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Abstract— We present applications of uncertainty visualization methods to a global meteorological model, allowing better 
understanding of the composition of the local environment of developing hurricanes.  Our work enables efficient visual pruning of 
unlikely results, especially in regions of atmospheric shear.  We derive bounds on advection uncertainty due to interpolation and 
incorporate this uncertainty into our visualization of trajectories, facilitating visual pruning.  By identifying trajectories that indicate a 
protection of storm's core from outside influence, we also attempt to corroborate the viability of a recently devised meteorological 
theory that hurricanes develop in protected, "marsupial" pouches.   

Index Terms—Uncertainty visualization, multi-field visualization, flow visualization, time-varying data, meteorological visualization 
techniques.

 

1 INTRODUCTION 
This paper describes the application of uncertainty visualization 
methods to meteorological flow.  The driving goal of this work is to 
improve hurricane prediction through a better understanding of the 
interaction of a storm and its local environment.  Some important 
factors in this understanding are the air’s source, path, and 
composition.  These properties can be neatly encapsulated and 
represented by trajectories, otherwise known as pathlines or particle 
paths.  
 These trajectories begin, or are “seeded,” as a set of 
particles at a user-specified location in space and time, then travel 
through a time-varying vector field.  In meteorological studies, this 
initial volume of seeds is known as an air parcel; the vector field is 
the air-parcel 3-dimensional velocity.  The concept of backward 
trajectories [1] is applied to this problem since we know the “final” 
position of air we are interested in: that which is near developing 
hurricanes.  Therefore we seed the air parcel trajectories near the 
storm and work backward through time and space to determine the 
source and path the air took to its final position.  Along the way, we 
can also maintain “snapshots” in time of the path’s properties, such 
as its relative humidity. 

While these analyses provide a good approximation of the 
air parcels’ paths, the oft-overlooked problem of identifying and 
representing sources of potential uncertainty [2] is addressed.  The 
pathlines are a derived quantity, but the accuracy of their derivations 
[3] is rarely represented.  We provide an upper bound and visual 
representation for the uncertainty of these calculations.   The aim is 
to prevent the user from reaching erroneous conclusions about the 
storm and its environment based upon trajectories with a high degree 
of uncertainty resulting from passage of air parcels through regions 
of sharp velocity gradients or errors associated with the underlying 
interpolation.  It also facilitates the efficient visual pruning of 
unlikely results by allowing the user to disregard trajectories with 
higher uncertainty. 
 As mentioned above, these uncertainty estimates are 
especially important in regions of high wind shear that are common 
near the extreme conditions surrounding a hurricane.  Since these 
adjacent vectors are rapidly changing direction and magnitude, the 
resulting trajectories that flow through them have a higher level of 
uncertainty than those that flow through a more uniform field.  
Therefore, without the user inspecting the underlying vector fields 
for each time step along the trajectories’ paths, there is no way of 
understanding their corresponding level of confidence. 
 A final related factor is the resolution of the underlying 
data.  In this work, we use global atmospheric analyses produced by 
the National Oceanic and Atmospheric Administration’s National 
Centers for Environmental Prediction.  The analyses contain 
information on atmospheric temperature, pressure, humidity, and 3-
dimensional air velocities with a spatial resolution of 1° latitude and 
longitude available at six-hour increments.  Since this is a relatively 

coarse resolution, trajectories passing through areas of high wind 
shear will have a higher level of uncertainty. 
 We apply these techniques to study a recently developed 
meteorological theory [4] proposing that hurricanes develop in 
protected “marsupial” pouches.  We examine trajectories seeded near 
developing hurricanes for evidence that they are protecting the 
storm’s core from outside influence. 

2 RELATED WORK 
 While the methods and error analysis of numerical 
integration are well established for analytic differential equations, 
work on other sources of error in discrete schemes is relatively 
recent.  Lopes and Brodlie [3] formulated a framework for describing 
sources of error in flow visualization, including interpolation 
inaccuracy in discrete fields, but did not perform any numerical 
analysis.  Darmofal and Haimes [11] analyzed error arising from 
temporal interpolation of time-varying vector fields that are sampled 
discretely in time, but did not address the effects of spatial 
interpolation.  Finally, Shirayama [12] empirically investigated 
integration errors introduced by temporal and spatial interpolation in 
fully sampled vector fields.  In this paper we present a simple upper 
bound on particle tracing inaccuracy due to the lack of information 
between sampling points in a discrete time-varying vector field. 
       The visualization community has developed generic techniques 
for incorporating local and accumulated uncertainty in visualizations 
of flow trajectories, such as those by Wittenbrink et al [9] and Pang 
et al [10].  In the end, we map total trajectory uncertainty inversely to 
line thickness. 
 Application-wise, the above work has not previously been 
implemented into a unified product available to meteorologists.  
NOAA’s HYbrid Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model [5] handles a wide variety of scenarios, but is a 
closed source package that is cumbersome to build upon, is not 
interactive, and is difficult to use with arbitrary data sources.  The 
Grid Analysis and Display System (GrADS) [6] allows input from a 
variety of data sources, but its trajectory routines are in only two 
dimensions.  Other meteorologists use custom-built trajectory 
generation software in languages such as IDL, but they are not 
publicly available.  In the end, we decided to build upon Unidata’s 
Java-based Integrated Data Viewer.  It is an open-source package 
that handles a variety of data formats and coordinate systems, along 
with providing existing visualization routines that allow our 
trajectories to be shown in a multi-field context.  

3 METHODS 
Trajectory generation methods typically use the fourth-order Runge- 
Kutta integration scheme, and we are no different.  These trajectories 



can be run forward or backward in time, determining the future or 
past locations, respectively, of the user-specified seeds.   

Regardless of the numerical integration technique chosen, 
there is an inherent uncertainty in the underlying data.  The discrete 
vector field represents a sampling of a continuous velocity 
distribution, and between sample points we do not know the value of 
the distribution.  In a regular spatio-temporal sampling grid, the unit 
cell is a four-dimensional hypercube, with one sample point at each 
of its 16 corners (see figure 1).  While a priori knowledge of fluid 
flow may indicate that linear interpolation is a better estimate of the 
velocity within the hypercube than the nearest neighbor, and that 
quadratic or cubic interpolation are better than linear, the true 
distribution is unknown.  We wish to estimate bounds on the possible 
values of the distribution within one hypercube based on the values 
at the corners. 

 

Figure 1: A cell of the spatio-temporal sampling grid.  Sampled 
velocities are known at each of the corners of the hypercube (black 
dots), but the value of the distribution within the hypercube is 
unknown.  Certain illustrative sample points are labeled with their 
sampling indices. 
 

Our estimate consists of the assumption that, at any point 
in the interior of the hypercube, each component of the true velocity 
is bounded by its extreme values among all the surrounding corner 
points: 
 

 
 
Here, N(x) is the set of corner points of the hypercube containing the 
point x. 
 In each component of the velocity, the trajectory that 
deviates the most from the trajectory computed from interpolated 
values results from integrating a constant vector field that takes on 
one of the extreme values identified by the bound.  Therefore, with 
two choices per component and three components to the velocity 
vectors, we may test eight different combinations of extreme values 
to find the trajectory within each hypercube that differs most from 
the trajectory computed from interpolated values, which we call the 
“main” trajectory.  This difference is taken to be an upper bound on 
our uncertainty in the main trajectory. 
 Computing the aggregate uncertainty over the course of the 
entire length of a trajectory requires O(8n) computations for a 
trajectory that passes through n hypercubes, since we must consider 
all extreme directions that the worst-case trajectory could take at 
every hypercube boundary.  Instead we estimate this value in O(n) 
by considering diverging trajectories of a fixed time length s; for a 
main trajectory of time length S, we compute S/s diverging 
trajectories.  We estimate the aggregate uncertainty by S/s times the 
maximum distance any diverging trajectory achieves from the main 
trajectory. 
 

 

We represent this computed uncertainty through the 
trajectory’s thickness:  thinner lines are less certain than their thick 
counterparts.  We chose this mapping to allow the more certain lines 
to visually dominate the scene, while demoting the less certain ones 
to a less-prominent role.  This decision is arbitrary, though, as it can 
be argued that the reverse mapping is more intuitive since thicker 
lines could represent a larger possible range of positions for the 
given pathline.  

To better understand the physical makeup of the air parcels 
over time, the trajectories can be marked according to user-specified 
properties.  For the purpose of this study, we color each pathline 
segment based upon the humidity at the point in time it passed 
through its local space.  This enables a series of “snapshots” over 
time to be displayed in a single frame.  Since these visualization 
structures paint an aggregate picture of the physical processes over 
time, more temporal detail can be provided, as necessary.  In a 
manner similar to Sobel et al’s particle flurries [8], we paint only a 
portion of the trajectories at a given time step.  In their case, the main 
goal is to reduce occlusion, while ours is to provide an indication of 
the leading edge of each trajectory at that given point in time.  This 
concept is shown in Figure 2.  

To aid in the analysis, other meteorological variables (i.e., 
temperature, pressure) can be viewed simultaneously using a palette 
of traditional visualization techniques (plan and cross-sectional 
contour/color plots, isosurface and volume rendering, vector and 
streamline plots, etc).  These plots are synchronized in time with the 
trajectories’ current position, as shown in Figure 2.  In effect, this 
provides a reference frame to the location of the hurricane, aiding in 
understanding the relationship between air parcel and storm 
movement. 

 

 
Figure 2: Underlying, synchronized 2-D color plot shows relative 
humidity field over time, aiding in understanding the pathlines’ context.  
Pathlines seeded by user in white ROI travel back through time; 
pathline segments are colored according to snapshots of relative 
humidity; dark blue segments have not yet been “reached” in the 
currently shown time range. 



 

 
These methods were all geared toward addressing 

meteorological questions related to better understanding the 
development of hurricanes.  Specifically, we wanted to test the 
validity of a recently devised theory proposing that hurricanes 
develop in a “pouch” of relatively isolated air that travels with the 
storm.  Another test was to search for sources of dry air that may 
inhibit hurricane development.  The Saharan Desert is one well-
studied source of dry air [7], but another source of dry air can come 
from mid-latitude air to the north.  Since wind shear may be present 
in both of these cases, we use uncertainty representations to gain a 
deeper understanding of the underlying data and quickly prune 
unlikely results.  

4 RESULTS 
In the 2-D example shown in Figure 3, the effects of horizontal wind 
shear are shown on the trajectories that pass through it.  It is 
immediately clear that the pathlines near the center of the image are 
less likely to be reliable. 
 

 
Figure 3: Using uncertainty to show effects of wind shear on 
trajectories, facilitating quick visual pruning of unlikely results.  One 
time step from the wind field (left) used to generate the pathlines at 
right.  Color represents relative humidity “snapshots” as in Figure 2.  
Note wind shear at center of field (neighboring vectors in nearly 
opposite directions) and its effect on trajectory confidence (thinner 
lines are less certain).  This also eliminates the need to examine the 
underlying vector field for wind shear at all time steps since each 
pathlines’ uncertainty encompasses the entire range.  
 
 To address the meteorological question of whether external 
air systems can affect the developing core of a hurricane, we 
generated trajectories from data near hurricanes Isabel (2003), Ivan 
(2004), and Helene (2006).   Our work is still too preliminary to 
draw scientific conclusions, but it does show some evidence to 
support the marsupial paradigm. 
 In Figure 4, air parcels released near Hurricane Isabel 
show two distinct groups of trajectories. Trajectories released from 
dry areas originate from the Sahara and descend from higher, drier 
levels. Trajectories released from within the core of the storm 
originate from lower levels and spiral into the core of the storm from 
below. The results support the idea of the storm core being protected 
from the drier surrounding air since no trajectories started within the 
moist core region come from the drier mid- to upper-level Saharan 
region.  Similar results were obtained for Ivan and to an extent, for 
Helene. However, in Helene, as shown in Figure 5, a dry air 
intrusion is seen to extend into the storm from the south and west. 
The air to the west is found to originate from the east, and likely the 
Sahara, but comes from a higher level and descends as the air 
reaches the western side of the storm. Whether this dry air gets into 
the inner core of the storm cannot be determined from the coarse-
resolution analyses. 
 

 
Figure 4: Overhead and side views of trajectories producing evidence 
supporting the proposed marsupial paradigm.  Air parcels in white box 
are released around Hurricane Isabel at a height of 700mb.  Dry air 
(blue trajectories) originates above this level and does not enter the 
interior of the hurricane, while moist air (warmer-colored trajectories) 
originates at lower levels, moves into the storm circulation, and sprials 
up into the moist region in Isabel.  Line thickness indicates path of dry 
air is generally more uncertain than that of warm air.  Background 
contour plot shows geopotential height (height of pressure surface).   
 
 When the uncertainty of these trajectories is computed, it 
paints an unexpected picture.  The low-level trajectories pass through 
the high-gradient regions of the storm while the mid-level 
trajectories of Saharan origin are moving through the environment 
where we usually presume the fields to vary far less.  As a result, the 
low-level trajectories should have encountered greater horizontal 
shear of the wind, but perhaps that is not the case and is something to 
investigate further. 
 
 



 
 

 
Figure 5: Overhead and perspective views of dry air, mostly from the 
Saharan Desert, entering Hurricane Helene’s storm system (center of 
top image) from above.  This type of intrusion does not support the 
marsupial paradigm.  Background contour plot shows relative humidity 
levels. 
 

We then addressed the other meteorological question of 
looking for sources of dry air not of Saharan origin that might affect 
hurricane development.  In examining data from Helene and Isabel, 
the search proved to be fruitless, as no sources of dry air from mid-
latitudes were found.  While this is a preliminary search, it is 
noteworthy since it reinforces the traditional belief that the Saharan 
Desert is often the source of dry air. 

5 CONCLUSIONS 
The original goal of this work was to improve the understanding of 
the local environment of developing hurricanes.  To that end, we 
have enabled the efficient generation and analysis of three-
dimensional meteorological trajectories.  We have derived an upper 
bound on the uncertainty associated with these trajectories due to 
interpolation error.  We have also shown preliminary evidence to 
support a new meteorological theory that proposes hurricanes 
develop within protected pouches of atmosphere. 
 Our short-term goal for this work is to continue using the 
tool to draw more conclusive evidence to support or refute the 
marsupial paradigm.  We also would like to more formally evaluate 
the utility of uncertainty visualization in this process. 
 In the longer term, we plan to use the tool with higher- 
resolution data and use uncertainty in a different manner: instead of 
having interpolation uncertainty from coarse grid spacing, it may 
display interesting results with small-scale features.  We will initially 

test regions near updrafts and use the uncertainty to understand the 
potential for air parcels to enter them.  

Finally, we will explore the option of obtaining 
intermediate values that are generated when the model data is being 
computed.  These values could be very useful for our own 
uncertainty calculations since we currently need to make 
assumptions about the model’s inner workings. 
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