constant amount of space. During the simulation
u(l) and u(2) will be replaced by the arguments of £(2). It should
be observed that the number of tape squares needed to store a record
is about O(long) since the addresses v(1) and v(2) can be represented
in a maximum of [long] bits. Thus O(Tlong) tape sduares are needed
to represent the RAM program. The constant of proportionality implied

in the O-notation depends on the TM and RAM models used.
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To simulate a sequence of 2j records (or RAM instructions) we
perform the following steps:

1. (Recursively) simulate the first Zj-1 records,

2. Scan the first Zj'l records for fan-out addresses (v(1) and v(2)

in the format speéification) that refer to the later set of
Zj'l records. Copy these addresses with the value of the 6utpﬁt
attached as labels onto a work tapne.

3. Sort the addresses along with their output value labels in

increasing order.

4. Copy the output labels into the u(l) or u(2) fields in the

records referred to by the addresses.

5. (Recursively) sinulate the last Zj'1 records.

We use the notation Sim(j) to denote the simulation of 2j consecutive
records. To implement steps 2, 3 and 4 as detailed above we use the TM
programs Copy(j-1), Sort(j-1), and RCopy (j-1).

The program Copy(j-1) causes at most 2j-1 addresses together with

their output 1labels to be copied onto the work tape as in step 2.

Of course, all the addresses copied on to the work tape refer only to

the later 29 0 records to be simulated.

Sort(j-1) causes the addresses on the work tape to be sorted in
increasing order. nggzﬁj-l) (R standing for reverse) copies the sorted
output labels from fhe work tape to their respective fields (u(l) and
u(2)) in the later 2j'1 records that are yet to be simulated. All the

entries on the work tape are at the same time erased. We are now in a

position to define Sim(j) to be
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If j # 0 then

Sim(j) [Simulate 2) consecutive records corresponding

to 27 RAM instructions]

Sim(j-1) [Step 1. Recursively simulate the first ZJ'1

records]
Copy (i -1) [Step 2. Copy output addrésses onto work tape]

Sort(j-1) [Step 3. Sort addresses together with fan-out
labels]

RCopy (j-1) [Step 4. Copy output labels onto latter

23-1 records]

Sim(j-1) [Step 5. Recursively simulate latter 23-1

records]

Eﬁd

To complete the definition, Sim(0) is the TM program which changes the

record

fur(@), u' (@), gy, vy, vn
to
{u'(1), u'(2), g(2), (1), Wv(2)}
where u'(l) and u'(2) are values from the domain D of ¢(2), and 1 is
a value label representing the result of appiying £(2) to u'(l) and
u'(2). Sort(0), Copy(0), and RCopy(O) are self evident.
Many logistical details together with formal definitions of Sort(j-1),

Copy(j-1) and RCopy (j-1) have not been provided since they do not bear

directly on the method of simulation illustrated above. The correctness

of the program can be easily proved by induction.
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2.}.3 Time Required by the Simulation

The totgl time required by Sim(k) is determined by the two calls
of Sim(k-1), and the time required by the Copy (k-1), Sort(k-1), RCopy (k-1)
programs.
Let TTM(x) denote the time required by the TM program x.
a. TTM(QQRX(k-l)) € ¢ 2k°1[10g2T], ¢, a constant.
This is because copying a string of length a in an adjacent space on a

work tape requires time proportional to_a. Copy(k-1) copies from at most

gk-1 records each 0(flog,T1) in length.

b. Tp(Sort(k-1)) < c,y(k-1) 257 !f1og,T1, c, a constant.

We use a sorting algorithm that allows a TM to sort a list of n items
in O(nlogn) moves. One such algorithm of this kind is Radix sorting [31].
This is suitable because the items to be sorted are addresses. Since 2k
addresses are sorted, the number of moves necessary is proportional to
k-zkflogT]. The factor [logT] is included because each address is of
length [logT!1 and a TM needs that much time to scan an address.

We note that these sorting algorithms are not oblivious with respect
to the items they sort. However when used in Sim(k) they are oblivious
to the output tags attached to the addresses that are sorted. Indeed
for some RAM programs sorting may be entirely Unnecessary.

- k-1
- c. TTM(RCoEy(k-l)) s ¢g 2 flong], c; a constant.

The proof is similar to thac of Copy (k-1).
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From the definition of Sim(k) we have

To(Sin(k)) = 2T (Sin(k-1)) + Ty (Copy (k-1))

+ TTM(Sort(k-l)) + TTM(RCoBy(k-l))
The overhead involved is not included with the above terms as it essentially

s ; k-1 .
consists of the number of moves necessary to scan the 2 records, and is

therefore ‘dominated by the above terms.
T (Sim(k)) s 2T (Sim(k-1)) + ¢, 25 [10g.T]
™ == R v et 1 &2
k-1 . Lk-1
+ ¢y (k-1) 27 "[log,T] + cz 27 "[log,T]

The constants Cys C2’ and cg, are independent of k and T.

This can be simplified to

. . k
TTM(Slm(k) < ZTTM(Slm(k—l)) + Ceke2 flong]
where ¢ is a constant independent of k and T since k 2k[logéT] dominates the

other terms. This can be solved to yield
T, (Sin(k)) = 0(2X-k*[log,T])
T™ 08,1 1)

The constant of the '0O' notation is independent of T. The cost of Sim(0)
is included above in the '0' notation.
"If we choose k such that

k=1 o o ok

then Sim(k) can simulate the RAM computation that needs time T. We
need at most O(T(long)s) T™ steps to simulate a RAM computation of
time T. Pippenger [ 3] independently obtained the same result but has

since then improved the bound to O(T(long)z).



2.1.4 Space Considerations

Let the RAM program which needed time T require space S.
We then know that at no point in the RAM computation are more than S
temporary results stored. We then simulate the computation on the TM

in the same way as above except that the Sim(j) program using space

O(Tlong) for any j, needs to sort at most S addresses, each flog2T1

bits in length. The time TTM(Sim(k)) undergoes the following modification
TTM(Sim(k)) € 2TTM(Slm(k—1)) + TTM(C°EY(k‘1))
+ TTM(Sort(S)) + TT“(RCoEy(k-l))
If m is chosen such that
2m < S < vl

we have

. . k-1
TTM(Slm(k)) < 2TTM(§£E(k-1)) + ¢ 2 [long]

k-1
+c, SlogZS[longl + Cq 2 [long]

for k 2 m+l. For k ¢ m we use the equation of the last section.

The general solution is of the form

. k 2 k 2 k
T&M(Slm(k)) < ct 2 (long)(logZS) + c' 2 (logZT) + ctrr 2 log2510g2T

where c', c¢'' and c''' are constants independent of k, T and S.



e choose k to be such that

We have

THEOREM 2.1

Any RAM oblivious computation which needs time T and space S can

be simulated by a multitape TM in time TTM and space STM where

o I
[}

m = O((TlogT) (logT + (10gS)?))

with

2]
[}

- 0(Tlog T)

The notions of oblivious programs on a TM and straight-line programs

on a RAM are identical (though technically different) and hence the two

terms will be used interchangeably.

2.1.5 General Space and Time Comparisons for the TH and RAM

Thus far we have discussed transformations from RAM computations to

TM computations of oblivious algorithms. To obliviously simulate

arbitrary TM computations on RAM's it is sufficient to build a Roolean
circuit [5] (a circuit consisting of Boolean gates) that simulates the
TM computation. The Boolean circuit can be simulated obliviously by a

RAM in time proportional to the number of gates.



- 18 -

To build the Boolean circuit that simulates the TM we build a circuit
that ﬁﬁmputes the contents of T squares of each tape of the TM for
each compu£ation step of the TM. This requires about O(T) Boolean
gates or O(Tz) gates for T computation steps. Fischer and Pippenger [4]
were able to construct a Boolean circuit using O(Tlong) gates that

simulated T steps of a Turing computation. Schnorr [ 5] and Savage [ 6]

have improved upon this to produce a Boolean circuit using O(TlogZS)
gates that simulates the T computation steps of the TM that uses space S.
The RAM can thus simulate a TM computation with time T and space S in
time O(Tlogzs) and space O0(S). A RAM simulation of a TM [31] consists
of storing the contents of each tape sequentially in memory. The posi-
tion of the heads are stored in separate registers, as is the current
state of the machine. Then every step in the TM computation is simu-
lated by an updating of the contents of at most k memory locations and
updating the contents of the registers containing information regarding
the state and the locations of the tape heads. The RAM thus uses O(T)
time and O(S) space, where T and S are the time and space of the com-
putation.

The commutative diagram of Fig. 2.1 provides a concise way of
expressing TM-RAM Space-Time transformations. The labels on the arrows
denote the Time and Space transformations respectively, in the direction

of the arrowheads. The O-notation is implied on the arrow labels.
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From the diagram we deduce that for TM computations the parameters
of Time and Space transformations from non-oblivious computations to
oblivious computations is of the order of (TlogZS,S). Unfortunately
this is not true in the case of the RAM as seen below.

Consider the problem of matching an input item with a linearly
ordered list of n items which are indexed. The well known Binary Search
algorithm, which is non-oblivious takes time proportional to [}ogzn].

An oblivious algorithm for the problem takes time proportional to n

since ;he input item cén be any one of n items. The space needed by

both algorithms is the same. Thus in Fig. 2.1, the above example indicates
that transformation 8, which compares Time and Space parameters for non-
oblivious RAM algorithms to that of oblivious RAM algorithms could be
exponential. This forces transformation a to be exponential as well,

An interesting comparison of non-oblivious and oblivious RAM algo-
rithms is when we consider non-oblivious RAM algorithms on n inputs with
the number of instructions bounded above by Pl(n), and time and space
boundéd above by Pz(n) and Ps(n) respectively. Pl(n), Pz(n) and Ps(n)
are polynomials of fixed degrees. On a TM the algorithm can be described
in about O(Pl(njlogzpl(n)) tape squares. After a particular instruction
has been simulated the next instruction to be simulated can be found by
the input tape head in at most O(Pl(n)logzyltn)) time, since that is the
physical size of the description on the input tape. For each such
instruction the work-tape head may have to travel O(P3(n)) tape squares
to fetch arguments if any to execute the instruction. Since there are
at most Pz(n) such instructions, the total time taken by the TM simulation

a {see Fig. 2.1) is at most O(Pl(n)logzPl(n)-Pz(n)-Ps(n)). The space
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required by the simulation is O(Ps(n)) tape squares. Since o has been
shown to be a polynomial transformation, the transformation 8, from a

non-oblivious RAM to an oblivious RAM is also polynomial.

2.2 Computation on Graphs
| In this section we consider space limited RAM computations on graphs.
Graphs ére studied because they represent the topological relationship
between instructions that constitute an oblivious algorithm.
We begin by describing a pebble game played on graphs which provides
a good model of computation with limited space. We then provide upper
bounds on the minimum space required for RAM computations for two

classes of graphs, namely trees and synchronous graphs.
\

Graphs are studied because they represent the topological relationship

between instructions that constitute an oblivious algorithm.

2.2.1 A Game on Graphs

A pebble game on directed acyclic graphs introduced in [8 ] provides
a good nodel of computation with limited space. Given a directed
“acyclic graph q the goal of the game is to place pebbles on the output
vertices of G using a certain number of pebbles under the following

rules:
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1. A pebble may be placed on an input vertex (a vertex with no
fan-in) at any time.
2. A pebble may be placed on a non-input vertex only if all vertices
~that are its immediate ancestors have pebbles placed on them.
3. A pebble may be rémoved from a vertex at any time. .
As an example consider the graph of Fig.'2.2 and the following pebbling
‘

strategy

(Rule 1)

w

1. Pebble vertex
2. Pebble vertex 1 (Rule 1)
3. Pebble vertex 5 (Rule 2)
4. Remove pebble from verte; 3 (Rule 3)
S. Pebble vertex 2 (Rule 1)
6

. Pebble vertex 6 (Rule 2)

[92]
~—

7. Remove pebble from vertex 5 (Rule
8. Pebble ver;ex 4 (Rule 3)
9. Remove pebble from vertex 2 (Rule 3)
10. Pebble vertex 7 (Rule 2)
The above strategy indicates that vertex 7 can be pebbled with a maximum

of 4 pebbles.

To study space-time tradeoffs for oblivious algorithms we represent
the topological relationships between the various steps of the algorithm
as a directed acyclic graph. A pebble game'as described on such a graph
would reflect a RAM computation if the rules of the game were interpreted

as;
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a. Rule 1 represents the fact that inputs can be obtained at any time.
b. Rule 2 represents the execution of an operation and the storing
of the computed result when all its arguments have been computed

and stored.

c. Rule 3 represents the erasure of a stored result.

We consider placing a pebble on a vertex costs one unit of time and one
unit of space as it represents executing an instruction and storing the
result. Removing a pebble from a vertex has no cost in time and a neg-
ative cost of 1 unit in space as no instruction has to be executed.
With this interpretation the total number of placements of pebbles
(Rules 1 and 2) in a pebble game and the maximum number of pebbles used
during the entire game will be a measure of the Time T and Space S of

the algorithms discussed in later chapters.

2.2.2 Pebbling Trees and Synchronous Graphs

We discuss below minimum pebble requirements of trees and synchronous
graphs. Tree structures are commonly used in the study of algorithms and
synchronous graphs, in some cases, provide good bounds on pebble require-
ments of arbitrary directed acyclic graphs. Let space (j) denote the

minimum number of pebbles required to reach vertex j in a graph G.

Two simple rules govern all computation of space requirements on
graphs.
Rule 1 1If il and i2 are imnmediate ancestors of vertex i and

space (il) < space (12) then

space (i) = space (iz)
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Rule 2 If space (il) = space (iz)

]

space (i) space (il) + 1, space (il) #1

[}

space (i) space (il) + 2, space (il) =1

if i1 and i2 cannot be simultaneously pebbled using space (il)
pebbles. Otherwise
space (i) = space (i,)
These rules apply only to graphs with fan-in 2, but can be easily

generalized to cover arbitrary fan-in. Though the rules are Simple

they are difficult to apply.

2.2.2.1 Trees
Let G be a binary tree with root a. The following algorithm deter-
mines the exact pebble requirement of G.
Algorithm Tree (a)
1, If a is a leaf then
Space (a) « 1

2. Else, let a; and a, be the immediate descendants of a.

Space (a) = max(Space (al), Space (az)) if Space (al) # Space (az)
= Space (a;) + 1 if Space (a)) #1
= 3 otherwise
Lemma 2.1

Algorithm TREE computes the pebble requircment of G.

Proof

The strategies for computing a; and a, are disjoint since they do

not share any ancestor. Rule 2 simplifies to the second step of algorithm

TREE

D
n
3
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It has been shown[12] that any tree of n vertices needs at most [logzn]+1
pebbles. However there are trees with n vertices which require a constant

number of pebbles, for all n. (See Fig. 2.6).

2.2.2.2 Pebble Requirements of Synchronous Graphs

We define a rank function on the vertices of a directed acyclic
graph as follows. Input vertices are of rank 0 and a non-input vertex
has rank one more than the maximum rank of its immediate ancestors.

Definition 2.3

A Synchronous graph is a directed acyclic graph in which every non-

input vertex has all its immediate ancestors of the same rank.

The pebble requirements of such graphs may be stated in terms of
general graph parameters such as maximum depth, width or number of vertices.

Definition 2.4

Depth (G) of a directed acyclic graph G is defined to be the length

of the longest path in G.
A path refers to a sequence of vertices which are in linear order

in the graph.

We extend the above notion to define the depth of a vertex in G to be

the length of the longest path from the vertex to the root of the graph.

Definition 2.5

Width (G) of a synchronous graph G is defined to be the maximum

number of vertices of the same rank in G.
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are used to pebble a graph G of depth d+1. The above method is called

depth-pebbling and is used extensively.

The second assertion is proved by a method called level-pebbling.

In this method pebbles are stored on all the inputs (level 0) of the
graph G. Another set of pébbles are then placed simultaneously on all
vértices at. level 1 of the graph. The pebbles on vertices at level 0
.are then removed and placed on all vertices at level 2. 1In this way
successive levels of vertices are pebbled till the entire graph is
pebbled. Since at any given time at most two successive levels have
pebbles on them a maximum of 2 x Width (G) pebbles is sufficient.
Q.E.D.
When the fan-in is restricted to be at most 2 for all vertices in the

graph, it can be proved that (see appendix).
S < Width (G) + 2

The upper bounds obtained above are fairly tight. Cook's graph
(Fig. 2.3) is an example of a synéhronous graph with fan-in 2 whose
pebble requirement is equal to Width (G)+1 and Depth (C)+2. The concept
of level and depth pebbling is important and is the basis for a Spacc-Time
tradeoff on the Fast Fourier Transform algorithm of the next chapter.
Another method of proving an upper bound on the space required by
synchronous graphs is given below.

If G is_a synchronous graph of fan-in 2 with n vertices and

Depth (G) > [vV2n], the number of levels of width > fvn/2] is < [v2n}.
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Otherwise the number of levels of width > [vn/2] is at least
[¥2n]. Then
‘ n 3 ([/n/2] + 1) ([/2n])

>n+ 1

which is a contradiction

We use the above fact to illustrate an algorithm to pebble G. The
algorithm provides an upper bound on the number of pebbles required

by G.

Algorithm Synchronous (G)

1. 1If

Width (G) or Depth (G) < [2V2n} + 2

then level-pebble or depth-pebble graph G.

2a, Otherwise, as shown, there exists a level %, & < [/2n]
with widthrs [¥n/21. We depth-pebble all the vertices of
level % storing a pebble on each vertex. The number of
pebbles used is at most the sum of the number of vertices at
level 2 and the number of pebbles rcquired to depth-pebble

each vertex. This is,
< [/n/2] + [V2n] + 2

< [2/2n] + 2, for n > 2.
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2b. If the remaining number of levels of G s [v2n] depth-pebble
the root of G, using the vertices of level 2 as new level-zero

vertices. The maximum number of pebbles used
< [/2n] + 2 + [/n/2]
< [2/2n] + 2

3. Otherwise, as shown, there exists a level &' > &, such that
2'- 2 <[¥2n] and width of level &' s [/n/2]. Depth-pebble
all vertices at level &' storing a pebble on each vertex.
The vertices at level ¢ are used as new level zero vertices.
The maximum number of pebbles needed is at most the sum of
the widths of levels 2 and 2' and the number of pebbles
needed fo depth-pebble vertices in level 2' using vertices

in level %£-as level zero vertices.

This is
< [/n/2] + [vn/2] + [/2n] + 2
< [2/2n] + 4
Step 3 requires the maximum number of pebbles of all the steps.
We now remove all pebbles from level 2. Using level &' vertices as
a new set of zero level vertices we repeat step 3 until the conditions

for step 2b are~satisfied;_the root of G is pebbled using step 2b.

Lemma 2.3
Let G be a synchronous graph of fan-in 2 with n vertices. Then

G can be pebbled using S pebbles where

S < [2/2n] + 4
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Proof

Using algorithm Synchronous (G) we need at most [2V2n] + 4

pebbles in step 3.

| Q.E.D.

Cook's graph (Fig. 2.3) is an example of a synchronous graph of fan-in
2 which requires about v2n pebbles. So the upper bound of Lemma 2.3 is
off by a factor of 2. The above proof can be easily extended to cover the
general case of synchronous graphs of fan-in r to obtain 2v2 /(r-I)n as
the maximum number of pebbles reguired.

2.3 Space requirements for arbitrary directed acyclic graphs.

In the last section we derived bounds on the minimum pebble require-
ments for two special kinds of graphs. In this section we derive
similar results for arbitrary directed acyclic graphs of fan-in r.
We show that the number of edges in a directed acyclic graph G that

requires s pebbles is at least c,s log2 s - C,8, where < and c, are

1

constants, being a function of the fan-in r. This is an improvement

€2
on an earlier result due to llopcroft, Paul and Valiant [ 1] in that the

constant c, is independent of the fan-in.

1
Let G be a directed acyclic.graph of fan-in r which.needs s pebbles
to pebble every vertex. The pebble requirements of vertices of the
graph induce a partial ordering on the vertices in the sense that a
vertex requiring p pebbles cannot be a successor of any vertex requiring
less than p pebbles. This makes it possible to partition the graph G

into subgraphs G1 and G., such that

2
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1. Gy consists of vertices of G such that each can be pebbled in

at most s/2-r pebbles, together with all the edges between

these vertices which are also in G.

2. G2 consists of the rest of the vertices of G together with all

edges between these vertices which are also in G.
All edges from vertices in G1 to vertices in 62 are erased.

However vertices in G, with fan-in from vertices in G, are specially

2

marked to indicate that fact. We then have

1

Lemma 2.4

G2 needs at least s/2+1 pebbles to pebble all its vertices.
Proof

Otherwise 62 needsvat most s/2 pebbles. To pebble a vertex in G
which is also in G2 we use the pebbling strategy of GZ' vhenever we

need to place a pebble on a vertex which is marked we pebble all its
ancestors in Gl' Since the number of ancestors in G1 is at most r,

and each such ancestor requires at most s/2-r pebbles, all the ancestors.
in Gl can be pebbled using no more than (s/2-r)+(xr-1) = s/2-1 pebbles,
by pebbling and ;toring pebbles on r-1 of the ancestors and using at
most s/2-f pebbles to pebble the rth ancestor. Since the strategy

2 and 5/2-1 pebbles on Gl’ a total of

at most s-1 pebbles are neccded toc pebble every vertex of G contrary to

uses no more than s/2 pebbles on G

our assumption that G needs s pebbles.

Q.E.D.
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We now obtain a series of graphs Ggs G G, as follows:

gr v

To obtain G3’ we remove all vertices from G2 that require up to

s/2-1 pebbleé to pebble as vertices in G. All edges incident upon

these vertices are removed. Treating G3 as a subgraph of G an argument
almost identical to that of Lemma 2.4 shows that G3 as an independent
graph needs at least s/2-r+2 pebbles to pebble all its vertices. G4
is obtained from G3 by removing all vertices that require s/2, s/2+1,

«e., S/2+r-2 pebbles as vertices in G. In general Gi is obtained from

Q

5.1 by removing all vertices that as vertices of G require between

+ (i-4)(r-1) and 3 + (i-3)(r-1) - 1 pebbles.

| ¢

Lemma 2. 5
For some k, k 2 2, Gy has the property that at least s/2-r+2

pebbles and at most s/2 pebbles are needed to pebble all its vertices.

Proof

Graph Gi needs at most as many pebbles to pebble as an independent
grapH as does Gi-l since Gi is obtained-by removing vertices from Gi-l’
Hence the pebble requirements of successive graphs must be non-increasing.
By a proof similar to that of Lemma 2.4, we see that Gi requires at
least as many pebbles as Gi~1 does, less (r-1). Since the limits
s/2 and s/2-1+2 cover a range of r-1, Gk must be obtained at some stage
in the process.

Q.E.D.
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Let the maximum pebble requircment of vertices of G removed in the

above process be s/2-r+m, m > r-1. We define

A = {v/v a vertex of G with pebble requirement in the

range s/2-r+1, ..., s/2-r+m}

We note that A is just the set of vertices removed in the above process.
vLet |A| denote the number of vertices in A. Ve use the set A to prove
that there are at least s/2 edges in G which are neither in G1 nor in Gk'
We attempt to pebble simultancously and store pebbles on all the

vertices in the set A using no more than s-1 pebbles. To obtain a lower

bound on the number of edges not in G1 or Gk we have the following.

Sublemma A
If all vertices in set A in G can bec pebbled simultaneously

using no more than s-1 pebbles, the number of edges in

G from vertices in G, to vertices in GP must be at least s/2 - [A].
Proof

Otherwise there can be at most s/2 - [A| - 1 such edges, and hence at

most s/2 - |A] - 1 vertices in G, which have edges to vertices in Gy -

But graph G1 needs at most s/2-r pebbles to pebble all its vertices.

Hence the above set of s/2 - |A| - 1 vertices in G, can have pebbles

[

stored on them using no more than s/2 - |A| -1-1+ s/2 - T < s - Al -1
pebbles. Thus using only s-1 pebbles (including |A| for A), pebbles
can be placed on all the vertices in'the set A and the s/2 - Al -1

vertices in graph Gl which have edges to graph G Notice that

K*
|A] + s/Z-IAI- 1 =5s/2 -1 vertices will have pebbles on them at the
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end of this process. Since G, can be pebbled in at most s/2 pebbles as
an independent graph, G can be pebbled using an additional s/2 pebbles
for a total of at most s-1 pebbles. This is a contradiction. Hence

the number of edges from G; to G, is at least s/2 - [A].
) Q.EID.

Sublemma B

If all vertices of set A in G cannot be pebbled simultaneously
using no more than s-1 pebbles, then |A| > s/2.

Proof

Let lm’ lm-l’

requirements s/2-r+m, s/2-r+n-1, ..., s/2-r+l. Some of lm’ L

- &y be the number of vertices in A with pebble

m-1’°

..., %, may be equal to zero but Qm # 0 by assumption. Also at least

1

one of 2 2 is non-zero since some vertices of A have all

1° 22, cees A

inmediate ancestors in Gy. Me first pebble and store pebbles on all

2 _ vertices that require s/2-r+m pebbles each, the 21 vertices that
require s/2-r+m-1 pebbles each and so on. Since the process of pebbling
and storing is assumed to be unsuccessful it fails, for some j, to
pebble all lj vertices that require s/2-r+j pebbles each. Thus
m
s-1- ) 8 <s/2-T+j+2, -1, j=21
p=j+1 J
where the term on the left is the maximum number of pebbles remaining
after pebbling and storing on Lo+ lm-l e 2j+l vertices, and the
term on the right is' the maximum number of pebbles needed to pebble and
store all lj vertices that need s/2-r+j pebbles each. That is
m

T2
p=j T

>s/2 - j+r
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Consider the subset of vertices B in A that need at most s/2-r+j-1
pebbles each and that are ancestors of the lj vertices that each need
s/ 2-1+j pebbies. If the set B has at most j-r vertices, all the vertices
in set B can be pebbled simultaneously using at most j-r pebbles on the
set B and at most s/2-1 pebbles on vertices of graph Gy which may be
ancestors to vertices in the set B. That is using at most s/2-1+j-r
pebbles, all the vertices of set B can have pcbbles stored on them. One
of the 25 vertices that need s/2-j+r pebbles each has all its immediate
ancestors in the set B and (possibly) some in the graph Gl’ Since
vertices in set B already have febbles stored on them any immediate
ancestors in the graph G1 can be pebbled using no more than s/2-1
pebbles. Thus using at most s/2-1+j-r pebbles we are able to pebble
a vertex that needs s/2+j-r pebbles which is a contradiction. The
subset B nust therefore have at least j-r+l vertices. Thus
o .
|A|ap§j byt -7+l
> s/2 ; j¥r + j-r + 1

2 s/2
Q.E.D.

Lemma 2.6

Let E be the number of edges in G not in G1 or Gk'

E > s/2
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In the above process of pebbling set A, if the process succeeds,
by Case A, tﬁere are s/2 - |A| edges in G from vertices in G1 to vertices
in Gk' lle can associate with each vertex in set A, an edge of G not
in G1 or Gk(say a fan-in edge).

Thus |

E2s/2 - |Al + |A] 2 s/2
If Case Bapplies we have seen that
Al 2 s/2

Since we can associate. an edge in G, not in G1 or Ck’ with every

vertex of A, we have

E 2 s/2

Q.E.D.

Let E(s) bc the mininum number of edges of any graph of fan-in r that
requires s pebbles to pebble every node. We have seen that G, and Gy
have at least E(s/2-r) and E(s/2-r+2) edges respectively and the set

E of edges, |E| > s/2, is in G but not in G, or G,. Thus
E(s) > E(s/2-r) + E(s/2 - r+2) + s/2
> 2E(s/2-1) + s/2

> ls logzs - C,5

2 2

and ¢, = }-log,r +1
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Hopcroft, Paul and Valiant [ 1] first obtained a similar result.

. . 1 1
Their resu1t~1s E(S) ;1?Slogzs - czs where c, f:;ﬂogzr.

2.4 General Remarks on Computing Pebble Requirements

A problem of some interest is to find the minimum number of
pebbles to pebble a directed acyclic graph G with n vertices with each
vertex pebbled just once. Fig. 2.4 shows a graph G of n vertices that
requires n/2 pebbles if each vertex is pebbled once. The graph can also
be pebbled with 3 pebbles if a vertex can be repebbled an arbitrary
nunber of times. In contrast Cook's graph (Figz. 2.3) requires the
same number of pebbles for both types of pebbling. These two examples
indicate that the pebble requirements of the two methods of pebbling
are not related in general.

As commented upon in Section 2.2 the two general rules for computing
pebble requirements for graphs are hard to apply in practice. Indeed,
computing pebble requirements for both methods of pebbling arbitrary
directed acyclic graphs has been identified by Sethi [ 9] to belong to
the class of NP-complete problems [10]. Solutions to these problerns

have been obtained only through enumeration of all possible
solutions, which is a process which needs time proportional to a fac-
torial or exponential in n, where n is the total number of

inputs to the problem. An immediate consequence is that finding a
strategy to pebble a graph with a given number of pebbles, not to

mention an optimal strategy, is also NP-complete. This is unfortunate
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because while computing the exact pebble requirement may not be really
necessary in practice, finding a strategy of pebbling with a given
number of pebbles may be necessary. As will be seen in the next
chapter, regularity of graph structures enables one to find some

strategies.
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CHAPTER 3

Space-Time Tradeoffs on the Fast-Fourier Transform Algorithm

3.1 Introduction

We present in the following sections an analysis of the Space-Time
tradeoff for the Fast Fourier Transform (FFT) algorithm. The FIT is
an algorithm for computing the discrete Fourier transform on n inputs
in o(nlogzn) steps as opposed to o(nz) steps for the naive algorithm.
~ Cooley énd Tukey's paper [18] on the FFT led to its widespread use.

The FFT is a member of thé class of oblivious or straight line
aigorithms described in the last chapter. ¥hen the algorithm is used
on a machine with a limited number of temporary storage locations it is
necessary to recompute many sub-computations. This leads to a Space-
time tradeoff, the topic of this Chapter.

Two reasons can be cited for studying the Space-Time Tradeoff of
the FFT.One of the reasons is that the size of the input of the FFT
is a drawback in a limited storage environment. Measuring instruments
like a spectromefer have their maximum resolutions limited by the
storage space available for the FFT algorithm.

A more important reason is that the FFT is an example of an algorithm
that is a natural candidate for analysis. The algorithm and its
accompanying data flow have a degree of symmetry found in few other
interesting algorithms. This aids its analysis to a great extent and

gives an insight into the Space-Time tradcoff for other problems.
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The pebble game discussed in the last section is used as our ﬁodel of
a RAM computation of the FFT. We assume that we can pebble a vertex ac-
cording to Rule 2 of Chapter 2, but by using a pebble already placed on
one of its ancestors. The space S used in the FFT using the modified

‘Tule is exactly one less than if Rule 2 were used as in Chapter 2.

The space and time bounds of the FFT
are expressed in terms of the number of pebbles used, S, and the number of
pebbling moves made on a graph which represents the topological properties
of the steps of the algorithm.
We obtain fairly tight upper and lower bounds on the time, T, required
to pebble the FFT graph with a limited number of pebbles. The bounds

for S =20 +4d - j» 1 £ £d -1 are

2 2
€T ¢« —+ (J-l)n
2J

2.2’
A more succinct though weaker expression in describing these bounds is

2
n2/32 < (T-nlogzn)(s-logzn) € 2n

The upper bound grows more rapidly than nlogzn + n when S the number -

of pebbles used is o(n/logzn) and grows as énz + 0(n) when S = Smin + 0{1)

where Smin’ the minimum space necessary is logzn + 1. The upper and lower

bounds differ by a factor of 4/3 when S = S in’ For other values of

i

S, S = 2 44 - j, the two bounds differ by a factor of 4.
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These results are minor modifications of results first presented in
Savage and Swamy [14]. Based on the methods presented in this chapter
Tompa [15] has obtained bounds on the Space-Time tradeoff for two classes of

graphs known as Superconcentrators and Grates.

Section 3.2.1 presents the FFT algorithm and describes the construction
of the FFT graph. The properties of this gfaph'are studied in Section 3.2.2
in the form of three lemmas describing its structure. Section 3.3
presents an upperbound on the amount of time necessary to pebble the graph
using S pebbles. The bound is based on a simple ﬁethod which is later

modified to improve the bounds. Section-3.4 contains a derivation of

a lower bound on the number of pebble placements necessary to pebble the
whole graph. The method is first described for the case S = Smin and
later extended to other values of S. Section 3.5 presents the upper and

lower bounds in a neater though weaker form as bounds on the expression

(S-logzn)(T-nlogzn). Section 3.6 concludes the.discussion.
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3.2 Properties of the Fast Fouricr Transforn

In this section we define the Fast Fourier Transform Algorithm and
study its properties. Section 3.2.1 is a brief description and derivation
of the FFT algorithm intended to explain the features of the FFT graph
which is used to obtain the Space-Time tradeoffs. The graph has many
properties due to its symmetry. After a formal definition of the graph,
necessary to provide rigor to the proofs that follow, Section 3.2.2 |
presents three lemmas that describe the features of thz graph that

are nccessary in the sections that follow.

3.2.1 The FFT Algorithm

Let R be a commutative ring and let @ be a principal nth root of
unity in R. Let R" be the n-direct sum of R.

We define an n x n Vandermonde matrix V in the elements 1, w,

wz, ey w1 That is
1 1 1 ..., 1
2 -
1 W W caeee (_un 1
Vo= {1 o2 o . 2(n-1)
1 wn-l wn-z ..... ©

Definition 3.1

The Discrete Fourier Transform (DFT) of order n is defined to be a

linear transformation of R" onto itself as determiped by the

Vandermonde matrix V. That is, given an element ngn, the DFT b of a is

E_ = Va
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A convenient representation of the transformation is obtained by

treating the elements of R" as polynomials in the variable x. Thus

n-1
P(x) = a  + alx *eeota (X ; : ao,‘a1 ceey an_leR
is transformed to
n-1
Qx) = bo + blx + ...t bn—lx ; bo’ bl’ , bn_leR
where
b. = P)  O0Ogign-1

1

To compute the coefficients bi’ 0 <1 <n -1 using the above
definition needs 2n - 1 ring operations for each bi giving a total of
2n2-n ring operations required to compute all n coefficients.

The Fast Fourier Transform (FFT) is an efficient algorithm to compute
the DFT. By judiciously computing common subexpressions of the coefficients
only once each, the total number of ring operations is reduced and does
not exceed 2nlog2n when n is a power of 2. A recursive derivation of
the Fast Fourigr.Transform when n is a power of 2, n = Zd, say, is given

by Borodin and Munro [16] as follows. The odd and even terms of p(x)

are collected in two polynomials po(x) and pe(x) where

xn/2‘- 1

p.(x) a +a.x+ax e ce. + @
e o 2 n-2

4

.xn/2 -1

L2
a) +azx +agxs + ...+ a

P, (x)
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so that
2 2
p(x) = p (x7) +xp (x7)

Thus, the Fourier transform of a, which consists of elements from

P = {p(x)]x=21, 0 £ i < n-1}, can be formed by computing P, = {pe(x)|x=(m2)l,

0 ¢1icg %—- 1} and Po = {po(x)lx = (wz)l, 0 1< %-— 1} and combining

the results as indicated above. This follows because w' = 1. llowever, w2

s/

is a principal n/Zth‘root of unity so Pe and P, Tepresent discrete Fourier
transforms of sequences of length n/2.

A simple analysis of the defivation indicates that about 2nlog2n
ring operations are needed to compute the FFT of order n.

Figure 3.1.a is a representation of the straight-line algorithm
that was derived above. The graph is constructed from a butterfly-
like 2-input, 2-output graph shown in Figure 3.1.b. This graph represents
a 2-input 2-output FFT if we assume the inputs vertices to represent for
0 £ 1 ¢ n-1 the partial results pe(QZi) and po(wZi) and the output
vertices to represent the terms pe(wZi) + mipo(wZi) and pe(wZi) +
wi+n/2 po(mZi) respectively. We have deliberately omitted all indications

of the ring operations being performed at any vertex as they do not

figure in any of our later discussion.

3.2.7 PDProperties of the FFT graph

In this sub-section we prove some important properties of the FFT
graph. These are necessary to prove bounds on the Space-Time tradeoffs
for the graph and hence for the FFT algorithm. A formal definition of

the FFT graph (Fig. 3.1.a) is



- 44 -

Definition 3.2

Let n = 24, d > 1. The FET graph on n inputs is a directed graph

F(d) - (V(d), D(d), E(d)) with vertex set V(d), output vertex set D(d%:jv(d)

(d¥:'v(d) X V(d). It is defined recursively in

. ) d-1
terms of two disjoint FFT graphs on n/2 inputs each, OF( ) .
(d-1) (d-1) (d-1) (d-1) _ (d-1) (d-1)
(OV , D » oF ) and lF (lv D ,

as follows: Let D(d) = {vo(d), vlcd), cees Vg
2 -1
(d-1) and lV(d-l). Then,

and edge set E

.(d-1)
' 1 1F )

(d)}be a set of vertices

o

that is disjoint from oV

J@ @Dy @) )
o) 1
INCONC S ) RN C B DRRN G
o) 1 .
where
2d-l
WO LTy @
i
:20

6§d) = {(vid) v(d'l)),(vid),

(d-1) (d) (d-1) (d)
> 0’1 Vi ):(Vi_,_zd"l v ):(V d-l,

1 > oi i+2

lvi(d_l))} and (v, v') denotes an edge directed from v' to v. Also, we

define F(o) = (V(O), V(O), ¢) where V(o) = {Véo)} and ¢ is the empty set.

The next lemma describes an important property of the FFT graph. This
is used not only in proving subsequent lemmas but also in proving Theorem
3.2 which is a lower bound on the time T when the minimum amount of space
necessary to pebble the graph is used. The lemma does not distinguish

between directed and undirected paths.
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Lemma 3.1
In an FFT graph F(d) the paths from any input vertex to all the
output vertices of F(d) form a conmplete binary tree with 2d leaves as

do all the paths from any output vertex of F(d)

to all the inpu; vertices.
By induction on d.
d=1, F(l) is the two-input two-output butterfly graph shown in

Fig. 3.1b. By inspection the lemma is seen to be true.

Induction Step

The hypothesis is assumed to be true for pld-1),

(@

is true for F .

We prove that it

From the definition of F(d) there are exactly two edges from ecach

()

output vertex of op(d“l) to a distinct pair of output vertices of F

-1)

. . . d .
Thu: a complete binary tree with an input vertex of OF( as its root

d-1 (d-1)

and all the 2° ~ output vertices of of as its leaves (which exists

by the hypothesis) is also a complete binary tree with the same

root and the 2d output vertices of F[d) as its leaves. A similar

argument holds when we consider the input vertices of lF(d_l).

For any i, 0 ¢ i ¢ 29-1 1, the output vertex vgd) of F(&

of a binary tree whose leaves are ov£§"l) and lvgd_l) which are output

1
(d-1)

vertices of oF and lF(d'l) respectively.

The two complete binary trees with roots v B

.(d-1)

all Zd'l input vertices of OF and lF(dﬂl) respectively as leaves

(which exist by the hypothesis) form a complete binary tree

(@) ¢ ¢

with the output vertex Vi

as its root and all the 2d input

is the root
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vertices of OF(d“l) and lF(d_l)

together, as its leaves. A similar

argument holds for the remaining output vertices v, d-1, 0 ¢1i g2 -1

2
of F(d).

Q.E.D.

Since the FFT graph F(d) is synchronous (by inspection) the concept

(d)

of levels of the graph is well defined. The input vertices of [
are at level 0 and the output vertices are at level d. There are a total
of d+1 levels in the entire graph.

(d)

We separate F at level d-j into two sets of graphs, one set with
its input vertices at level d-j and output vertices at-level d, called
the A(j) graphs, the other set with its input vertices at level 0 and
(d-3)

output vertices at level d-j called the B graphs. These graphs are

necessary in proving the lower bound of Theorem 3.3. We observe that
()
(

the set A(j) consists of Zd'j disjoint FFT graphs F on 2 inputs each.
d-3) o 29-J inputs

()

The set p(d-3) consists of 2) ‘disjoint FFT graphs F

each. In addition, every input vertex of an FFT graph F in the set

A(j) can be identified with an output vertex of a unique FFT graph

F(d-j) in the set B(d-j). These observations are proved below.

Lemma 3.2

F(d) can be represented

For d 3 2 and each 1 ¢ j ¢ d-1 the FFT graph
as the composition of 2d'J disjoint FFT graphs on 2 inputs

{Agé)lo RS Zd—j - 1} with 27 disjoint FFT graphs on Zd—J inputs

{Béd'j)|0 <mg 2J . 1} where the nth input to AgJ) is the 2th output
of Béd'j) for 0 ¢ n ¢ 2j-l and 0 < ¢ ¢ Zd'J-l. The ith output of F(d)
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is the rth output of AgJ) for the unique integers r, s 2 0 such that
d-j d-j

+s and s < 2 (Refer to Fig. 3.l1l.a).

Proof

By induction.
Basis

d = 2, the hypothesis is true by inspection.

Inductive Step
Assume that the hypothesis is true for d ¢ do-l and show that it

holds for d = do' Let j = 1. Then F(do) is formed from OF(do—l) and

lF(do‘l) by adding the output nodes p{dy)  and edges A(do)' But the
(d.)) (d))
(d) _(d -1) o (d -1) (d ) o
graphs ({vi 0%, Vi © > Vi do-l, 1Vi © },{vi 075 Vio do-l},

5£do)), 0 <1 ¢ 2do_1, are 2do-J FFT graphs LAgl)} on two inputs so the
hypothesis follows from the definition of F(do) when j = 1.

Now let 2 ¢ j < do-l and consider the graphs oAg?'l), oBédo_J) and
A(j'l), 893 into which Fl% 1) ana rldp-1) nay be decomposed for
1 1™m o} 1
0 <2 < fhfj-l and 0 ¢m ¢ 2)-1. These four sets of graphs are disjoint

except for nodes that the first two and last two sets have in common.

The graphs oAﬁ?-l) and lAg?'l) together with the output nodes

(d) (d)) .
o o . _ o5d -] <« < od -1
{Vi(s)’ Vi(s)+2 do-l [ i(s) = 225077 + s, 0 €s €270 -1} and the edge scts
(d) . .
{s o) li(s) = 2973 4 s, 0 €5 ¢ 2971 _1} form an FET graph on 2’

i(s
inputs Ag?), as can be seen from the definition of an FFT graph.
J

d - . . NG ; . th .
Furthermore, there arc 2 o ° such graphs {ﬂgJ)} where the m input to

Ag?) is the th output ofan(do’J) if o €m ¢ 2do -i or the gth output of

d -3) .. .d -1 d d -3 -
1Bo o 358 2% ¢ m o 2% -1, If we let BHE o) be oBrgdo 3) in the first
)

case and lnédo'J in the sccond, the conclusion follows.

Q.E.D.
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Another property of the F(d)

graph which is used in deriving upper
bounds for the Space-Time tradeoff concerns the number of A(J) graphs
at level d-j that have common ancestor vertices in the B(d°3) FFT

graphs. This is discussed in Lemma 3.3. We define

Property P{j) A set of zk FFT graphs in A(J) have property P(j) if their

input vertices can be rartitioned into subsets {Ih}, 0 ¢ h g 23 _ 1 with

. k
each set containing Zk vertices with one input vertex from each of the 2

FFT graphs and having (Zd'j+1 - Zk) ancestor vertices from the graphs
8(4-3) 55 common.
Lemma 3.3
: . . (d)
Consider the level d-j, 1 ¢ j ¢ d-1 of the graph F*°. For

l<ksgd-j-1, the set of Zd'j FFT graphs A(J) can be partitioned

into subsets {ka)},'o $gc¢ gd-i-k 1, of 2F FFT graphs p() each,

with the property P(j). (See Fig. 3.1.a).
Proof '
Consider an arbitrary FFT graph F(J) (J).

from the set A From

Lemma 3.2 we know that every input vertex of this graph is a root of
a complete binary tree of depth d - j.

The complete binary trce with its leaves at level 0 and an input

vertex of A(J) 0< < Zd‘J

N - 1, as its root has two complete binary

subtrees of deptb d - j - 1 all of whose vertices are in the FFT
graphs B(d'j). Since every vertex in the entire FIT grapﬁ F(d) has

a fan-out of 2 the two completec binary subtrces of depth d - j -1
are also the subtrecs of another complete binary trec with its leaves

at level 0 and its root as an input vertex of a graph Aéj),
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0¢<nm g Zd'J - 1. However 2 # m since the input vertices of A

(3)
are the roots of distinct binary trees. Thus 'a pair of input vertices

of Aéj) and Agm) share two complete binary trces of depth d - j - 1

. R d-j \ ,
all of whose vertices are in B( 3). The number of vertices 1is

¥ o1 xo2 29-3+1 _ 5

The same argument is true for general k. We group together the
Zk complete binary subtrees each of depth d - j - k, of the complete
binary tree of depth d - j mentioned above. These trees are common
ancestor vertices of 2k input vertices of the set A(j) cach of which can
| be identified to belong to a uniﬁue FFT graph Aéj). The total number

of vertices in the 2k subtrees of depth d - j - k each is
- .
(zd-J-m—l - 1) zk - 2d—3+1 _ 2k

Q.E.D.

(3)

The graphs oiFigure 3.1 which represents F illustrates Lemmas 3.1,

3.2 and 3.3.
(3)

The construction of F from OF(Z) and F(Z) by the addition of

1

output vertices and edges to them from output vertices of OF(Z) and

lF(z) should be clear. The graph has four levels with inputs at

level 0 and outputs at level d = 3. There are four edge sets éis),
0 ¢ 1 ¢ 3, and each set with corresponding input and output vertices

forms an FFT graph on 2-scquences. In particular, that associated

®) o (@@, O, B @ (& ), )
b > L o ¢

with 50 o V4 5V 0 1Y Thesc

four FFT graphs arc disjoint and take their inputs from the outputs of

2).

OF(Z) and lF( The ith of these four graphs has as inputs the ith
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2
outputs of OF(“} and lF(Z) for 0 £ 1 £ 3. Also, as can be scen by

OO N R <

3 00 3

inspection of Fig. 3.la the vertices {v ,

(2) (2) (2) 1) (1) 1) (1) . .
Vo T Ve T 1Y T 00V 7 16V 7 o1V 11% } and their connccting

edges form an FFT graph on 4-sequences, as do the remaining vertices at

levels 1, 2, and 3 and connecting edges. Their inputs are taken from

the outputs of four FFT graphs on 2-sequences, namely, ooF(l)’

eS¢ S ) th
0 > ol

and Fcl). Also, the i~ of these two FFT graphs on

1 11
4-sequences takes its inputs from the ith outputs of these four FFT

graphs for 0 ¢ i < 1.

3.3 An Upper Bound

In this section we present an upper bound on the Space-Tine
tradeoff of the FFT algorithn.

We derive an upper bound by estimating the maximum number of
moves necessary in a pebble game that pebbles all the outputs of the
FFT graph using a given number of pcbbles. The rules of the game were
described in Section 2.2. The maximum number of pebbles used during
the game and the number of pebble placements on vertices made during
the gamc are a measure of the Space S and Time T parameters of the
implementation of the FFT algorithm.

(d)

ve now describe a pcbbling strategy for F and derive an upper
bound on time T using space S. To simplify thec explanatidén we first
derive an upper bound using a simple pebbling strategy. We indicate

how this strategy can be modified using Lemma 3.3 to obtain a better

upper bound. We subtract a 'correction" term arising from the

modification of the strategy for the upper bound derived earlier.
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The FFT graph F(d) can be pebbled in (d+1)2d moves with S = 2d + 1

pebbles by the level-pebbling technique discussed in Chapter 2. The

nunber of moves made during the level-pebbling strategy is exactly one

()

move for every vertex of F Thus we use exactly (d+1)2d moves to

pebble F(4)

To pebble F(4) with S = 23 + d - j pebbles, 1 < j s d - 1, we

consider level d - j of the graph and pebble A(J) 0 g2 g 24-]

e 2 'l: b}’

first pebbling and storing pebbles on its 2) input vertices and then
level-pebbling the remaining vertices using 22+ 1 pebbles. The input
vertices of AEJ) at level d - j are the roots of 2 complete binary

trees of B(d—j). The number of moves made on the set B(d—j)

d-j+1

to pebble

the input vertices of AéJ) at level d - j is 23(2 - 1) since the

subtrees rooted at the input vertices of Aéj) are 27 in number and have

depth d - j. (The number of vertices in a complete binary tree of

depth d - j is 2d'3+1 - 1). An additional j-ZJ noves are made while
pebbling the non-input levels of the Aéj) graph. Since the above
computation is repeated for each g, 0 ¢ 2 < Zd'J - 1 we have the

following upper bound. The FFT graph F(d) can be pebbled in T moves
with S pebbles where

,

2 .
2? + (j-1)n for S 3 23 + d - j» 1sjgd-1
2 .
T ¢ A »
d
Ln(l + logzn) for Sz 2 +1

where n = Zd.
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The upper bound obtained above can be modified to take advantage

of the common ancestor vertices in B(d'J) that the input vertices of

A(j) share according to Lemma 3.3.

j 1 -
We divide the FFT graphs A(J) into subsets DE ), 0 gg g 2d j-1 _ 1,

o
each of which consists of two FFT graphs AéJ) and AéJ), 0 < p,q < Zd-J -1,

according to Lemma 3.3. V¥hen the last input vertex of A;J) is pebbled

the corresponding input vertex of AéJ) is also pebbled in one more

pebble placement. Since the two subtrees of depth d - j - 1 were not
repebbled in order to pebble the input vertex of AéJ) the number of

pebble placements avoided

. @ pyp = d-il

-2

1)

o

Since the same argument holds for each of the sets D

the total number of pebble placements saved

(243*1 | y 4 pd-i-l

Observe that there are always 2) 4+ 1 pebbles available to pebble A(j).

2 il
We now consider the sets {Dé )} 0 <g g 2d j-2 _ 1 each of which
consists of a pair of subsets D;l), Dgé), 0 < g1s 8y € 2d‘3'1 - 1.
o

During the pebbling of the last input vertex of the pair of FFT graphs
5 (1)
&1
One root is an ancestor of the FFT graphs

we place two pebbles on the two roots of a subtrec of depth d - j - 1.

D(l), and shares two subtrees

of depth d - j - 2 with the other root which is an ancestor of the FFT
(1)
8

graphs D The savings in pebble placements is the number of vertices

in two complete binary trees of depth d - j - 2, This is

24371 _ 1y 2 = 4d L
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Since there are 297772 sets {Déz)} the total savings in pebble place-

ments amounts to

(2873 . 2y 24-3-2

T

In general it can be seen that the total savings in pebble placements

for the sets {Dék)} is

(24-3-k+2 _ 5y pd-jk

for 1 « k £d - j. We observe that we are using exactly one pebble

to place and store on a vertex which is not an ancestor of the A(j)
graph whose last input is being presently pebbled. This is possible for
all values of j except j = d-1. For j = d-1, 2j+d-j=2d'1+1 pebbles are

needed to pebble the graph and hence no spare pebbles are

available to be used to save computations.

We note that the strategies used to pebble the subsets {Dél)},
{Déz)}, cees {Déd-j)} are used independently of one another and therefore
the total savings in pebble placements for the entire strategy is the

sum of the savings in pebble placements realized by the individual

strategies for M ) {3} e, (p(d-3)y .
g g g
Therefore
43 dojoke2 d-j-k
Total Savings = J (277 2) 297
in Time k=1 )
- %_ZZd—Zj _ 2d—J+1 . 23
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For j = d-1, the above expression is equal to 2. In the final statement
of the theorem a constant 2 is added to the upper bound to compensate
for the savings of 2 that cannot be achieved for j = d-1.

The simple strategy to pebble F(d) described in the beginning of
this section pebbled all the ancestor vertices in B(d"j) of the inputs
of Aéj) individually for every 2, 0 < £ < 243 1. Thus an upper
bound on the time requifed by the modified strategy is obtained by

subtracting the total saving in time as detailed above from the upper

bound obtained earlier. Thus

Theorem 3.1

The FFT graph F(d) can be pebbled in T moves with S pebbles where

T g 2? + (j-1)n - il LU EE—- 2/3 + 2
23 3521 5]
for ’
Sxd+2 -3, 1gjgd-1
and .
T ¢ n(1+d) for S 2 2d + 1

The upper bound grows more rapidly than nlogn+n when S, the number of

pebbles used 1is o(n/{(logn)) and grows as 2/3n2 + 0O(n) when S = § + 0o(1)

min
where Smin =d+1 = logzn + 1. As will be seen in the next section
the upperbound of %ﬂz for S = Smin * 0(1) cannot be improved by more

than a factor 4/3. For the case when S = n + 1 the bound is exact.

The bounds as stated are for certain values of S. For S # 22 +d - j

the upper bound can be improved by better estimations of the savings in
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(d-j)
m

moves on the B possible. Of course the bound obtained for

S=d+ 2 - j applies to S > d + 2) . j as well.

3.4 Lower Bounds on Space-Timec Tradecoffs

The key to the derivation.of lower bounds on T given S = d + 2 -
is the observation that in the pebbling strategy given above, exactly

d-j

one move is made on each vertex of AEJ), 02 <2 - 1, that is,

(d-3)

vertices at level d - j or above, but that most vertices of Bn

0sn s-Zj - 1, or vertices at levels less than d - j have many moves
made on them, that is, they are rccomputed many times. An argument
based on this observation is presented but is preceded by an argument
for the special case of S = d + 1. This will allow us to introduce

a number of ideas that are uscful in the later presentation.

3.4.1 The Case S =d + 1

(d) to all the

By Lemma 3.1 the paths from a given output of F
inputs form a complete binary tree of depth d. From Chapter 2 we know
that a complete binary tree of depth d requires d + 1 pebbles to pebble

its root.

In order to obtain lower bounds on the amount of time nceded to
pebble F(d) Qc identify specific pebble patterns which occur during the
pebbling of every output and calculate the minimum number of moves
necessary between two successive patterns.

We identify one such pattern that occurs during the pebbling of
every output. The point in time during the pebble game at which the

pattern occurs is called a Critical Time.
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Definition 3.2

A Critical Time associated with the pebbling of an output of F(d)

is the first time that every path from the output to all the inputs
is blocked, that is, has a pebble on it.

The pebble pattern at this time is called a Critical Event.

Lemma 3.4 (Paterson and Hewitt [12])

For a complete binary tree of depth d a critical event using d + 1
pebbles can occur only when there is a single pebble at levels d - 1,
d -2, ..., 2, 1 that blocks Zd—;, 2d-2, ..., 2 paths respectively and

two pebbles at level 0 which block the last 2 remaining paths.

Proof

Ye can associate every leaf of the trce with a distinct path from
the leaf to the root. Consider the first point in time when the last
path from a leaf to the root that is pebble free is closed. Branching
off from this path are d distinct subtrees to the remaining leaves.

The subtrces contain Zd'l, 2d-2,

.., 2, 1 distinct leaves respectively.
Since paths from the root to these leaves are assumed blocked and since
there is only 1 pebble per subtree, the pebbles will have to be placed

at the roots of thesc subtrees corresponding to levels d-1, d-2, ..., 2,
1, 0. Since the last open path has just been blocked the d+1°t pebble

must have been placed on a leaf at level 0.

Q.E.D.

Figure 3.2 illustratecs the position of pebbles at a critical event.
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Consider the first output for which a critical event occurs when

ebblin F(d) with d + 1 pebbles. By Lemma 3.4 there can be only a
p g . b Y

F(d'l) or F(d_l)
o] 1

see that exactly two outputs can have the same critical event. Before

single pebble on at level d-1. From Lemma 3.3 we
the next distinct critical time occurs the portion of F(d) which
contained a single pebble at height (d-1) will have to have,all paths
from its inputs to the new output closed by either 1 pebble at level d-1
or d pebbles at devels d-2, d-3, ..., 1, 1 according to Lemma 3.4.

In the first case 2d-1 noves are necessary (since we have to pebble a
complete binary tree of depth d—i) while in the latter at least Zd-d
moves are necessary (since we pebble a complete binary tree of depth
d-1 except for d-1 vertices along a path from an input to the root,
the input being pebbled). To each of these we may add 2 moves made to
pebble the 2 outputs which have the same critical.event.

Since there are 2d outputs there are 2d—1 pairs of outputs with
distinct critical events. There are at least (Zd-d)+2 noves between
two distinct critical events. Theré have to be at least'zd-l + 2d—d
moves made before the first critical event (to achieve the pebbling

pattern of Lemma 3.4). VWe thus obtain a total of

d

291+ 2dias2y2d!

Theorem 3.2

At least T 2 Zd'l(zd-d+4) - 1 moves are necessary to pebble'F(d)

with S = d+1 pebbles, the minimum number of pebbles necessary.
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Comparing Theorems 3.1 and 3.2 we see that the lower bound differs

from the upper bound by a factor of 4/3 for large d.

3.4.2 The General Case

The generalization of the above argument becomes clear if we

assume that S is in the range

Pt id. gy <esc2d va-;

and concentrate our attention on the set of A(J)graphs at level d - j.

Each of these graphs has 2J inputs at level d - j and we define a critical

§ (@

time for an output of below.

Definition 3.3

A j-Critical Time associated with the pebbling of an output of

F(d) is the first time that every path from the output to all its inputs

at level j has a pebble on it.

The pebble pattern at the j-critical time is called a j-Critical Event.

Unlike the case in Section 3.4.1 it is not possible to identify any

unique pcbble pattern that occurs during a j-critical event. Instead we

(@

derive estimates on the number of outputs of that could possible

have j-critical events at the same time. We show that if there are

a pebbles on the A(J) graphs at a given j-critical time then at most

2J+1 outputs have paths blocked by pebbles to a/2 or more inputs of

j c s . d . .
A(J). This implies that about 2~ moves have to be made on vertices in

the B(d-J) graphs between the given j-critical time and a j-critical

(d)

tine for one of the (2d - 23+1) outputs of F

(3)

which have less than a/2

paths to inputs of the A graphs blocked by pebbles. This means that
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there are Zd/2J+1 distinct j-critical events during the entire pebbling
with the property that there are about 2d moves between any two successive

j-critical events. This is the lower bounding argument.

Lemma 3.5

——

Let a pebbles reside on the subgraphs Agj), 0 < 2 < zd"J -1

of F(d). Let N(h) be the number of outputs of F(d) each of which
have paths blocked by pebbles to h or more input vertices of the graphs

A(j). Then

N(h) *h < a-23

Proof

The graph AéJ), 052 g 24-J

- 1, is an FFT graph on 2’ inputs.
From Lemma 3.1 and 3.2, a pebblc placed at level k of AéJ) blocks 2°
inputs for each of 23-k outputs. If Ci is the number of inputs of

the set A(j) blocked by pebbles from the ith output, we have

2°-1 :
I ¢ ca
i=0

since each pebble contributes 2) to the sum. But
M) -h < Z C
0
Thus

N(h) «h < a-2J

Q.E.D.
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Corollary 1

N(a/2) ¢ 29*1

Corollarz_g
N(ZJ-I) < 2a

(d)

I'hen the first j-éritical event occurs for some output of F
by Corollary 1 there are at most 2j+1 - 1 additional outputs with the
property that for each output paths from [a/2] or more inputs of the
AG)

£ (@

graphs arc blocked by pebbles. Thus there exists an output v of

, not in the above set, such that v has at most |a/2] of the inputs
of A(j) blocked by pebbles. The output v has exactly 2J inputs at level
d - j and all these inputs will have to be pebbled at least once before

a j-critical event of v can occur. Thus at least Zj - |a/2] inputs of
A(j) will have to be pebbled before output v's j-critical event can occur.

The first j-critical event occurs when all the paths from some
(3)

output to the inputs of A are closed for the first time. This occurs

when some input of the graphs A(j) has a pebble placed on it at the
j-critical time. But the paths from this input of A(j) to the inputs of
F(d) form a complete binary tree of depth d.- j, which needs at least
d - j + 1 pcbbles to pebble the root. Thus a, the number of pebbles

on the A(J) graphs at the critical time must satisfy

a+d-j+1+D = S -1

for some b, b 3 0. (One pebble is used to make further moves in

the game.) Sincc each input of A(J) is the root of a complete binary trece

of depth d - j, it has 2 distinct complecte binary trees of depth d -j -1,
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Before output v's j-critical event can occur we have shown that

2 . la/2] inputs at level d - j or 2(2j - la/z]) distinct complete
binary trees in B(d'j'l) of depth d-j-1 have to be pebbled. Of the

2j+1 - a such trees at most b + 1 have pebbles on them leaving Zj+1
—a-b-1 trees of height d - j - 1 to be pebbled. Since a + b g 29 - 1

at least gi_complete binary trees in p{d-i-1)

of depth d - j - 1 each
will have to be pebbled before v has its j-critical event.

In‘the pebbling of F(d) at least 2d j-critical events must occur
since each output is pebbled. Some of these events may occur at the
same time. We identify a subset C of the j-critical events which occur
at distinct times and count the number of moves necessary between these
events. The first j-critical event is a member of this subset, as is
the first subsequent j-critical event that is associated with an output

‘with at most |a/2] paths to inputs of A(j) closed at that time. Other
members of the subsct C are defined in the same manner, that is, in terms
- of preceding j-critical events. It follows that the subset C contains
at least Zd-(j+1) j-critical events if j € d - 1 because at nost 2j+1 -1

j-critical events occur between cvents in this subset. At least one

j-critical event occurs if j > d. We now state

Theorem 3.3

The number of moves necessary to pebble the FFT graph F(d) on

n = 2d inputs using S pcbbles satisfies
n2 .
B o+n@G + 3/2) - 2
2.2

where

Pl i al Gy <se2drdny, §oed
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Proof

For the first j-critical cvent of set C to occur 2J+1 trees in

B(d-J-l) of depth d - j - 1 that are ancestors to the first output must

be pebbled at least once. This requires 2J+1 (Zd-J - 1) moves. For the

Zd-(3+1) - 1 or more outputs in the set C, we have seen, that at least

2 complete binary trees in {B(d—J_l)} have to be pebbled between any

two successive j-critical events. This rcquires at least ZJ(Zd_J - 1)

)

moves each. There are a total of Zd(j+1) vertices in A(J and at least so

many noves on them., The total number of moves T necessary to pebble

d)

F( is therefore at least cqual to the sum of the number of moves

necessary on B(d_J) before the first critical event, the number of

d-j-1

necessary moves on B(d'J) between the subsequent 2 - 1 j-criticeal

events of set C and the number of moves necessary on the A(J) graphs.

T > 2j*1(2d‘J - 1) + zjczd’J - 1)(2d'j"1 -1) + Zd(j+1)
2 ,
> ——+a@ +3/2) - 20
2.27
where n-= 2d'

Q.E.D.

Comparison of this result with the upper bound of Theorcm

3.1 indicates that it is weaker by a factor of 4, for large n.
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3.5 Final Remarks

The upper and lower bounds derived so far have utilized only the
topological pf0perties of the FFT graph. If more details of the FFT
computation are included in the graph it should be clear that both the
upper and lower bounds on the number of moves required, will increase
by the same constant factor. This is because pebbling any vertex of the
FFT graph of Fig. 3.l.a corresponds, uniformly, to the computation indi-
cated by the butterfly graph of Fig. 3.1.b, which can be performed with
a fixed amount of time and space. Thus there will not be a qualitative

change in the Space-Time relationships.

The rather clumsy expressions for the upper and lower bounds can
be more succintly expressed as bounds on the quantity (S-d)(T-nd) albeit
at some degradation of the gap between the upper and lower bounds.

Since, from Theorem 3.1

T < 2n2 . n2 2n
< —=— + n(j-1) - 4/3 —T t - 2/3
27 290 2 \
2
< 22—-+ nd + n n
2 2

Using the inequality

S-d+js<2

we obtain

T - nd < 2n2/(S-d+j)

or

(T-nd) (S-d) < 2n°



- 64 -

From Theoren 3.3

2 i
T 3 n(j+3/2) + — 5 - 2]

2.2
or
T - nd 3 n(j+3/2-d) + —— - 2
2.27
dy.2372 n’ + n(j + 1 d)-Zj'2
(T—n )' >3 -8-— nyJj 7- -
Since
271 L4 G- <
zj'2 <S-d
We obtain
2 :
(T-nd) (5-d) 3 B + n(j + 1o 23 -2

The ninimun for the risht hand side of the expression occurs at about

2
j =d - 2, when it is equal to - %%— .
AZ 3n2
(T-nd) (5-4) 2 3" 35
Thus
2 ' n?
Zn” 3 (T-nd)(S-d) 3 =3

The above bounds are much weaker than the upper and lower bounds of

Theorems 3.1 and 3.3 respectively.

3.6 Conclusion °

The FFT algorithm on n inputs is an example of an important
straight-line algorithm for which the Space-Time tradeoffs can be
derived on an entire range of values of Space and Time. The gap

between these bounds is fairly small and the upper bound derived is basecd

on a method that is practically feasible.
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We have shown that if the amount of Space S used is less than
o(n/log n) the amount of timec necessary grows faster than O(nlogn),
the minimum time necessary with\no limit on spacec. If S = Snin’ the
minimum space necessary, is used the time grows as O(ﬁz). Thus the

savings offered by the use of the FFT is possible only when the amount .

of space available is comparable to the number of inputs of the FFT.
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ChaBter 4

Space-Time Tradeoffs for Linear Recursion

4.1 Introduction

Recursion is an important feature of many high-level programming
languages. Its importance lies in the fact that many algorithms and
functions from a variety of applications are most succintly expressed
by a recursive definition [23].

Linear Recursion is an important class of recursive procedures in

which the value of a recursively defined function at any point in its
domain can be computed from the value of the function at most one another
point in its domain.

The chief feature of the implementation of a recursive procedure by

a compiler is a stack in which records are stored. The maximum size of

the stack as: measured by the number of records and the number of recursive
calls of the procedure which occurs during a computation serves as space
and time parameters respectively of the computation. In the usual imple-
mentation [32] of linear recursion by a system the size of the stack grows
linearly with the number of recursive calls made and may in:fact occupy
much more storage space than the size of the input itself.

In this chapter we investigate a general method t6 reduce the storage
space on the stack required by a linear recursive computation. This is
achieved at the expense of a number of recursive calls that is greater

than the minimum necessary when the stack size in unlimited.
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We use the pebble game used in Chapters.2 and 3 to model a linear
recursive computation. This enables us to obtain a Space-Time tradeoff.

We model a linear recursive computation by a pebble game played on directed
acyclic graphs. We present, in simple terms, an analysis of

the space-time tradeoff which allows us to determine fhe class of optimal
algorithms for the entire range of values of space and time. We also
provide simple implementations of some of the optimal algorithms.

Section 4.2 describes, with examples, general linear recursive
procedures and their implementation. Section 4.3 derives a graph model
‘of a linear recursive computation and shows that a pebble game on this
graph adequatély models the space-time tradeoff for the computation.
Section 4.4 describes an optimal pebbling strategy which is used in
Section 4.5 to derive an expreésion for the space-time tradeoff. In
Section 4.6 we introduce partial stack algOfithms which have the optimal
space and time parameters derived in Section 4.5. Section 4.7 is an
analysis of the functional behavior of the space-time tradeoff in different
regions of the space-time domain. ‘We show that if n is the depth of
recursion and Tﬁ(n) the number of recursive calls made when the stack

size is at most p, then

P n1+1/p(p/1+p) P << logzn
Tp(n) = k1 n logzn P = k2 logzn
n logznllogzp p >> log,n

where k1 and k2 are constants.
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The analysis indicates that favorable tradeoffs can be made over a wide
range of space and time. For example it is shown that space can be
reduced to about v2n from a nominal value of n in exchange for an
increase of time from n to 2n. Paterson and Hewitt [12] showed that for

1+1/p

a fixed value of space p, Tp(n) = n Chandra [18] proved it

to be a lower bound and provided non-optimal algorithms for various

values of space.

4.2 Linear Recursion

Tﬁe above definition implies that when a linear recursive procedure
is invoked for any input in its domain a sequence of recursive calls of
the peocedure are generated until a single terminal procedure call is
reached. The single terminal procedure call ends all further procedure
calls and initiates a sequence of iterative computations involving non-
recursive functions.found in the body of the procedure.

To illustrate linear recursive procedures we use the format of
Program Schemata [20]. Informally, program schemas are procedures which
use symbols to denote functions and predicates.

Let p and d denote predicates, £, g and h denote functiops and

let R be a non-recursive procedure.

L

Example 4.1
F(x):= iz_p(x) then R(F(£(x))) else if q(x) tﬁen g(£(x))

else F(g(£(x))) £i fi
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F is a linear recursive procedure with input variable x. We observe
that F(x) calls at most one of F(f(x)) or F(g(f(x))). The terminal
procedure ca}l of F(£(x)) or F(g(f(x))) is also the terminal call of
F(x).

Example 4.2
- F(x):= if p(x) then F(f(x)) else if q(x) then G(f(x)) else
R(x) £i £i |

_ G(x):= if p(£(x)) then G(£f(x)) else G(g(x)) fi

Here the two procedures F(x) and G(x) are linear recursive procedures

where F(x) may call G(x). However both F(x) and G(x) have single

terminal calls.
A general schema for linear recursion [12], which we use through the

rest of the chapter, is

F(x):= if p(x) then h(x) else g(x, F(£(x))) fi

Here F(x) calls itself until the predicate allows a terminal call
of F to compute the function h. Then the computation sequence is reversed
and F(x) is computed with no further pracedure calls of F.

To illustrate this let us consider the sequence of procedure calls
for an input a in the domain of F. Let f(e)(a) =a and forr 2 1

| fgr)(a) = f(f(r_l)(a)). The smallest integer n - 1 such that

p(f(n°1)(aj) is TRUE, is called the depth of recursion. _ It follows

that
rE™ V@) = ™Y

and the sequence of procedure calls of F is

F(a), F(£(a)), FEP @), ..., Fe™ D). (1)



- 70 -

To obtain F(a) we compute in order the sequence
re® V@), re™? @), .., F@ @)
without any further recursive calls of F by using the relation

FEP @) = gt @, e @)y, 0sr -2
with
FE® V@) = et Day

We observe that when the arguments of F are compared the order of
sequence (2) is the exact reverse of the order of ;he sequence (1) of F.
The standard implementation of the procedure F(x) uses a stack tb
store records of procedure calls in a last-in-first-out manner, that is
the record of the last procedure call is at the top of the stack. The
record of a procedure call is a portion of the memory stack that stores
the fact that the procedural call has been made together with the relevant
parameters of the procedure call. These may include values of local
variables used in the procedure body. The size of a record (the amount of
memory it occupies) is determined by the details of the procedure
body and not by the values of parameters of a particular procedure
call. Hence it is possible to treat these records as nominal units of
space. The space parameter of the computation which is the maximum
space occupied by the stack during the computation is therefore expressed
as the maximum number of such records in the stack during the computation.

The actual memory space being used may be many times larger.
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Some important programming languages like FORTRAN do not allow
recursive procedures and may instead convert them info a functionally
equivalent iterative procedure. The iterative procedure is still
implemented.using a stack [21] whose size depends on the number of
iterations carried out. Hence the space-time tradeoffs are still
applicable. The only exception is when the function f(x) is invertible,

The following implementation shows that a stack is unnecessary.

Proc F(x)

X :=a

Ehilg_p(x) # TRUE do x := £f(x) od

z := h(x)

while x # a do x := f-l(x); z := g(x,2) od

F = 2

end

4.3.1 A graph model of Linear Recursion

In this section we show that the pebble game of Chapter 2 can
adequately model any linear recursive computation on a suitably chosen
graph. The graph model and the pebble game are useful in computing the
space-time tradeoff.

Figure 4.1 shows a directed acyclic graph Ln called a chain which
will be used to.model a linear recursion computation. The graph has n
vertices corresponding to the depth of recursion n-1 of the proceduré
F(a). For 1 £ r € n, vertex r represents a call of F on the argument

f(r'l)(a) and the directed edge from node r to node r+l indicates that
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the argument f(r)(a) can be computed only after the argument f(r'l)(a)
has been computed. The sequence of vertices of the graph Ln represents
the computation of the arguments for the successive recursive calls of
F(a).

In the pebble game played on the graph Ln’ the object is to pebble
the vertices of the graph in the decreasing order of their indices
subject to the constraints of the direction of the edges of the graph.

This corresponds to the rules of the pebble game introduced in Section 2.2,

We call this pebbling in reverse order. Pebbling Ln in reverse order
corresponds to the computation'of fhe sequence F(f(n'l)(a)), F(f(n'z)(a)),
..., F(a) using the relation F(f(r'l)(a)) = g(f(r-l)(a), F(f(r)(a))),
lsrsn—lg This computation occurs after the sequence of calls of
F(x) have been terminated.

We interpret placing a pebble on a vertex r, 1 ¢ r ¢ n, to indicate
a recursive call of F(x) at the argument f(r'l)(a). The rules of the
pebble game (Chapter 2) make it impossible to pebble the rth vertex,
2 £ r ¢£n, in reverse order unless a pebble is already stored on the r-lSt
vertex. This is in accord with the recursive computation of F(a) where
a call of F(f(r_l)(a)) can be invoked only during a computation of
F(f(r"z)(a)). A computation of F(f(r"z)(a)) can be initiated either by
a new recursive call of F(f(r'z)(a)) which corresponds to pebbling the

r-lSt

vertex of L , or by a record of a call of F(f(r-z)(a)) "on the top
of the stack made earlier in the computation which corresponds
to a pebble being stored on the (r-l)St vertex at some point earlier in

the game.
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In the first case a new call of F(f(rhz)(a)) can only be invoked
during a computation of F(f(r'z)(a)) which may be iﬁitiated by a call of
F(f(r“4)(a)).and so on until for some k 2 1, a record of a call of
F(f(r'k'l)(a)) is on the top of the stack. Thus there is a choice between
storing a record of F(f(r-z)(a)) and initiating a sequence of at least
'k successive calls of F corresponding to placing pebbles on the vertices
r-k+1, r-k+2, ..., r-1 in that order.

Thus a tradeoff between storing a pebble on a vertex and a sequence
of pebble placements mirrors the tradeoff between storing a record of
a procedure call of F in the stack and initiating a sequence of procedure

calls of F.

4.3,2An Optimal Pebbling Strategy

In the last section we modeled a linear recrusive computation of
depth n by a reverse pebbling of the vertices of the graph Ln of Fig. 4.1.
In this game the number of pebbles used, p, and the number of times
pebbles are placed on vertices, Tp(n), represent the space and time
parameters. of the linear recursive computation.

In this section we describe a property of optimal pebbling strategies
that pebble in reverse order the graph Ln. This property is used to

express Tp(n) as a recurrence relation which is solved in Section 4.5.

The modified rule of the pebble game (Chapter 3) is used’ below.

We consider the case when a single pebble is used in the game. This
implies that a single record of a recursive call may be stored on the
stack at any one time. To pebble vertex n of Ln it is necessary to move

the pebble successively on vertices 1, 2, ... n. Pebbling vertex n-1,
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n-2, ... in that order is the same as pebbling Ln-l in reverse order.

Thus
Tl(n) = n+ Tl(n—l)
and since Tl(l) =1, we have

_ n(n+l1)
Tl(n) -T2

If n pebbles are used we need to place and store a pebble on the
vertices in the order 1, 2, ..., n. Pebbling in reverse order is trivially
accomplished since the vertice§ already have pebbles on them. Thus if
vertex r has a pebble on it when it is visited the visitation is not
counted in Tp(n). This reflects the fact that in a linear recursive
computation a procedure call for an argument is not made if a record

of an earlier call for the same argument is available at the top of the

stack. Thus
Tn(n) = n

This case corresponds to a linear recursive computation with unlimited

space.

Consider the general case when Ln is pebbled using p pebbles, p 2 2.
We shall say that a gap has developed at vertex r, 1 ¢ r < n-2, if during
the game pebble; are placed on vertices r, r+l, r+2, ... in that order
with a pebble stored on vertex r but not on vertex r+l. |

We claim that in an optimal strategy, if a gap develops at vertex T,

the pebble stored on vertex r is not removed until vertex r+l is pebbled
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in reverse order. Otherwise, let r+k, 2 < k ¢ n-r be the last vertex
pebbled in reverse order after which the pebbie on vertex r is removed.
Let r-d, d 2 1 be the closest predecessor of vertex r which has a pebble
stored on it at the time the pebble on vertex r is removed. Since by
assumption, vertex r+k has been pebbled in reverse order the vertices
r-d+l, ..., r+k-1 which do not have a pebble stored on any one of them
must be pebbled in reverse order.

We consider a new strategy almost identical to the optimal strategy
described above except that the pebble stored on vertex r is stored on
vertex f+k-1 instead. No'additional placements of pebbles are required
by the new strategy as compared to the optimal strategy. Since vertex ¢
r+k-1 has a pebble stored on it when vertex r+k is pebbled in reverse
order the new strategy has to pebble the vertices r-d+1, r-d+2, ...,
r+k-2 in reverse order, which needs at least one.placement of pebble

less than the above pptimal strategy, which is a contradiction.
Lemma 4.1

In an optimal strategy using p pebbles there is a point in time
when the pebble on the vertex of lowest index, say r, is held in place
while the remaining p-1 pebbles are used to pebble in reverse order the

“subgraph Ln T consisting of the vertices r+l, r+2, ..., n.

Since vertex r has a pebble stored on it when vertex r+l is pebbled

in reverse order, no additional placement of a pebble on r is necessary.
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The p pebbles are used to pebble the r-1 vertices 1, 2, ..., r-1 in reverse

-

order corresponding to a graph Lr-l' We need r placements of pebbles to

store a pebble on vertex r. Vertex r is called a splitting vertex.

Since r has been chosen optimally we have

T, () = Tgsn-pu (r + T(r-1) + Tp_l(n-f)) &)
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4.4 A Time-Space Tradeoff

We have derived in Section 4.3 a recurrence relation for T_(n), the
minimal number of recursive calls necessary to compute F(a) when the
stack size is no larger than p. In this section we solve this relation
using a binomial number system. The analysis also indicates.the entire
class of optimal pebble placements possible. Lemma 4.2 illustrates a

suitable choice for the location of the splitting vertex.

To solve the recurrence we introduce a binomial number system.
Given a positive integer p 2 2 (to be interpreted later as the number of
pebbles), for each positive integer N there are unique non-negative

integers m and £ such that

where

The uniqueness. of these integers follows from the monotonicity of

Sp-l n with m and the following identity

= S +

Sq,m+1 q,m Sq—l,m+1 (4)

The number system can be extended to the case p=1, which is important

below, if we set S_1 n = 1. Then, when p=1 we have 2 = 0 and m = N.

>

-Also, Sp—l o = p+l so if p 2 N we have m=1 and £ = N-1.
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Theorem 4.1

For all p 2 1, the minimum number of placements of pebbles required
to pebble the chain L of n 2 1 nodes with at most p pebbles, Tp(n),

satisfies

Tp(n) = f)ET(m.l) Sf-l n?t m(2+1) (s)

?

where 1 s mand 0 < £ < S - 1 are the unique integers such that
p-2,m+l

n = S + L (6)

Proof

The proof is by induction on n and p.
Basis

a) The case of p=1, namely,
Tl(n) = n(n+l)/2 = m@m+l)/2

has been established abové which agrees with (5).
B) For p ; n, Ln can be completely pebbled in n moves so
Tp(n) = n. Also, m=1 and ¢ = n-1 in this case, which agrees
with (5).
The basis states_expressions for Tp(n) on the boundaries which are
shown in Figure 4.2.

Inductive Hypothesis

<

1f, Tp(n) is given by (5) for all 1 ¢ n ¢ p when p ¢ P-1 and

for 1 ¢ n ¢ N-1 when p = P, then TP(N) is also given by (5).
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Figure 4.2 also shows the order in which the induction sequence is
carried out. We now state the conditions under which the minimum of

equation (3) is achieved. Let

G(r) = 1 + Tp(r-l) + Tp_1 (n-1) 7

Then,
_Tp(n) = min. G(r) (8)
1 <1 ¢n-p+l
Consider the forward difference

VG(rj

= G(r+l) - G(x) | (9)
where = 1+ VTpgrfl) - VTp-l (n-r-1)
VTp(j) = Tp(j+1) - T, ()

The minimum in (8) is achieved at a value of r such that yG(r) 2 O.
Therefore, we further evaluate vG(r).
Since 1 s r¢<n- p+1andp 2 2 we invoke the inductive hypothesis

and use (5) to evaluate the forward differences in "(9). To do this we

let (u,h) whereu > 0, 0 ¢ h¢ S - 1 and (v,i) where
p-2,u+l
vy0, 0¢icg Sp_3 vel = 1, be the unique pairs of integers such that
r = Sp-l,u + h
(10)
n-r = Sp—2,v + i
Clearly, from (6) we have -
Sp-l,m tro= Sp»l,u * Sp—2,v *h+d (11)

which will be used later.
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The forward difference va(r-l) is easily seen to be u when h 3 1
(and r-1 3 S -1 u) and can also be shown equal to u when h = 0 by
straightforward manipulation of binomial coefficients. Similarly

VTp_l(n-r-l) is equal to v. Summarizing we have

va(r-l) = u, 0g¢hcg Sp-2,u+1 -

VTp_l(n-r-1)= v.,, 0¢icg Sp-3,v+1 -

We will also encounter the forward differences va(r-Z) and va_l(n—r)

and we have

u h>0
VT _(r-2) =
p u-1 h =0
v+l i=S§ -
va_l(n_r) - { p-3,v+l
v 1< Sp—3,v+1 -1
as a direct consequence of the above analysis.
From these observations and (9) we have that
vG6(r) = 1 +u-v (12)
and since
VG (r-1 = 1+ VT (r-2) - VT n-r
(r-1) p(£-2) - VT (n-1)
we have
u-v h>0, 1i-= Sp-3,v+1 -1 (13a)
l+u-v h >0, i<s§ -1 {(13b)
¥G(r-1)= p-3,v+l
u-v-1 h =0, is= Sp—3,v+1 -1 (13c)
{ u - v h =0, ix< Sp—3,V+1 -1 (13d)
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As indicated above, the integers r which minimize (8), the optimal
splitting nodes, satisfy VG(r) 2 O although not all such integers
minimize this expression. We consider two classes of integers r which

minimize (8) and satisfy VG(r) = 0, namely,

‘A = {r, r+1| vG(r) = 0}
B = {r| vG(x) > 1, vG(x-1) < - 1}

The integers'for which VG(r) = 1 and vG(r-1) » 1 do not minimize (8)
while those for which vG(xr) 2 1 and vG(r-1) = 0 fall into A.

Consider r € A such that vG(r) = 0; then from (12)
VG(T) = 1 +u-v = 0

or v=u+ 1. From (11) and the identity (4) we have

Sp-1,m * & = Spq yap * (hei)
and since
0 S < K - -
Pl S S aun t 1Y Sps v Sp-2,us2 = 2
we conclude that
u = m-1, v = , 0<h = -
m <h+1 2 g Sp-2,m+1 2 a4

Consider next the case of r € B. Here we have u - v 2 0 and

VG(r-1) < -1 and the only case for which both conditions hold is (13c).

This requires )
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and from (4) and (11) we have

Sp-1m * % T Sp-1,u ¥ p-2,u * Sp-3,us1’ 1
= Sp1,ut Spo2,usl

from which it follows that

u = n, v = mnm, L Sp-2,m+1 -1, h = 0, i Sp-3,m+1
(15)

_ Thus, if & = Sp-2,m+1 - 1 there is exactly one value for r that
minimizes‘G(r), namely, t = Sp41,m’ while if 0 ¢ ¢ ¢ Sp-2,m+1 -2 then
the minimizing value of r satisfies Sp-l,m-l £TZ Sp-l,m - 1.

By simple manipulation of binomial coefficinets we can verify that

the minimum is indeed Tp(n).

. Q.E.D.

We extract some additional information from this theorem that will
facilitate the construction of a partial stack algorithm for linear

Tecursion.

Corollary

1f T, is a splitting node of Ln then it satisfies the following

conditions: i
Case a)
If Sp-l,m £ n g Sp-l,mfl 2 , then
Sp-l,m—l £, % Sp-l;m - L Sp-Z,m TR-T, S p-2,m+l 1

-1
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Case b)

If n = Sp-l,m+1 -1 , then

ro = Sp-l,m and n _ro = Sp-Z,m+l -

We now identify a single, simply computed integer Ty which is the

label of a splitting node of Ln'

Lemma 4.2
The integer T, defined by
r, = max(Sp_l’m_1 , N - Sp-2,m+1 + 1) @6)

satisfies the conditions of the above corollary.

Proof

The conditions of the corollary can be stated as bounds on L

when S_ £ n g - 2, as shown below.
) i

-1,m sp-l,m+1

Sp-1,m-1 € To € Spo1m

A
wn
1
[
-

n - +1<r <€£n-S

SP"Z,m+1 o p-2,m

It is easy to demonstrate that r;, the larger of the two lower bounds,

satisfies both upper bounds. VWhen n = Sp-l,m+1 -1, n - Sp-2,m+1 + 1=
Sp-l,m so that r, = sp—l,m’ whlch is the optimizing value of r_ in this
case.

Q.E.D.
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4.5 Partial Stack Algorithms

In this section we discuss realization of the space-time exchanges

of Section 4.4 by a class of recursive algorithms called Partial Stack

Algorithms. Essentially, a partial stack algorithm stores a record of
a recursive call of F(f(r_l)(a)), where r is a splitting vertex. In
Section 4.3 we saw that the splitting vertex divided the reverse pebbling
of Ln into the reverse pebbling of graphs Lr-l and Ln-r which have their
own respective splitting vertices. Thus a partial stack algorithm that
uses a stack size of at most p records stores records of recursive calls
for arguments of F which correSpbnd to splitting vertices of Ln' The
analysis indicates that there are no more than p splitting vertices that
have to be stored at any given time. The overhead involved in implementing
a partial stack algorithm consists of computing the locations of the
splitting vertices. This is discussed in Section 4.6.

The partial stack algorithm PSTK that uses splitting vertices defined

by Lemma 4.2 as

r = max(S n -

1)

p-1l,m-1° sp—2,m+l *

is described below in pseudo-ALGOL. The algorithm needs the depth of
recursion, n, as an input parameter. The depth of recursion can be

obtained by the iterative algorithm DEP (a). We describe below in

detail all the algorithms that are used.
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DEP (a) DEP is a non-recursive procedure which computes the depth of
recursion n for a given input a. This is obtained by iteratively testing
the predicatép(x) for the arguments a, f(a), fz(a), .e. until p(fn(a)) is
found to be TRUE. The value n is returned.

SPL(a) This computes the‘recursively defined function F at the value

a using a stack of height one. This is done by iteratively computing
fn(a), for which F(fn(a)) = h(fn(a)). The algorithm then computes
f(n'l)(a) from which it obtains F(f(n'l)(a)) = g(f(n'l)(a), F(£"(@)).
Thus the value of F for F(fr(a)), r > 0 are computed according to a
decreasing value of r. .

STK(a) This is a procedure which uses a stack of height n + 1, where n
is the depth of recursion. The procedure tests the predicate for each of
the arguments a, f(a), fz(a), ... in turn. A record of a procedure call
is created each time the test fails. When the stack grows to a height of
n + 1, where n is the depth of recursion, the predicate is satisfied. The
va&uehof the linear recursive function F is computed immediately for the
argument found in the record en the top of the stack since

F(fn(a)) = h(fn(a)), and h is non-recursive. The record is popped and
F(f(n'l)(a)) is computed using the argument stored in the record on top

of the stack using the function g as in SPL(a). After n + 1 such computa-
tions, the value of F at the argument a is obtained while at the same time
the stack height decreases to 0. ’
PSTK(&,n,p,m,s,F) This is the procedure that implements the partial stack
algorithm, corresponding to pebbling LN using p pebbles. The procedure
first determines the value of N = n + 1. N represents the number of

vertices in the Linear Recursion graph of Section 4.3.
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On the basis of the value of the input p, the maximum stack height
allowed, the special cases of p = N and p = 1 are checked to see if they
apply, and invoked if they do. Otherwise, the procedure chooses a
splitting node, r, according to Lemma 4.2. The splitting node is taken

to be the maximum of S 1 (denoted by sg) and n - 1

p-1,m Sp-2,m+1 ¥

(denoted by u). s2 and u are computed from the simple formula
sf = s(m-1)/(m+p-1) and u = N - s(p/m) + 1. Here s is such that
s € N € s(m+p)/m - 1 (See proof of Theorem 4.1).
Once r, the splitting node, has been chosen, the remaining N - r
vertices have to be computed reéursively using a stack of height p - 1.

Since S ¢N-1¢g

p-2,m - L

(denoted by su) is computed

Sp-2,m+1 Sp-z,m

using the formula su = sp/(m+p-1). Thus su replaces s in the recursive
computation of L(n-r) using a stack of height of p - 1.

Before computing L(n-r

) recursively, a sequence of r procedure calls
of F starting at input a is initiated. However no record of any of
these calls is stored on the stack. This corresponds to forward pebbling
up to the splitting vertex r. A céll of PSTK, corresponding to pebbling

the graph L is now made, since all necessary inputs have been cal-

n-r’
culated.
A second callof PSTK, corresponding to pebbling Lr-l using p pebbles,

is now initiated. The inputs that are necessary are r - 1 (denoted by

N£), p, and s%, where sf replaces s, according to Theorem 4.1.
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1. Procedure DEP (a)
[DEP(a) determines the depth of recursion n for the input a.]
X :=a

n:=0

while NOT(p(x)) do x := f(x); n := n+l od
Return (n)

end

2. Procedure SPL(a)
[Procedure SPL computes F with a stack size of one.]
begin

for i := n-1 until 1 step -1 do

»

= a

for j :=1i until 1 step - 1 do
x := £(x) od

F := g(x,F) od
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3. Procedure STK(a)
[Procedure STK uses a stack height of n+l, the depth of recursion being n,

to compute S at the value a.]

begin stack A; "Clear A"; x := a |
[A is declared to be a variable of type STACK. A := x and x = A, denote
PUSH and POP operations respectively.]

while NOT p(x) do A = x5 x := f(x) od

F := h(x)

gh§l§_|A| $# 0do x :=A; F := g(x,F) od

end

4. Procedure PSTK(a,n,p,m,s)
[PSTK is a partial stack algorithm that computes F at the value a given

n the depth of recursion, p the stack height allowed.]
N:=n+1. ‘
If p=1 then SPL(a) else if p=N then STK(a) fi fi

[Takes care of special cases p=1 and p=N]
sg := s(m-1)/(m+p-1)

u:=N - s(p/m)+1

[s2 and u are the lower and upper bounds respectively of the splitting
vertex r, according to Lemma 4.2.]

su := sp/(m+p-1)_

pu := p-1

m :=m -1
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[su =S

p-2,m § (¥T) €S

p-2,m+1 " 1. Thus N-r vertices, su € N-r, will
b

be pebbled using pu = p-1 pebbles.]

If s2 2 u then r := s2 ; mg := me-1; s := me(s2)/(me+p)

elser :=u ; fi

[The splitting vertex r = max(sf,u) is chosenlJ

N :=1 -1
Mt :=N-1T
X :=a

while i # 0 do x := f(x) ; i:=1i -1 od
z := £f(x)
[A forward pebbling up to the splitting vertex is carried out.]
PSTK (z, N, pu, m, su)

[Vertices r+l, r+2, ..., N are pebbled in reverse order.]

F := g(x,F)
[F is computed at the splitting vertex.]
If N2 := 0 then F := g(x,F) else PSTK (a, N&, p, mg, sg) fi
‘ [if the recursion is ended F is computed at the value a. Otherwise the

recursion is continued on the remaining vertices.]
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3.6 Implementation Issues

Theorem 4.1 shows that Tp(n), the number 6f pebbling moves needed
to pebble Ln’ is a linear function of n in the range between SP 1.m'?
i )

m'=1, 2, 3, ... . Forn-= Sp-l,m we have

Tp(n) = EET-(m-l)n
For p= 2, n = ¥2n and
Tb(n) = (2/5/3)n3/2, for large n.
Similarly whenm = 3, n = (p+2)tp+1)/2, p = v2n and
Tp(n) = 2n for large n

This indicates that very favorable space-time exchanges are possiﬁle
without too large an increase in Tp(n).

Since the time, Tp(n), needed to pebble Ln is dependent on m it
is of interest to examine the relationship of the numbers n, p and m.

When n = > we can show from the following inequality [22, p.530],

Sp-l,m
that the smaller of p and (m-1) is no larger than 2 log2 n when n 2 4.

X _
1 N N -NH(=) N
' Eﬁ's Y 8K(N-%) *© (k] 2 N's 2K (N-K) © 1 an

Here 1 < k € N-1, N > 2 and H(x) is the entropy functionand N=m + p - 1.

H(x) = -x log2 x - (1-=x) log2 (1-x)
and
N=m+p -1

m+p-1

Since n is one term in the binomial expansion of (1+1) , we have

n s 2m+p-1



- 91 -

or that the sum m+p-1 is at least log2 n. Furthermore, from (17) if
m and p are éomparable in size and n is largé, it follows that they are

both comparable to log2 n. Thus, we consider three cases when n is

large

m<<p + m<< log2 n
and

P<<m =+ p << log2 n
and

p comparable tom - p/(m+p-1) = A, 0 < A <1

We examine Tp(n) below.

We have

(m+p-1) (m+p-2) ...(m) [m]P
p! -

-+

which is also a good approximation when p << m. This implies
m ¢ pnt/P

and by the symmetry of n in (m-1) and p we have

p+l € (m-1)n 1/ (m-1)

which is a good approximation when m << p. Reworking this equation we have

log2 n ) log2 n

(m-1) < =
log2 P - log2 (m-1) log2 P
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and the approximation holds when m << p. Since m << p if p >> logzn

(note that m+p-1 2 log2 n), we have

{2 1+1/p
p_n. P << log, n
Tp(n) - 4p+1 2
nlog2 n
— >> 1
L log2 P P %8y 1

In the remaining case, when p is proportional to log2 n, we use (17)

to approximate n. If

= - a-y
A = H‘l:%—f or m-1 = —T—p

for 0 < A <1 and if n is large, then taking logarithms we have
log2 n = (m+p-1) H(A) = PE§Al'

which implies that p is proportional to log2 n. Then,

_1-x
Tp(n)'- ﬁtXT' nlog2 n

When
_ A
p—mlogzn

The expressions A/H(A) and (1-2)/H(X) are shown in Figure 4.3,

Summarizing, we find that Tp(n) grows as pnlil"l/p for p small,
nlog n/log p for p >> log2 n and as nlog n if ) is neither near zero
(p << m) nor near 1(m << p), that is, for p proportional to log, n.
The three different rates of growth of Tp(n) with n can be selected by

choosing p to be a function of n which grows more slowly than log2 n,

L
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such as Vlog2 n or a constant, more rapidly than log2 n, such as

(log2 n)2 or nl/S

, or which grows in proportioﬁ to log2 n, respectively.
The actual value of p may also be determined by an upper limit on
temporary storage space.

Once p is chosen, the next step is to determine m and S such

p-1,m
that

<n<s§

p-1,m+1 (18)

p-1,m

By a previous argument, the smaller of p and m-1 is no larger than
2 log2 n for n 2 4, hence S can be computed in at most 8 log, n
p-1,m 2

multiplications or divisions from one of the following two expressions:

S . [(m+p-1) (m+p-2)...(m) _ (m+p-1) (m+p-2)... (p+1)
p-1,m p! m!

In fact, many fewer multiplications may suffice if either p or m are
very small. To compute m, start m at n (note that So o= m) and use
b4

binary search by halving m until (18) is satisfied. This will take

0(10g2 n) steps so the entire process can be done in O(logzn) steps.

3.7 Conclusion

Linear Recursion is an important ciass of recursive procedures
which has significant space-time exchanges. These exchanges have béen
derived by modeling the recursive computation by a pebble game played
on a chain of n nodes, n being the depth of recursion. The model provides
a ciear and concise manner of expressing space-time exchanges. The -

derivation of an expression for these exchanges also allows us to



- 94 -

describe the entire class of strategies which are optimal with respect
to space and time. The chief feature of theSe'algorithms, known as
partial stack algorithms, is the use of the stack in storing records

of procedure calls at selected vertices of Ln. These vertices known

as splitting vertices can each be easily computed at a small extra cost

which does not depend on the depth of recursion.
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ChaEter 5

. Space-Time Tradeoff for Sorting Algorithms

5.1 Introducticn

We have seen in Chapters 3 and 4 two different methods of obtaining
Space-Time tradeoffs for two algorithms of interest. In this chapter
we present yet another method, which is used to obtain Space-Time tradeoffs
for the problem of Sorting. The chief characteristic of this method is
that it does not depend on the connection properties of the graphs of
particular oblivious algorithm. Instead it relies on the properties of
the function computed and the properties of the operations used in the
algorithms that compute them. Thus the merit of this method is that the
tradeoffs obtained are applicable to all algorithms of a class defined
below.The drawback of the method is that the lower bounds on Space-Time
tradeoffs are in general weaker than those that may be obtained Ly an
analysis of a specific algorithm.

We consider in this chapter thé problem of sorting a list of n
items. The class of oblivious algorithms we-consider use only the opera-
tions Min(a,b) and Max(a,b), where a and b are elements from the list of
n items that is to be sorted and MMin(a,b) and Max(a,b) are the minimum
and maximum of a and b respectively. We note that the tradeoff obtained
is also applicable to other classes of oblivious algorithms which use
operations that are monotone mappable [24], that is those operations which
can be homomorphically mapped to Min(a,b) and Max(a,b).

If S is the number of items temporarily stored during the execution

of an algorithm of the above class, and T the number of operations
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_ performed, we show that

2

n
T2z

-n+ S

The method we use is a non-trivial extension of a method due to
Grigoriev [19]. Tompa [15], using a different method, has obtained the
result T 2 ?28 for the problem of oblivious Merging of two sorted lists
of n items each.

We consider the class of Sorting algorithms to be all oblivious
Sorting algorithms which use the operations Min(a,b) and Max(a,b), where
a and b are items from the list that is to be sorted. Some examples of
this class of algorithms are Bubble Sort, Batcher's Sort, and Bitonic
Sort [2]. In the following it will be easier, for expository purposes,
to let the 1list of items to be sorted be the Boolean constants 0 and 1.
The Max(a,b) and Min(a,b) operations can be uniformly replaced by the
Boolean OR and AND operations respectively. Since the algorithms are
oblivious and since the transformation from Max and Min to OR and AND is
1 - 1, the Space-Time tradeoffs that are derived for algorithms that use
OR and AND also apply to those that use Max and Min operations and indeed
to algorithms that use any other monotone mappable operations [24].

The pebble game used in the previous chapters is also used here as

the model of computation.

Section 5.2 describes the class of algorithms used.and gives a

proof of the Space-Time tradeoff. Section 5.3 concludes the chapter.
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5.2 A Lower Bound

Let fl’ f2’ “ees fn denote the n outputs of a Sorting algorithm,
of the class described in Section 5.2.1, which sorts the n inputs

Xys Xos ooy X That is, for 1 < i < n

1 if number of 1's in (xl, Xps ey xn)
fi = isn -1+ 1 or more
0 otherwise.

Let S be the maximum number of temporary storage locations that are
used and let T be the number of operations performed during the execution
of the algorithm.
£

We divide the set of n outputs f fn into blocks of S + 1

12 £50 eees
outputs each, such that during the execution of the algorithm the set of
outputs in any particular block are computed in sequence in some order.
If S + 1 does not divide n there will be a block with less than
S + 1 outputs.

In order to obtain a lower bouhd on T we again use the notion of

a critical event.

Definition 5.1

A Critical Event for sorting a block of outputs computed in sequence

is the pebbling of the last output of the sequence.
The lower bound on T will be established by obtaining a lower bound
on the number of operations required between two successive critical

events.
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Let X = {x, , Xx. , ..., X.} be a subset of the set of inputs x,, x,,
1 J2 Ip _ 1 %2
ey X
Definition 5.2
A p-tuple a in X is defined to be
a = f(a. ,a;,, vee, @, ) a. e{0,1} , 1 ¢ic<p
iy’ i, S
which is obtained by substituting the constant aj for xj » 1 €1 ¢ p.

1 1

Definition 5.3

Let o and B be two p-tuples in X. Then o < B if aj < Bj
i i

1 £1ic< p, and there exists a k, 1 ¢ k < p, such that aj < Bj .
k k

I

We use the notion of a chain in deriving a lower bound on the Time required

to compute the Sorting function.

Definition 5.4

A chain of length q in X is defined to be a sequence of q p-tuples
in X
Gc 5 G5 5 eees O
1 2 q

such that the number of 1's in ay is equal to i, 1 € 2 £ q and

2’

Lemma 5.1
Consider two successive critical events between which a block of
S + 1 outputs are pebbled. Then at least n - S inputs are pebbled between

the two critical events.
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Proof

Let the set of outputs that are pebbled be

(We do not assume that they are necessarily pebbled in the above order).

Let m be the number of inputs that are not pebbled between the two
successive critical events. Ifm < S + 1, thenn -m >n - S, inputs

>

are pebbled and the Lemma is proved. Otherwise, m > S + 1.

Let X = {x. , x. , ..., X. '} be a set of S + 1 inputs chosen from
J1 J2 Is+1
the set of m inputs that are not pebbled, and let Y = {x, , Xy 5 ey
1 2
Xy } be the set of inputs not in X. We form chains
n-S-1
B> @15 ve5 Qg .y 1IN X
and
Bo, Bl, ce oy Bn—S-l in Y.
We choose Br , Br s eens Br from the chain 80, Bl’ ceey Bn-S-l where
1 2 S+1
T, = n- ik - (k-1) , 1sks8+1.
We claim that
B, $B. S...<8 "
T, T, To,1
Since Br , Br y sees Br are elements taken from a chain it is sufficient

1
to prove that

2 S+1

A
H

S+1
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This follows directly from the fact that ik > ik+1' Also we note that

0sr, sn - (S+1)

and

T

A

T £ n - (S+1)

1 S+1 °©

Therefore rk < rk+l for 1 ¢ k ¢ S. Not all of Brl, Brz, oo, Brs+1
need necessarily be distinct (n-5-1)-tuples. However, for conven-
jence, we use distinct symbols. The proof, as will be seen-Below, makes

no assumption regarding the number of distinct'(n-S—l)-tuples in the

above sequence.

Consider a time instant before the first output, say fi > 1€j<S+1,
j
of the seqeence of functions in the given block is pebbled. The S pebbles
at this time are stored on vertices of the graph of the algorithm which

represent some S functions P = {Pl, Pz, eee, PL}. P ceey, P, are

s 1’ 2o s

monotone functions in the inputs Xys Xps sees X that is in the set of

inputs X U Y.

Y = B,
J
We use the notation P} , 1 to denote the S output values of the
X = ey
1
functions Pl, Pz, cees PS obtained by setting the inputs in the set Y
to 8. and the inputs in the set X to o, , where B, and @, are elements
J1 kK R

of the chains described earlier. The same notation is used to denote the

output of a single function under the same input conditions as above.



If Y = Brl Y = Brl'
P = P
X= ao x = al
then
Y = Brl Y = Brl
f. = f,
1 1
x:ao X = al

Since only a change in the value of P can indicate a change in the value

of the inputs of the set X, that is from X = eg to X = o;. But the

+1if X =g,

number of I1's in YUY =n - il if X = % and n - i, 1

Therefore equality cannot hold and we must have

Y =8

This implies that one of Pl’ PZ, eaey PS changes from 0 to 1, since they

are monotone. Similarly

Y = Brz Y= Brz
p £ P
X = @y X = a,
By a similar argument at least two of Pis Poy veey PS have their outputs
equal to 1 since (al, Br ) < (az, Br ). Thus for the chain of input
1 2 '

values
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(ay, B ) < (a,, B )y eee, < (ag, B_ ) in X U Y,
1 I 2 T, S Tg

all output values of the S functions P,, P,, ..., P

1* P2o must change to 1

S

in some order. But

(eg, B.) < (2g, 4> B, )

S S+1
and
Y =238 Y =B
T T
p S+1 = P S+1
X = ag - X=agy,

since P_, P ...,‘P

1° Pas are already equal to 1. This implies that

S

Y=28 Y =8
= f,
1s:1

T
£ S+1

1541

X=aa X=u«

S+1
which is a contradiction. Thus m < S + 1 and at least n - S inputs are
pebbled between the two critical events.

Q.E.D.

Theorem 5.1
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Proof

_Let the first block of outputs pebbled consist of the first

n -lS?IJ(S+1)‘outputs that are pebbled, if (S+1) does not divide n.

The remaining

szlj blocks consist of groups of S + 1 outputs each,that

are pebbled in sequence. If (S+1) divides n, then all ggi-blocks
consist of S + 1 outputs each that are pebbled in sequence.

Since every output is a function of all the inputs, all n inputs
have to be pebbled during the pebbling of the first block of outputs.
'This corresponds to n - 1 OR and AND operationsﬁ6] We have seen from
Lemma 5.1 that at least n - S inputs are pebbled during the pebbling of
every succeeding block. The n - S inputs pebbled together with the S
vertices corresponding to the functions Pl, P2, veny PS imply that at

least n-(S+1){ 6,p.24] OR and AND operations are performed during the

pebbling of every block of outputs. Thus

T =2 (n-1) + (n-(S+1)).[S%TJ if S + 1 does not divide n

: (n-1) + (n-(S+1))[§2—1J if S + 1 divides n

or
2

T2 EgT" n+S
Q.E.D.

5.3 Concluding Remarks

We have demonstrated above a method of obtaining a Space-Time tradeoff
for Sorting which is applicable to any oblivious Sorting algorithm thac

uses the functions Max(a,b) and Min(a,b). As indicated earlier they apply
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when any other monotone mappable set of operations is used. The

method we have used is an extension of a method due to Grigoriev [19].
The extension, as seen above, essentially consists of the idea that
.the set of inputs can be partitioned into two subsets and chains con-
structed on each subset of inputs such that the chain property is pre-
served when the two subsets of inputs are coalesced. Using the property
that the outputs of monotone-functions do not decrease when the sequence

of input values forms a chain,we obtain a lower bound on the number of

)
operations between two critical events. Grigoriev [19] has obtained

bounds for the Space-Time tradeoff for matrix-multiplication (O(ns))
2

and convolution (O(nz)); Tompa [15] has obtained a bound of T > %Eg
for oblivious Merging of two sorted lists of n inputs each.

Of course the same bound also holds for Sorting. Our method is signi-
ficant because oblivious Sorting algorithms possess neither Grate [25]
properties as does oblivious Merging, nor 2-independence [19] for any
value of ¢ 2 0(log2n) as does Convolution and Matrix Multiplication
(which by Grigofiev's method would yield ST 2 @ (nlogn)). As an appli-

cation of the above result, we can conlude that Batcher's algorithm

- needs space 2 Q (n/(IOgn)Z) if Time is equal to O(n(logn)z).
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Chapter 6

Conclusicn
This dissertation has attempted to clarify the concept of Space-
Time tradeoffs in the context of the class of oblivious algorithms.
A pebble game has been‘used as a model of computation with restricted
space, to obtain Space-Time tradeoffs for the FFT, Linear Recursion and
Sorting. In doing so, we have used a different method of analysis for
each of the above three cases. The upper and lower bounds on the
tradeoffs obtained are equal to each other to within a small constant.
The analysis of Sorting is significant because it is relevant to a whole
class of algorithms. There are several research problems in the same
area which are of interest.
1. Obtaining a non-linear Space-Time tradeoff for a specific
algorithm tﬁat computes a single function.
This problem is interesting because it would be the first
measure of complexity that is provably non-linear for a
specific function.
2., Obtaining a non-linear Space-Time tradeoff for a specific
single output function using any of a general class of algorithms.
This has greater practical significance than the first if the
particular function is a popular or commonly ﬁsed function,
because it would give a programmer a choice of algorithms,

to be chosen according to available resources.
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Improving theO(nz) bound for Sorting by a factor of about logzn.
This is an interesting problemn, becaﬁse othefvresults (e.g.,
combinational complexity [24]) indicate that the tradeoff must

be about nzlogn.

Obtaining Space-Time tradeoffs when recomputation of intermediate
results is not allowed. The tradeoff would probably result by
considering different algorithms to compute the same function.
This is important because many practical implementations of
algorithms do not use the concept of recomputation of inter-

mediate results.
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Appendix

To prove that a synchronous zraph G of fan-in 2 can be pebbled
in #idth (a)+2 pebbles we assume that all vertices at some level % have
pebbies currently on them and that there are Ifidth (aj vertices at
level 2. Ve then show how all vertices at level Z%+1 can be simultaneously
pebbled using at most 2 more pebbles. This could be continued until
all levels of G, and hence G itself, is pebbled.

We.use induction on Width (a) to show that we can sirmultaneously
pebble all vertices in level 2+1. .

Choosing Width (a) = 2 as a basis for the induction, level 2 and 2+1
together comprise at' most 4 vertices and hence level 2+1 can be pebbled
in Width (a) + 2.

When Width (G) = k we have the following cases.

1. All vertices in level ¢ have fan-out 2,

The nodes in level 2 and g+l form a graph of the kind shown in

Fig. 2.5.2. There can be one or more disjoint pieces of the same type.

Referring to Fig. 2.5.2 we pebble vertices @ and 2 in level 2+1 which have
a common ancestor } in level 2. Ve then remove the pebble on y.in level

2 and pebble vertex §. This can be continued until all vertices are
pebbled. Ve use ;t most Width (G)+2 pcbbles.

2. There exists a vertex in level 2 with fan-out 1, with no vertices of

fan-out 2.

Fig. 2.5.1 illustrates the two possible subcases. . In Case a,vertex 2

is assumed to have fan-out two. We place the two extra pebbles on nodes &



- 108 -

and £. We remove the pcbbles on vertices 1 and 2 in level 2. Ve are
then left with two levels of width at most k-2. By the hypothesis
assumption the two levels of width k-2 need at most Kk-2+2 = k pebbles

to simultancously pebble vertices in level 2+1. Since we have already
used 2 pebbles we use-a total of at most k+2 pebbles as was to be proved.
In Case b, vertex 2 is assumed to have fan-out 1. The same procedure as

above can be followed.

3. There exists a vertex in level 2 with fan-out n, m > 2

Then there exists at least n-2 vertices in level 2 of fan-out 1.

Otherwise the total fan-out of vertices at level £ is
z2m+ (m-3) x 1+ (k - (m-3+1))2

Zm+m-3+ 2k - 2m+ 4

-

22k + 1

Since the fan-in of vertices of level 2+1 is at most 2, the total fan-out
of.vertices of level 2 cannot exceed the total fan-in at level i+l whnicn
is at most 2k. This leads to a contradiction. Thercforc form 2 3

there exists a vertex at level £ with fan-out 1. Using one extra

pebble, the output corresponding to a fan-out 1 vertex is pecbbled.

The pebble on the fan-out 1 vertex is removed. The rémaining k-1
vertices can be pebbled using at most k + 1 pebbles, by the induction

hypothesis.

Q.E.D.
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non-oblivious TM - ' > non-oblivious RAM
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~ oblivious TM ~— » Oblivious RAM

FIG. 2.1 TM-RAM TRANSFORMATIONS



- 113 -

FIG. 2.2 A PEBBLE GAME ON A GRAPH
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I 2 3 4 5

FIG. 2.3 COOKS GRAPH WITH WIDTH =5
SPACE REQUIREMENT = WIDTH+1=
DEPTH +2
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FIG. 2.4. A GRAPH THAT NEEDS n/2 PEBBLES
IFEACH VERTEX IS PEBBLED ONCE
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FIG. 2.6 A GRAPH THAT NEEDS ONLY 3 PEBBLES TO
PEBBLE EVERY VERTEX.
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FIG. 3.1a FFT GRAPH WITH EIGHT INPUTS
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FIG. 3.1b ATWO INPUT-TWO QUTPUT FFT USED
IN THE CONSTRUCTION OF FFT GRAPHS
ON 29 INPUTS, d2 |
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FIG. 3.2 A CRITICAL EVENT ON AN FFT GRAPH USING
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FIG. 4.1 THE CHAIN Lp FOR Nn=7
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FIG. 4.2 BOUNDARIES AND INDUCTION
SEQUENCE FOR THEOREM 1
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