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1 Introduction 

In the area of autonomous mobile robot navigation, acquiring reasonably 
accurate position information can be vital to the overall success of many 
tasks. Due to slippage of the wheels and possible inaccuracies of the shaft 
encoders, one cannot solely rely on the robot's odometry to calculate its 
position. The need to overcome such uncertainty in position calculation 
directed researchers in robotic.s to search many disciplines for techniques that 
would accomplish such tasks. Here, we attempt to overcome such problems 
by applying a well known technique used in engineering that produces an 
estimate of a position: an estimate that minimizes the estimation error and 
thus is called the optimal estimate. This technique is known as extended 
Kalman filtering (EKF). 

In this document, we first provide the mathematics of EKF along with 
some intuitions as to why this technique really works. We then describe, 
in detail, the actual mechanics involved in our application domain, namely, 
robotics. We also show how we were able to solve the problem of recognizing 
false sonar readings (due to multiple reflections) by applying a correspon­
dence criteria which distinguishes between true and false readings by vali­
dating only those readings that were measured within some angular range. 

We have implemented this approach on a real mobile robot. On top of 
a RWI (Real World Interface) base, we have mounted 8 Polaroid ultrasonic 
rangefinders. These sonars are our only means of sensing the outside world. 

This project provides as a localization tool for various robotics projects 
involving planning, learning and control in a known! environment. 

2 Kalman Filtering 

Ever since the manual tracing of "blips" on radar and sonar systems evolved 
into computer controlled tracking algorithms, tracking of any kind of sensor 
data has continued to develop significantly. 

Tracking "is the processing of measurements obtained from a target in 
order to maintain an estimate of its current state" [1]. 

A current state typically consists of: 

1 by known, we mean an environment where we know the positions of the objects respect 
to some global coordinate system 
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1. Kinematic components (position, velocity, acceleration, etc.). 

2. Other components (spectral characteristics, "feature" information). 

3. Constant or slowly-varying parameters. 

Measurements are noise-corrupted observations related to the state of a 
target, such as 

1. Direct estimate of position. 

2. Range and/or azimuth (bearing) from a sensor. 

3. Time of arrival difference between two sensors. 

4. Frequency of narrow-band signal emitted by target. 

5. Observed frequency difference between two sensors due to Doppler shift. 

6. Signal strength. 

The Kalman filter algorithm has proven to be quite successful in filtering 
sonar data [8]. The Kalman filter is an estimation algorithm that takes the 
current state, the control input, noisy observations and produces the optimal 
linear estimate of its current state along with the associated error variance. 
Kalman Filtering "attracted considerable attention because of its general va­
lidity, mathematical elegance and widespread technical application" [2]. An­
other striking feature of the Kalman Filter is the number of different ways 
the solution equations can be derived. The maximum likelihood method, 
the method of minimum variance and the least-squares method are deriva­
tion methods that were discovered following the initial system of differential 
equations derived by Bucy and Kalman (1961)[3]. 

The filtering algorithm that we have chosen for this project is the extended 
Kalman filter (EKF) [1, 5], which is a filter made for non-linear systems. In 
section 2.2 we describe the necessary equations for our tracking purposes. 
The techniques are discussed in more detail in [1, 5]. 
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2.1 Review of underlying mathematics 

Before we go on any further into the actual mathematics of EKF (Extended 
Kalman Filter), let us define and review some underlying mathematics. For 
more detailed descriptions, refer to [5]. 

Random Variables: a variable X which takes on values at random. It may 
also be thought of as a function of the outcomes of some random experiment. 
The probability distribution function 

F(x) = Pr(X :::; x) 

and the probability density function 

f(x) = dF(x) 
dx 

both specify the probability with which different values are taken by the 
random variable. 

Expectation (or Mean) of a Random Variable: is defined as the sum 
of all values the random variable may take, each weighted by the probability 
with which the value is taken. 

E[X] = LXiPi 
• 

Covariance of Random Variables: indicates the degree to which one 
variable is related to another, which is the expectation of the product of the 
deviations of two random variables from their means, 

E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y] 

Normal Probability Distributions: is characterized by the normal prob­
ability density function 
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I-L is the mean and a is the standard deviation. 
For n random variables, the multidimensional normal distribution is 

f (Xl X2 •.. X ) = 1 exp [-~(x - II.)' p-I(X - 11.)] 
n , , ,n (271")~ IPI t 2 - r:.. - r:.. 

where fJ, = E[~] and P = E[(~ - fJ,)(~ - fJ,)'] are the mean and the covariance 

of the -;ector ~' = (Xl, X2, .•. ,xn) respe~tively. The line under the letter X 

denotes the vector and ~' is the transpose of the vector ~. 

Stochastic (Random) Processes: a collection of functions of time, any 
one of which might be observed on any trial of an experiment. We shall 
denote the collection of functions by {x(t)}, and any observed member of 
such collection by x(t). 

Gaussian Processes: a random process where its joint probability distribu­
tion functions of all orders are multidimensional normal distributions. If ~(t) 

is an n-dimensional gaussian vector then the normal distribution is expressed 
by 

f(~,t)= 1 
eXP[-~(~-I-L)'P-I(~-I-L)]n 1 

(271" ) 2" IP 12 2 - ­

where !:':- is the mean and P is the covariance of the vector ~. 

White Processes (Noise): a random process where the distribution of 
the expected value of the members of the collection of functions x( t) (or 
power) over all frequency components in the full (theoretically infinite but 
practically wideband) range is uniform. This equal distribution has led to the 
name "white" in analogy with the white light, which has an approximately 
constant spectrum over the visible range. This is an idealized concept which 
does, however, serve as a very useful approximation where noise is wideband 
compared with the bandwidth of the system. 

2.2 The EKF algorithm 

Assume the robot's position is represented as a point in a global coordinate 
space by the vector x and we know this vector at time k. Then using the 
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control input vector u, we can calculate the trajectory and obtain the position 
vector for the next time step k + 1. But since our world is not perfect 
and usually has some amount of noise, we must take into account some 
motion error. We model such error by vector v, which is a sequence of white 
Gaussian processes with zero-mean. In a short notation, this is expressed as 
v(k) rv N(O, Q(k)), where Q(k) is the variance. 

Then, for a discrete-time, stochastic system, we can represent the system 
motion as follows: 

x(k + 1) = f(x(k), u(k)) + v(k) (1) 

where f is a state transition function that maps x(k) to x( k + 1) accounting 
for the control action. We distinguish the system to be linear or non-linear 
according to the linearity of the function f. To obtain the next position that 
is as close (statistically) to the actual as possible, we have added the vector 
v(k). k is the time argument indicating that the vector-valued function f is, 
in general, time-varying. 

Observations are generally measurements that provide some information 
about the positions of targets. Given the robot's current position x(k), the 
position information of the target described by the vector p and the obser­
vation noise vector w( k), we can easily calculate the observation z( k) by 
applying a simple distance measuring function h. 
Observations are described by (in more general form) 

z( k) = h(p, x(k)) + w( k) (2) 

where w is again assumed to be zero-mean, white, Gaussian; 
w(k) N(O,Ri(k)), where Ri(k) is the variance of the distribution.rv 

There are three basic tracking steps in the Kalman filter: prediction, 
observation and estimation. In the following we describe them in more detail. 
Let us assume that one has the estimate of the vector x at time k, which 
we denote as x. An estimate X, is the computed value of a quantity, x, 
based upon a set of observations. Depending on the criterion of optimality, 
there are several different ways and forms of estimation. The one we want 
to use here is one that minimizes the variance. That is to minimize the cost 
functional 

OO JOO JOO JOO IJ = -00 -00 -00'" -00 (x - x) S (x - x) p(xlz) dXldx2 ... dXnJ 
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where 5 is an arbitrary, positive semidefinite matrix. Independent of 5, when 
we set oJ/ox = 0, we find that 

x= i: i: i: ... i: xp(xlz) dXldx2." dXn = E[xllz] (3) 

which is the conditional mean estimate. In short, we write 

x(klk) ~ E[x(k)lz(1)··· z(k)] (4) 

where x(klk) denotes the conditional mean (or the expected value of x(k)) 
given the first k observations. 

From basic probability theory, we know that the variance of a random 
variable is E((x - J1 )2) where J1 is the mean. Applying to our notation, we 
can derive the covariance matrix 

P(klk) = E [[x(k) - x(klk)][x(k) - x(klk)]' I zk] (5) 

or 
(6) 

using the notation x which represents the estimation error x-x. 
To obtain the predicted state at time k +1 based on information available 

up to time k, the nonlinear function in (1) is expanded in Taylor series around 
x(k Ik) with terms up to first or second order to yield the first- or second-order 
EKF, respectively. The expansion with first-order term is 

x(k + 1) = f(x(klk),u(k)) + fx(k)[x(k) - x(klk)] +v(k) (7) 

fx(k) is the Jacobian of f: 

'( ,f:r;(k) = [V'xf k,x)]X=X(klk) 

where 
, 

V'xf'(k,x) = [ 8~1 ... 8~n ] l!l(k,x)"'fn(k,x)] 

evaluated at the latest estimate of the state. Thus, the prediction of the state 
to k + 1 from k is obtained by taking the expectation of (7) conditioned on 
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zkt and neglecting the higher-order terms. The first-order term in (7) does 
not appear in (8) because it is approximately zero-mean and since (4). 

x(k + 11k) = f(x(klk), u(k)) (8) 

The covariance associated with the predicted state is obtained by first 
subtracting (8) from (7) to yield 

x(k + 1) - x(k + 11k) = fx(k)[x(k) - x(klk)] +v(k) 

rewritten in a shorter notation, 

x(k + 11k) = fxx(klk) +v(k) (9) 

The higher-order terms have been dropped already. Multiplying the above 
by its transpose 

[x(k + llk)Hx(k + 11k)]' = f",x(klk)f;x'(klk) + f",x(klk)v(k) 

;' 
\ +f;x'(klk)v(k) +Q(k) (10) 

now, taking the expectation of (10) conditioned on Zk and using (6) yields 

P(k + 11k) = f",P(klk)f; +Q(k) (11 ) 

where Q( k) is the motion noise variance (v( k))2. Thus, P( k+11 k) is just the 
sum of this noise variance and the propagated error f",P(klk)f;. 

Similarly, to predict what we expect to observe at time step k + 1, we 
first obtain z( k + 1) by substituting k to k + 1 in (2) producing 

z(k + 1) = h(p, x(k +1)) +w(k + 1) 

Then, we expand the above in Taylor series around x(k +11k) with terms up 
to first order only, as in (7). Then we take expectations conditioned on zk 

and obtain the estimate of the predicted target observation as follows: 

i(k + 11k) ~ h(p,x(k + 11k)) (12) 

which is just the calculated observation at the expected position x(k + 11k). 

t zk = {z(j),j = 1, ... ,k} 
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Now, we take the actual observation (the sonar range of the target) 
z( k + 11 k), and compare this with the prediction. 

v(k + 1) = [z(k + 11k) - z(k + 11k)] (13) 

The associated variance of the innovation vector v( k + 1) is obtained in 
the same way as the covariance 

S(k + 1) = E[v(k + l)v(k + 1)'] = hxP(k + 1Ik)h~ + R(k + 1) (14) 

where the Jacobian of h is 

hx(k + 1) = [Vxh'(k + 1Ik)]~=X(k+1Ik) 

If the observation corresponds to the prediction, we are now ready to 
compute the filter gain which is called the Kalman Gain Matrix, written as: 

W = P(k + 1Ik)h~(k + l)S-l(k + 1) (15) 
) 

and thus the optimal linear estimate is 

x(k + 11k + 1) = x(k + 11k) + W(k + l)v(k + 1) (16) 

where v(k + 1) is as in (13). 
The optimality of the Kalman filter is contained in its structure and in 

the specification of the gain matrices. Let us assume for the moment that h 
is the identity matrix. In such a case P and S-l are both n x n matrices. 
If S-l is a diagonal matrix (no cross-correlation between terms), W is just 
the product of the error covariance P and the inverse of the mean square 
observation noise. Essentially, each element of this Kalman Gain Matrix is 
the ratio between statistical measures of the uncertainty in the state estimate 
and the uncertainty in the observation. 

Thus, the gain matrix is proportional to the uncertainty of the estimate 
and inversely proportional to the observation noise. In (16), we can see that 
the innovation vector v is multiplied by W either to increase or decrease 
the amount of correction added to the linear estimate. For example, if the 
uncertainty of the estimate was large and the variance of the observation 
noise was small, it would mean that the quantity v contained considerable 
information about the error estimates and therefore, should be magnified 
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by W. Conversely, if the uncertainty of the estimate was small and the 
observation noise was large, the quantity IJ was due mainly because of the 
noise and therefore, should affect the linear estimate very little. 

Consequently, the difference between actual and predicted observations 
will be used to provide basis for corrections to the estimate. Intuitively, it is 
not difficult to see why the Kalman Gain Matrix will improve the estimates. 

Finally, the covariance of the state at time k + 1 is 

P(k + 11k + 1) = P(k + 11k) - W(k + l)S(k + l)W'(k + 1) (17) 

The effect of measurement noise on the error covariance of the discrete 
filter can be best observed from the following matrix inversion relationship 
which can be obtained after some manipulations. [5] discusses the derivation 
of the following equation in more detail. 

P-1 (k + 11k + 1) = P-1 (k + 11k) + hx(k + l)S-l(k + l)hx(k + 1) 

When measurement noise is large (S-l(k + 1) is small), there is only 
a small increase in the inverse of the error covariance (a small decrease in 
the error covariance). Which means the associated measurements contribute 
little to the reduction of estimation errors. On the other hand, when the 
measurement noise is small (S-l(k + 1) is large), the inverse of the error 
covariance decreases in large amounts (a considerable decrease in the error 
covariance). And thus the contribution of the associated measurements to 
the reduction of estimation errors becomes significant. 

In an overview, EKF predicts: 

a. the state estimate 
b. the target observation estimate 
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Then it observes: 

c.	 the state with additive noise 
d.	 the target with additive noise 

producing: 

• from a and c, the covariance 

• from band d, the innovation 

Finally, 

•	 the optimal linear estimate for time k + 1 is produced by adding the 
weighted innovation to the predicted state estimate. Innovation is 
weighted accordingly with the degree of uncertainty in the position 
estimate and the observation or put simply, the size of the covariance 
and innovation. 

2.3 Applying EKF to Robot Navigation 

In this section, we describe how we applied EKF to our particular problem 
of robot navigation. 

We have chosen to represent the robot's position with respect to a fixed 
global frame at time k as a vector 

x( k) ]
x(k) = y(k)	 (18)

[ 8(k) 

where x(k) and y(k) describe the cartesian location and 8(k) represents the 
heading measured counterclockwise from the positive x-axis. 

The robot's motion is controlled by the control input 

T(k) ] (19)u(k)= [ !::l8(k) 

where T(k) is the speed per time step and !::l8(k) is the rotational value per 
time step. 
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y(k+1) ••••••. •••...•.....•...... x(k+1) 
I 

y(k) 

x(~) 
I 
I 
I 

x(k) x(k+l) 

Figure 1: calculating positions 

To obtain the coordinates of the position at time k + 1, given that we 
know the position at time k, we merely need to add the 6. terms of each 
variable as follows: 

X(k)+6.X(k)] 
x(k+1)= y(k)+6.y(k) (20)

[ O(k) + 6.0(k) 

we can derive the 6.'s using some trigonometric functions. 
Thus, the state transition function I, 

x( k) +T( k) cos O( k) ] 
I(x(k), u(k)) = y(k) +T(k)sinO(k) (21)

[ O(k)+6.0(k) 

11 
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As it is quite clear from (21), the function f is a non-linear function. It 
is because of this property that we have to use a filtering technique for a 
non-linear system. 

In the previous section we defined one single observation equation and so 
assumed we had only one target. In actuality, it is most often the case that 
we will have more than one target of different types. Thus, we modify (2) as 
follows: 

(22) 

where zi(k) is the observation of target Pi at time k. The non-linear mea­
surement function hi(Pi,X(k)) is different for each type of target. (refer to 
section 4.3 for the exact observation equations) 

Since we know the exact formulation of our transition function f, we can 
now compute the Jacobian 

1 0 -T(k)SinB(k)] 
fx(k) = 0 1 T(k) cos B(k) (23)

[ o 0 1 

As we have modified (2) to handle more than one target of more than 
one types, we modify the estimate of the predicted target observation. 

(24) 

Since each observation is independent of each other, we should have a sepa­
rate filter gain for each target. 

(25) 

where \1 h is another way to denote the Jacobian. 
Thus, to obtain the optimal estimate we simply add all the Kalman Gain 

Matrices of different targets. 

x(k+1I k+1) = x(k+1I k)+L Wj (k+1)[zj(k+1I k)-hj (pj,x(k+1Ik))] (26) 
j 

Similarly for the covariance, 

P(k + 11k + 1) = P(k + 11k) - L Wj(k + l)Sj(k + l)W;(k + 1) (27) 
j 
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3 Louie the robot 

Here we describe in detail the physical aspects of our robot. 

3.1 Base 

Louie has the Real World Interface three-wheeled circular robot base as its 
actuator. This base is 12 inches in diameter and is 7 inches in height. The 
wheels are built in such a way that the robot can turn in place. 

3.2 Sensors 

Louie has two sensors: the actuator sensors which returns the distance the 
wheels have traveled and the rotational degrees when inquired. For the range 
sensors we have installed 8 Polaroid Ultrasonic Rangefinders in an arrange­
ment as shown in Figure (2). We have divided the 8 sonars into 4 pairs of 2 
sonars each, where each pair is placed 18 cm apart in the same plane. Hence 

\ forth we shall call such a pair, a sonar plane. Consequently, we have fourj 

sonar planes, each plane covering one of the four directions in the robot's 
coordinate system: 00 ,900 

, 1800 
, and -900 

• 

4 The sonar model 

As pointed out in [4], the key to interpreting sensor information correctly, 
is to have a good model of sensor behavior. A perfect sonar model would 
be able to exactly predict what sensor data can be observed from any given 
configuration of objects. A good model should be able to predict expected 
targets and explain unexpected targets. It should also suggest what infor­
mation should be extracted from the sensor data, how it relates to physical 
features and how it should be used to construct and maintain a map of the 
environment. 

The peculiarities of sonars have been discussed in several papers [6, 7]. 
According to the theory of acoustics, the angle of reflection from a specular 
surface is equal to the angle of incidence. Thus, as shown in Figure 3a, only 
sonar beams with near perpendicular incidence angles receive enough sound 
energy reflected directly from target to produce correct distance readings. 
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Figure 2: 

(a) (b) 

Figure 3: 
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As the angle of incidence changes to more oblique angles (as shown in Figure 
3b) most of the beams are reflected away from the surface and hence the 
amount of sound energy reflected directly back from the target to the sonar 
transducer decreases. Thus, a much longer than actual distance reading is 
produced since the majority of the sonar energy the transducer detects at 
this point are the beams that were reflected off more than one surface. It is 
important that we discern true readings from these false readings produced by 
multiple reflections. Figure 4 is a typical example exhibiting such properties. 
The robot was placed at one end of the hallway and was rotated 360° to 
accumulate 120 readings acquired at intervals of 3°s. It can be easily observed 
that at areas where the sonar and the wall comprised an angle that was not 
anywhere close to perpendicular (angles less than 90° - 15° or greater than 
90° - 15°), false readings were produced. This is due to specular reflections 
as it has been previously mentioned. 

4.1 Regions of Constant Depth 

The concept of Regions of Constant Depth (RCD) was introduced in [8]. 
When a sonar scan is performed (as shown in figure 4), one can clearly 
observe that there are regions which have the constant distance readings 
(constant depth). Not all such regions have correct readings, however. What 
qualifies a region as a valid RCD is the width. The wider the width, the more 
reliable the range readings are. Therefore, we treat only those RCDs which 
have width that is wider than some threshold. RCDs that do not pass the 
threshold should be ignored. Henceforth, we shall denote only those regions 
that pass the threshold as RCDs. We have found that these regions tend to 
occur when sonars scan areas that have good and wide reflective property 
(e.g. walls and other similar flat objects with surface having reasonable 
reflective property). When the sonar scan produces an unstable reading (i.e. 
regions that do not have constant depth) or have very narrow RCD, it is 
either because it is aiming at a target at a bad! angle, producing a 2nd or 
higher-order reflections§ resulting in a false range reading, or because it is 
aiming at a weak target such as a convex corner where a diffracted echo is 

tangle where the sonar and the target are no longer close to perpendicular; producing 
higher-order reflections 

§the order of a reflection is the number of surfaces the sonar beam has reflected off 
before returning to the transducer 
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300 

WIIIIII'" wall 
-300 robot 

Figure 4: a sonar scan of a hallway 
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returned. It is hard to distinguish these different cases, since when a sonar 
reading is made, all that is returned is just a number indicating the distance. 
But we do know that robust targets provide wide RCDs and therefore makes 
them well observable. 

If we take advantage of this fact and restrict ourselves to treat only such 
robust features as targets, we are less likely to misinterpret the sensor data. 
But using only valid RCDs is not enough to ensure correct interpretation. 
There are still cases, especially with lower-order reflection, when the order of 
the reflection is greater than 1 but makes a valid RCD. In such a case, we must 
somehow distinguish between 1st-order and other higher-order reflections. 
For, only 1st-order reflections provide an accurate, correct range of the target. 
In a later section, we discuss how we overcome this problem. 

There is one possible disadvantage about using RCD's. It is the problem 
of having to acquire a complete scan of the environment. A scan of at least 
90° is necessary to acquire enough data to generate a RCD. Having a ring of 
sonars is one possible solution. But even with such a ring of 8, 16 or more 
sonars, it is usually the case that never more than half the number of sonars 
are fired in the same step in fear of the sonars interfering each other's beam. 
Since our robot system has sonars in a rectangular format, a rotating scan 
is unavoidable. This can be quite costly in terms of both time and data 
processmg. 

Using the layout of our sonar configuration, it is possible to partly over­
come this inefficiency. Instead of performing a rotating scan everytime, we 
use the pairs of sonars in each plane to imitate the effect of rotating. If for 
some contiguous time step, both sonars in the same plane observe the same 
target with reasonably equivalent distance readings, we can conclude that 
the target is at least the width of the displacement between the sonars and 
thus have an RCD of at least that width. 

4.2 Target Classification and Measurement 

Given that we are navigating in an indoor environment, we can basically 
classify targets into two types: WALLS and CORNERS. Because walls are 
quite stationary and unchanging (unless you have a building where the walls 
are movable), they are a good source of reliable information when it comes 
to localization. Thus, for the current implementation, we limit ourselves to 
targets of Wall types. 
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First of all, it is important that we recognize the right type of target since 
the distance measuring functions hi is different for each type. Secondly, it is 
crucial that we do indeed calculate the correct distance to the target. 

Distinguishing Target Types: 
We consider a target to be a wall when the width of the ReD is approximately 
30°. In which case we say the observable angle (3i is 30°. This part is not 
absolutely necessary since from our global map, we already know what type 
of target we are looking at. 

Measuring minimum distance to wall: If we consider WALL as a line 
in a 2-D coordinate system, it can be defined as a vector in Hessian normal 
form (PR , Pe). PR is the minimum distance from the (infinite) line to the 
origin of global coordinate frame. Pe is the angle (counterclockwise) between 
the positive x-axis and the orthogonal line drawn from the wall to the origin 
(See figure 5). 
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wall 

Po 

x(k) 

Figure 5: 

If we represent os,ss', ot,ts' as vectors, using vector addition we can derive 
the following equality: 

.... .... .... 
os + ss' = ot + ts' 

Representing each of the vectors in polar coordinates we can rewrite this as 
follows: 

PR (-~osPo ) +w ( sin Po )
smPo cos Po 

= (X(k)) +ri(k) (-:os Po)
y( k) sm Po 

(28) 

From the 1st row of 28, we are able to derive 

A (k) _ P sin Po x(k)
Ti - R-W--+-­

cos Po cos Po 
(29) 
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Figure 6: 

From the 2nd row, we have 

r\(k) = PR +W C~s Pe _ 
smPe 

~(k) 
smPe 

(30) 

Solving for Ti(k) from 29 and 30, 

Ti(k) =1 PR - x(k)cos(Pe) - y(k)sin(Pe) I (31) 

where (also see Figure 6) 

Pe = (/Ji(k) +O(k) (32) 
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4.3 The Correspondence Problem 

As discussed in an earlier section, problem arises when sonars aim at targets 
at bad angles. This is when reflections of higher order occur. For such a 
reading, it is best not to believe the data at all. We can achieve this by 
checking at each step whether the sonar reading corresponds to the real 
target or not. We know the reading does not correspond to the actual target 
range when the angle of rj(k) does not fall in the (3i region. More formally 
this is possible, if we know 

•	 the width ofthe angle during which the target is observable by a sonar. 
We shall call this the observable angle (3i. 

•	 the true bearing to the target from the robot's direction of travel, at 
which point the minimum distance to the target is measured. We de­
note this angle as (Pi(k). Since we have prior knowledge about the 
initial position (including the orientation ()( k) of the robot relative to 
the global map) and the angle Pe of the target can be easily calculated 
using 32. 

Now a sonar reading is in correspondence with the target if the sonar's 
actual bearing, which we denote as aj(k), is within the observable area. More 
formally, 

(3-t (3-t
rPi(k) - 2 ::; aj(k) ::; rPi(k) + 2 (33) 

where rPi( k) and (3i is are defined above. 
Because our sonars are fixed by hardware, as mentioned in section 3.2, it 

is possible to know the value of aj(k) (the orientation of each sonar plane) a 
priori. From our sonar model, we also know (3i a priori, as long as we know 
what type of target we are looking at. rPi(k) can be easily obtained from 32. 
Thus, we are able to determine at each step in time the correspondence of a 
sonar reading to a target. 

5 Implementation 

Our tracking program has two phases; the Setup phase and the Tracking 
phase. The setup phase is executed only once in the beginning of the navi­
gation but the tracking phase continue as long as the robot is traveling. In 
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the setup phase, we perform a 90° scan. During the tracking phase, we take 
advantage of the fact that we have two sonars in the same plane placed apart 
by some distance and achieve the same effect of a rotating scan by using the 
sonar pairs to validate continuous observation of the ReD of a target. 

The Setup Phase 

During this initial phase, the program collects all the information that 
is needed for tracking and initializes various parameters accordingly. In our 
implementation, we perform a minimum of 90° scan once during this phase. 

• ACQUIRING SONAR DATA 

All the sonar data that is acquired during the initial 90° scan is stored 
for further analysis. Typically, a scan at the speed of 3° per second 
produces 30 readings in total for each of the eight sonars. It is up to 
the user to choose the speed of rotation and the rotation amount but a 
minimum rotation of 90° is necessary to ensure correct target classifi­
cation. Since we have the global map a priori and we know the position 
of the robot, it is possible to omit this stage completely and only rely 
on the a priori knowledge. But in practice, it is not easy to provide 
accurate position and distance information. Thus, here we left it to the 
robot to determine the exact position and minimum distance PR of the 
intial set of targets. We do give to the robot approximate information 
of where the targets are and for how much longer the targets will be 
visible. 

• CATEGORIZATION 

For each single sonar, the 30 readings are sorted into five buckets. The 
boundaries of these five buckets are chosen differently for each trial 
depending on the minimum range read during the scan. 

Shown in Figure 7 is an example of a real run showing the results of 
such sort. 

By default, the first (or lowest) boundary is set to the minimum dis­
tance encountered during the scan. Then, the next four boundaries 
are calculated as offsets of 10, 20, 30, 35 from the lowest boundary. 
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own sonar model using experimental results. 

7 Future work 

If we were to point a downfall in the EKF technique, it would be the fact that 
the algorithm relies quite heavily on a priori accurate knowledge of global 
position information. We tried to overcome in part by inserting the Setup 
Phase in which we try to make the robot figure out for itself exactly where 
and how far the targets are from the robot. But in order to do this, we 
need the minimum distance from the robot to the target. And to extract the 
minimum distance, we have to perform a rotating scan of at least 90°. We 
can probably overcome this either by changing the sonars to active sensors 
or by adding another type of sensor to provide some local support. 

When computing the optimal estimate and the covariance, we could apply 
some weighting function to each Kalman Gain Matrix of a target as we gather 
the sum. Depending on what type of target the Kalman Gain Matrix was 
obtained from or how confident the robot is about a particular reading, the 
significance of the filter gain could vary. For stable targets like walls, we could 
increase the weight. For unstable targets such as convex corners, we could 
decrease the gain to allow this particular observation to affect the overall 
estimate as little as possible. 

Basically, we must think ofways where we will need less a priori knowl­
edge. 
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