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Abstract. We present a fast and effective bidding strategy for the Trad-
ing Agent Competition in Supply Chain Management (TAC SCM). In
TAC SCM, simulated computer manufacturers compete to procure com-
ponent parts from suppliers and then sell the assembled products to
customers in reverse auctions. One of the many sub-problems implicit
in the competition is deciding how many computers to sell of each type
and at what prices to sell them. We propose a greedy solution, Marginal
Bidding, which performs comptetively with a computationally intensive
integer linear programming solution on small problem instances. More-
over, because of the computational efficiency Marginal Bidding can han-
dle larger problem instances and therefore can more effectively reason
about predicted future demand.

1.1 Introduction

A supply chain consists of a network of autonomous agents engaged in procure-
ment of raw materials for, manufacturing and distribution of finished products.
The Trading Agent Competition in Supply Chain Management (TAC SCM) is
a simulated computer manufacturing market in which six independent software
agents compete to maximize the profits from their supply chain. In this paper
we study the TAC SCM bidding problem, in which agents compete in reverse
auctions to sell computers, balancing the desire to maximize revenue per order
by keeping the bid prices high and the need to maximize orders won by keep-
ing the bid prices low. Ideally these decisions must be made in the context of
future conditions: in a bull market it may be advantageous to conserve produc-
tion capacity for future demand, in a bear market it may be more desirable to
bid aggressively and claim a larger share of current demand to be fulfilled with
future production.

To solve the bidding problem, we first model the game-theoretic problem as a
simpler decision-theoretic problem of stochasticity. We then further simplify the
stochastic decision problem to a tractable approximation called expected bidding

as presented in Benish et al. [1]. We reduce expected bidding to a generalization
of the classic knapsack problem called nonlinear knapsack problem (NLK). Then
we apply the Equimarginal Principle—which states that revenue is maximized
among possible uses of a resource when the return on the last unit of the resource
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is the same across all areas of use—to the problem of expected bidding and
propose a greedy solution which we call Marginal Bidding.

We advocate for Marginal Bidding in this paper because it scales linearly
with the number of days in the problem and hence can more easily solve an
N -day extension of expected bidding than a traditional ILP solution.

To analyze the performance of our heuristics designed for the TAC SCM, we
built a simulator that generates decision theoretic simplifications of the game-
theoretic problems TAC SCM agents face, including bidding. Using our simulator
we compared several variants of Marginal Bidding to an ILP solution.

We show that certain variations of Marginal Bidding can compute bids faster
than our ILP solution; hence, incorporating a Marginal Bidder into a TAC SCM
agent would allow for more time to be spent on other decision problems (e.g.,
procurement). Moreover, this speedup enables Marginal Bidders to reason about
future demand as well as current demand, and hence achieve greater revenues
when knowledge of the future is valuable. While the gains to be realized by rea-
soning about future demand in TAC SCM appear modest, we demonstrate that
more substantial gains can be realized under more volatile or seasonal conditions
that generate more extreme market swings.

This paper is organized as follows. We begin by describing the Equimarginal
Principle of marginal utility theory, originally posited by Gossen in the mid
1800’s. We note that this principle can be applied to solve the nonlinear knap-
sack problem. Then, we present a discretization technique coupled with a greedy
algorithm to approximately solve an NLK. Next, we formalize TAC SCM bid-
ding as an N -day recursive stochastic program, and argue that expected bidding,
a 1-day deterministic approximation, can be reduced to solving an instance of
the NLK. Then, we present Marginal Bidding, a heuristic for solving an N -day
extension of expected bidding that incorporates the aforementioned discretiza-
tion technique and greedy approach to solving the NLK. Finally, we compare
experimentally the performance of two heuristics, Marginal Bidding and an ILP,
in simulations of the TAC SCM bidding problem.

1.2 The Equimarginal Principle

Prussian Economist H. H. Gossen posited the two fundamental laws of utility,
the Equimarginal Principle and the Law of Diminishing returns. The Law of
Diminishing Marginal Returns simply states:

The amount of any pleasure is steadily decreasing as we continue until
the last saturation is reached.

Gossen’s corresponding law of utility maximization, The Equimarginal Prin-
ciple states:

If a man is free to choose among several pleasures but has not time to
afford them all to their full extent, then in order to maximize the sum of
his pleasures he must engage in them all to at least some extent before
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enjoying the largest one fully, so that the amount of each pleasure is the
same at the moment when it is stopped; and this however different the
absolute magnitude of the various pleasures may be.

The Equimarginal Principle applies to problems in which a limited resource
such as time, capital or labor must be distributed among two or more indepen-
dent uses. Taken alongside the Law of Diminishing Marginal Returns, it is easy
to see that an optimal solution must imply that the marginal returns for each of
the possible allocations are equal. Indeed, if they were not, a better allocation
could be achieved by redistributing a unit of resource from a use with smaller
marginal returns to one with larger. Gossen’s claim, that equivalent marginal
returns imply an optimal solution is less obvious - for a proof see Mas-Colell et

al. [6] (Theorem M.K.3 on page 961).

1.2.1 The Nonlinear Knapsack Problem

The problems domains over which the Equimarginal Principle operates are fun-
damentally similar to knapsack problems. In traditional knapsack problems, we
are presented with a finite, positive capacity C > 0, and a set of n items with
a designated value vi and weight wi. The objective is to maximize the sum of
the values of selected items subject to the constraint that the weight of selected
items may not exceed the knapsack capacity. More formally:

max
x

n∑

i=1

vixi (1.1)

s.t.

n∑

i=1

wixi ≤ C (1.2)

In the economics problems discussed, the decision is not which items to take,
but what quantity qi ≥ 0 to take of each item (or alternatively, how much
of the limited resource to devote to each use), where in general the value of
a item or use depends on the quantity of capacity devoted to it. The result
is a knapsack problem with a potentially non-linear objective function, i.e. a
nonlinear knapsack problem. Again, more formally:

max
x

n∑

i=1

fi(xi)xi (1.3)

s.t.

n∑

i=1

gi(xi) ≤ C (1.4)

Where fis are value functions, gis are cost functions, and the knapsack ca-
pacity C is reinterpreted as a budget, B.

In a typical NLK instance, the xis are unbounded and positive, the fis are
real-valued, concave and nondecreasing and the gis are real-valued, convex and
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Inputs:

discretization factor K

value functions fi

cost functions gi

Outputs:

a vector q of quantities consumed, one per use

1. for each use i

a) initialize qi = 0

b) insert i with priority νi(si) = fi(si)
gi(si)

into a priority queue Q

2. for t = 1 to K

a) pop off of Q a use j with the highest priority
b) increment qj by sj

c) insert j into Q with priority νj(qj + sj) =
fj(qj+sj)−fj(qj)

gj(qj+sj)−gj(qj)

3. return q

Fig. 1.1. A FPTAS for NLK. The algorithm runs in time O( 1
ǫ
n log n).

nondecreasing. A concave value function implies non-increasing marginal val-
ues and a convex cost function implies non-decreasing marginal costs. When we
divide non-increasing marginal values by non-decreasing marginal costs the re-
sult is diminishing marginal returns. Hence, by the Equimarginal Principle total
value of an NLK is maximized when the marginal returns are equal across all
possible areas of use. i.e.

f1(x1)

g1(x1)
= . . . =

fi(xi)

gi(xi)
= . . . =

fn(xn)

gn(xn)

The subset of NLKs for which f is quadratic and g is linear can be solved
exactly in polynomial time (see, for example, Tarasov et al [11]). Our approach
however can be applied more generally to any arbitrary nondecreasing concave
value and convex cost functions. In this section we present a Fully Polynomial
Time Approximate Scheme (FPTAS) for solving NLKs. To discretize, we assume
that the resource can be spent in K equal units of size k = B

K
. We then for-

mulate a special 0/1 knapsack problem where the items are of values vij , the
marginal return of the jth unit of the ith use, and constant weights equal to k.
Because the weights are constant, these instances of knapsack can be solved by
greedily consuming units of various uses in sorted order by value from highest
to lowest until the budget is exhausted. By virtue of our assumptions about
NLKs we know that the marginal returns will diminish and therefore we know
vij ≤ vi,j−1 and that our greedy solution will never consume the jth unit before
consuming the j−1th, so it is easy to reconstruct a solution to the original NLK.

This intuition leads to our FTPAS algorithm for NLKs:
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Fig. 1.2. (a) Sample price-probability model. (b) Sample price-quantity model.

Our approximation yields a solution with ǫ = 2n
K

and runtime O( 1

ǫ
nlogn)1.

For a proof of these claims, see Greenwald, et al. [4] In the next sections we will
present Bidding in the TAC SCM and define a tractable approximation of it
called expected bidding. We will reduce expected bidding to an NLK satisfying
the usual fi and gi requirements, and we will apply our greedy algorithm and
compare it to our ILP solution.

1.3 Bidding in TAC SCM

In TAC SCM six software agents compete in a simulated personal computer
market. Each agent can manufacture any of sixteen different stock keeping units

(SKUs). The agents then compete to sell the SKUs in reverse auctions to a
common pool of customers. More specifically, the agents receive identical RFQs
from a customer specifying a SKU type, a quantity, a due date, a penalty rate
for late orders and a reserve price beyond which the customer will be unwilling
to purchase. Agents submit offers representing the price at which they would be
willing to satisfy a given RFQ. Customers then award the contract to the agent
who has offered the lowest price.

1.3.1 Price Probability Models

In a marketplace with indistinguishable products, a seller hoping to adjust its
market share can do so only by changing its price. Such a seller is likely to gather
relevant historical data for use in predicting the market shares that correspond
to various price settings. Following Benisch et al. [1], we assume that this predic-
tion task has already been completed, and the agent is already endowed with a

1 Although mentioned here as justification for the algorithms presented, the theoretical
proofs surrounding our algorithm for NLKs are largely the work of Victor Naroditsky
and are not part of our contribution to the project.
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price-probability model that reports the probability of winning an order for each
possible bid on current and future RFQs.

Rather than specifying a price-probability model for each individual RFQ, we
partition the set of RFQs according to their defining characteristics so that we
can obtain a richer set of price-probability models (we are assuming that models
built using more data can make more accurate predictions). In TAC SCM, a
natural partitioning of the set of RFQs is by SKU type and due date. We refer
to each element of such a partition as a market segment.

Figure 1.2(a) depicts the price-probability model defined by this equation:

p(x) =
2200 − x

800
1400 ≤ x ≤ 2200 (1.5)

This model asserts that a bid of 2200 has no chance of winning (it is the reserve
price above which there is no demand), whereas a bid of 1400 is guaranteed
to win (it is the price below which there is no supply). In between, at a price
of 1800, say, a bid wins with probability 0.50. Price-probability models need
not be linear, but can incorporate whatever techniques necessary to model the
likelihood of a bid price being the lowest offered in a market segment.

1.3.2 Expected Bidding

The N -Day stochastic bidding problem is formulated as a recursive stochastic
program in Appendix A of [llncs]. A tractable approximation of the one day
stochastic bidding problem is expectedbidding where an offer on a bid for quan-
tity q with probability of p deterministically results in a partial order of quantity
of pq. Collapsing the stochastic content of a price-probability model into a deter-
ministic partial order model is done by scaling the price probability model by the
quantity demanded in a given market segment. The ensuing models are called
price-quantity models and provide a mapping from price to expected market
share within the segment.

The objective in expected bidding is to maximize the expected revenue over
the space of possible bids subject to the capacity constraint and given price

quantity models hi(xi) for each segment i. More formally:

max
x

n∑

i=1

fi(xi)xi (1.6)

s.t.

n∑

i=1

cifi(xi) ≤ C (1.7)

where xi is the bid price for RFQs in segment i. Note that expected bidding is
an NLK with fi = hi(xi) and gi = cihi(xi). Assuming that hi(xi) is invertible,
i.e. that each bid price uniquely maps to an expected market share, we can
equivalently calculate a desired quantity from each market segment and bid the
corresponding bid price.
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1.4 A Greedy Algorithm

1.4.1 Marginal Bidding

An important simplification in the approximation of expected bidding is that
true TAC SCM bidding spans a range of days. In this section, we describe how
to extend the greedy algorithm into the multi-day setting. The result we call
Marginal Bidding. Since there is no upper bound on the number of days possible
in an arbitrary multi-day bidding problem, the extension of the greedy solution
to multiple days requires an additional parameter, the window size W , to define
the number of days within the multi-day problem the greedy algorithm will
consider.

The algorithm is presented in detail in figure [?]. At the conceptual level, it
fulfills orders in order of non-increasing revenues-per-cycle, next it schedules pro-
duction of different SKU types greedily in order of unit marginal returns, finally
it bids the prices associated with the quantity desired from that given market
segment. For simplicity, the pseudocode presented does not address component
restrictions. Extending the algorithm to incorporate those constraints is not com-
plex however - simply add as inputs to the bidder a current component inventory
and expected component arrivals. Then as each potentially scheduled increment
is considered, reject it if the components are available by the scheduled produc-
tion date. Then after each component is scheduled and decrement the anticipated
component supplies appropriately, backwards from the production date.

Scheduling The marginal bidder is, in general, agnostic to it’s production
scheduling strategy. That is, we could schedule using any arbitrary heuristic for
planning production that we desired. Two obvious examples are as soon as possi-

ble, which ensures that the most profitable products are scheduled for production
with the highest priority, and as late as possible, ensuring as much flexibility as
possible to respond to changes in market conditions. However, scheduling early
can cause an agent to select a suboptimal production schedule by occupying early
production capacity that could be used to address less profitable but more imme-
diate contracts, and scheduling late can cause an agent to begin with empty or
near empty production schedules in some conditions - a risky bet that the market
predictions will continue to hold. Our Marginal Bidder uses a hybrid approach,
scheduling order production as soon as possible, to ensure against late delivery
and defaulting penalties, and scheduling expected market share production as
late as possible to hedge against shifts in the market climate.

1.4.2 A caveat

Notice that we implicitly vary K across market segments. The reason for this is
that because we partition our market into segments that are not necessarily of
equal size. When unit sizes are large with respect to given market segment, it
can interfere with the algorithm’s ability to target that segment with an appro-
priate level of granularity. More conceptually, we specify the unit size by market
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percentage, rather than by number of requisite cycles. Although this allows our
algorithm to appropriately fine-tune their bidding even to smaller market seg-
ments, it also renders the theoretical guarantees presented earlier in the paper
inapplicable. Therefore it behooves us to empirically compare performance of
our greedy approximation to a performance benchmark, in this case an Integer
Linear Programming solution to the expected bidding problem.

1.5 Experiments

In this section, we report on experiments designed to compare the performance
of four bidding algorithms with varying abilities to reason about the future, an
ILP bidding heuristic (see Benisch et al. [1]) and three variations on the Marginal
Bidding heuristic developed in this paper. We expect the Marginal Bidders to
compute bids faster than the ILP, and we expect this speed to enable them to
consider larger windows into the future, which should lead to higher revenues
than the ILP under some market conditions (and never lead to lower revenues).
We test these conjectures on instances of TAC SCM bidding in a simulator we
built that tests individual agents in isolation by generating decision-theoretic
simplifications of the game-theoretic problems TAC SCM agents face.

1.5.1 Test Suite

We tested an integer linear programming solution with a 1 day window (ILP),
meaning it did not reason about any future demand beyond the current RFQs
and outstanding orders arriving each day. We compared this ILP with three
variations of the marginal bidder: a marginal bidder with a 17-day2 window
(MB-17), a marginal bidder with a full-game window (MB-Full), and a marginal
bidder with a hybridization of the two that considers the full game window, but
does so at a coarser granularity as it reasons further into the future in order to
keep its run time in check (MB-Coarse).

The 17 Day (MB-17) and full-game (MB-Full) bidders partition demand (i.e.,
the set of current and future RFQs) into market segments by SKU type and due
date, and the size of a unit in each market segment is 1 product. The hybrid
full-game bidder (MB-Coarse) also divides demand up by SKU type and due
date. For the first 17 days, it considers each due date separately, but beyond the
initial 17 days it divides demand into increasingly larger chunks, whose due-date
ranges grow by powers of 1.8.3 For the coarse bidder, each market segment’s unit
size is 1 product multiplied by the number of days in that segment.

Since each TAC SCM day is 15 seconds, and a bidding policy is one of many
decisions an agent must make each day, it may not be wise for an agent to

2 We chose 17 as the default window size because it is the last day on which a current
RFQ with the latest possible due date can be filled in TAC SCM.

3 For example, SKUs due on days 18-19 are grouped together (1.8 ≈ 2), as are SKUs
due on days 20-22 (1.82

≈ 3), and days 23-28 (1.83
≈ 6), and so on.



Title Suppressed Due to Excessive Length 9

allot too much of its daily run time to bidding alone. We thus study a likely
TAC SCM situation in which the bidder is only given 5 seconds to formulate its
daily bidding policy. The full-game Marginal Bidder often requires more than 5
seconds per day to compute its policy, so it is not a feasible TAC SCM bidder,
but we include it in this discussion for benchmarking purposes.

In order to reach a reasonable solution within the allotted 5 seconds, the ILP
dynamically calculates an appropriate degree of discretization using a formula
that was empirically determined to minimize the ILP’s distance from optimal-
ity within a 5 second window. The equation for the number of price points is
2300/(# of RFQs + # of Orders). An ILP with a run time of up to 15 seconds
and additional price points was also tested, but did not yield significant gains.4

1.5.2 Experimental Design

Recall that in TAC SCM each agent submits its bids to a reverse auction, so that
an RFQ is awarded to the agent that bids the lowest price below the reserve price.
Using our simulator, we tested our bidding algorithms in isolation, not against
other bidding agents, as would be the case in a true reverse-auction setting. The
simulator simply awarded contracts by transforming each offer into an order
with a certain probability, namely that which is associated with the bid price
under the price-probability model for the relevant market segment. Hence, we
simulated the stochastic bidding problem, although our heuristic solutions are
approximate solutions to the expected bidding problem.

In our experiments, agents were endowed with perfect price prediction: i.e.,
the various price-probability models (one per market segment per simulation
day) were shared between the agent and the simulator. Regarding demand, the
number of customer RFQs of each SKU type scheduled to arrive each day was
broadcast before the simulations began. Then, on each simulation day, the agents
received a set of current RFQs whose quantities and due dates were sampled
from the distributions outlined in the TAC SCM game specifications, and they
assumed that the quantity and due date associated with each of the future RFQs
were the means of the same distributions.5 Reserve prices were also known to
the agents; they were built in to the price-probability models.

We tested our bidders by running 25 simulations of 100 day games under
three families of market conditions: (i) constant: i.e., conditions on one day are
reflective of the conditions on the next; (ii) gradually changing conditions; and
(iii) sudden shifts, including demand or price shocks. Under the non-constant
conditions we examine situations of rising demand and price. Falling demand
and price conditions are not presented, but produce similar results.

4 An ILP with a 2-day window was also tested, as was one with a 17-day window and
constrained capacity (2000 cycles on day 1 and 2000 cycles on days 2 through 17).
Again, these variants did not yield significant gains.

5 The reason for drawing a distinction between the quality of the predictions of the
number of RFQs of each SKU type and their attributes is: the former is somewhat
predictable in TAC SCM—it is dependent on history (see, for example, Kiekintveld et

al. [5])—while the latter is not.
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Fig. 1.3. (a) Revenue from deliveries under constant market conditions. (b) Average
daily bidder times in high demand conditions. Low demand bidder times were similar.

For simplicity, in these simulations we assume infinitely many components.
Introduction of component constraints does not appear to significantly alter the
relative performance of our bidders.

1.5.3 Constant Conditions

In our first set of market conditions, we compare the bidders under constant
demand and price. Presented here are steady conditions of high demand, defined
as 20 RFQs per SKU type per day, which is the maximum possible according
to the TAC SCM game specification, and low demand, defined as 5 RFQs per
SKU type per day, the lowest possible. Prices in this experimental setup range
linearly from 50% to 125% of the SKU base price.

Under such conditions, we should expect to see no particular advantage to
planning for the future, since an optimal solution to the entire game can be con-
tructed by concatenating a sequence of optimal solutions, one per day, computed
for each day in isolation. Indeed, in terms of revenue, all the bidders are compet-
itive with one another under these conditions (see Figure 1.3(a)). Note however
that MB-17 and MB-Coarse arrive at their solutions an order of magnitude faster
than the ILP or the MB-Full bidding algorithms (see Figure 1.3(b)).

1.5.4 Shifting Conditions

More interestingly, market conditions can change over the course of a TAC SCM
game, either steadily as in a market adjustment or suddenly as in a demand or
price shock. In our next experimental setup, demand is initialized to 5 RFQs
per SKU per day, and prices range linearly from 50% to 75% of the SKU base
price. We then considered shifts to 20 RFQs per SKU per day and prices ranging
from 100% to 125% of the base prices by day 50. These shifts are representative
of the magnitude of changes an agent might observe while playing a typical
TAC SCM game. These changing market conditions were tested both as steady
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Fig. 1.4. (a) Revenue from deliveries under feasible SCM market conditions. (b) Av-
erage daily bidder times in Price Rise conditions. Other market conditions had similar
run times.

linear accumulations from day 1 to day 100 and as abrupt surges on day 50. In
our price-shifting simulations demand is held constant; in our demand-shifting
simulations price is held constant.

As expected, those bidders with more extensive knowledge of the future (MB-
Full, MB-Coarse) are able to exploit the mid-game surges by dedicating produc-
tion from today to future demand when conditions are more favorable. Bidders
with a shorter window (ILP, MB-17) are unable to plan far enough ahead to take
advantage of the upcoming shifts, and hence accumulate less revenue over the
course of the game. In addition to the additional revenue gained by exploiting its
knowledge of the future, the MB-Coarse bidder continues to run in substantially
less time than the ILP. See Figure 1.4.

The advantages of a larger window are more pronounced under those market
conditions in which the shift in demand or price comes as a sudden spike rather
than as a steady rise. When demand or prices rise gradually, even an agent with
a small window is aware that tomorrow’s market conditions are slightly more
profitable than today’s, and can reserve some inventory for future sales. However,
when demand or price spikes suddenly, an agent is not aware of more desirable
future market conditions until the spike falls within its window.

Because one of our simplifying assumptions for these simulations is that
agents have perfect models of future demand and price, it is encouraging that
MB-Coarse performs just as well as MB-Full. Their similar performance suggests
that the benefits of looking into the future may still be realized by agents with
more realistic but less accurate models.

1.5.5 Extreme Conditions

Within the context of TAC SCM, the previous experimental setup characterizes
shifts from one extreme set of realistic conditions to another, and the gains
resulting from knowledge of the future are modest. However, it is easy to envision
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Fig. 1.5. (a) Revenue from deliveries in extreme market conditions. (b) Average daily
bidder times in Price Rise conditions. Other market conditions had similar run times.

markets that are more naturally volatile or are subject to large seasonal trends
in demand. The greater the extent to which market conditions vary across time,
the greater the opportunity for bidders able to consider a larger window into
the future to earn greater profits. In order to demonstrate this effect, we present
a second set of simulations assuming shifting market conditions, but the shifts
are of greater magnitudes. In particular, demand surges from 5 to 40 RFQs per
SKU per day, and price rises from [50%, 75%] to [200%, 250%] of the base prices,
again as both an interpolated steady rise and as an overnight jump.

With no significant changes in run time (compare Figures 1.4(b) and 1.5(b)),
the marginal bidders are able to exploit the extreme changes in market con-
ditions, and in particular the bidders with larger windows (MB-Full and MB-
Coarse) are able to earn even greater profits (see Figure 1.5(a)). Also of interest
is the relative impact of demand changes versus price changes. We observe a
more pronounced impact when considering knowledge of the future under price-
changing conditions for two reasons.

First, because of capacity constraints, an agent can only produce a limited
quantity of each product on each day. Hence, an increase in demand does not
necessarily translate into an increase in the number of finished products. So even
if a demand shift results in higher prices, revenues need not increase substantially,
particulary in comparison to the revenue increase associated with a price increase
(see Figure 1.6(a)). If the magnitude of the price shifts in our experiments were
reduced, or if production capacity were increased, stockpiling products until a
demand shift could be as worthwhile as stockpiling products until a price shift.

The second factor that mitigates the advantage of knowledge of the future
in conditions of shifting demand is the relatively flat slopes of our quantity-
price curves. With flatter slopes, the difference in revenue between prices on the
initial curve and prices on the curve after a demand shift is small (Figure 1.6(b)).
Thus it matters less if the agent stockpiles products for the future, and in turn
it matters less if the agent has any knowledge of the future. If the quantity-



Title Suppressed Due to Excessive Length 13

price curves had steeper slopes, knowledge of the future in conditions of shifting
demand would likely prove more valuable than our current experiments suggest.
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Fig. 1.6. (a) Sample quantity-price models before any shift, after a price shift, and after
a demand shift. To illustrate the constraining effects of production capacity, also shown
is a sample daily producible quantity. In our experiments, price shifting conditions
result in higher revenues than demand shifting conditions, and thus knowledge of a
future price shift is more valuable than knowledge of a future demand shift. (b) For
quantity-price models with flat slopes, predicting future demand is not very important.

1.6 Related Work

Researchesr at the Cork Constraint Computation Center implemented an ILP
approach to bidding within a constraint based agent, which they called Foreseer
[3]. Similar to the expected bidder we compare our marginal bidder to, Fore-
seer maximizes profit over the space of possible bid prices subject to capacity,
component and reserve price constraints.

Researchers at CMU reduced probabilistic pricing (a problem somewhat sim-
ilar to TAC SCM bidding) to an NLK under the assumption of diminishing
marginal returns, and present an ǫ-optimal solution to their problem over arbi-
trary value functions [2]. The efficiency of their method, however, is dependent
on normally distributed customer valuations (an analog of price probability mod-
els). Our efficiency is independent of the form the price probability models take.

Finally and most similarly, the TacTex team have developed a greedy bidder
with many similarities to the marginal bidder presented here [7]. A few distinc-
tions do exist, however: TacTex initializes bids to the reserve prices and then
iteratively reduces bids according to some selection mechanism until production
capacity is reached or profit is no longer increasing. The selection mechanism
relies on a heuristic to determine whether production capacity or component
availability is the limiting resource, and selects by profit-per-cycle or ∆Profit

∆Probability

respectively.
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1.7 Discussion and Conclusion

In this paper we describe a technique for solving NLKs by converting them into
discrete simple allocation problems that can be solved greedily. Although more
complicated algorithms with better runtimes are known, our simple incremental
solution allows us to easily incorporate more general acceptance conditions such
as scheduling and component constraints.

It remains to be seen whether our Marginal Bidding approach can be ex-
tended to handle interdependent uses, where devoting resources to one use can
affect the marginal return of another. Interdependencies arise naturally in pro-
curement because components are shared among SKU types.

Despite the game-theoretic nature of bidding in TAC SCM, our focus here
was simply on a decision-theoretic (stochastic) optimization problem, not on
game-theoretic equilibrium calculations. The enormity of the decision space in
TAC SCM renders game-theoretic strategic analysis intractable with current
technology. It remains to be seen whether an effective game-theoretic approach
can be developed to exploit strategic opportunities in the TAC SCM game.

Finally, our ultimate desire is to extend the Marginal Bidding algorithm
to accomplish marginal procurement as well, incorporating knowledge about
future supply and demand conditions. Because the ILP considers each RFQ as
a separate decision variable, its complexity grows rapidly as a function of the
number of RFQs. By reasoning about SKUs in collective market segments, the
Marginal Bidders avoid this complexity and appear to be more readily extensible
to the procurement problem.
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