
Mapping and Control with Telepresence Robots

Lingzhu Xiang
Department of Computer Science

Brown University
Providence, RI 02912
xlz@cs.brown.edu

Abstract

We create a mapping system and a control system on a telepresence robot to fur-
ther facilitate indoor social navigation. The implementation is based on a commer-
cial telepresence robot and its custom operating system. A mapping framework
based on SLAM methods is employed to obtain real-time results. Navigation con-
trols are implemented with inspection of the internal interfaces of the telepresence
robot.

1 Introduction

Despite development of modern technologies of video conferencing, the presence of users is still
limited to stationarily placed cameras and screens. Mobile telepresence robots liberate users from
such constraints by enabling them to navigate around the environment and physically interact with
their audiences. Recent products of telepresence robots include Beam by Suitable Technologies and
Double by Double Robotics.

However, the same products also provide great opportunities for research in other areas. PR2 robots
are the previous common platform used in robotics research communities. Due to the nature of PR2
being a high-end research robot equipped with an extensive set of expensive hardware, and its low
volume of production, it encountered difficulties in accessibility, maintenance, and transportation.
Meanwhile telepresence robots are usually designed as commercial products with focus on usability,
connectivity, and battery life. With the help of economics of scale, they can be a great low-cost
mobile platform with add-on functionalities for different specialized interests of research.

In this project, we investigate the possibilities of building navigation systems based on existing
operating system of a commercial telepresence robot. We present the internal mechanism of such
robot and methods of utilizing it, and also introduce frameworks to map the environment in real-
time.

2 Related Work

Mapping with mobile robots is a well researched topic in the robotics literature as one part of
the SLAM problem. Several frameworks have been developed for autonomous navigation of PR2
robots. GMapping [6] uses Rao-Blackwellized particle filters on a grid to learn the map by taking
into account both the movement of the robot and the most recent observation. This method uses
laser range data from depth sensors which are present on PR2 robots but unfortunately not present
in most telepresence robots.

There also exists visual SLAM methods for mobile robots using only cameras or RGB-D cameras.
RGBDSLAM [1] uses a Kinect RGB-D camera to capture visual features using SIFT or SURF
descriptors and uses RANSAC to robustly model the 3D motion of the camera, i.e. the visual
odometry, then optimizes the obtained camera pose graph with its SLAM back-end. This approach

1



was later enhanced [2] with a more efficient representation of the map using OctoMap [7] and GPU
implementation of SIFT descriptors [13].

RTAB-Map [8] uses similar approaches in obtaining visual odometry with extensive choices of
visual descriptors, and detect loop closures with a Bayesian bag-of-words detector to connect the
current location to the previously visited location, and the minimizes the errors in the map with
graph optimization methods. Due to the modular design of the RTAB-Map implementation, we base
our system on RTAB-Map to realize real-time mapping on the telepresence robot.

3 Platforms

In this project, Beam, a telepresence robot is used as the robot platform, and Robot Operating System
(ROS) [9] is used as the software frameworks connecting Beam to our software components. We also
attach a Asus Xtion Pro Live RGB-D camera and a laptop onto Beam for additional computation.
Microsoft Kinect is possible but it requires external power which is not feasible as an attachment to
the telepresence robot, while the Asus camera can be powered with USB only.

3.1 Beam

Figure 1: Beam telepresence robot,

the camera and the wheels can be

seen.

Beam is a telepresence robot by Suitable Technologies. It was origi-
nally developed by Willow Garage as Texai Remote Presence System,
and spun out with most of Willow Garage team to build it as a prod-
uct. Beam’s specification claims 8 hours of active use and 24 hours for
standby which is much longer than the battery life of PR2 of 2 hours,
and much more user-friendly for research and social purposes.

From our inspection, Beam is equipped with two Logitech C910 cameras
augmented with wide-angle lenses, an LCD screen, a microphone array,
a built-in speaker. It has three casters for movement and two Wi-Fi radios
for connectivity. Its cameras are one front-facing and one downward-
facing, which output up to 1920x1080 JPEG for 30 frames per second.
And this is able to be transmitted over its Gigabit Ethernet connection. It
includes a dual core Intel Core i3 processor and 4GB RAM which are far
from being as powerful as the ones of PR2, but much better than those
ARM processors on most embedded mobile robot platforms.

Beam runs on a Linux distribution modified from Ubuntu with no source
code provided for the modifications. However, the Linux environment
is still helpful for deploying our own code and inspecting the internal
mechanism of Beam.

3.2 ROS

Robot Operating System (ROS) is a middleware platform for robot soft-
ware development. It provides standardized message-passing interfaces
between modularized components which make integration straightforward. Its ecosystem of hard-
ware abstraction, device drivers, commonly used libraries, and package management reduces dupli-
cated effort in implementation.

A running ROS instance consists of a master node which negotiates with other nodes to connect them
together, and server nodes and client nodes requesting and replying messages according to the ROS
remote procedure call protocol. This standard protocol provides a way to integrate heterogeneous
software from different developers and different communities, which is the reason for the booming
ROS ecosystem.

In this project, we utilize ROS to provide a bridge between Beam and our laptop to relay the camera
output from Beam and exposing Beam’s motor controls. Thanks to the modularized nature of ROS,
we are able to accomplish the tasks without reimplementating everything.

2



4 Navigation Systems

Following the goals illustrated in the introduction, we investigate the potentials of building systems
for navigation based on the telepresence robot. Here we focus on the mapping system and the control
system.

4.1 Mapping

Figure 2: SLAM pipeline

We build the mapping system using RTAB-Map [8] which provides
modular components based on ROS so that some of them can be
easily replaced. As illustrated in figure 2, the mapping system is
one part of the classic design of SLAM system. However, here we
do not focus on localization and its integration with planning and
control considering the scope of this project.

We utilize the RGB-D camera with RTAB-Map. It is attached to
the top of the telepresence robot and connected to the laptop which
is placed on the bottom of the telepresence robot. The mapping
system collects point cloud data from the RGB-D camera along es-
timation of visual odometry, then detects potentials loop closures by
appearance based bag-of-words detectors using visual descriptors,
and then optimizes the map with a graph optimization framework.

Given visual feature descriptors with depth data, visual odometry is
more straightforward than with monocular cameras where the depth
of particular keypoints still need to be estimated. The odometry
node will detect features and extract them from the RGB frames,
and then associate them with the depth data from the depth frames. Then between frames, feature
correspondences are established by similarity metrics. After that, a RANSAC technique computes
the relative motion between the frames which is the odometry. By integrating relative motion, a
trajectory can be estimated, albeit almost always distorted over time. But the globally inaccurate
trajectory still provides strong local consistency for map optimization given loop closures.

4.2 Control

We expose the controls by inspecting the internal mechanism of the telepresence robot and apply
our modifications. The telepresence robot includes three wheels, of which the rear two are powered
by electric motors and the front one controls the driving direction. The interfaces of controlling the
motors and direction are not public, therefore they require inspection of Beam’s internal mechanism.

Inspection of Beam’s internal hardware confirms that Beam carries a separate control board at its bot-
tom for controlling its motors. And the main computer communicate with the motor board through
a USB serial port. Further inspection of the serial wire transmissions within its Linux operating
system shows that the control program on the main computer sends drive command packets to and
receive driving state packets from the motor board with fixed frequencies. When the telepresence
robot is in active operation, the frequency is 100Hz; when it is idle, the frequency is 10Hz. The
drive command packets have a fixed format which is determined by extensive testing. The driving
state packets also have a fixed format but the format is much more complex therefore it is part of the
future work.

Offset 0-3 4-7 8-11 12-15 16-19 20-23

Field Header Mode Linear vel. Angular vel. Type Tag

Offset 24-27 28-31 32-35 36-39 40-43 44-47

Field Tag Linear limit Angular limit Linear acc. Angular acc. CRC

Table 1: Drive Command Packet Format

As shown in table 1, the drive command packet format has fixed length of 48 bytes with multiple
fields specifying the parameters of the drive command. All numeric linear and angular parameters
are encoded using 32-bit fixed point number with scaling factor of 1/65536. The header is a constant

3



0x5555aaaa for drive command packet. The linear and angular limit parameters, and linear and
angular acceleration parameters remain unchanged for normal operation with the defaults being 1.5
for the limits, and 2.0 and 0.5 for the acceleration parameters. The ”tag” field is a timestamp tag
that specify the expiry time for the particular drive command. After initial time synchronization
between the main computer and the motor board, any future drive command with older than current
timestamp would be ignored by the motor board.

With the rest of the parameters fixed, the effective parameters are linear velocity vl and angular
velocity vr. A simplified kinematics model of Ackermann steered vehicle provides simple geometric
relationship which can be used to determine the path of the vehicle given these parameters. [11] The
geometric relationship can be written as:

tan(δ) =
L

R
, (1)

where δ is the steering angle of the front wheel, L is the length of the wheelbase, and R is the radius
of the circle at the current position of the trajectory. The radius R also satisfies vl = Rvr. Given
a physically fixed constant L, and the linear velocity vl, the steering angle δ can be determined by

δ = arctan(Lvr

vl

). However, we do not have to specify the steering angle of the front wheel as the

parameter is derived within the motor board by given only the linear velocity and angular velocity
parameters.

5 Implementation

The Linux distribution running on Beam is a modified version of Ubuntu. It follows typical design
of embedded system by bootstrapping with a read-only SquashFS image, and then creating the
root filesystem by extracting files from several tar archives and then performing chroot operation to
change to the new root directory and start applications. By modifying the static images and archives
we can obtain user credentials and be able to log in to remote shell running on the telepresence
robot and execute our commands. By leveraging similar techniques of chroot, we can deploy newer
version of Ubuntu filesystem and updated applications with full privileges.

Figure 3: An optimal calibration

pose suggested by AprilCal show-

ing the tangential distortion.

Several sensors for mapping purposes require calibration to estimate
their intrinsic parameters. The RGB-D camera is provided with pre-
calibrated parameters. The cameras on the telepresence robot are aug-
mented with wide-angle lenses therefore careful calibration is required.
There are several calibration tools. ROS provides a package called
camera calibration which estimates a pinhole model. However
this package was very difficult to set up. A modified version of PTAM
[12] also provides a calibration tool which is also unmaintained and out-
dated for the latest ROS distribution Hydro. AprilCal [10] also provides
a calibration tool with state-of-the-art accuracy which also focuses on
user-friendly interface by provided an interactive process of suggesting
optimal calibration poses. By using this tool the calibration process was
able to obtain the mean reprojection error of 0.307 pixel with 20 optimal frames. AprilCal still faced
several challenges which were revealed during the actual calibration process. It does not provide an
interface to connect with ROS making it difficult to operate with image frames transmitted over net-
work. The only solution was to run it on the telepresence robot’s main computer which is relatively
slow. The result was that each suggestion for calibration poses would take several seconds to more
than ten seconds to appear, defeating the goal of usability.

The telepresence robot includes two Logitech C910 cameras which are well supported by UVC
video drivers and Video4Linux video capture framework in Linux kernel. The uvc camera pack-
age from ROS provides interfaces to export image frames via Video4Linux framework. We con-
tributed a patch to the project of the package for enabling it to extract image frames in JPEG en-
coding. Before that the only available format is uncompressed which makes high resolution frames
exceed the bandwidth capacity. After enabling its JPEG format, the framework is able to capture
and transmit JPEG encoded 1920x1080 images 30 frames per second over Gigabit Ethernet to the
laptop for further computation.

4



We expose the drive command interface with instrumentation of the official driving program. Due
to the commercial nature of the telepresence robot, its software is being constantly updated and
maintained. To avoid unnecessary breakage over time, we want to minimize the code footprint
of our modifications. Therefore we utilize the LD PRELOAD and ptrace mechanism of Linux to
intercept a minimal set of system calls with which the official driving program sends drive command
to the motor board, and replace the parameters of the system calls which are discussed previously
as the drive command format with our desired values. This process is essentially to tap the drive
command communication between the main computer and the motor board, and intercept those
which we want to modify to realize the effective control. There are differences for LD PRELOAD
based approach and ptrace based approach. The code loaded via LD PRELOAD is run as part of
the drive command program therefore in order to send our desired parameters it needs to utilize
inter-process communication mechanism. Here we implement the IPC with POSIX semaphores and
shared memory objects. The approach based on ptrace is more flexible and works with static binaries
which is not the case for LD PRELOAD approach. The drawbacks of ptrace based approach is that
it introduces overhead and its failure can cause interruption in communication to the motor board
which can be dangerous for a moving mobile robot.

The telepresence robot does not include a low-level emergency stop mechanism. We employ a dead
man’s switch method by implementing a watchdog timer within the drive command interface. A
remote operator should set up a ping program to send ICMP ping packet containing a particular
string in very short intervals. The telepresence robot will then monitor all ICMP ping packets with
the Netfilter interface and set up a watchdog timer to count down from the last time when it receives
a ping packet containing the particular string. When it does not receive such packets for a certain
time, for example 500 millisecond, the timer expires and the drive command parameters are reset to
prevent any further movement. For the operator to actively stop the robot, they can just terminate
the ping program and the robot will stop moving within the given deadline.

6 Experiments

We performed mapping experiments using previously discussed navigation systems on two different
places. The RGB-D camera was attached to the top of the telepresence robot to collect point cloud
data. Two datasets were obtained. The first dataset was obtained in a lab on the first floor by driving
the telepresence robot within a small circular area shown as a black circle in the middle of figure
6. The second dataset was obtained in a lounge on the fourth floor by driving the telepresence
robot through chairs. In both datasets the robot has come back to the starting point to verify the
effectiveness of loop closure. The first dataset includes 339 frames and the second dataset includes
466 frames.

Figure 4: Trajectory estimated for the first floor dataset Figure 5: Trajectory estimated for the fourth floor dataset

We utilize SIFT features with depth information to estimate visual odometry with RANSAC tech-
nique. As shown in figure 4 and figure 5, the blue points are robot poses, the blue edges are motion
between poses, and the red edges are loop closure constraints recognized by the appearance based
detector between poses. The red-green axes illustrate the starting pose and the ending pose. In both

5



datasets, it is able to obtain visual odometry of significant accuracy and correctly establish loop
closures.

Figure 6: 3D map estimated for the first floor dataset Figure 7: 3D map estimated for the fourth floor dataset

The 3D point cloud map created using the estimated poses are shown in figure 6 and 7. For the
dataset on the first floor, there is a black circular area in the middle because the RGB-D camera on
the top of the telepresence robot did not observe the area underneath it during the whole collection
process due to the circular trajectory. The resulting map for the first floor is fairly accurate with
black grid on the floor correctly connected together, and the colored lines on the table correctly
connected together. The map is less accurate for areas further from the camera, because of the limit
of accuracy of the depth sensor over a large distance. The second dataset on the fourth floor shows
similar accuracy. Near the end of data collection there was a person in blue moving across, which
can be seen in the middle of the map. The SLAM framework assumes static environment therefore
some distortion in this map can be attributed to the moving person.

Overall the mapping system is able to obtain accurate results using the RGB-D camera in real-time.
Moving objects during mapping process can still result in geometric distortion. Note that results
obtained by driving through the interface provided by the motor board are much more accurate than
those by manually pushing the telepresence robot. This is probably because manual operation results
in non-uniform motion which causes inaccuracy in visual odometry. Drive command set a constant
velocity for regularized motion help to improve the accuracy of visual odometry.

7 Future Work

We have demonstrated the efficacy of our systems. Several challenges still remain to be solved.
The primary challenge for the RGB-D SLAM approach is that the RGB-D camera has limited depth
range and it relies on visual features. If the scene is featureless, for example, white walls and
uniform texture, there will not be enough features detected for estimation of visual odometry. The
other situation when this can happen is in a large environment where only a small area near the robot
has depth readings and the other area is too deep, for example, corridors and hallways.

SLAM based on direct image alignment instead of feature correspondences may be useful for solv-
ing the problem with difficult scenes. However given the limited computation resources of a mo-
bile telepresence robot, full dense approaches might exceed its computation capacity. Semi-dense
monocular visual SLAM approaches including SVO [5] and LSD-SLAM [3] [4] is applicable to the
problem.

The calibration process with AprilCal is slow running on the telepresence robot. To speed up the
process, it is possible to modify the AprilCal program to receive remote image frames via ROS
interfaces and conduct calibration.

The current implementation of mapping relies on visual odometry which can be inaccurate under ad-
verse circumstances. The official driving program on the telepresence robot receives certain kind of
driving state update packets which is worthy for study for the purpose of extracting wheel odometry.
Wheel odometry is helpful for improving the results of SLAM framework.

6



8 Conclusion

This report shows methods to build mapping framework and control framework for a telepresence
robot as a platform for broader research topics. The mapping framework and the control frame-
work are implemented and deployed to the telepresence robot for operation. The feasibility of the
mapping framework is shown with results from experiments on collected real world datasets. The
implementation is discussed in detail to provide internal details and guidance on different ways of
utilizing commercially available robots for research purposes.

References

[1] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation of the
rgb-d slam system. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[2] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3d mapping with an rgb-d camera.
IEEE Transactions on Robotics, 2014.

[3] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In
European Conference on Computer Vision (ECCV), September 2014.

[4] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular camera.
In IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, December
2013.

[5] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct monocular
visual odometry. In IEEE International Conference on Robotics and Automation (ICRA), 2014.

[6] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques for grid map-
ping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23:34–46, 2007.

[7] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.
OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous
Robots, 2013.

[8] M. Labb and F. Michaud. Online global loop closure detection for large-scale multi-session
graph-based slam. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014.

[9] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng.
ROS: an open-source robot operating system. In ICRA Workshop on Open Source Software,
2009.

[10] Andrew Richardson, Johannes Strom, and Edwin Olson. AprilCal: Assisted and repeatable
camera calibration. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), November 2013.

[11] Jarrod M. Snider. Automatic steering methods for autonomous automobile path tracking. Tech-
nical report, Robotics Institute, Carnegie Mellon University, 2009.

[12] Stephan Weiss, Markus W. Achtelik, Simon Lynen, Margarita Chli, and Roland Siegwart.
Real-time onboard visual-inertial state estimation and self-calibration of mavs in unknown en-
vironments. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2012.

[13] Changchang Wu. SiftGPU: A GPU implementation of scale invariant feature transform (SIFT).
http://cs.unc.edu/˜ccwu/siftgpu, 2007.

7

http://cs.unc.edu/~ccwu/siftgpu

	Introduction
	Related Work
	Platforms
	Beam
	ROS

	Navigation Systems
	Mapping
	Control

	Implementation
	Experiments
	Future Work
	Conclusion

