
Fauxtoshop:

Modeling Image Editing Operations with Kernel

Prediction Networks and Parameter Blocks

Ziyin Ma

May 2020

Contents

1 Introduction 2

2 Related Work 4
2.1 Exposure: A White-Box Photo Post-Processing Framework . . . 4
2.2 Why Kernel Prediction? . 4
2.3 Replacing Mobile Camera ISP with a Single Deep Learning Model 5

3 Method 5
3.1 Proxy Functions for Editing Software 5
3.2 Incorporate Parameters Input into CNN Architecture 6

4 Dataset 7

5 Experiments 8
5.1 Single Layer Experiment . 8
5.2 Dummy Software Experiment . 9
5.3 Parameter Blocks . 12
5.4 Real Data Experiment . 12

6 Conclusion 12

7 Supplementary: What is LightRoom/RawTherapee doing? 14
7.1 What happens in those sliders . 14
7.2 RawTherapee’s teaching . 19

1

Abstract

This work explores various way of building a proxy function for image
editing software. We introduce parameter blocks that can be used with
kernel prediction network as a highly effective proxy model. We show it
is critical to disentangle predicting the operations and applying them on
images. Specifically, we show with various experiments that our model is
1) more effective and more robust than other models 2) more interpretable
with explicitly predicted operations to be applied on images 3) using less
parameters than other models. This work also serves as an important
early exploration in building a framework for transferring between image
editing software while preserving non-destructive edits through parameter
mapping.

1 Introduction

Image editing software provide users with a large collection of editing parameters
like exposure, shadow, etc. These parameters are often represented by a scalar
value or a slider on the user interface. The combination of editing parameters
allows users to produce desired images with simple control.

We observed that (Section 7) there is a lack of consistency on the imple-
mentation of editing parameters across software. The name and number of
editing parameters found in software vary greatly. Moreover, modern software
applies content-aware and spatially-varying editing on raw images for artis-
tic editing effect. Therefore, it is almost impossible to provide a direct mapping
between the parameters used between a pair of software.

These complications make it very difficult for users to migrate from one
editing software to another while preserving all the edits. Ideally, a software
adapter F should create a parameter mapping between the source Psource and
the target software Ptarget. Given that the effect of the parameter are content-
aware, the software adapter would also need to be aware of the original image
I.

F : (Psource, I)→ Ptarget

Ptarget should achieve similar visual effect in the target software that Psource

achieves in the original software. (Figure 1)
There are many ways to build a deep learning model that serves as F . A

possible approach is shown in Figure 2 where a proxy function is trained to
simulate the behavior of the target software. Given such a proxy function, a
second model can be trained to map parameters in the source software to the
target software.

At the heart of many lies a differentiable proxy function P that can replace
the source or the target software. Most image editing software are not written in
differentiable language or not open-sourced at all. We explored many aspects of
creating a proxy function for image editing software RawTherapee. This work
proposes a variant of kernel prediction network [1] that achieves satisfactory
performance as a proxy function for RawTherapee. When compared with a
direct use of U-Net:

2

(a) (b)

Figure 1: (1a) Using the same parameters for different software result in dif-
ferent visual effect, if ever applicable. (1b) A software adapter should find S2
parameters to produce similar effects from S2

Figure 2: A possible deep learning model for trainable software parameter map-
per

• Our kernel prediction network consistently outperforms U-Net on all sorts
of real and artificial tasks.

• The parameter blocks we proposed improved model performance by a
significant margin.

• Parameter blocks also reduce the number of parameters in the model.

• We illustrate through experiments that the two-step approach taken by
the kernel prediction network poses a healthy and helpful regularization
on the model.

3

2 Related Work

2.1 Exposure: AWhite-Box Photo Post-Processing Frame-
work

[2] tackles automatic post-processing by predicting a sequence of parameter-
ized editing operations like exposure, gamma, color curve, etc. It applies CNN
networks on a low-resolution (64×64) version of the input image. The policy
network proposes one of the predefined operations and predicts its associated
parameters. The output is put back into the policy network to predict the next
operation. The model is considered a ”white-box” in that it can provide a inter-
pretable sequence of operations for automatic post-processing. The very same
architecture is used for value network and critic network to create reinforcement
feedback.

The problem we are trying to solve is different from theirs, and many auto-
editing methods, where we can take arbitrary parameter inputs and simulate
software behavior while the literature mentioned above focuses on choosing one
set of parameters for the best artistic effect. Nevertheless, this work shed light
on the fact that image editing often involves global operations that U-Net-
like architecture won’t perfectly capture and might require further design. This
work also proposes the general pattern of handling parameters in CNN network-
appending parameters as extra channels.

2.2 Why Kernel Prediction?

[1] proposes a burst denoising network for predicting a set of convolution kernels
that merges a stack of burst images. A unique convolution kernel is predicted for
each pixel in the eventual output. Generating images in an end-to-end fashion
is simple, yet less interpretable and less regularized. Predicting operations (the
kernels) based on input image and input parameters fits our project better both
empirically and theoretically.

To prove this, consider a trivial software that can only apply affine transfor-
mation on input image I. Output Y can be described as Y = k× I + b where k
and b are the input to the trivial software. We now compare using an end-to-end
U-Net and using a U-Net to predict the kernels to be applied on I. To make the
network aware of k and b, we expand and concatenate them as extra channels
to I so that the input becomes I ′ = (I; k; b).

Since a kernel prediction network needs to predict affine kernels to be applied
on I, that kernel can simply be k and b. This only requires one layer at minimum,
namely, the network should select the extra input channel as its predictions.
For the end-to-end U-Net, the task becomes harder. It will have a difficult time
multiplying the values from two channels of its input, as both I and k are in the
input. It can be concluded this cannot be achieved in one layer for end-to-end
U-Net.

The paper takes burst images and produce one final images with high quality.
The kernel is applied on the channel across all input images. Our approach is

4

more general in that we allow each channel in the output image to be generated
with a convolution over all channels in the input image.

[3] is a follow-up to [1] and predicts multiple kernels of various sizes for each
pixel in input images.

2.3 Replacing Mobile Camera ISP with a Single Deep
Learning Model

[4] proposes a novel pyramidal CNN architecture that can replaces camera ISP.
Images are down-sampled to multiple scales and are passed through parallel
residual blocks. The outputs are then gradually up-sampled and merged into
the final output. The model adopts different losses on different scales and is
trained from low levels to higher ones.

3 Method

3.1 Proxy Functions for Editing Software

We experimented with three approaches to building a proxy function P that
maps the input image and parameters to an output images that resembles soft-
ware output.

An end-to-end U-Net. U-Net is widely used for image generation tasks that
originates from another image. It captures both local and global features with
its intermediate layers of varying scale. It also avoids loss of information of
intermediate layers by maintaining copying links. This fits our assumption that
image editing are both content-aware locally and globally. To make the network
aware of the parameter input, we append the input image I with extra channels
filled with input parameters p.

Theoritically, U-Net alone would be sufficient for being a proxy function for
image editing software. However, we will show that this architecture has its
limits in finding the correcet operation based on the image and applying the
operations in an end-to-end fashion. More precisely, we believe that these two
steps can be disentangled which will benefit image generation. This motivates
the following two ideas.

An one-time kernel prediction network. A kernel prediction network [1]
utilizes U-Net in a similar fashion. The output of the U-Net is not considered the
final output. Rather, it is used as the per-pixel kernel and bias to be applied on
the input image. The final output of the architecture is the output of applying
this kernel and bias on the input image. (See Figure 3)

A kernel prediction network disentangles predicting the correct operations to
use and applying such operations on the input image. The kernel and bias being
predicted is the operation to be applied on the input image later. Experiments
show that this is a strong regularization that result in higher performance.

5

Figure 3: End-to-end prediction vs. predicting operations to be applied

A hybrid kernel prediction network. The kernel prediction network from
[1] only predict kernels once. This limits the operation predicted to be an
one-time linear operation. To enable the model to apply arbitrary number of
operations, we introduce a hybrid kernel prediction layer as a building block of
a hybrid kernel prediction network.

It uses a fully connected layer to predict a kernel to be applied in convolution
layers. (See Figure 4.) The input to the connected layer can be the input
parameters or that combined with a neighbourhood in input response map.
The major difference between a hybric kernel prediction layer and a common
convolution layer is that a static kernel is stored in a common convolution layer.
However, the kernel being used is dynamically predicted in a hybrid kernel
prediction layer.

We can freely combine kernel prediction layers and common convolution
layers. The user only need to specify the desired number of channels in the
output.

3.2 Incorporate Parameters Input into CNN Architecture

In the default setting, we append parameters as extra channels to the input im-
age and activation maps at each layer. This is an intuitive approach. However,
if kernels of non-trivial size are used, the same value would appear repeatedly
in their receptive fields. For example, a 3× 3 kernel will see the same value in
the parameter channels 9 times. This introduces unnecessary linear correlation
and redundant parameters in the trained kernels.

To reduce such redundancy, we propose parameter blocks. The block consist
of two convolution layers (Figure 5). The first is a regular 3×3 convolution where
no parameter is appended. It will transform local features into scalar values
while preserving the number of channels. The second layer is a 1×1 convolution

6

Figure 4: A hybrid kernel prediction layer

(a) (b)

Figure 5: Comparison between common CNN blocks and parameter blocks

with parameter appended. This layer allows the parameter to interact with the
local features extracted in the previous layers.

Note that parameter blocks reduce the number of parameters used in the
model. If the block increase the number of channels in the activation map from
C to 2C, a regular 3×3 CNN layer will need 3×3×C×2C = 18C2 parameters.
Our parameter blocks only need 3 × 3 × C × C + 1 × 1 × C × 2C = 11C2

parameters.

4 Dataset

The experiments are based on the Adode 5K dataset[5]. We wrote a python
driver for RawTherapee to take random parameters on a selected set of sliders.
Our dataset are then grouped as triplets: an original image from Adoke 5K, a
set of parameters used in RawTherapee to edit the image, and the output from
RawTherapee that we want our model to predict.

The Adobe 5K dataset has 5,000 images. We apply two set of random

7

Table 1: Parameters used in RawTherapee. Parameters with very strong effect
are selected with normal distribution (N) to reduce the number of over- and
under-exposed images which are rare after editing. All distribution are clipped
by the effective range of the parameters.

Name Min Value Max Value Random Selection

Exposure -1 12 N (2, 2)

Contrast -100 100 N (0, 20)

Highlights 0 100 U(0, 100)

Shadows 0 100 U(0, 100)

selected parameters on each images, resulting in 10,000 triplets. During training,
we take 16 random patches from each triplet to speed up image processing and
handle image size mismatch. See Table 1 for the parameters we used. It is
simple to expand the parameter set and include more parameters desired.

Note that we are unable to use the editing professionals made in the original
dataset. The parameters and software used in the professionals’ editing is un-
known. Also, we need general-purpose proxy functions that works for almost all
combination of parameters. The professionals’ choice may introduce a biased
distribution.

5 Experiments

5.1 Single Layer Experiment

We illustrate the efficiency of kernel prediction model family with a simple task-
fitting a proxy function for an ”affine software”. An affine software is an artificial
image editing software that has only 2 parameters: scale k and bias b. Given an
input image I, this software simply outputs k×I+b where the affine operations
are applied on each pixel.

To include the input parameters in the receptive field of the convolution
kernels, the input to the model is a concatenation of image and parameters
(I, k, b). The parameters are appended as extra channels to the image. Each
parameter value is repeated over the span of the image.

We will compare single-layer kernel prediction network with CNN of 1 and
2 layers. The single-layer kernel prediction will use its only convolution layer to
predict a kernel f1(I, k, b) and a bias f2(I, k, b) to be applied on the input image.
Note that f1 and f2 are affine transformations. The eventual output FKP of
this network is a quadratic function of input image. Meanwhile, 1-layer CNN
is a linear function of fewer parameters. 2-layer CNN is a non-linear function
with more parameters. (See Table 2).

FKP (I, k, b) = f1(I, k, b) ∗ I + f2(I, k, b)

8

Figure 6: Single-layer kernel prediction network can converge faster and better
than CNN of 1 or 2 layers

Table 2: Comparison of single layer models on affine software task (evaluation
set)

Model # of param Function Type L1-loss L2-loss PSNR

1-layer 1×1 CNN 18 Linear 0.07880 0.015738 18.03

2-layer 1×1 CNN 75 Non-linear 0.01910 0.000673 31.71

1-layer KPNet 72 Quadratic 0.00148 0.000041 43.91

Kernel prediction network can converge much faster to a lower loss on this
task during training (See Figure 6). It also provides a much stronger perfor-
mance on validation set in terms of L1- / L2-loss and PSNR value.

Kernel prediction network adopts a two-step approach where it first gener-
ates an operation based on the input image and parameters, and then apply this
operation on the input image. In CNNs, the two steps are combined into one
and the modifications to the image need to happen in-place. While modifying
the image in-place is trivial for the kernel prediction network (you can write
down the formula directly in this experiment), it is not clear that if a two-layer
CNN can trivially fit the same thing. There is an intrinsic difficulty in linear
layers or convolution layers to produce the product of two elements in a vector
or cross channels.

5.2 Dummy Software Experiment

We further illustrate the capability of full-sized kernel prediction network on
artificial datasets. We are not yet using the whole Adobe-5K dataset in this
section. Instead, we use fixed noise image and fixed real images as the base
of image generation. In comparison, we also used random noise images as the

9

Figure 7: The data generation pipeline on fixed noise and real images.

base of image generation. Note that the parameters are still randomly selected.
There are not duplicate triplets in the training or validation set.

Clipped affine software. This experiment uses a dataset generated with
clipped affine software. The output of random affine transformation is clipped
to fit within (0, 1). This simulates real software’s behavior as the pixel values
in the output image never exceed 1 in float format. This also introduces extra
challenges for the models than the experiments with only random affine trans-
formation in the last section. Since the operation is purely pixel-based, the
kernel prediction network only needs to predict one-by-one kernels.

The results can be found in Table 3. The kernel prediction network outper-
forms CNN-based U-Net on all 3 settings by nontrivial margin.

Note that the advantage of kernel prediction network on fixed images is much
higher than those on random images. We believe that this shows that U-Net
tends to overfit to the fixed images despite randomized input parameters. This
also explains why U-Net improved greatly on random noise images. The kernel
prediction network only applies an linear operation (i.e. a convolution) on the
input image, which poses a strong regularization. This helps avoid over-fitting
on restricted dataset.

Quadratic and bilateral filtering software. Our second experiment on
the artificial dataset aims at demonstrating the capability of kernel prediction
network on functions when local operations over multiple neighbouring pixels are
required. The quadratic and bilateral filtering software takes in 2 parameters.
The first parameter p ∈ (0, 1) is used in the quadratic curve (visualized in Figure
9)

O = I + p× I(1− I)

The other two parameters σcolor and σspace (σcolor, σspace ∈ (0, 200)) are

10

Figure 8: Comparison of models on different artificial tasks with affine and
clipping operations.

Table 3: Comparison of U-net and kernel prediction network on artificial dataset
with affine and clipping operations.

Training Mode Model L1-loss L2-loss PSNR

Noise images (fixed) UNet 0.48776 0.36893 4.33

KPNet 1×1 0.03406 0.00353 24.51

Real images (fixed) UNet 0.45510 0.34006 4.68

KPNet 1×1 0.03164 0.00285 25.44

Noise images (random) UNet 0.00846 0.00023 36.24

KPNet 1×1 0.00208 0.00004 43.47

used to parameterize a bilateral filter applied on the output of the quadratic
function. This introduces local operations (5 × 5) to the output image, thus
creating an opportunity to demonstrate kernel prediction network’s ability to
produce convolution kernels larger than 1× 1.

Table 4 shows that kernel prediction network consistently outperform U-Net
on a dataset which involves local operations. We believe this shows that it
is more difficult for U-Net to fit a local operation while the kernel prediction
network has this concept built into its second stage where convolutions are
applied on the input image. The 3 × 3 kernel version also proves useful on
random noise images.

11

Figure 9: The effect of quadratic function.

5.3 Parameter Blocks

Now we will compare U-Net and kernel prediction network on all real images
in our dataset processed dummy software. The software used here are clipped
affine software and quadratic software.

We also include parameter blocks in the comparison. Recall that parame-
ter blocks can theoretically achieve similar effect as simple convolution layers
while using less parameters. It also avoids unnecessary linear correlation in the
receptive field of each convolution kernel (e.g. for each 3 × 3 kernel, the same
parameter appears 9 times).

Table 5 shows that kernel prediction network can consistently outperform U-
Net in all settings by non-trivial margin. Parameter blocks can always improve
the model performance compared to that without parameter blocks. Overall,
the combination of kernel prediction and parameter blocks are the best on each
dataset. Note that parameter blocks actually reduce the number of used pa-
rameters.

5.4 Real Data Experiment

On the real dataset where RawTherapee is used to process Adobe-5K dataset,
kernel prediction network outperforms U-Net in all settings by non-trivial mar-
gin (Table 6). Meanwhile, parameter blocks prove useful as it not only helps
kernel prediction network but also greatly improves U-Net.

6 Conclusion

We demonstrate a series of experiments to fit a proxy function for image editing
software RawTherapee. We show that kernel prediction network outperforms

12

Figure 10: Comparison of models on different artificial tasks with quadratic and
bilateral filtering operations.

U-Net as a proxy function. We also proposed parameter blocks which greatly
improve model performance while using less parameters. Our studies on artifi-
cial dataset suggests that kernel prediction network are better suited for image
editing due to its two-step approach-predicting the operations to be applied on
the input image. This serves as a strong but helpful regularization on model
that improves performance. Overall, the result of our experiments marks a crit-
ical step towards developing a deep learning model for non-destructive transfer
between editing software.

References

[1] B. Mildenhall, J. T. Barron, J. Chen, D. Sharlet, R. Ng, and R. Carroll,
“Burst denoising with kernel prediction networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–
2510, 2018. 2, 4, 5, 6

[2] Y. Hu, H. He, C. Xu, B. Wang, and S. Lin, “Exposure: A white-box
photo post-processing framework,” ACM Transactions on Graphics (TOG),
vol. 37, no. 2, p. 26, 2018. 4, 15

[3] T. Marinč, V. Srinivasan, S. Gül, C. Hellge, and W. Samek, “Multi-kernel
prediction networks for denoising of burst images,” in 2019 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 2404–2408, IEEE, 2019.
5

[4] A. Ignatov, L. Van Gool, and R. Timofte, “Replacing mobile camera isp
with a single deep learning model,” arXiv preprint arXiv:2002.05509, 2020.
5

13

Table 4: Comparison of U-net and kernel prediction network on artificial dataset
with quadratic and bilateral filtering operations.

Training Mode Model L1-loss L2-loss PSNR

UNet 0.12352 0.02209 16.55

Noise images (fixed) KPNet 1×1 0.03195 0.00165 27.81

KPNet 3×3 0.10420 0.02203 16.56

UNet 0.32727 0.15267 8.16

Real images (fixed) KPNet 1×1 0.01424 0.00045 33.37

KPNet 3×3 0.08830 0.01702 17.68

UNet 0.49405 0.26798 5.71

Noise images (random) KPNet 1×1 0.05036 0.00425 23.71

KPNet 3×3 0.04602 0.00353 24.51

[5] V. Bychkovsky, S. Paris, E. Chan, and F. Durand, “Learning photographic
global tonal adjustment with a database of input / output image pairs,”
in The Twenty-Fourth IEEE Conference on Computer Vision and Pattern
Recognition, 2011. 7

7 Supplementary: What is LightRoom/RawTherapee
doing?

This part of experiments aim at understanding the underlying behavior of Light-
Room/RawTherapee. The results provide insights and inspiration on what
needs to be done and what could be done to solve our problem. We fitted
some curve and model, but they are not necessarily part of our final solution.

7.1 What happens in those sliders

If the behavior of sliders in editing software are well-defined, we might even
be able to produce close-form transformation from one software to another.
However, we will reveal in this chapter that commercial editing software can be
mysterious and convoluted:

• They may not reveal their algorithm (e.g. LightRoom is not open-sourced)

• Operations may be content-aware/semantic-dependent, or even just a lit-
tle bit harder than naive algorithm so that it is impossible to reverse-
engineer. (e.g. Adobe revealed that their operations are an ”interpolation
of different channel”)

14

Figure 11: The effectiveness of Parameter Blocks

Table 5: Comparison of U-net and kernel prediction network on real dataset
with quadratic and bilateral filtering operations.

Software Model ParamBlock L1-loss L2-loss PSNR

Clipped Affine Software

KPNet yes 0.00392 0.000080 40.93

KPNet no 0.00432 0.000115 39.37

UNet yes 0.00762 0.000181 37.41

UNet no 0.00676 0.000160 37.95

Quadratic Software

KPNet yes 0.00102 0.000004 53.60

KPNet no 0.00166 0.000009 50.21

UNet yes 0.00787 0.000166 37.78

UNet no 0.00697 0.000131 38.81

• Software use image processing pipeline. (e.g. fixing pixel intensity after
operations) This increases the entanglement between operations.

LightRoom is not an open-source software. So it’s algorithms remain myste-
rious. We investigated some sliders of LightRoom: exposure, contrast, highlights
shadow and white. Some of them behave as expected, others, not quite so. We
will start with good-looking ones to the opposite ones.

Contrast. The white-box exposure paper [2] defines contrast as such

Lum = R ∗ 0.27 +G ∗ 0.67 +B ∗ 0.06 (1)

Lumenhanced = 0.5 ∗ (1− cos(π ∗ Lum)) (2)

15

Figure 12: The performance of kernel prediction network on real images and
RawTherapee.

Table 6: Comparison of U-net and kernel prediction network on real dataset on
RawTherapee dataset.

Model ParamBlock L1-loss L2-loss PSNR

KPNet3× 3 yes 0.0198 0.00117 29.32

KPNet3× 3 no 0.0224 0.00135 28.67

UNet yes 0.0270 0.00190 27.18

UNet no 0.0432 0.00516 22.86

Imageenhanced = Image ∗ (Lumenhanced/(Lum+ 1e− 6)) (3)

Output = (1− p) ∗ Image+ p ∗ Imageenhanced (4)

where p is half of the contrast slider value. This turns out to be reasonably
close to skimage.contrast or LightRoom 13. Note that LightRoom histogram
is smoother, unlike the naive implementation. This is intuitive while it also
suggests that LR processes images in a pipeline where there could be multiple
correlated steps. In general, this is an operation that we can almost understand.

Highlights. It is observed that in LR, pixel intensity in each channel increased
linearly when highlights changes (see Figure 14a). This can also be interpreted
as the linear combination scheme as above - editing algorithm defines the result
when slider is moved to the end, and the output is an linear combination of
input image and the output of the algorithm. Different original value leads to

16

Figure 13: Comparison between LightRoom result and our re-implementation
of contrast algo

different slope. Generally, higher slope is given to pixel with higher original value
as the algorithm is supposed to highlight brighter pixels. We can also spot a few
outliers. Note that this is not caused by channel-specific algorithm because the
red trace in the middle surpass some other red trace at when highlight reaches
25. This means highlight operation swap the order of pixel in the same
channel.

To illustrate the distribution of slope applied on each pixel, figure 14 shows
the relation between slope (y axis) and original pixel intensity (x axis). There
is a non-trivial cluster of outliers that is picked by LightRoom to have very high
slope despite their original value. This leads to a lot of swap-of-order in pixel
intensity.

Exposure. The ”exposure” operation of LightRoom is the most studied op-
eration till now - we tried to reverse-engineer and simulate it. The textbook
formula is O = I × (2exposure) where the fact is obviously different, which will
not be smooth where LR always generate smooth histogram and seldom collapse
to maximum/minimum value when exposure is set to extreme.

Fit the curve with general logistic function. The ”curve of exposure”,
a.k.a. response in pixel intensity when exposure slider is moved, looks like
logistic functions (see figure 15a). This function should be parameterized by

17

(a) Effect of highlight slider on each pixel (b) Slope on different pixel

Figure 14: The effect of the highlight operation is linear on each pixel.

exposure value x and original pixel intensity v. By assuming it is some logistic
function, we can fit it with Bayesian optimization given some samples. The
result is

ExposureCurve(x, v) =
1

1 + (2.59− 2.456v)2−x

with an average difference of 0.1 (out of 1) on each element of the curve. This
optimization is reliable as the loss shows a shallow low plateau in figure 15b.
This formula can be further improved by introducing more terms (inspired by
complexity of exposure in RawTherapee). It is not hard to fit some curve with
reasonable loss, but there is no good explanation or intuition on explaining them.
The function below gives a loss of 0.005 and select c1 = 0.9, c2 > 3, c3 = −0.161
as an optimal after a few attempts.

f =
1

1 + (k1v + b)e−x

g = v2k2x

output = c1f + c2g + c3

At the same time, we learnt that exposure is not a injective mapping: same
pixel intensity ends up differently (confirmed by Adobe). 15c illustrates the
mapping from original pixel intensity (x axis) and output pixel intensity (y
axis) when exposure is set to 1.

Fitting the curve using DNN. Out of curiosity, we tried to use DNN to
fit this curve. This experiment assume the curve is affected only by the three
channel of a single pixel, i.e. it is entirely local. There is only one input: original
pixel intensity of each channel, one pixel at a time. The network is supposed to

18

output curve of exposure for RGB channel separately. The naive dataset (1M
rows of data) are some curves of exposure extracted from the same image, so
this is not a generalized result. 15d shows some sample output.

7.2 RawTherapee’s teaching

RawTherapee is open-sourced so we can watch how it handles different oper-
ations. We mostly studied how RawTherapee applies exposure on pictures.
To make things more complex, RawTherapee introduces highlight compression,
another slider, which works closely with exposure. (That being said, we don’t

(a) Effect of exposure of pixel intensity
(grouped by original value) / a.k.a. ex-
posure curve

(b) Loss heatmap of Bayesian optimization
on finding Logistic exposure curve

(c) Exposure is not an injective mapping
in different channels

(d) Sample result by using DNN to fit ex-
posure curve for single pixel

Figure 15: Exposure looks like logistic function so we can fit it though we know
it is not an injective mapping

19

know how LightRoom sliders are entangled.) Some findings are

1. If highlight compression is 0, LightRoom are happy to use the textbook
formula. If anything overflow (> 255), it just clips the value by 65535.

2. If highlight is not 0, it uses ”the first curve”. If anything overflow, it
uses ”the second curve”. We can mock the curve well, at least for some
parameters we have experimented with.

3. After applying the curve, there are other undiscovered process to clip the
image.

4. It is hard to get intermediate result.

5. RawTherapee seems to be working on single pixel, but it is also observed
through debugging tools that image size is in constant change although
there is only one image in the workspace. Beside generating thumbnail,
RawTherapee may also be scaling images or working on image patches.

The formula for exposure we learned from RawTherapee is (other parameters
are removed for simplicity){

p
x log(1 + pvx2x), x > 0

v2x, x < 0
(5)

That being said, RawTherapee result are significantly different from Light-
Room, as mentioned in our problem statement.

20

