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Figure 1: Results of varying supervision for the image-to-image object translation problem under significant shape change

(giraffes→sheep). Less precise supervision is cheaper to acquire and still allows for acceptable image translation results.

Abstract

Current unsupervised image-to-image translation tech-

niques have proven to struggle when faced with domains

exhibiting significant shape changes. Recently proposed

approaches enable this property but require instance-level

segmentations which limit their domain applicability due to

the cost of acquiring this supervision. We explore and an-

alyze the effect of different forms of supervised masks for

image-to-image translation under significant shape change.

We show qualitatively and quantitatively that imprecise su-

pervisions can produce appealing results, sometimes com-

parable to the full-supervision case.
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2. Introduction

Data driven generative models like generative adversar-

ial networks (GANs) [11] enable exciting new possibilities

for image editing via powerful higher-level controls. We

consider the image-to-image translation problem of map-

ping object appearance from one class to another when

the objects have different shapes, e.g., turning giraffes into

sheep (Figure 1). Like most data-driven methods, the avail-

ability of training data is critical to the practical success of

these approaches. Networks like InstaGAN [2] and Con-

trastGAN [21] require pixel-wise mask segmentation su-
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pervision but produce relatively high-quality results; how-

ever, such supervision may not be available and can be ex-

pensive to acquire, making unsupervised and imprecisely-

supervised systems more appealing. In general, there is

a spectrum of possible supervision, and discovering the

‘sweet spot’ would save time in supervision collection.

We conduct an experimental evaluation and analysis of

image translation under shape change approaches across

this spectrum of supervision:

1. Human-labeled pixel-wise masks (InstaGAN [2]

style),

2. Ground-truth bounding boxes with automatically-

refined boundaries (via Deep GrabCut [33] style),

3. Cosegmentation with another image of the same ob-

ject (Chen et al. [5] style),

4. Ground-truth bounding boxes, and

5. No supervision (CycleGAN [37] style).

We evaluate a set of different loss terms with respect to

these supervisions: relativistic discriminators, multi-scale

discriminators, feature matching loss, cyclic mask loss,

shared background context loss, and mask adversarial loss

without RGB adversarial loss.

From this analysis, we present an improved architecture

and loss to increase result quality over the state of the art,

plus discuss approaches which did not mark a useful point

on the spectrum (e.g., unsupervised mask recovery (UA-

GAN [25] style)). The take-away conclusion is that exact

object masks are not required; we can generate reasonable

quality results with automatically-refined bounding box su-

pervision, and in certain object classes even with only an

additional second image for cosegmentation.

Code and data used in our experiments will be made

available to the research community.

3. Related Work

Many works in computer vision learn segmentation

masks; as such, we will present a sample of current works

on deep-learning-based unsupervised segmentation, and

then present works on image-to-image translation with re-

spect to segmentation supervision.

Unsupervised segmentation. Xia et al. [32] (W-Net) gen-

erate unsupervised instance-level image segmentations. A

U-Net encoder produces a dense classification map, and a

binary mask is computed with normalized cuts. Next, a U-

Net decoder network reconstructs the input from the gen-

erated segmentation. Training occurs by minimizing a re-

construction loss, along with minimizing the difference be-

tween the classification and the normalized cut mask.

Cosegmentation. Given a set of images depicting the same

object, the aim of cosegmentation is to find a mask per im-

age covering the common content. Hsu et al. [13] recover

cosegmentation masks in an unsupervised manner by en-

forcing for each pair of images that: 1) foreground feature

representations are close with respect to the L2 norm, and

2) foreground and background feature representations in the

same image should be distinct. Chen et al. [5] learn ob-

ject cosegmentation in a supervised manner. To learn which

feature map channels are useful across both images, they

condition one image on a channel-wise weighting of each

feature map from the other image. When trained on PAS-

CAL VOC, this network generalizes well to unseen classes.

We use Chen et al.’s approach to create sgementaton mask

inputs, and consider it an imprecise form of supervision as

it has not been trained on the datasets which we use (or even

the object classes, except ‘sheep’).

Unpaired object transfiguration. Zhu et al. [37] (Cycle-

GAN) and Kim et al. [18] (DiscoGAN) both demonstrated

the ability to swap the texture of two objects with similar

shape, such as transforming horses into zebras. These types

of cyclic models can also translate between two domains of

differing shapes and poses [10]. However, they struggle to

deal with both small objects and domains that have different

distributions of background texture.

Several recent papers [6, 23, 25, 34, 36] have proposed

augmenting these networks with unsupervised attention

mechanisms to help separate foreground and background

regions. For instance, Yang et al. [35] (LR-GAN) decom-

pose the regions with a two-component spatial-transformer

generator: one component generates the background, and

the other is a recurrent neural network (RNN) which re-

peatedly ‘pastes’ created foregrounds and their masks into

the image. While promising, all these techniques struggle

when transforming between domains of differing shape.

Liang et al. [21] (ContrastGAN) and Anonymous et

al. [2] (InstaGAN) have proposed using binary mask seg-

mentations to simplify the complex task of localizing ob-

jects and segmenting them from the background. While

these approaches are effective, doing so requires a dataset

of pixel-level segmentation which are expensive to label.

This limits their use for novel categories of objects.

We propose a novel framework which builds upon the

InstaGAN architecture, but is designed for mask-level su-

pervision, rather than instance-level. We propose a number

of new losses, which allow the network to use segmenta-

tions of varying accuracy as supervision. We demonstrate

that even low quality segmentations can dramatically im-

prove upon CycleGAN’s unsupervised results.

4. Method

Suppose that we are given databases S and T of im-

ages of two object classes, each with varying object pose,

object number, background, etc. sampled from the respec-

tive domains S and T . Further, assume that each source
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Figure 2: Architecture diagram for our system. The translation network cycles from domains S to T on the right-hand

side, and from domains T to S on the left-hand side. Both domain discriminators Ds, Dt are mutually trained with the

generators. All loss functions described in Section 4.1 are shown as light grey boxes. This architecture is highly motivated

by InstaGAN [2], with added losses and without per-instance domain mapping.

image s ∈ S is provided with an object segmentation

mask sm ∈ Sm. Our goal is to learn a transfer function

f : S × Sm → T which translates objects in a source im-

age s into objects in the target domain T in an output image

t
′ := f(s, sm). Figure 2 visualizes our approach; please

start at the red arrow in the top right.

We may obtain t
′ using an auto-encoder; however, we

wish to incorporate information from the segmentation

mask in the decoding process. As in InstaGAN [2], we en-

code both s and sm: hs = encS(s) and hsm
= encSM

(sm).
Then, we concatenate these feature representations channel-

wise and feed them: 1) into a decoder decT which gives

us t
′, and 2) into a mask decoder decTM

which gives us

t
′
m

. Formally this is expressed via t
′ = GS(hs, hsm

), and

t
′
m

= GSM
(hs, hms

).

To constrain our final results to look realistic, we use

an adversarial discriminator DS which distinguishes be-

tween real pairs (s, sm) and fake pairs (s′, s′m), where s
′

is the generated image from t ∈ T (likewise for s
′
m

).

The RGB and mask inputs are fed to the discriminator

by first separately encoding them: ds = encDS
(s) and

dsm = encDSM
(sm). Then, similar to the generation part,

we concatenate these feature representations channel-wise

and feed them into a discriminator: DS(ds, dsm) gives us

the probability of the pair (s, sm) being real.

In sum, we train an separate encoders for S , SM, T ,

TM, separate decoders for S , SM, T , TM, and separate

discriminator encoders for DS , DSM
, DT , DTM

. The sys-

tem is joined cyclically such that all components involved

in translations are trained simultaneously (Figure 2). Please

see our supplemental material for details on the encoder and

decoder architectures.

4.1. Loss Terms

GAN loss. We define our GAN loss following the com-

parative average (‘relativistic’) [16] variant of least squares

GAN (LSGAN) [24], which has been shown to give stable

results for image-to-image translation tasks [14, 15, 31, 37]:

LGAN(ΘD,ΘS ,ΘT ) =(DS(ds, dsm)− 1)2+

(DT (dt, dtm)− 1)2+

DS(dt′ , dt′
m
)2 +DT (ds′ , ds′

m
)2,

(1)

where ΘD contains the parameters of DS , DT , DSM
, DTM

,

and ΘS and ΘT contain parameters of the encoding and

decoding parts in S , SM and T , TM respectively.

Our discriminators are also multi-scale, which has

demonstrated better results on these tasks [10, 14, 20].

Cyclic loss. Unpaired image translation is an under-

constrained problem even with LGAN . To further constrain

it, we adopt the Zhu et al. [37] cyclic consistency which

helps conserve characteristics of the input image (e.g., the

pose of the object). For this purpose, we could use a cycle

energy loss on both the input images and their masks. This
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encourages an image mapped twice (from source to target

to source) to be identical to the original image:

Lcyc(ΘS ,ΘT ) = ‖s− s
′′‖1 + ‖t− t

′′‖1, (2)

Lcycm(ΘS ,ΘT ) = ‖sm − s
′′
m
‖1 + ‖tm − t

′′
m
‖1, (3)

where s
′′ = GT (hs′ , hs′

m
), with hs′ = ET (s

′) and hs′
m

=
ETM

(s′
m
). Likewise for s′′

m
.

While cyclic loss both aids the network in preventing

mode collapse and in preserving attributes across domains,

the term has limitations. The bijective constraint can hinder

shape change [10, 37] and texture transfer. Small irrelevant

details must be preserved to perfectly reconstruct the origi-

nal image. Instead, we focus on reconstructing a much sim-

pler task: the original segmentation. In our results, we will

show empirically that minimizing only Lcycm is enough to

achieve the goal initially desired by cycle energies.

We find that eliminating the RGB reconstruction loss

improves the quality of generated images (Table 3). The

remaining loss terms provide adequate stability to the net-

work to prevent mode collapse. Furthermore, unlike previ-

ous methods which do not require cyclic reconstruction [3],

our method can handle shape change.

Identity loss. Furthermore, our approach is made more

robust via enforcing an identity loss which encourages the

generated images to be identical to the inputs in the case

where source and target domains are the same:

Lid(ΘS ,ΘT ) =‖s−GT (hs, hsm
)‖1+

‖t−GS(ht, htm
)‖1, (4)

Lidm
(ΘS ,ΘT ) =‖sm −GTM

(hs, hsm
)‖1+

‖tm −GSM
(ht, htm

)‖1. (5)

Context loss. Jointly optimizing the previous three losses

enables shape change for image-to-image translation; how-

ever, there is no mechanism encouraging only foreground

objects of interest to be altered, e.g., in the giraffe to sheep

problem, one should be able to change a giraffe to the corre-

sponding sheep without altering the background. One way

to achieve such property is to enforce the initial background

pixels in s and given by sm not to change in t
′. However,

doing so would be in opposition with our initial motivation

of performing significant shape changes across domains as,

in that scenario, pixels which were initially in the back-

ground of s could end up being in the foreground of t
′.

For this reason, we instead enforce the intersection of back-

grounds in sm and t
′
m

not to change, which allows for shape

change while encouraging the background to be conserved

as in InstaGAN

Lctx(ΘS ,ΘT ) =‖(s− t
′)⊙ w(sm, t′

m
)‖1+

‖(t− s
′)⊙ w(tm, s′m)‖1, (6)

where ⊙ represents Hadamard product and w(sm, t′
m
) =

1 − max(s̃m, t̃′
m
) with s̃m being the binary, rounded ver-

sion of the initial mask. Furthermore, since this constraint

operates as a soft constraint, the network may make small

changes outside the segmentation that enhance the plausi-

bility of the image. For instance, filling gaps in between

segmentation or slightly changing the lighting tone or veg-

etation in an image.

Feature matching loss. Finally, we define a feature

matching loss which we find to encourage sharper and more

realistic images. This loss encourages feature representa-

tions computed from {s′i}
Nt

i=1
to be close in terms of the L2

norm with respect to the features computed from {si}
Ns

i=1
,

where Ns and Nt are the number of datapoints for domains

S and T respectively. Such feature representations are ex-

tracted in this case from DS .

This loss has been shown to help produce good generated

images [28, 31, 10, 30]. The intuitive reason why this works

is that we wish neurons in the source domain discriminator

to be activated in the same way between generated source

images and real ones. This ends up reinforcing the realism

of the generator, GS in this case.

Formally, we express this via the following loss:

LFM (ΘS ,ΘT ) =
L−1∑

l=1

Es∼B(‖D
l
S(s

′)−Dl
S(s)‖

2

2
)+

Et∼B(‖D
l
T (t

′)−Dl
T (t)‖

2

2
), (7)

where L is the number of layers in the discriminator archi-

tecture, B is the mini-batch, and Dl is the feature activation

of the corresponding discriminator at layer l. Moreover,

since we use a small batch size, directly enforcing Eq. 7

may be less valid for a given pair of s′i and si. We introduce

the novel contribution of maintaining an exponential mov-

ing average for feature representations of the real images

and use them instead in Eq. 7.

4.2. Improvements over Previous Works

Our work is inspired by recent works such as Contrast-

GAN [21] and InstaGAN [2] which augment CycleGAN

with a segmentation map. We make several important

changes, each of which meaningfully improves the trans-

lation quality as we show in the ablation study (Sec. 5.1).

For clarity, we list all changes below.

Additions. Over losses in InstaGAN, we add relativistic

average discriminators [16] via least squares GAN [24],

multi-scale discriminators, and feature matching loss. We

also maintain an exponential moving average over the fea-

ture match loss to learn the feature statistics of real images

across the entire dataset despite the small minibatch size.
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Mask supervision Giraffe Sheep Bear Elephant Fire Hydrant Toilet

No supervision 0.000 0.000 0.000 0.000 0.000 0.000

Bounding box (GT) 0.381 0.612 0.643 0.638 0.602 0.644

Cosegmentation 0.467 0.570 0.663 0.616 0.077 0.032

DeepGrabCut+BBox 0.647 0.665 0.824 0.768 0.727 0.726

Full 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: To evaluate the accuracy of various segmentation

methods we compute the IOU across several categories.

Subtractions. We remove the ‘instance’ from InstaGAN:

We only provide one mask per image which contains the

intersection of all per-instance masks, instead of one mask

per instance in the image framed as recursive segmentation.

This reduces complexity and avoids the need for expen-

sive explicit instance segmentation. We show that this still

achieves high quality results. Further, we do not enforce a

cyclic loss on the RGB reconstruction and only on the mask

reconstruction, which again saves computation.

5. Experiments

Datasets and supervision. We use the Microsoft CoCo

dataset [22] as it includes human-labeled binary segmen-

tation masks for objects. We select pairs of object classes

to translate between (number of training images): giraffe

(2647), sheep (1594), bear (1009), elephant (2232), airplane

(3083), bird (3362), toilet (3502), fire hydrant (1797).

From the human-labeled masks, we derive bounding

boxes as an imprecise form of supervision. Then, given the

bounding box, we also generate an intermediate-precision

supervision. There are several papers that attempt to gener-

ate segmentations of objects given bounding boxes, such as

Grabcut [26], DeepGrabcut [33] and Simply Does It [17].

We perform Deep Grabcut [33] inside the bounding box to

improve the supervision.

Finally, given just class label information (which is im-

plicit in our choices of S and T , we can derive segmenta-

tions using modern cosegmentation techniques as a form of

imprecise supervision. We use the framework from Chen

et al. [5] pretrained on Pascal VOC 2012 [9] to derive seg-

mentations from the MS CoCo dataset. We randomly se-

lect pairs of images from the same class. If an image has

an empty mask through any of these supervision generation

processes, then we reject it from training.

Table 1 shows IOU scores with respect to manual im-

age segmentation labels for some of the classes used in our

experiments. We can see high amounts of inter-class vari-

ability, e.g., giraffes are non-rectangular, and so are poorly

approximated by bounding boxes.

Metric. We use the recently-proposed Kernel Inception

Distance (KID) [4] as a measure of image quality, as it has

been shown to outperform the previous most common used

Figure 3: Correlation between IOU and KID scores. IOU is

computed with respect to manually labeled segments, and is

a rough indicator of segmentation quality. We can see here

that there is a modest trend towards improved KID (more

realistic images), as segmentation quality improves.

metric, FID [12], especially for smaller sets. KID works

by computing the squared Maximum Mean Discrepancy

(MMD) between the feature representations of two sets of

images, in our case real and generated images from the tar-

get domain. Feature representations for each set are ex-

tracted from the last hidden layer of the inception architec-

ture [29] pretrained on ImageNet [8].

5.1. Results

We show results for differing levels of supervision on

image-to-image translation in Table 2. The top grouping

of methods are scores for the full-supervision case where

segmentation masks are provided. The second group con-

tains scores for less precise supervised approaches using

only bounding box annotations and automatically inferred

masks. The third group contains models where ground-

truth segmentation masks from a different dataset (PASCAL

VOC 2012 [9]) have been used to pre-train a cosegmenta-

tion network [5] which then provides us with training masks

for our experiments. Finally, the last part contains models

where no supervision is given (i.e., only RGB images from

different domains are given as input).

Overall fully supervised models using feature matching

are the most competitive. We see a trend in the correlation

between KID and IOU scores (Figure 3). The type of mask

used to be chosen based on desired result quality and dataset

cost requirements. Fully unsupervised approaches such as

CycleGAN perform worst on average.

Ablation study. We evaluate the role of each improve-

ment to our InstaGAN-motivated architecture (Fig. 4). We

find that augmenting with a relativistic discriminator helps

5



Table 2: Kernel Inception Distance×100±std×100. for different supervision levels (top to bottom is most to least). Lower is

better. Abbreviations: (G)iraffe, (S)heep, (B)ear, (E)lephant, (F )ire hydrant, (T )oilet.

Model Object Mask Supervision G → S S → G B → E E → B F → T T → F

Proposed Human per-pixel 2.95 ± 0.34 3.07 ± 0.28 2.92 ± 0.09 4.58 ± 0.28 5.07 ± 0.43 5.17 ± 0.17

Proposed Cosegmentation shape prior 2.86 ± 0.21 3.55 ± 0.13 3.32 ± 0.15 4.47 ± 0.39 10.66 ± 0.61 6.63 ± 0.29

Proposed DeepGrabCut from human bounding box 3.00 ± 0.15 3.03 ± 0.14 2.52 ± 0.09 4.45 ± 0.41 6.02 ± 0.46 5.05 ± 0.19

Proposed GrabCut from human bounding box 3.56 ± 0.20 3.77 ± 0.10 3.10 ± 0.28 4.77 ± 0.26 7.85 ± 0.57 5.82 ± 0.28

Proposed Human bounding box 3.13 ± 0.21 4.73 ± 0.14 3.37 ± 0.27 6.62 ± 0.28 6.46 ± 0.46 5.93 ± 0.16

CycleGAN None 4.39 ± 0.29 4.60 ± 0.33 7.54 ± 0.58 10.33 ± 0.52 10.39 ± 0.63 7.03 ± 0.25

Table 3: Kernel Inception Distance×100±std×100 for the

different ablation studies conducted. Lower is better. Ab-

breviations: (G)iraffe, (S)heep.

Model G → S S → G

InstaGAN 3.32 ± 0.15 3.08 ± 0.30

+ Relativistic Discriminator 3.15 ± 0.16 3.18 ± 0.11

+ Multiscale Discriminator 3.22 ± 0.64 3.00 ± 0.30

− RGB Cyclic Loss 3.02 ± 0.20 3.35 ± 0.13

+ Feature Match Loss 3.30 ± 0.51 3.25 ± 0.13

+ Feature Match Loss with EMA average 2.95 ± 0.34 3.07 ± 0.28

improve the shape change of generated images e.g., gener-

ated giraffes look more realistic (3rd column in the right part

of Fig. 4). We further find that removing the cycle energy on

the RGB images produces comparable results, which indi-

cates that the weaker cycle energy form which acts only on

the masks is enough to conserve characteristic of the origi-

nal image. Finally, we find that adding multiscale discrimi-

nators and an exponentially averaged feature matching loss

further improves the performance. Our qualitative findings

are supported quantitatively by KID scores (Table 3).

6. Discussion

We posit that ground truth pixel-wise mask segmenta-

tions provide two critical pieces of information to the net-

work: localization of the object(s) in the image, and disen-

tanglement of the (textureless) shape characteristics of the

object. Bounding boxes provide the location of objects but

do not reveal any information about their shape. Rectangles

possess poor IOU with the ground truth segmentations of

animals such as giraffes (Table 1).

The lower result quality from bounding boxes demon-

strate that the shape hints provided by richer segmentation

are important. However, lower quality masks generated

from Deep GrabCut on bounding boxes [33] still produce

good results both quantitatively and qualitatively (Fig. 6).

Full supervision cyclic failure. In our supplemental, we

demonstrate the bird to airplane dataset. In this case, Deep

GrabCut outperforms the fully supervised masks; even Cy-

cleGAN performs well. The human-provided segmenta-

tions hurt network performance both qualitatively and in

terms of KID score. We posit that this is because of im-

ages containing flocks of birds in the distance, which pro-

duce many small clustered mask regions which are hard to

translate or reproduce cyclically. For these regions, that im-

precise supervision is less specific is beneficial.

Object complexities. Small objects in general can be

difficult to segment effectively (both for human labelers

and for automatic or semi-automatic methods). Localizing

small and distant objects such as kitchenware and utensils

in an unsupervised manner is difficult and requires at least

some mask supervision. Furthermore, small objects that oc-

cur with common objects, such as bottles with humans, can

also be unrecognized by cosegmentation approaches.

Additionally, approaches can struggle even in the super-

vised case when two classes appear in the same image, e.g.,

a bus-to-car translation where images of buses often also

contain a car. Therefore, the generator can learn the triv-

ial solution which switches car and bus segmentation la-

bels; this satisfies the bijective requirement by exploiting

the RGB input to re-segment the object.

Backgrounds. Controlling background differences re-

mains a challenging problem: the context loss constraint on

background changes must be weighted with other losses,

which allows the system some freedom. This can be desir-

able when modifying the background yields a more believ-

able image, such as in changing content close to the mask

to better cope with object shape changes. These cases tend

to rely on the backgrounds already having at least some

similarity, e.g., in animal conversions with natural land-

scape backgrounds. However, it can also yield poor results

when backgrounds differ more. Our fire hydrant/toilet ex-

amples show generally higher KID scores as backgrounds

from street scenes merge into bathrooms (Fig. 6, bottom).

Increasing the context loss significantly can slow down or

halt training as the discriminator becomes increasingly re-

liant on the background patches which the generator is un-

able to change. Future work may seek to find a better soft
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Input Proposed + Rel. Disc. - RGB cyc. + MS Disc. + FM avg. Input Proposed + Rel. Disc. - RGB cyc. + MS Disc. + FM avg.

Figure 4: Qualitative results for an ablation of our losses, where we add a relativistic discriminator (+ Rel. Disc.), multiscale

discriminator (+ MS Disc.), feature matching EMA average (+ FM avg.), and subtract an RGB cyclic loss (- RGB cyc.). Left:

Giraffe → Sheep. Right: Sheep → Giraffe.

Input Full BBox DeepGC BB+DeepGC Coseg Input Full BBox DeepGC BB+DeepGC Coseg

Figure 5: Examples for different supervision and weak supervisions used for the class Giraffe, Sheep, Bear, and Elephant.

attention mechanism than concatenation.

6.1. Additional experiments

GrabCut. We experimented with GrabCut [26] vs. Deep

GrabCut, which presents a classic speed/performance trade-

off. While less computationally expensive, GrabCut pro-

duced worse KID score in almost all cases compared to

Deep GrabCut [33], except for ‘elephant to bear’.

Explicit segmentation discriminator. We also tried

adding an additional discriminator which only looked at the

segmentation channel. While it did improve mask quality,

it did so at the expense of RGB quality. Furthermore, it per-

formed worse with imprecise supervised masks and had a

habit of adding additional instances of the animal.

CycleGAN with mask concatenated. Concatenating the

segmentation masks to the RGB channels in CycleGAN led

the network to produce all-black masks. By focusing only

on the RGB channels, CycleGAN minimized the L1 cyclic

loss. Since most of the background mask region is black, a

trivial minimizer makes the entire mask image black.

Unsupervised attention. Using automatically-learned at-

tention maps [25, 6] turned out not to be robust to shape

change. These algorithms constrain the generator to only

modify attended regions in the image; however, if the source

and target domains are not of the same shape, such an as-

sumption can be constraining. For example, it is challeng-

ing to transform a sheep to a giraffe by only modifying pix-

els covered by the sheep. Consequently, these networks end

up attending to the entire image to converge, which is simi-

7
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Figure 6: Influence of different levels of supervision on image-to-image translation under significant shape change.

lar to the CycleGAN setting.

7. Future Work

While we have shown that imprecise supervision can be

helpful for challenging image-to-image translation tasks,

more work is needed to enable robust shape change in a

fully unsupervised manner (Fig. 6; CycleGAN struggles).

Recent work has made strides enabling unsupervised shape

change [10]; however, they still alter the background signif-

icantly. Unsupervised attention-based approaches success-

fully conserve the background [25], but can only deal with

limited shape change. Future work should combine these

properties to enable instance-aware image translation while

8



simultaneously disentangling the background.

Moreover, our approach is agnostic to the precision,

type, and creation method of the segmentation masks. Fu-

ture work may achieve higher performance by more closely

integrating these differences into the model. We could also

train on several classes at once as per other recent works

[1, 7, 14, 19, 21, 27].
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Table 1: Encoding architecture for the generator. ‘Conv.’ is

convolutional layer; ‘Res.’ is residual block; ‘InstNorm’ is

instance normalization; ‘Act.’ is activation function.

Layer #Filters Size Stride InstNorm Act.

Conv. 64 7× 7 1 X ReLU

Conv. 128 3× 3 2 X ReLU

Conv. 256 3× 3 2 X ReLU

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

Res. 256 3× 3 1 X Ident

1. Network Architectures

Our networks are constructed from similar components

to Cycle GAN [3]. The encoder consists of three convo-

lutional downsampling layers and nine residual blocks (Ta-

ble 1). The decoding architecture of the generator is given

by Table 3.

The discriminator also consists of a similar encoder-

decoder structure. The encoding architecture is in this case

give in Table 4, while the decoder is given in Table 5.

2. Systems

All experiments were run using either two NVidia 1080

GPUs or a single NVidia 1080 Ti GPU, written in Tensor-

flow [1] using the Tensorpack [2] library. We will release

our code and data as open source.

Table 2: Residual block architecture.

Layer #Filters Size Stride InstNorm Act.

Conv. 256 3× 3 1 X ReLU

Conv. 256 3× 3 1 X Ident

Table 3: Decoding architecture for the generator. ‘Deconv.’

refers to a transposed convolution. Blue row applies when

decoding RGB, Orange row applies when decoding a mask.

Layer #Filters Size Stride InstNorm Act.

Deconv. 128 3× 3 2 X ReLU

Deconv. 64 3× 3 2 X ReLU

Conv. 3 7× 7 2 - Tanh

Conv. 1 7× 7 2 - Tanh

Table 4: Encoding architecture for the Discriminators.

‘LReLU’ denotes Leaky ReLU with a factor of 0.2.

Layer #Filters Size Stride InstNorm Act.

Conv. 64 4× 4 2 - LReLU

Conv. 128 4× 4 2 X ReLU

Conv. 256 4× 4 2 X ReLU

Table 5: Decoding architecture for the Discriminators.

Layer #Filters Size Stride InstNorm Act.

Conv. 512 4× 4 1 X ReLU

Conv. 1 4× 4 1 - Ident

1



3. Additional results

We show qualitative results on the Airplane and Bird

dataset for their bidirectional translations (Figure 1) as well

as Horse to Zebra dataset (Figure 2); plus additional quali-

tative results for the datasets used in the main paper (Giraffe

and Sheep—Figure 3; Bear and Elephant—Figure 4; Toilet

and Fire Hydrant—Figure 5). All images shown are drawn

from the test dataset; we sample images at different object

scales and with different object configurations to provide a

representation of overall result quality. We also reject im-

ages with close-ups, e.g., where we see only the wing of a

plane or only the face of a sheep.

For the special case of Fire Hydrant to Toilet (Fig-

ure 5), we notice that the background endures severe

changes, moreover the generated foreground does not gen-

erally blend correctly with the background. This is because

these specific classes (Fire Hydrant and Toilet) are gener-

ally present in completely different scenes: the first one is

on the street while the second one is in a restroom. Such

environment discrepancy obliges the generator to heavily

alter the background in order to convince the corresponding

discriminator.
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Figure 1: Additional results. (Left): Airplane → Bird, (Right): Bird → Airplane.
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Input Full BBox +DeepGC Coseg CycleGAN

Figure 2: Additional results. (Left): Horse → Zebra, (Right): Zebra → Horse.
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Figure 3: Additional results. (Left): Giraffe → Sheep, (Right): Sheep → Giraffe.
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Figure 4: Additional results. (Left): Bear → Elephant, (Right): Elephant → Bear.
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Figure 5: Additional results. (Left): Fire hydrant → Toilet, (Right): Toilet → Fire hydrant.
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