
Web Applications for Robots using rosbridge

Jihoon Lee1

Abstract— This paper presents our efforts to adopt the ada-
vantages of web-based solutions to develop robotic applications.

We describe the usage of web applications in robotics and
introduce ROSProcessingjs, our web-based robot application
development environment, which enables the development of
robot applications in a web browser in Processing.

I. INTRODUCTION

Web-based applications allow for a user-friendly, platform

agnostic and universally accessible, interactive environment.

Typical shortcomings in robotics include poor accessibility,

extensibility and usability, which can be well addressed

through web-based solutions. This paper describes my efforts

to integrate such advantages of web-based solutions into

robotic systems.

We present the usage of web interfaces for robotics sys-

tems with three examples, and also introduce ROSProcess-

ingjs – a web-based robot application development environ-

ment which provides abilities to develop robot applications

in a browser using Processing.

II. PREVIOUS WORK AND BACKGROUND

Web applications for robotics have been discussed for

years. Bungard and Schulzhave studied delay handling in

remote operation of mobile robots [1]. Goldberg et al pre-

sented a way to interact with robots over the world wide

web, which allowed remote users to do gardening with

living plants over the web [2]. Taylor and Trevelyan [3]

investigated the usability of 6-DOF robot controlled over

the web. Osentoski et al provided a method to visualize and

interact with complex robot platforms like the Willow Garage

PR2 using rosbridge [4] and rosjs [5]

Crick et al [6] demonstrated that large scale user ex-

periments can easily be performed through web accessible

robots. The scale of user experiments in robotics is usually

done with fewer people than other research areas and has

often biased results to those who already are already famil-

iar with robots. This is due to limited access to complex

platforms. The web-interface developed for this experiment

enabled 132 individuals to connect from various locations

and to attempt to navigate an iRobot Create through a maze

via web teleoperation.

These previous efforts and discussions have demonstrated

that the character of web-based solution would help robotics

industry in many ways. This paper describes more examples

of web interface for use in robotics and a quick way to

develop such interfaces using Processing [7].

1J. Lee is with the Computer Science Department, Brown University
jihoon lee@brown.edu

III. ROS, ROSBRIDGE, ROSJS, AND MJPEG SERVER

In our work, ROS(Robot Operating System) [8] is used

as a back-end system, and key components like rosbridge,

rosjs, and mjpeg server) are employed to compose a web-

enabled robotic system. Figure 1 illustrates the overview of

architectural design of web equipped ROS system. ROS, an

open source robot middleware, administrates the low-level

robot controllers, sensor processing, planning, navigation and

manipulation. rosbridge manages communication channels

between web applications and ROS. rosjs handles rosbridge

connection on web application side. Additionally, mjpeg

server can be used to efficiently stream video to the web.

A. ROS

ROS(Robot Operating System) is a sophisticated open-

source robot middleware platform which has a large com-

munity of developers and users. It provides hardware ab-

straction, device drivers, and many useful libraries and tools

to develop robot applications.

A ROS system consists of a number of processes called

nodes which are connected in a peer-to-peer network topol-

ogy. nodes perform the system’s computation, and commu-

nicates with other nodes in ROS by exchanging ‘messages’,

which may contain a single primitive or complex data

structure like a PointCloud.

ROS provides two types of messaging mechanisms called

topic and service. topic is a pub/sub based asynchronous

message type. A publisher broadcasts topic messages to

the system, while the subscribers listen to the published

information on this topic. There may be more than one

publisher or subscriber for the same topic. On the other hand,

service is request and response based synchronous message

type. Unlike topic, there is only one provider to handle the

requests for each services.

In our work, ROS is employed as a back-end system

to handle the low-level control interfaces, and sophisticated

sensing and control algorithms. ROS allows the use effective

existing navigation and manipulation robotic implementa-

tions.

B. rosbridge

rosbridge exposes the functionality of ROS systems to

non-ROS systems. It enables communication through either

HTML5 websockets [9] or standard TCP/IP sockets. This

provides the non-ROS systems ROS-style communication

mechanisms including topic publishing/subscribing, and ser-

vice request/response as serialized JSON objects.

This architectural design expands the environment for

running robot applications to any programming language that

supports IP sockets.

Fig. 1: Overview of system : rosbridge

C. rosjs

rosjs is a javascript [10] library that manages connections

to rosbridge over standard HTML5 websockets. It provides

a simple way to handle topic publishing/subscribing and

services using serialized JSON objects.

The conjunction of rosbridge and rosjs can hide the

system-level complexity of ROS from web developers and

extend its usage. This enables the development of robot

application to be much simpler, and perhaps expand the

robotics field to web application developers.

D. mjpeg server

mjpeg server [11] is a ROS package that streams image

topics in ROS via HTTP to a web environment. Though

rosbridge also has a capability to stream images, mjpeg

server is heavily optimized for transferring messages of this

type. mjpeg server also allows each client to specify the

quality of image and size to accomodate different client’s

environment like connection speed and web interface design.

IV. EXAMPLES

We have developed web applications to interact with

back-end robotic system like ‘PR2 Castle builder’1 ‘PR2

Commander’2, and ‘PR2 Turntable Manipulator’.

A. PR2 Castle Builder

‘PR2 Castle Builder’ implements castle building with toy

blocks using a PR2. The user designs a castle structure with

the web interface, which is then built by the PR2

Figure 2 presents the web interface used in the project.

It consists of control panel to manage connections to a

robot, status indicator, start/stop buttons , castle structure

design tool, and video stream viewer. The web interface is

developed using ROSDojo. ROSDojo is our web development

framework for robotics that allows to adopt the capability of

dojo [12], a powerful javascript toolkit that enables object

oriented programming.

The web application works in the following order.

1CastleBuilder : http://brown-robotics.org/wp/projects/
hackathons/castlebuilder

2Commander : http://brown-robotics.org/wp/projects/

hackathons/move-that-block-february-27-march-1

Fig. 2: Web interface for Castle builder

1) Connect to a robot: A PR2 can be connected through

the control panel. The web interface connects to the robot

accessed by URL. It then subscribes to the status topic, which

provides the current status of the robot, and streams the video

from the robot.

2) Design a castle: Designing a castle is done by increas-

ing and decreasing digits on each cell of a 6x6 2D grid.

The digits indicate the number of blocks on each cell. The

designed castle model can be checked on 3D visualizer which

is developed using WebGL.

3) Command: The command consists of the list of blocks’

poses. When the command is sent, the PR2 starts to build the

user-designed castle with toy blocks. The given block pose

arrays get sorted in bottom to top, left to right, and far to

near, the PR2 picks up “free” toy blocks from fixed positions,

and builds the castle. It sends the “completed” message when

it completes building.

We have demonstrated building a tower of 9 blocks, and

also building a castle with up to 38 toy blocks.

B. PR2 Commander

The goal of “PR2 Commander” was to implement a natural

language command interface for the PR2 robot. We wanted

the robot to receive natural lanugage commands (such as

“pick up the red block”) and perform the appropriate action.

To accomplish the goal, we integrated MIT’s Spatial Lan-

guage Understanding(SLU) [13] system with Castle Builder

using rosbridge. SLU is a model for understanding natural

language commands given to autonomous systems that per-

forms mobile manipulation in semi-supervised environment.

This integration enables the PR2 to perform castle building

using hierarchical natural language commands. In the project,

we accomplished picking-and-placing of toy blocks.

Figure 3 presents the web interface. Unlike “PR2 Castle

Builder” which sends an array of block poses, the user either

types a string command or tells it through google speech

recognizer. The string commands can be anything that means

pickup and drop. For example, we used “Pick up a blue/red

block”, “Grab a blue/red block”, “Put it down”, or “Drop the

block”. When the command is placed, SLU system interprets

the command and tell the robot controller to perform the

appropriate behavior.

Fig. 3: Web interface for PR2 Commander

Fig. 4: Web interface for Turntable manipulation

C. PR2 Turntable Manipulator

Human-in-the-loop control is an effective model for co-

ordinating complex tasks among robots and human opera-

tors. This control paradigm may be used to detect obscure,

difficult-to-sense objects, or validating the quality of work.

Figure 4 shows the human-in-the-loop web interface used

for picking up an object from a rotating table. The interface

consisted of a camera view overlaid with the motion model

of object on the rotating table and command buttons to

order moving to the turntable, picking up, and placing. The

interface allowed a human operator to command a pickup

at appropriate time, which performed better than letting the

robot decide on a moment to pickup the object.

V. ROSPROCESSINGJS

Processing [7] is a visual programming language for

beginning programmers and designers to make data visual-

ization, digital art, interactive animations, educational graphs,

and video games. It provides many libraries for interactions

and visualization that allow the development of interactive

interfaces quickly and easily.

The conjunction of rosbridge, rosjs, and Processing.js [14]

enables importing the capability of Processing into ROS and

also allow and also allows developing a robot application

in the browser written in Processing. This section describes

the system design of ROSProcessingjs and usage with a

teleoperation example.

Fig. 5: ROSProcessingjs system design

A. System Overview

Figure 5 shows how a user communicates with a robot

through ROSProcessingjs system. On client side, user’s code

is translated into javascript using processing.js and get con-

nected with rosbridge server. The user’s code may control

the robot, visualize the robot’s status or both. On server side,

rosbridge listens to the client’s requests and process them in

ROS system.

This system, designed using Processing.js gives a cou-

ple of advantages. Processing.js provides helpful APIs for

visualization and interaction, and allows mixing Processing

with javascript. Because Processing.js translates the code into

javascript, the functions in processing can be called from

external javascript function and vice versa.

B. Example

1) Processing Code: Figure 6 presents the teleoperation

code written in Processing. The code describes how to create

a connection to a rosbridge server, stream a camera sensor

image using mjpeg server, and publish a topic message to

ROS.

When the program is instantiated, it connects to

rosbridge server in line 27. connect(), which is pro-

vided by ros control.js, establishes a web socket con-

nection. ros control.js also provides publish(), and

subscribe(), which are wrapper functions to publish

to and subscribe from a ROS topic. Then camera image

streaming is being started using mjpeg server in line 30-31.

The image stream can be configured by several parameters

including topic name, quality, and size of image.

move() function in line 81 describes how /cmd vel topic

is published to ROS. publish() takes three arguments

topic name, topic type, and data as in a JSON object.

When the user presses or releases the key, it will in-

voke keyPressed()/keyReleased(), and publish the

/cmd vel topic via move().

2) HTML Setup: Figure 7 shows the minimum require-

ments to program using processingjs. Importing ros.js and

ros control.js allows communication with ROS and use

connect(), publish(), and subscribe() functions

to Processingjs code. processing.js enables processing code

to run in the web browser. It translates processing code into

javascript. The log function is needed in order to log the

status of ros connection(Connected, Closed, or Error).

As the page is loaded, the given code(robot control.pde)

gets instantiated and assigned to ins variable. Line 18 and

22 describe how to invoke the functions in given processing

1 String ip = "ws://localhost:9090";

2 String image_topic = "image_topic";

3 String image_uri = "http://localhost:8080/?topic=" +

image_topic;

4 PImage img;

5 int imageWidth = 480;

6 int imageHeight = 360;

7

8 boolean isRunning = false;

9 int mainLoopVar;

10

11 PFont fontA = loadFont("courier");

12

13 float x_vel = 0.4;

14 float z_vel = 1;

15

16 void setup()

17 {

18 size(500, 300);

19 background(200);

20 fill(10);

21 textFont(fontA, 20);

22 text("Move up : W",20,20);

23 text("Move down : S",20,35);

24 text("Turn left : A",20,50);

25 text("Turn right: D",20,65);

26

27 connect(ip);

28 isRunning = false;

29

30 img = createImage(imageWidth,imageHeight, RGB);

31 img = loadImage(image_uri);

32 size(imageWidth,imageHeight);

33 frameRate(50);

34 loop();

35 }

36

37 void draw()

38 {

39 image(img, 0, 0, imageWidth, imageHeight);

40 if(isRunning) {

41 // do something

42 text("Move up : W",20,20);

43 text("Move down : S",20,35);

44 text("Turn left : A",20,50);

45 text("Turn right: D",20,65);

46 }

47 }

48

49 void run()

50 {

51 println("Start");

52 isRunning = true;

53 }

54

55 void stop()

56 {

57 println("Stop");

58 isRunning = false;

59 }

60

61

62 void keyPressed()

63 {

64 if(isRunning) {

65 if(key==’w’ || key==’W’) { move(x_vel, 0);}

66 else if(key==’s’ || key==’S’) { move(-x_vel, 0);}

67 else if(key==’a’ || key==’A’) { move(0, z_vel); }

68 else if(key==’d’ || key==’D’) { move(0, -z_vel);}

69 }

70 }

71

72 void keyReleased()

73 {

74 move(0, 0);

75 }

76

77 void move(x,z) {

78 publish(’/cmd_vel’,’geometry_msgs/Twist’,’{"linear

":{"x":’ + x + ’,"y":0,"z":0}, "angular":{"x

":0,"y":0,"z":’ + z + ’}}’);

79 }

Fig. 6: Web Teleoperation code in processing

1 <html>

2 <head>

3 <script type="text/javascript" src="ros.js"> </script

>

4 <script type="text/javascript" src="ros_control.js">

</script>

5 <script type="text/javascript" src="processing-1.0.0.

min.js"> </script>

6 <script type="text/javascript">

7 var ins;

8 // log function is required for ros_control.js

9 function log(str) {

10 console.log(str); // error log can be

viewed by browser error log window.

11 }

12

13 function init() {

14 ins = Processing.getInstanceById("

processing_canvas"); // get a

processing code instance

15 }

16

17 function run() {

18 ins.run(); // call run function in

processing code

19 }

20

21 function stop() {

22 ins.stop(); // call stop function

in processing code

23 }

24 </script>

25 </head>

26 <body onload="init()">

27 <canvas id="processing_canvas" data-processing-

sources="robot_control.pde"></canvas>

28 <input type="button" Value="Run" onClick="run()"/>

29 <input type="button" Value="Stop" onClick="stop()"

/>

30 </body>

31 </html>

Fig. 7: Basic HTML code for ROSProcessingjs.

code in javascript. This example expects robot control.pde

have run() and stop().

C. Brown Experiment House

This section presents our remote experiment house which

allows the development a robot application in web browser

and test the code directly through rosbridge. Figure 83 shows

the experiment house page. It is connected to a virtual PR2

simulated on a remote server and teleoperates the virtual PR2

using the given code in the code box on the right side.

The experiment page consists of three elements: A canvas

to stream a sensor image, a text area to input a processing

code, and three buttons: one for initiating the code, one for

running, and one for stopping. Clicking the ‘init’ button will

crawl the code in the right-side text area, creates an instance

of processing code.

This experiment environment enables testing a robot appli-

cation quick and easy way, and also allows re-using the code

on different robots. Because the code stays server side and

communicates through rosbridge, the robot does not need

any extra programs installed but rosbridge.

With this foundation framework, we built the ‘Brown

Remote House’ prototype that allows 24/7 web-based pro-

gramming of an iRobot Create at Brown University. Figure 9

3URL : http://www.cs.brown.edu/people/jihoonl/

Brown_Remote/ros2.html

Fig. 8: Robot Simulation in ROSProcessingjs

Fig. 9: Brown Remote House

presents the front-end interface of ‘Brown Remote House’.

The Remote House back-end is a Create running ROS

that can be controlled and programmed using the rosbridge

network interface for ROS. The user front-end is a webpage

that consists of video streams from the robot and an overhead

camera, and a text area for programming the robot using

Processing.

VI. CONCLUSIONS

In the paper, we have illustrated the usecases of web

application for robotics, and presented our web application

development framework. These tools provide an easy method

to develop robot web applications compatible with a broad

array of web enabled devices.

The development of effective web applications will be

increasingly important as the robotics community grows

beyond the specialized researchers. Effective robot task

management will need to be accomplished without a deep

understanding of the system architecture from the users

perspective. Web-based tools provide one solution to this

problem.

REFERENCES

[1] W. Burgard and D. Schulz, “Robust visualization for web-based
control of mobile robots,” in Beyond Webcams: an introduction to

online robots, K. Goldberg and R. Siegwart, Eds. MIT-Press, 2002.
[2] K. Goldberg, S. Gentner, C. Sutter, and J. Wiegley, “The mercury

project: a feasibility study for internet robots,” IEEE Robotics and

Automation Magazine, vol. 7, pp. 35–39, 1999.
[3] K. Taylor and J. Trevelyan, “A telerobot on the world wide web,” in

National Conference of the Australian Robot Association, 1995.

[4] C. Crick, G. T. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins,
“Rosbridge: Ros for non-ros users,” in International Symposium on

Robotics Research (ISRR 2011), Flagstaff, AZ, USA, August 2011.
[5] S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O. Jenk-

ins, “Robots as web services: Reproducible experimentation and
application development using rosjs,” in International Conference on

Robotics and Automation (ICRA 2011), 2011.
[6] C. Crick, S. Osentoski, G. Jay, and O. C. Jenkins, “Human and robot

perception in large-scale learning from demonstration,” in HRI, 2011,
pp. 339–346.

[7] B. F. Casey Reas, Processing, MIT Std., 2001. [Online]. Available:
www.processing.org

[8] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[9] M. Pilgrim, HTML5: Up and Running. O’Reilly Media, 2010.
[10] ECMA-262: ECMAScript Language Specification, 5th ed, E.C.M.A.

International Std., December 2009. [Online]. Available: http:
//www.ecma-international.org/publications/standards/Ecma-262.htm

[11] B. Pitzer, mjpeg server, Bosch Research Std., 2011. [Online].
Available: www.ros.org/wiki/mjpeg server

[12] Dojo, a javascript toolkit, The Dojo foundation Std. [Online].
Available: www.ros.org/wiki/mjpeg server

[13] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation,” in AAAI, 2011.

[14] A. Salga, D. Hodgin, A. Sobiepanek, S. Downe, M. Medel, and
C. Leung, “Processing.js: sketching with ¡canvas¿.” in SIGGRAPH

Talks, 2011, p. 15.

