YURT Project Document

Michael Murphy
May 15, 2016

1 Abstract

My semester-long research project in the YURT was split into two parts. For the first part, I worked
on developing MinVR2, a virtual reality framework that was to act as an interface between software
applications and hardware devices. For the second part, I worked with VRG3D, an existing virtual
reality framework, to develop a Shadertoy visualizer. By May, I had learned how YURT-like systems
operate and the problems MinVR2 would need to solve in order to overcome the shortcomings of its
predecessors, and I had developed a Shadertoy visualizer in VRG3D as a lasting VR artifact.

2 Overview

My original goal for the semester was to transform the Moo Martians game I had written for CSCI-1972
3-D Game Engines into a virtual reality application. This transformation would entail refactoring an
existing “flat” graphical program into a VR program, where player interaction with everything from
options menus to UFO piloting would be fundamentally different. However, when I learned about
alternate projects in the YURT), I reconsidered my initial plan. The project that stood out to me was
MinVR2, a framework that was being developed to act as an interface between application developers
(like me) and device developers (like Brown’s YURT team or Oculus). I realized that I would learn
more about YURT-like systems and virtual reality in general by working on the inner workings of
the system than by focusing on the development differences from a UX perspective. And after I had
helped finish MinVR2, I could use it to port Moo Martians to the YURT.

Unfortunately, MinVR2 did not develop fast enough, and by the second half of March I had to
change to another project that could be completed by May. VRG3D was an existing framework, a
predecessor to MinVR2 whose shortcomings inspired MinVR2’s creation. But VRG3D was functional
and came with example projects, so the possibility of finishing a final project with it became more
realistic. Given my shortened time frame, I updated my original project from porting over an entire
game to rendering Shadertoy demos. All of the steps required for building such a renderer would be
required for porting the game, so the idea was that I would still have an interesting project completed
even if the rest of Moo Martians couldn’t get ported.

3 MinVR2

3.1 Motivation for MinVR?2

Virtual reality is fundamentally different from traditional “flat” media, and the reasons extend beyond
it being a more immersive experience. Namely, virtual reality is itself a suitcase term for different kinds

of experiences ranging from head-mounted displays (HMDs) to virtual rooms such as Brown’s YURT
and even to less immersive media such as 3-D TVs. While transitioning between traditional flat media
such as movie theaters, televisions, and computer monitors simply requires a change of resolution and
aspect ratio, transitioning between a limited projection for an HMD and an enveloping projection in
a YURT, as well as between alternate forms of input tracking, is a much more involved process.

MinVR2’s goal was to act as an interface between creators of applications and creators of devices.
Application programmers would need to hook into MinVR2 only once, at which point their program
would be able to run on any device that provided a MinVR2 configuration. Device creators would in
turn only need to provide one MinVR2 configuration per device.

MinVR2 also sought to fix some of the shortcomings of previous solutions, such as VRG3D. These
issues, and how a few were addressed in my project, will be discussed in section 4.

3.2 The Device module

One of MinVR2’s major code components was the Device module, and it was this module on which
I worked for the first half of the semester. The Device module was to be in charge of organizing the
displays and their components into a logical hierarchy. Screens, windows, viewports, stereo vision and
screen blending shaders - all components would be represented by nodes in a tree. Device creators
would specify a configuration file for their device from which MinVR2 would generate a tree. The tree
would be used to synchronize the individual screens for the user, who would then be given access to
the computed display information at the application level.

3.2.1 Determining Concurrency Abstraction Scope

A major design question throughout development was determining which pieces of functionality MinVR2
should control and which it should leave for the users to implement. Furthermore, the distinction be-

tween purely graphics functionality and VR functionality as a whole was unclear - would a framework

that synchronized graphics but not input or other kinds of output such as audio or haptic feedback be

meaningful? Furthermore, which abstractions should be reused in the tree representation of the VR

system, if any at all?

A central issue was maintaining concurrency between all of the displays, which for the YURT
meant concurrency between multiple different computers across a network. The solution was for each
computer to run its own deterministic instance of the application, and have information regarding
input, graphics, network connectivity, and so forth be centrally coordinated at some point by a master
instance. The question in designing the Device module was how to partition this synchronization.

One proposal was to form a synchronization node interface which all nodes would implement. This
initially made sense, since every node would need to be synchronized. However, it quickly became clear
that while the entire graphics system would need to be synchronized, there was no common interface
for it and input, haptic feedback, or other media. The design solution was a scheme that segregated
the interfaces. After all, graphics and update mechanisms are separated both at the application layer
as well as before they are synchronized by the master network computer, so there was no reason
they ever needed to be combined in the Device hierarchy. Furthermore, none of the abstractions for
graphics, which was updated on regular intervals, for things like audio or input, which were updated
continuously, intermittently, or both.

3.2.2 Determining Control Scope

One of the goals of MinVR2 was for it to be usable by any device creator. After choosing to focus on
the display side, the key problem was finding the correct abstractions to accomplish the job. Our team

consisted of researchers using two different CAVE systems, which gave us meaningful insight into this
problem. Namely, the Brown YURT required more layers of abstraction in the Display module than
did the Minnesota CAVE. What was appropriately detailed for the YURT appeared redundant for
the CAVE, and that level which was appropriate for the CAVE was insufficient for the YURT. Once
HMDs were accounted for, the issue became much more immediate.

My design solution was inspired by Scott Meyers’ design philosophy for classes - complete and
minimal. MinVR2 should solve existing problems to the best of our ability, given our collective knowl-
edge of real VR systems. The interface we provide should provide the minimum level of functionality
necessary to accommodate all of the devices we planned to support. Redundant abstraction for smaller
systems would be acceptable if it was meaningful for more complicated systems. However, abstraction
beyond what was necessary for our devices would be inherently fallacious - it is impossible to design
for systems that we, by construction, do not know about, therefore nothing we do could possibly have
been productive anyway.

3.2.3 Convenience & Public Use

Another concern was how to keep the barrier to entry to MinVR2 as low as possible by providing
convenience functionality to the user. The idea was that the less work the user had to do, the more
likely they would be to adopt it for their own projects. Such ease of adoption would cause MinVR2
to become a standard solution in the VR industry.

In hindsight, having used VRG3D would have helped me understand the best approach to solving
this problem. As will be discussed in section 4, VRG3D suffered precisely because it provided this kind
of “convenience” for the user. Namely, when the decisions made by VRG3D were not what the user
would have otherwise done, the user’s project was rendered impossible without reverse-engineering.

My solution was to make sure that the core functionality was kept separate from implementation-
specific functionality. For example, the core of MinVR2 would limit its functionality to strictly that
which was entirely platform-independent. From there, everything specific to particular graphics pack-
ages (such as OpenGL or Direct3D) would be implemented as user-content that MinVR2 would provide
as a separate module. This would solve the desire to lower the barrier to entry for the user without
falling into the same anti-pattern that plagued VRG3D.

The key design philosophy is to distinguish what MinVR2 is coordinating from what the end-
user is implementing in a meaningful way. MinVR2 is solving a coordination and synchronization
problem for different forms of streaming data - graphics, input, feedback, etc. MinVR2 is not providing
specific graphics functionality (e.g. video-game output or video streaming) or input functionality (e.g.
keyboard input or head tracking). These are tasks performed precisely by the external packages
MinVR2 is coordinating and not implementing itself. MinVR2 must provide an interface that allows
these dependencies to be pushed to the users, whether they are application developers or device
creators, who will attach them to MinVR2 with the appropriately provided hooks.

3.3 The Decision to Switch

Despite the best efforts of the MinVR2 team, the project unfortunately was not progressing at a pace
that would ensure its completion within the scope of my semester. As such, I had to change my course
of study and devise a project that was doable in the time left in the semester. My time on the MinVR2
development team had taught me about many of the challenges specific to building a VR framework,

and I had planned to switch to application development around this time anyway. The only difference
was that I would be using VRG3D rather than MinVR2.

4 Shadertoy Visualizer with VRG3D

I switched my project at the end of March from working on MinVR2 to working on a visualizer for
shaders. VRG3D was an existing interface that accomplished what MinVR2 was being built to do.
VRG3D’s shortcomings were the motivation to create MinVR2, but the fact that it both existed and
worked won out over those shortcomings. My goal for the remainder of the semester would be to
implement a Shadertoy graphics demo visualizer in the YURT.

4.1 Shadertoy

Shadertoy is an online graphics demo website. Users write small graphical applications, or demos,
and post them to the site. Specifically, each demo consists of a single fragment shader that is run
on a full-screen quad. Rather than render traditional polygon geometry, shaders raymarch creatively
designed noise functions to produce fascinating pieces of art. Many of these shaders are fascinating
works of art, but they are unfortunately limited to flat screens. I thought standing inside them would
be a fun and unique new way to experience them.

4.2 VRG3D And Its Discontents

VRG3D is a VR library that was built on top of G3D, an exsting 3-D graphics library that wrapped
OpenGL. The design flaws in VRG3D became apparent as [began using it, and the task of reverse-
engineering it to undo these flaws became a prerequisite to writing VR applications, whether they
were ports or new ideas. A number of the chief issues are delineated here:

4.2.1 Mixing Implementation with Interface

VRG3D tied itself explicitly to a particular version of G3D, which itself was tied to a particular version
of OpenGL. While perhaps a useful expedient move 10 years ago, it ensured that VRG3D would be
unable to handle library updates or changes in user-side programming. By failing to abstract out
the graphics implementation from the graphics interface, VRG3D was inherently unable to provide
portable or reusable functionality or abstraction.

The OpenGL fixed function pipeline (FFP) was deprecated in 2008, and its replacement, the pro-
grammable shader pipeline (PSP), had evolved to take its place and since become ever more powerful
and flexible. Yet the flaw ran deeper than simply failing to keep up to date with unforeseeable ad-
vancements. VRG3D provided a solution to a problem, namely synchronizing multiple instances of
a program and calculating the geometric values necessary to display each of them correctly in a vir-
tual reality program. However, VRG3D made unwarranted assumptions about how the user would
be implementing their own program, which was unrelated to the coordination problem. Rather than
provide the valuable information it had calculated to be incorporated into specific implementations,
it “conveniently” injected that data into its own implementation.

This design choice manifested itself in concrete problems for me, the user. In order to render my
own geometry properly with the new OpenGL pipeline, I had to reverse-engineer the view, projection,
and perspective matrices from the data I could scrape from OpenGL and from what I could learn about
the implementation of VRG3D. Had I gone further and ported over Moo Martians in its entirety, I
would have had to keep track of which framebuffers VRG3D was implicitly assuming I rendered into,
as well as other likely OpenGL setting. This was a problem (in fact a class of problems) that arose
from forcing implementation details onto clients. In other words, even if OpenGL had never evolved,
this design problem would still have persisted.

4.2.2 Many External Dependencies

While external dependencies are not bad in and of themselves, they increase the difficulty with which
any given project can be (re)used. VRG3D’s reliance on many specific libraries, whose support had
in some cases long since been discontinued, made reusing it all the more difficult. Specifically, it was
essentially impossible to develop remotely. Both the CCV and CS Department filesystems had the
legacy dependencies installed and intricate build macros and environment variables in place; without
these, chasing down the many dependencies (VRPN, G3D8, Freelmage, etc.) and installing them would
incur substantial time costs. Given the pitfalls surrounding VRG3D on friendly territory, developing
from home was prohibitively expensive.

4.3 VRG3D’s Success

The power VRG3D granted was much greater than that which it took away. Simply enabling users to
develop YURT applications at all was priceless. Furthermore, the fact that it has consistently enabled
the creation of VR projects for years is a testament to its durability. Specifically, while its dependence
on particular versions of graphics libraries made it unportable in one way, the fact that it has been
able to run on many dissimilar devices has proven that it is nonetheless very portable in other ways.
Given that this kind of portability is the central problem it was designed to solve, it is safe to say that
VRG3D has proven far more portable than not. MinVR2 development should focus on what VRG3D
accomplished correctly just as much as what it struggled with.

4.4 Using the CCV computers

The CCV computer system, while certainly capable of supporting developers, had a number of draw-
backs that made working on it a bit harder than usual. My lack of general knowledge about very
particular system settings and solutions, and not knowing what I didn’t know, formed a recurring
theme. A brief enumeration of the issues is given here:

e The Module system The CCV filesystem supports many users whose vast numbers and re-
quirements preclude any notion of a standard version for dependencies. The Modules system
manages all of these, but knowing which particular versions to change, add, or remove is unclear.

e Deprecated graphics drivers While the YURT and test wall have high-powered graphics
cards with updated drivers, none of the development machines had graphics drivers that had
been updated in 10 years. This made locally developing modern graphics applications impossible,
forcing all development to be done either on the YURT or the test wall.

e Unforeseen system changes At one point the operating system was updated, which broke my
code and other existing demos. At another time, the VRPN input server was removed from the
test rig for a week, which made using the rig impossible.

e Lack of common developer tools Qt5 and its IDE, QtCreator, are an industry standard
for C++ development, and the CS Department uses them in all its C++-based classes. The
filesystem did not have these installed, and I learned that it did not support modern versions
of them, either. The time spent installing these tools was highly profitable. Merging codebases
without a sufficiently powerful IDE is impractical and a waste of time for both students and
researchers. My hope is that future coders will benefit from this upgrade.

The biggest cost incurred by climbing this learning curve came from my dependence on others
who knew everything I needed to know. The knowledge was not internet-searchable, nor could it
be deduced simply by thinking harder. For example, in a list of hundreds of dependencies, each with
possible subversions, which am I to know to use, or suspect to be the cause of or solution to a problem?
Trying any given piece of advice takes little time, but waiting for it costs time, and having to constantly
give it costs the people helping me time.

While some problems will still require expert advice, a lot of knowledge needs only to be written
down to be effectively conveyed. To this end, I have compiled a separate document outlining all of
this particular information with the hope that the barrier to entry will be greatly reduced for future
YURT developers. The most recent version of this document is maintained on the CCV wiki pages as
the CCV Development Guide.

4.5 Shadertoy Successes

After switching projects midway through the semester, weathering all manners of strange delays,
navigating a number of interesting software engineering challenges, and puzzling out a bit of geometric
magic, | was finally able to produce a working, correct implementation of a Shadertoy visualizer for the
YURT. Any demo can be retrofitted into the YURT, and advanced artistic demos from the web need
not have any of their internal voodoo parsed. The key task is to modify the raycasting code at the
top to incorporate the proper camera and projection matrices from the VR device. Given the example
code, future users should hopefully be able to port any 3D Shadertoy experience to the YURT.

