
Rank and Impression Estimation in a Stylized Model of Ad Auctions

Jordan Berg, Carleton Coffrin, Amy Greenwald, and Eric Sodomka
Department of Computer Science, Brown University

{jberg, cjc, amy, sodomka}@cs.brown.edu

Abstract

Empirical research on ad auctions often aims
to estimate model parameters (e.g., click prob-
abilities) from aggregate data (e.g., average po-
sitions, total impressions, etc.). This is not sur-
prising, because aggregate data are what the
search engines reveal. But it has recently been
pointed out that aggregate data can produce
biased estimates [1]. In this work, we construct
a disaggregated model of positions and impres-
sions from aggregate data. Previous work has
demonstrated the feasibility and benefits of dis-
aggregation [13]. We extend the previous ap-
proach by formulating the disaggregation pro-
cess as two intertwined problems, rank and
impression estimation. We solve these prob-
lems (and a natural simplification) using dy-
namic, mathematical, and constraint program-
ming techniques. We then evaluate the mer-
its of our solution techniques in a simulated ad
auction environment, the Ad Auctions division
of the annual Trading Agent Competition.

1 Introduction

Most Internet advertising space is sold via ad auctions,
which operate as follows: Sometime in advance, a pub-
lisher (e.g., a search engine) solicits bids from advertisers
on potential queries. Then, when a user submits one of
those queries to a publisher, the user is shown a set of
sponsored search results (i.e., ads) alongside so-called
organic results based purely on relevance and impor-
tance, not on sponsorship. The placement (also called
slot or position) of each ad is determined on-the-fly by
the publisher, who runs an auction based on the previ-
ously submitted bids. Then, if/when the user clicks on
an ad, the corresponding advertiser pays the publisher
an amount determined by the auction—a so-called cost-
per-click (CPC). Higher slots tend to cost more because
they are more likely to generate clicks.

In this environment, both publishers and advertisers
face difficult decision problems. The publishers must de-
termine CPCs, and in what order to display the winning

ads, depending on bids. The advertisers in turn must de-
cide what queries to bid on and the maximum CPC they
are willing to pay. Correspondingly, work on sponsored
search can be divided into two categories: ad auction de-
sign, which addresses the publishers’ problem (e.g., [2;
3; 5; 7; 12; 15]), and bidding strategy design, which ad-
dresses the advertisers’ problem (e.g., [4; 10; 13]). This
paper falls into the latter category.

Adopting a common assumption in past research
(e.g., [8; 13]),1 we view the decision problem the ad-
vertisers face as decision-theoretic, not game-theoretic.
As such, we assume the advertiser builds a model of the
world around him, which predicts such things as the fu-
ture bids and budgets of other advertisers and antici-
pated user behavior.2 Then, taking this model as input,
the advertiser makes its decisions.

Most existing empirical research on ad auctions aims
to estimate models from aggregate data (e.g., average
position, total number of impressions, etc.). This is not
surprising, because aggregate data are what the search
engines reveal. But it has recently been pointed out that
aggregate data can produce biased estimates; for exam-
ple, predicted click-through-rates can exceed actual [1].
Consequently, one must either figure out a way to ad-
just for potential bias in their estimates, or try to infer
a disaggregated model of the intra-day variation in av-
erage positions, total number of impressions, etc. before
estimating model parameters.

In this paper, we take the latter route. That is, we
attempt to construct a disaggregated picture of slot dy-
namics over the course of a day—meaning which adver-
tiser was in which slot when and for how long—from ag-
gregate statistics. Previous work [13] has demonstrated
the feasibility and benefits of disaggregation. We ex-
tend the previous approach by formulating the disaggre-
gation process as two intertwined problems, rank and
impression estimation. The impression estimation prob-
lem (IE) is to estimate the number of impressions that

1See Wellman et al. [16] for a discussion of the validity of
this assumption.

2In most auctions, the rules are known. In real-world ad
auctions, however, the rules are often not known. Hence, in
general, an advertiser should incorporate predictions about
the auction rules themselves into its model of the world.



each bidder sees in each position. The rank and impres-
sion estimation problem (RIE) is to estimate each bid-
der’s rank as well, when sorted in (squashed) bid order.
This decomposition is advantageous for several reasons,
including that it allows us to clearly state and prove
mathematical properties about cascades, the data struc-
ture we use to represent our solutions to these problems.

Using our theoretical insights, we develop a mathe-
matical programming formulation of the rank and im-
pression estimation problem, which can be solved with
commercial integer programming solvers. We compare
and contrast our mathematical programming formula-
tion with a problem-specific tree search, similar to that
which was developed previously [13]. We evaluate the
merits of these two approaches using a simulated, ex-
perimental ad auction platform, the Ad Auctions di-
vision of the annual Trading Agent Competition (TAC
AA) [9], for which both aggregate statistics and disag-
gregated data are readily available. In ongoing work, we
are further evaluating the impact of these two competing
approaches on our techniques for predicting things like
opponents’ (squashed) bids and budgets.

This paper is organized as follows. In Sec. 2, we de-
scribe the stylized ad auctions model from which this
work will be based. In Sec. 3, we define a data structure
we call a cascade, which stores the number of impressions
each advertiser sees in each slot. Further, we present a
dynamic program (DP) that populates a cascade, given
the total number of impressions seen by all advertisers
and their ranks. We then state several key properties
that characterize cascades. In Sec. 4, we define the rank
and impression estimation problems, and we describe our
integer and constraint programming solutions to IE, as
well as a least discrepancy search which we wrap around
these solutions to solve RIE. In Sec. 5, we report on
the performance of our solutions in TAC AA relative to
ground truth, which we calculate using our DP.

2 A Stylized Model

Imagine a set of N advertisers, each of which is inter-
ested in displaying its ad in one of M slots alongside the
organic search results for a given query. At the start
of each time period, each advertiser submits a bid and
spending limit to the publisher. The submitted bids are
then ranked by either bid or revenue, or something in
between, as determined by a squashing parameter [11].
When a user searches for the given query, the ads that
are displayed are those of the advertisers with the top
M (squashed) bids, in order, from highest to lowest, of
(squashed) bid. Advertisers pay the publisher as users
click on their ads according to standard [7] generalized
second price (GSP) auction rules (i.e., they pay the min-
imum amount they would have had to bid to maintain
their assigned slot). Once an advertiser has paid the
publisher so much that another click would put it over
its spending limit, it drops out of all subsequent auc-
tions, and the remaining advertisers are re-ranked. In
particular, the advertisers previously ranked below that

advertiser move up one position in the ranking. This
process continues until either all agents exhaust their
budgets, or no further users place search queries.

At the end of the time period, each advertiser receives
the following aggregate data from the publisher: its total
number of impressions (i.e. the number of times its ad
was displayed) and the average position of all advertisers
that participated in the day’s auctions.

In the remainder of the paper, we use the term agent
in place of advertiser or bidder.

3 Cascade Calculations

The first problem we present is a simplification of rank
and impression estimation in which we know not only
the rank of all agents, but the total number of impres-
sions seen by each agent as well. We originally studied
this problem because its solution is necessary to compute
ground truth and is hence essential for experimentation
with our constraint programming solvers for the IE and
RIE problems. But in doing so, we identified mathe-
matical properties of cascades which gave rise to integer
programming solutions to IE and RIE.

3.1 The Cascade Data Structure
We represent the slot dynamics that arise in our stylized
model using a data structure we call a cascade. In na-
ture, a cascade is a structure in which water flows down
a stair case shaped rock formation. For our purposes, a
cascade is a data structure in which impressions flow up
an inverted stair case shaped formation. The stairs in
our cascades arise whenever one agent exhaust its bud-
get, at which point the impressions the other agents see
flow up from lower slots to higher ones.

Given a ranked list of agents 1, . . . , N and the total
number of impressions each agent j sees, Tj ≥ 0, a cas-
cade can be populated as follows. First, agent 1 sees T1

impressions in the first slot. Second, if T2 ≤ T1, then
agent 2 sees T2 impressions in the second slot; or, if
T2 > T1, then agent 2 sees T1 impressions in the second
slot, and T2−T1 impressions in the first slot. In general,
the number of impressions that agent j sees in slot j is
bounded above by the number of impressions agents 1
through j− 1 saw in slot j− 1. Similarly, the number of
impressions that agent j sees in slot j − 1 is is bounded
above by the number of impressions agents 1 through
j − 1 saw in slot j − 2. And so on.

We formalize this algorithm as a dynamic program
in the next section. We then use our formalization to
characterize the mathematical properties of cascades.

3.2 Dynamic Program
Given a set of n agents in rank order, a cascade is de-
scribed by a vector I of length n. The jth entry in this
vector is itself a vector of length j. Intuitively, Ij,k de-
notes the number of impressions agent j sees in the kth
slot, for k ∈ {j, . . . , 1}.

We calculate cascade values (i.e., the entries in “ma-
trix” I) in terms of two auxiliary matrices S and R: Sj,k



S3,2 R4,3

Slot 2

Slot 3

Slot 4

Slot 1

Figure 1: S3,2 is the sum of the values of the cells with
green dotted lines running through them: i.e., the num-
ber of impressions the agents ranked 1 through 3 (the
orange, blue, and red agents) see in slot 2. R4,3 is the
sum of the values of the cells with the red splotchly lines
running throught them: i.e., the number of impressions
agent 4 (the green agent) sees in slots 4 and 3.

records the total number of impressions the agents with
ranks 1 through j see in slot k and Rj,k records the total
number of impressions agent j sees in slots j through k

(see Figure 1). Mathematically, Sj,k =
∑j
j′=1 Ij′,k and

Rj,k =
∑j
k′=k Ij,k′ .

Our definition of cascade values is a mutually recursive
one, where I is computed in terms of S and R, and vice
versa. More specifically, given a ranked list of agents
1, . . . , N and the total number of impressions each agent
j sees, Tj ≥ 0, S, R, and ultimately I can be defined
inductively as follows:
• for all j ∈ {1, . . . , N} and for all k ∈ {j, . . . , 1},

Ij,k =

(
Tj , if j = 1

min{Sj−1,k−1 − Sj−1,k, Tj −Rj,k+1}, otherwise

(1)

• for all j ∈ {0, . . . , N} and for all k ∈ {j + 1, . . . , 1},

Sj,k =

(
0, if k = j + 1

Sj−1,k + Ij,k, otherwise
(2)

• for all j ∈ {1, . . . , N} and for all k ∈ {j + 1, . . . , 1},

Rj,k =

(
0, if k = j + 1

Rj,k+1 + Ij,k otherwise
(3)

These equations form the basis of the dynamic pro-
gram for computing cascade values presented in Algo-
rithm 1. Initially, agent 1 sees T1 impressions in slot 1.
Subsequently, in the nested for loops, we calculate the
number of impressions seen by agents 2 through N in
slots k = j through 1. Define Rj as the total number
of impressions agent j has seen thus far, and Sk as the
total number of impressions agents ranked above j have
seen thus far in slot k. If Sk−1 − Sk (i.e., the difference
between the total number of impressions seen thus far
by the agents ranked above j in slots k− 1 and k) is less
than the number of impressions agent j has yet to see
(i.e., Tj −Rj), then a portion of the aforementioned dif-
ference is alloted to agent j, but no more than Tj −Rj .
The quantity S0 is initialized to ∞ so that Tj − Rj is

always (i.e., for all agents j and for all slots k) less than
S0 − Sk. That way, if an agent sees any impressions at
all in slot 1, it sees all impressions it has yet to see in
that slot.

Algorithm 1 Dynamic Program
Input: a ranked list of agents 1, . . . N
Input: the total number of imp’ns Tj , for all agents j
Output: the number of impressions Ij,k that each agent
j sees in each slot k
S0 =∞
I1,1 = R1 = S1 = T1

for j = 2 to N do
Rj = 0
for k = j down to 1 do
Sk = 0
Ij,k = min{Sk−1 − Sk, Tj − Rj} {the number of
impressions agent j sees in slot k}
Sk = Sk + Ij,k {the total number of impressions
agents see in slot k}
Rj = Rj + Ij,k {the total number of impressions
agent j sees}

In fact, the inductive definition and dynamic program
presented above are only valid when the number of slots
M is greater than or equal to the number of agents N .
But more commonly, M < N . In this more common
case, we can proceed as above for all agents with ranks
1, . . . ,M . But to handle the agents ranked below M
(i.e., i ∈ {M + 1, . . . , N}), we create imaginary slots
k ∈ {M + 1, . . . , N}. The number of impressions these
agents see in imaginary slots is unconditionally set as
follows:

Ij,k = Sj−1,k−1 − Sj−1,k, if k ∈ {M + 1, . . . , N} (4)

The number of impressions they see in real slots is de-
termined almost as before, except that a comparison is
made not simply to Tj −Rj,k+1, but rather to this same
quantity offset by Rj,M+1, the number imaginary im-
pressions that agent j sees, because the term Rj,k+1 in-
cludes both real and imaginary impressions:

Ij,k = min{Sj−1,k−1 − Sj−1,k, Tj − (Rj,k+1 −Rj,M+1)},
if k ∈ {1, . . . ,M}

(5)
Figure 2 depicts a sample cascade that was con-

structed using our dynamic program given the data pre-
sented in the corresponding table, assuming 8 agents and
5 slots, as in TAC AA.

3.3 Properties of Cascades
Cascades can be characterized by the following essential
properties: 1. For all j ∈ {1, . . . , N} and k ∈ {j, . . . , 1},
Ij,k ≥ 0. That is, no agent sees a negative number
of impressions in any slot. 2. Impressions run out
only once. By this we mean the following: For all
k ∈ {Mj , . . . , k

∗ + 1}, Ij,k = Sj−1,k−1 − Sj−1,k, until
some critical slot k∗ at which point Ij,k∗ = Tj −Rj,k∗+1.



0 200 400 600

8
7

6
5

4
3

2
1

Cascade

Impressions

S
lo
t

Agent (i) Impressions (Ti)
1 742
2 742
3 556
4 589
5 222
6 520
7 186
8 153

Figure 2: Sample input to the dynamic program, and
corresponding cascade when N = 8 and M = 5.

Thereafter (i.e, for all k ∈ {k∗ − 1, . . . , 1}), Ij,k = 0.
Here, Mj = min{j,M}.

Equivalently, for all j ∈ {1, . . . , N} and k ∈ {j, . . . , 1},

1. Ij,k ≥ 0.

2. Rj,k+1 ≤ Sj−1,k.

This property captures the essence of the cascade data
structure. In words, the total number of impressions
agent j has seen so far (i.e., through slot k+1) is always
less than or equal to the total number of impressions all
agents above him in the ranking have seen in slot k.

3. Ij,k > 0⇒ Rj,k+1 = Sj−1,k.

In words, if agent j sees any impressions at all in slot
k, then it must be the case that the total number of
impressions agent j has seen so far (i.e., through slot k+
1) is precisely equal to the total number of impressions
all agents above him in the ranking have seen in slot k. It
cannot be more, or the aforementioned property would
be violated; and it cannot be less, because otherwise
there would be an opportunity for agent j to see more
impressions in slot k + 1.

4 Rank and Impression Estimation
En route to solving the rank and impression estimation
problem, we first set out to solve only the impression
problem (IE). That is, we assume that the agents’ ranks
are still given, but that total number of impressions seen
by each agent other than oneself is not known. Instead,
for each agent j, agent i knows only agent j’s average
position µj , defined as:

µj =
∑M
k=1 Ij,kk

Tj
=
∑M
k=1 Ij,kk∑M
k=1 Ij,k

(6)

These equations describe N constraints in the IE prob-
lem. But recall that agent i also knows the total number
of impressions it sees, Ti. This information leads to an
N + 1th constraint: Ti =

∑Mi

k=1 Ii,k. IE is a constraint
satisfaction problem (CSP): the entries in the cascade
matrix are the variables, and the N + 1 aforementioned
constraints together with the cascade properties com-
prise the constraints.

Unfortunately, the set of cascades that corresponds
to an arbitrary instance of IE is not a singleton. For
example, if there are 3 agents, and we, agent 3, see 100
impressions, while the average positions for agents 1, 2,
and 3 respectively are 1.0, 2.0, and 3.0, then agent 2
may see any number of impressions greater than 100,
and agent 1 may see any number of impressions greater
than the number agent 2 sees.

Indeed, the Tj values, for j 6= i, are not sufficiently
constrained. Hence, we enhance the IE CSP with an ob-
jective function that helps select among the various feasi-
ble Tj ’s. In principle, the objective function is straight-
forward: an agent should choose the most likely Tj ’s
given its information, including current observations and
past models (i.e., its past predictions of the bids and
budgets of the other agents that gave rise to the cur-
rent cascade). That is, an agent should choose a so-
lution that maximizes P (T ′j s | observations,models) =
P (T1, . . . , Ti−1, Ti+1, . . . , TN | Ti, ~µ,models), where Tj is
a random variable ranging over the total number of im-
pressions agent j sees.

But there are two problems with this approach. The
first is that the IE and RIE problems are meant to pre-
cede modeling, so it is circular to take models themselves
as inputs to these problems. We address this problem in
our experimental section, where we vary the models that
our algorithms take as input, considering both no models
and models based on previous cascade predictions.

The second problem with this approach is that it is
unwieldy to calculate the desired probability. We ad-
dress this problem by simplifying the objective function:
first, we (unreasonably) assume independence among all
the Tj and then we (reasonably) ignore any dependen-
cies among the Tj ’s and the µj ’s. The probability is
then:

∏
j 6=i P (Tj = Tj | models). Finally, when using

historical priors, we assume each random variable Tj is
a Gaussian, whose mean value is an exponential mov-
ing average T j over the past non-zero total number of
impressions predictions for agent j, and whose standard



deviation σj is T j multiplied by a large constant, because
our priors are not necessarily reliable.

In summary, we define the IE problem as follows:
given constants Ti for agent i and µj for all agents j,
together with variables Ij,k for all agents j and slots k
and Tj for all agents j 6= i,

arg max
Ij,k,Tj

Y
j 6=i

P (Tj = Tj | models) (7)

subject to:

Ij,k ≥ 0 ∀j, k (8)

Rj,k+1 ≤ Sj−1,k ∀j, k (9)

Ij,k > 0⇒ Rj,k+1 = Sj−1,k ∀j, k (10)

µj =

PMj

k=1 Ij,kkPMj

k=1 Ij,k

∀j (11)

Tj =

MjX
k=1

Ij,k ∀j (12)

These constraints are exactly the properties described
in Sec. 3.3, along with the average position and total
impression constraints.

We tackle this problem using two solution techniques:
integer linear programming (ILP) and constraint pro-
gramming (CP). In the former, we simply feed ILPs into
a commercial solver; in the latter, we design and imple-
ment our own problem-specific tree search.

4.1 Integer Linear Programming
An integer linear program cannot incorporate even the
simplified objective function in Equation 7 because it
is multiplicative, and hence non-linear. Consequently,
we approximate this objective function with one that is
additive:

∑
j

∣∣∣Tj−T j

σj

∣∣∣. This objective function can be

represented in a linear fashion as follows:3 We add two
constraints per agent: Tj ≤ T j + σjxj and Tj ≥ T j −
σjxj . The objective is then to minimize the total number
of standard deviations between Tj and T j : min

∑
j xj .

Our additive, linear objective function approximates
the multiplicative one in the following senses: (i) setting
Tj close to the mean of the prior is preferred by both ob-
jectives; and (ii) if the standard deviation corresponding
to a variable Tj is large, then neither objective function
is particularly sensitive to the setting of Tj . Figure 3 de-
picts the two objective functions—the one in Equation 7,
and the ILP’s linear approximation.

Aside from the conditional constraints, incorporating
the other IE constraints into an ILP is straightforward.
Consider the conditional constraint A → B. This is
equivalent to ¬A∨B, and can be broken down into two
new constraints, of which only one needs to be satisfied.
To allow for only one of these constraints to be satisfied,
we introduce a boolean variable, say z, and then add
a large constant times z to one of the new constraints,

3See http://www.aimms.com/aimms/download/manuals/
aimms3om_linearprogrammingtricks.pdf.

Figure 3: A visualization of the objective function de-
scribed in Equation 7 for a two-agent cascade (left), and
the ILP’s simplified linear objective function (right).

and a large constant times 1 − z to the other. Then,
depending on whether the boolean variable is true or
false, one of the constraints becomes trivial to satisfy,
leaving only the other constraint.4

In addition to experimenting with this ILP, we also
experiment with a LP relaxation of this ILP—a mixed-
integer linear program, in which the Ij,k (and hence, the
Tj) are real- rather than integer-valued.

4.2 Constraint Programmming
In addition to using an industrial-strength ILP solver
to solve IE (and RIE), we also solve these problems us-
ing constraint programming (CP), by which we mean
problem-specific tree search. CSPs are often solved us-
ing CP solvers (such as Comet [6]). The tree searches
these solvers initiate take advantage of the composition-
ality of well understood constraints and their specialized
satisfaction algorithms. Since our applications involve
only cascade constraints, which are not particularly well
studied, we solve these CSPs using our own light-weight
CP solver that is only equipped to solve cascade satis-
faction problems.

Like our ILP, our CP solver searches for Ij,k: i.e., the
number of impressions each agent sees in each slot. It
begins by assigning agent 1 (equivalently, the agent with
average position 1.0) some constant number of impres-
sions, say L, somewhere in the range of 1 and a fixed
upper bound T on the maximum total number of im-
pressions (i.e., the maximum number of impressions seen
in slot 1). If agent 2’s average position µ2 is fractional,
then µ2 is necessarily less than 2.0, meaning that agent
2 sees some impressions in slot 1. By the properties of
a cascade, agent 2 sees L impressions in slot 2. Given
this information, the number of impressions, call it x,
that agent 2 sees in slot 1 is fully determined: i.e.,
x = (µ2−2)L

(1−µ2) , because agent j’s fractional average po-
sition µ2 = 2L+1x

L+x .
More generally, when the agent with rank j has a

fractional average position, the number of impressions
it could have seen in slots 2 through j is constrained
by the existing cascade: i.e., for all k = j, . . . , 2, Ij,k ≤
Sj−1,k−1 − Sj−1,k ≡ Lk. Hence, we fill in impressions

4Again, see http://www.aimms.com/aimms/download/
manuals/aimms3om_integerprogrammingtricks.pdf.



almost exactly as we did in the dynamic program. In
the DP, for each agent j (in rank order) and for each
slot k = j . . . 1, we assign agent j all Lk impressions un-
less doing so would result in agent j seeing more than
Tj impressions in total. This incremental assignment
procedure is guaranteed to terminate because the total
number of impressions agent j sees is monotonically non-
decreasing in the number of impressions seen. In the CP
solver, we assign agent j all Lk impressions unless do-
ing so would result in agent j’s average position falling
below µj . Again, this incremental assignment procedure
is guaranteed to terminate because average position is
monotonically non-increasing in the impressions agent j
sees in higher slots (i.e., slots with lower numbers).

In summary, our CP solvers rely on a subroutine
which, for agents with fractional average positions, pop-
ulates the cascade almost exactly as the dynamic pro-
gram does. Recall the formula, Ij,k = min{Sj−1,k−1 −
Sj−1,k, Tj − Rj,k+1}. The term Tj − Rj,k+1 represents
the number of impressions j has yet to see before reach-
ing its total. Here, Ij,k = min{Sj−1,k−1 − Sj−1,k, Īj,k},
where Īj,k =

(
µj
∑j
i=k+1 Li −

∑j
i=k+1 iLi

)
/(k − µj).

The term Īj,k represents the number of impressions agent
j would have to see in slot k in order to reach its average
position. Hence, agent j sees either Sj−1,k−1 − Sj−1,k

impressions in slot k, or if seeing that many would result
in an average position that is below µj , it sees only Īj,k.

While the number of impressions each agent j with a
fractional number of impressions sees in each slot is con-
strained by the properties of the cascade, the number
of impressions agents with whole number average posi-
tions see in each slot is unconstrained. Hence, the search
within our CP solver is over the number of impressions
agents with whole number average positions (e.g., agent
1) see in each slot.

When our CP solver uses historical priors, the search
begins at the mean (i.e., the expected number of total
impressions), and then zig zags back and forth around
the mean with ever-increasing magnitude. When our
CP solver operates without historical priors, for agent
1 (with average position 1.0), it searches integers in the
range of 1 and T in increments of ∆, the discretization
factor; for all other agents j (with whole number average
positions greater than 1.0), it initializes its search by as-
signing j Sj−1,j−1 impressions in slot j and decrementing
from there (again, according to ∆).

Having explained how our CP solver generates cas-
cades (i.e., candidate solutions), it remains to explain
how our solver evaluates the quality of these solu-
tions, so that it can return the best one it finds (and
prune based on quality). Because we discretize the
search space, our CP solver is not guaranteed to sat-
isfy Constraints 11 or 12. Instead, for each candi-

date solution, we calculate µ̂j =
PMj

k=1 Ij,kkPMj
k=1 Ij,k

,∀j and

T̂i =
∑Mi

k=1 Ii,k. Consequently, the probability of interest
here is: P (T1, . . . , Ti−1, Ti, Ti+1, . . . , TN ,M1, . . . ,MN , |
Ti, ~µ,models), where Mj is a random variable rang-

ing over agent j’s average position. As above, we sim-
plify this objective by ignore any dependencies among
the Tj ’s and the µj ’s. The new objective func-

tion is then:
(∏

j 6=i P (Tj = Tj | models)
)
P (Ti = T̂i |

Ti)
(∏

j P (Mj = µ̂j | µj)
)

. Finally, when using histori-
cal priors, we assume each random variableMj (and Ti)
is a Gaussian, with mean µj (or Ti) and standard devi-
ation equal to µj (or Ti) multiplied by a small constant,
because the µj ’s (and Ti) are reliable statistics.

Our CP solver does not have a time limit; instead time
is indirectly controlled by ∆. But in the interest of time,
we do prune cascades whenever agent i’s error in average
position exceeds that of the best solution found so far.

4.3 Least Discrepancy Search
We solve the rank and impression estimation problem
(RIE) in two ways: (1) using an extension of our ILP
that searches over rankings as well (which we omit here
due to space constraints), and (2) wrapping a least dis-
crepancy (LDS) search around our CP solver, which fixes
a ranking of the agents, thereby reducing RIE to IE.

The LDS starts with an initial guess at the ranking.
This initial guess is a ranking in which any agent with
a whole number average position is ranked in that po-
sition, and all other agents are greedily filled into the
remaining open positions, with the next lowest available
slot being assigned to the remaining agent with the next
lowest average position. This initial guess is passed to
the CP, which solves the corresponding IE problem. The
LDS records the ensuing cascade and its objective value.
All two-swaps of this initial ranking are then added to a
priority queue, with priority being defined as the sum of
the absolute values of the differences in average positions
between swapped agents. In this manner, the next guess
is the ranking in the priority queue that minimizes the
discrepancy between itself and the initial guess. When-
ever a ranking is evaluated by the CP, all two-swaps
from this ranking are subsequently added to the priority
queue (if they have not already been considered). The
LDS terminates after evaluating a fixed number of rank-
ings, and the ranking and corresponding cascade with
the highest objective value seen is returned.

5 Evaluation

In this section, we evaluate how well our algorithms esti-
mate cascades. We evaluate our algorithms’ performance
on both the IE sub-problem, where bid ranking is known,
and the RIE problem, where bid ranking is unknown.

Our evaluation is done in the context of the TAC AA
market game, a simulated ad auction environment that
was released as part of the annual Trading Agent Com-
petition (TAC). The TAC Ad Auctions (AA) game [9]
captures many of the intricacies faced by advertisers in
real ad auctions, such as how to bid on multiple queries
and set budgets in the presence of noisy, delayed, and
incomplete information. Furthermore, it enables inter-
ested parties to benchmark various ad auction designs



and bidding strategies in a quasi-realistic, competitive
environment without incurring the monetary risks asso-
ciated with real-world experimentation.

5.1 Prediction Challenge
To evaluate performance, we created what we call a “pre-
diction challenge” using logs from previously played TAC
AA games, similar to the approach taken in other TAC
games [14]. The games we run on are a subset of the
2010 TAC AA finals. For each game, auction, day, and
agent, if the agent participated in the auction, we look at
the aggregate data that the agent received on that day
(its own total impressions, and all agents’ average posi-
tions), and make predictions about the resulting cascade
from that agent’s perspective. Since each agent receives
different summary statistics, we can make separate pre-
dictions for each auction participant.

As stated earlier, cascade predictions are inputs to
other models, such as bid and budget models. But dif-
ferent models rely on different components of the cas-
cade predictions. For example, a model that predicts
the total number of searches may only need as input
from the cascade the total number of impressions seen
by all the agents. On the other hand, models of an oppo-
nent’s bids and budgets may depend more heavily on the
specifics of the cascade predictions; the time an opponent
spent in each slot, for example, should impact predic-
tions about how many clicks that opponent received and
how much money it spent. To evaluate the usefulness of
our predictions as inputs to various conceivable models,
we consider three different forms of cascade predictions:
Ij,k values are predictions of how many impressions each
agent sees in each slot; Tj values are predictions of how
many total impressions each agent sees; T =

∑
j Tj,1 val-

ues are the total number of impressions seen during the
auction on the given day.

Ground truth Ij,k, Tj , and T values are determined
by manipulating data within the game logs. These logs
contain the total number of impressions each agent saw
(Tj) as well as the squashed bids of each agent. When
each squashed bid is unique, there is a unique bid order-
ing, and we can infer the Ij,k ground truth values using
our dynamic programming algorithm. The total number
of impressions across agents (T ) can then be computed
by summing up the impressions seen in the first slot.
When each squashed bid is not unique, there can be
rare cases where the ground truth values are unknown
(for example, if two agents have average position 5.0 and
each saw 10 impressions, we cannot determine which of
these agents was shown first). We throw out such in-
stances. Of the 9280 auctions that occurred in our data
set of 10 games, 16 queries, and 58 days, we threw out
83 instances due to ambiguous squashed bid rankings.

For each type of impressions prediction we make, we
look at the ground truth and compare it to the predicted
value. We report the mean absolute difference between
these predicted and actual Ij,k, Tj , and T values. Abso-
lute instead of relative error is reported because ground
truth impression per slot values can be zero, leading to

undefined relative error, or they can be very small (e.g.,
when agents place probing bids), leading to artificially
high relative error values. For ranking predictions, we re-
port the fraction of instances in which the correct rank-
ing is predicted for the RIE problem. All predictions
are evaluated with respect to time; the CP is given dif-
ferent discretization factor (∆) values which determine
time spent, while the ILP and MIP are given a maximum
amount of time that can be spent on a given instance.

Because agents are playing a repeated game and re-
ceive summary statistics at the start of each time period,
they may be able to use their past cascade predictions
to inform their current ones. To test this effect, in some
experiments, we endow agents with historical priors: i.e.,
prior beliefs about each opponent’s total number of im-
pressions based on past predictions. In other experi-
ments, we assume a uniform prior, which amounts to
assuming agents have no prior beliefs about their oppo-
nents’ impressions.

5.2 Algorithmic Performance
Figure 4 shows the results of the prediction challenge
when run on both the IE and RIE problems from the
point of view of our own agent, Schlemazl [4]. For all
three metrics of impression prediction accuracy, the CP
is the most accurate predictor for smaller time limits,
until a certain threshold where the ILP becomes more
accurate than the CP. The MIP is faster than the ILP
but never more accurate than the CP, which suggests
that integer decision variables are important for ILP ac-
curacy. For TAC AA’s specific time limits, the CP makes
the most accurate impression predictions.

Among the predictions made for Ij,k, Tj , and T , error
is lowest when predicting impressions per slot. This is a
combination of two effects: first, Ij,k values are smaller,
so there is less room for error; second, Ij,k predictions
are often correct except for the number of impressions
seen by the top agent in the first slot. When an agent in
the first slot sees more impressions than anybody else,
that agent could have seen an arbitrarily high number
of impressions without affecting the impression per slot
predictions for the other agents.

For all algorithms and error metrics, impression er-
ror is lower in the IE problem than the RIE problem.
This is unsurprising, because incorrect ranking predic-
tions in the RIE problem will lead to greater impression
error. Figure 5 (Left) shows the fraction of instances of
the RIE problem for which the correct ranking was pre-
dicted. Ranking accuracy improves with time, and like
the impression accuracy results, the CP outperforms the
ILP at smaller time limits. As the time limit increases,
the LDS wrapped around the CP does not check more
possible rankings, but its objective value for each rank-
ing becomes more accurate, since its discretization fac-
tor for the resulting IE problem is smaller at larger time
limits. We also see that the poor performance of the
MIP can be explained by its incorrect ranking predic-
tions. Allowing real-valued impression variables appears
to greatly increase the space of feasible rankings, and the



0.0 0.1 0.2 0.3 0.4

20
40

60
80

10
0

IE Performance

Average Seconds Per Prediction

A
ge

nt
 Im

pr
es

si
on

s 
P

er
 S

lo
t M

A
E

●
●● ● ● ● ●

● CP
ILP
MIP

0.0 0.1 0.2 0.3 0.4

20
40

60
80

10
0

IE Performance

Average Seconds Per Prediction

A
ge

nt
 Im

pr
es

si
on

s 
M

A
E

●
●

● ● ● ● ●

● CP
ILP
MIP

0.0 0.1 0.2 0.3 0.4

20
40

60
80

10
0

IE Performance

Average Seconds Per Prediction

To
ta

l I
m

pr
es

si
on

s 
M

A
E

●
●

● ● ● ● ●

● CP
ILP
MIP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
50

10
0

15
0

20
0

25
0

RIE Performance

Average Seconds Per Prediction

A
ge

nt
 Im

pr
es

si
on

s 
P

er
 S

lo
t M

A
E

●●● ● ● ● ●

● CP
ILP
MIP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
50

10
0

15
0

20
0

25
0

RIE Performance

Average Seconds Per Prediction

A
ge

nt
 Im

pr
es

si
on

s 
M

A
E

●
●● ● ● ● ●

● CP
ILP
MIP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
50

10
0

15
0

20
0

25
0

RIE Performance

Average Seconds Per Prediction

To
ta

l I
m

pr
es

si
on

s 
M

A
E

●●● ● ● ● ●

● CP
ILP
MIP

Figure 4: Accuracy of impression predictions for the IE (top row) and RIE (bottom row) problems. The left column shows
predictions for agent impressions per slot, the middle column for agent impressions, and the right column for total impressions
across agents. The black dashed line is approximately the amount of time an agent would have to build each of its per-query
cascade predictions in TAC AA, to allow time for other predictions and optimization.

MIP assigns some of these rankings high objective val-
ues, but with integer-valued impression variables, these
rankings are not considered.

Using historical priors led to mixed results, improv-
ing the CP’s accuracy but not the ILP’s or the MIP’s.
Historical priors are not based on ground truth but on
past cascade predictions, so there is potential for a posi-
tive feedback loop which can cause predictions to become
increasingly inaccurate. Similarly, accurate predictions
will tend to reinforce themselves. Figure 5 (Right) illus-
trates how the error in predictions with historical pri-
ors compares favorably to the error in predictions with
uniform priors for the CP. Historical priors are perhaps
taking advantage of situations in which the day-to-day
IE and RIE problems are underconstrained only sporad-
ically. When a majority of consecutive instances have
unique solutions, those solutions can be used to boot-
strap predictions on more difficult instances: i.e., when
many agents have whole number average positions.

5.3 Agent Behavior

We now examine prediction performance differences of
individual agents for just one of the problems (RIE, uni-
form priors) and one of our algorithms (CP) (see Ta-
ble 1). Surprisingly, some of our worst predictions occur

when we take on the role of Mertacor and TacTex, two of
the top three finishers in the 2010 TAC AA tournament.
On the other hand, Mertacor does make the best total
impressions predictions. Tau achieves relatively accurate
predictions on all dimensions. Further analyzing individ-
ual agent behavior can lead to some insights about why
performance varies across agents.

TacTex appears in more auctions than any other
agent, and often receives a whole number average po-
sition, but is rarely in the first slot. Additionally, Tac-
Tex often drops out of the auction early, observing only a
small amount of the day’s total impressions. This means
that TacTex is receiving daily summaries that are not
particularly helpful for predicting total impressions—
the agent’s number of impressions typically constrains
the space of feasible T values, but receiving only a few
impressions does not provide a very tight lower bound.
Additionally, agents that are in the auction for a longer
period of time are more likely to have fractional average
positions. A fractional average position together with
a large total number of impressions often substantially
limits the number of impressions that agent could have
seen in each slot, which in turn constrains how many im-
pressions the other agents could have seen in each slot.

However, it is worth noting that TacTex is at a disad-



0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

RIE Performance

Average Seconds Per Prediction

F
ra

ct
io

n 
of

 P
er

fe
ct

 R
an

ki
ng

s

●

●

●

●
●

●
●

● CP
ILP
MIP

25 30 35 40

0.
86

0.
88

0.
90

0.
92

0.
94

Historical Priors Benefits

Agent Impression Error

H
is

to
ric

al
 P

rio
rs

 E
rr

or
 R

ed
uc

tio
n

Figure 5: Left: Fraction of times the algorithms produce the correct rankings in the RIE problem. Right: Benefit from using
historical priors with the CP algorithm. Due to the inherent feedback loop in historical priors, as agent impression error (with
uniform priors) improves, historical priors become more effective.

Agent Performance Behavior
ε(Ij,k) ε(Tj) ε(T ) rank N %F2 %int %top %seen

TacTex 18 39 60 .94 33686 69 71 12 26
Schlemazl 16 30 26 .88 14821 91 16 9 72
Mertacor 29 54 9 .83 8449 80 12 7 98

MetroClick 20 34 35 .89 14363 88 15 6 77
Nanda AA 15 27 10 .89 12675 80 13 8 90

crocodileagent 17 27 29 .92 25451 89 17 9 67
tau 10 19 11 .92 19205 79 94 91 32

McCon 19 32 47 .95 29810 68 22 14 58

Table 1: Agent-specific prediction accuracy for the RIE problem with uniform priors using the CP algorithm. The best
prediction of each type is shaded a light gray, while the worst prediction is shaded a dark gray. Descriptions of behavior
columns, from left to right: number of predictions made, percentage of predictions made in the F2 focus level (a particular
type of highly focused query in TAC AA), percentage of auctions where the agent had an integer average position, percentage
of auctions where the agent was in the first slot, average percentage of impressions seen before the agent dropped out.

vantage in our prediction challenge because in it, agents
are only required to make predictions when they actu-
ally participate in an auction, and TacTex participates
in the most auctions. Seeing even a few impressions
probably leads to better cascade predictions than seeing
no impressions at all. Additionally, by dropping out of
the auction early, TacTex causes other agents to have
fractional average positions. While this improves cas-
cade predictions overall, other agents are better able to
capitalize because their own total impressions values are
more informative. Even if TacTex’s cascade predictions
suffer when it drops out, its other models are likely im-
proved because it sees cost information on a daily basis
in a number of different queries.

Mertacor’s strategy leads to notably different behav-
ior than TacTex, as it appears in the smallest number
of auctions. However, when it does appear in these auc-
tions, it is frequently in them for the duration. This
allows it to have nearly-perfect T predictions.

Tau never appears in F0 queries (not shown), which
are the most general queries with the highest number of
searches per day, and thus have the most potential for

error. Additionally, we see that tau is very frequently
in the first slot. The number of impressions seen by
the agent in the first slot is often underconstrained, but
tau does not run into problems making this prediction
because its usually occupies this position itself.

The notable difference in performance of agents’ cas-
cade predictions brings up the issue of the coupled na-
ture of predictions and decisions; specifically, the ability
to make decisions not just to maximize profit given cur-
rent predictions, but to improve predictions for future
days. While some agents do take ad-hoc approaches to
probing, explicitly calculating the value of information,
as far as we know, is not typical of agents in TAC AA
or the other TAC games. Our results suggest that such
calculations could be important for improving agent per-
formance. We leave this as a direction for future work.

6 Related Work

The problem of disaggregating average position data to
predict advertiser rankings and impressions within the
context of TAC AA was first studied by the TacTex
team [13]. Their approach to the RIE problem utilized



a tree-based search over three values for each advertiser:
squashed bid rank, the order that spending limits were
reached, and a GCD multiplier. The TacTex algorithm
reduces the search space dramatically by searching over
GCD multipliers and takes advantage of heuristics to fur-
ther prune the space. Our paper is a natural extension
of their work: we formalize the mathematical properties
of cascades in a stylized model of GSPs and present an
ILP based on these properties. We also present a CP
solver that runs faster than our ILP. An additional con-
tribution of our paper is a closer investigation of how an
agent’s average position and total number of impressions
seen affect the accuracy of its cascade.

7 Conclusion

Recent work by Abhishek et al. [1] shows both analyt-
ically and empirically, with actual search engine data,
that building models from average position data can lead
to aggregation bias; for example, predicted click proba-
bilities can exceed their actual values. Our work directly
addresses the problems identified by these researchers,
and could potentially be used to mitigate such bias.

In this paper, we develop algorithms for disaggregat-
ing ad auction data within a stylized version of the GSP:
i.e., for unraveling an advertiser’s daily average position
into its actual positions throughout the day. We began
by formulating and solving via dynamic programming a
complete information version of the disaggregation prob-
lem. We then formalized the mathematical properties of
cascades (i.e., solutions to this problem), and used the
cascade properties to guide our design of a constraint
programming algorithm and a mathematical program-
ming model.

We show that (1) the ILP and CP are both well-suited
to solving the rank and estimation problem, and the
choice of which to use should depend on time constraints;
(2) using historical priors on opponent impressions im-
proved accuracy for the CP, despite a potential feedback
loop; and (3) prediction accuracy differs depending on
the agent’s bidding behavior. This third point shows
the potential importance of making decisions not just to
maximize profit given current predictions, but also to im-
prove predictions so that the inputs to the optimization
routine are more accurate on subsequent days. As far as
we know, no TAC AA agents make any explicit value of
information calculations, though they might probe for
information in an ad-hoc manner; our results suggest
that this may be a fruitful direction for future research.
Additional future research will investigate how the ac-
curacy of our cascade predictions affect the accuracy of
other predictions such as opponent bids and budgets.

TAC AA assumes a stylized model of generalized sec-
ond price auctions, with more straightforward slot dy-
namics than most real-world ad auctions. For example,
in TAC AA, the ads of top ranking advertisers are con-
sistently displayed until those advertisers’ budgets are
exhausted; but some prominent Internet publishers do
not show all the top ranking advertisers, because they

attempt to control the rates at which advertisers spend
their budgets. Hence, our algorithms would need to be
extended before they could be used by advertisers in
some important real-world ad auctions. Nonetheless, we
believe that the present work is a necessary first step to-
wards solving any real-world analogue of RIE, and hence
potentially mitigating the aggregation bias reported by
Abhishek et al. [1].

8 Acknowledgments
This research was supported by NSF Grant CCF–0905234
and the Centrum Wiskunde and Informatica (CWI).

References
[1] V. Abhishek, K. Hosanagar, and P.S. Fader. Identifying the Ag-

gregation Bias in Sponsored Search Data. 2011.

[2] Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. Truthful
auctions for pricing search keywords. In Proc. ACM EC, pages
1–7, June 2006.

[3] S. Athey and G. Ellison. Position auctions with consumer search.
Working Paper, 2007.

[4] Jordan Berg, Amy Greenwald, Victor Naroditskiy, and Eric
Sodomka. A first approach to bidding in ad auctions. In TADA
’10: Workshop on Trading Agent Design and Analysis, June
2010.

[5] Christian Borgs, Jennifer T. Chayes, Nicole Immorlica, Mo-
hammad Mahdian, and Amin Saberi. Multi-unit auctions with
budget-constrained bidders. In Proc. ACM EC, pages 44–51,
2005.

[6] Dynadec, Inc. Comet 2.1 User Manual. http://dynadec.com/,
2009.

[7] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. In-
ternet advertising and the generalized second price auction: Sell-
ing billions of dollars worth of keywords. NBER Working Paper
No. 11765, 2005.

[8] A. Greenwald, V. Naroditskiy, and S. J. Lee. Roxybot-06:
Stochastic prediction and optimization in TAC travel. Artificial
Intelligence Research, 36:513–546, 2009.

[9] P.R. Jordan and M.P. Wellman. Designing an ad auctions game
for the trading agent competition. In Workshop on Trading
Agent Design and Analysis, July 2009.

[10] Brendan Kitts and Benjamin J. LeBlanc. Optimal bidding on
keyword auctions. Electronic Markets, 14(3):186–201, 2004.

[11] Sébastien Lahaie and David M. Pennock. Revenue analysis of a
family of ranking rules for keyword auctions. In Proceedings of
the 8th ACM conference on Electronic commerce, EC ’07, pages
50–56, New York, NY, USA, 2007. ACM.

[12] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V.
Vazirani. Adwords and generalized on-line matching. In Proc.
FOCS, pages 264–273, 2005.

[13] D. Pardoe, D. Chakraborty, and P. Stone. TacTex09: A cham-
pion bidding agent for ad auctions. In Proceedings of the 9th
International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2010), 2010.

[14] David Pardoe and Peter Stone. The 2007 tac scm prediction chal-
lenge. In AAAI 2008 Workshop on Trading Agent Design and
Analysis, 2008.

[15] Hal R. Varian. Position auctions. International Journal of In-
dustrial Organization, 25(6):1163–1178, December 2007.

[16] Michael P. Wellman, Amy Greenwald, and Peter Stone. Au-
tonomous Bidding Agents: Strategies and Lessons from the
Trading Agent Competition. MIT Press, 2007.


