
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-90-M8

Collections, Tuples and Iterators in
Object-Oriented Database Systems

by

Shin Y. Lee

Collections ,Tuples and Iterators in
Object-Oriented Database systems

Shin Y. Lee
Computer Science
Brown University

May 7, 1990

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science in

the Department of Computer Science at Brown University

Professor Stanley B. Zdonik
Adivisor

1

Collections ,Tuples and Iterators in
Object-Oriented Database systems

Shin Y. Lee

Computer Science

Brown University

May 11, 1990

Abstract

This paper describes the behavioral specification and implemen
tation of Collections, Tuples and Iterators in the Encore object
oriented Database system. The concept of Collection as a set of in
stances provides the basis on which reference of objects in persistent
storage may be performed. Type Collection supports operations for
Encore queries and maintain Btree as an index. We created a Btree
as an abstract type in Encore. A query languge retrieves and ma
nipulate objects in collections. Since the properties of existing types
may not reflect all relationships in a database, some query operations
create new relationships. The Tuple type is also created to store new
relations produced by query results. We defined Collection and Tuple
types as parameterized types. As in most programming languages,
Iteration methods are useful to allow users to iterate over an arbi
trary collection of objects. We defined an iteration type, Iterator as
an abstract type, to be applied to any collections.

1

1. Introduction

An Object-Oriented Database system should support some concepts of
Object-oriented languages and provide persistent storage for the objects and
schema. Without the notion of the Collection, or a set of objects, the value
based reference of objects in persistent storage might be difficult. As an
abstract set type in an Object-oriented database, the Collection type can
also be used as the value-class of properties of user-defined abstract types,
providing multi-valued properties.

The Encore is an Object-oriented database system which is being devel
oped in Computer Science Department at Brown University. Encore supports
a type system to model objects with a set of properties and operations, and
also provides the notion of Collections to store all objects of type. Collec
tion defines query operation of Encore and also provide key-based indexes,
which are used for efficient access to objects. Collection provides operations
for creation and deletion of indexes, and retrieval of instance objects using
indexes. A Key index are implemented as a B-tree, which is created as an
abstract type in ENCORE, including insert, delete, search operations. Ba
sically the B-tree type and its operations are designed using the top-down
B-tree Algorithm of [Sedgewick]. From the users' point of view, B-tree is
a part of the Collection Type and is only accessible through the operations
of Collection. From the system's view point, B-tree is an independent type
having a structure of B-tree composed of nodes, and operations applicable to
B-tree structure. The nodes of the B-tree are designed as instances of type
Segment.

In addition to Collection Type, we have another parameterized type,
Tuple[< A1,T1 >, ... ,< An,Tn >]. Tuple Type is created as a reflection
of the structure of tuples in relational database. In relational database sys
tem a query can make a new relationship as a result by producing a new
relational table. Similarly in Object-oriented database system, a query may
introduce new relationship, which is not already defined in database. In such
a case, Tuple type acts as a template for storing new relationsh i P~i \Vhen
a query creates a new relationship, a tuple type is automatic;]" .(,~I-'lI('rated

from the type Tuple.

2

In addition to value-based retrieval of objects, searching through all ob
jects in a collection in order is useful. An obvio~s use, for example, is when
users want to iterate over objects performing some action on each object.
The Iterator Type was designed as an abstract type to be applicable to any
type of object. An iterator returns objects in some order, as defined by the
collection. For example if objects are sorted depending on property value,
iterator would iterate over objects in that sorted order.

2. Data Model

Collections, tuples and iterators are supported by, and also a part of the
ENCORE Object-Oriented Data model. Encore is a typed system which sup
ports object identity, type inheritance and abstract data types encapsulating
properties and operations. An object has an interface and an implementa
tion. The interface is modeled or prototyped by the type which has Property
definitions and Operation definitions. In its implementation, every object has
values of properties which represent the abstract state of the object, while
objects might accomplish some actions using operations.

Unlike the key valued identification in the relational data model, Object
identifiers, or unique identifiers(UID), serve for unique identification of ob
jects. The Type system also defines some equality to be used by the query
model. Objects are identical if they have same identifiers(identical to itself),
and objects are i- equal if they have same values to some depth. The Unique
identifier is similar to pointers of programming languages and key values in
the relational data model.

The inheritance between types allows reuse of operations and structure
of properties. The relationship through Inheritance leads to hierarchical re
lationships of objects by subtyping. The subtype P of type T inherits all the
properties and operations of type T and has them as part of P itself. In order
to' allow substitutability of instances of sybtype in the Encore Tvpe model,
subtyping should not restrict supertype behavior, but be an f':·:tr>.mi')lls of
its behavior. For example an instance of type T should b p ,111",·-", I In be
substituted in place where the instances of its supertype S is e;·:pect,pc!.

3

In addition to the abstract type system, Encore includes parameterized
types, namely Collection and Tuple types. A Qollection type is parameter
ized by an abstract type T, called member type. Collections are considered
to include the objects of a type, keeping itself homogeneous. A Collection
type is automatically created when a type is defined; the type has property
instances which is a collection of the corresponding collection type. The col
lection all instances of a type, which is the value of instances property of the
type, has all objects created by the type.

The tuple type is created to store new relations produced by query results.
The parameterized type Tuple[<Al,Tl>, ... ,<An,Tn>], is parameterized by
Ai's, names of attributes, and Ti's, types of attributes. As for Collections,
a template type Tuple is defined as prototype of other tuple types. When a
tuple type is created, it becomes a direct subtype of Object and gets copies
of the properties and operations of the type Tuple .

The Iterator type is implemented with a pointer, which points to the cur
rent object, and exploring operations. In this report, only one iteration type
is introduced; it is designed to iterate over Collection types. An extension
would be to create subtype iterators which will be able to iterate over other
aggregate types, such as B-tree, Bytes, etc.

3. Collection

In this section, we shall discuss in more detail the Collection Type in
ENCORE. Collections are set objects which collect together instances of a
particular object type. Basically collections are a generalization of the set
type of programming languages and the relational tables of the relational
Database system. Collections support set operations of Programming lan
guages and operations for Object-oriented queries. Particularly, Collection
provides an interface for key indexes which can serve for efficient query pro
cessmg.

Collection Types are generated automatically from Type ('"II,·"j i"n a.nd
are represented as Collection[T], or CoIOfT, where T is some !"pr'. ('f)Ilec
tion[T] is an abstract parameterized type which is parameterized bv the type

4

of elements. When an abstract type(e.g. Person, Emp etc) is created by
users, the corresponding collection type(e.g. ColOfPerson, ColOF Emp, etc)
is created and it becomes a subtype of type Object Although a collection
is considered to be homogeneous, the system defined collection,ColOfObject
is to serve as a heterogeneous collection of all objects in a Database. The
hierarchical structure of Collection types are shown below:

Object

//~
ColOfEmp ColOfObject Collection ..etc

3.1. Collection Operations for queries

Collection maintains operations for Encore queries, which are performed
over a collection. The Collections are considered to be homogeneous such
that all elements of a collection have the same type. We define algebraic
query operations in two categories in [G. Shaw 1989]:

1) Operations that retrieve data such as Select, Image, Project, Ojoin, Union,
Intersection and Difference.

2) Operations that support data retrieval through manipulation of result
structure and object identity: Flatten, Next, UnNest, DupEliminate,
Coalesce.

Select(s;p) = {sl(s in S);\p(s)}

Image(S,f:T) = {f(s) I s in S}

Project(S,< (AI, fd,·· ., (An' Fn) » =

{< AI: fl(S), ... ,An : fn(s) > Is in S}

Ojoin(S,R,A I , A2 ,p) = RelationaLJoin(S' ,R' ,p')

Flatten(S) = {rl:Jt t in S ;\ r in t}

Figure 1)

5

So far the operations of category 1) and Flatten of 2) were implemented
in collection type as methods. Since we do not haye any optimization schemes
yet developed, each of the operations are developed in a quite straightforward
manner.

The functional representation of each query operation is given in Figure
1). Their definitions and semantics are explained in [G. Shaw 1989] in more
detail. The Select operation creates a collection of objects, which is a sub
set of the target collection, satisfying a selection predicate. Predicates are
processed by preprocessor that generates an operation for each predicate[W.
Wong 1989]. The select operation applies these generated operations to each
object in the target collection and collects objects that satisfy the predicate
operation into a collection. In all other query operations, Predicates are pro
cessed in the same way as in selection. For example, when a Selection query:

Select(Student, $s s@name == " Shin Lee")

is accepted by the preprocessor, following procedure is created as an opera
tion of Student:

ENObject
StudenLPredOp(c,args)
Object c;
Object args;
{
if(c.name == "Shin Lee")
then

return TRUE;
else

return FALSE
}

6

The Preprocessor passes the new operation to the Select operation of
Collection. The Select operation works as follow.s:

Select(ColOfPerson, StudenLPredOp, args)
{
for(every object of ColOf Person)

{
execute StudenLPredOp
if(StudenLPredOp returns True)

then the object is put into result collection
}

}

The Project and Ojoin operations can create new relationship not already
defined in the object types. These operations produce tuple types to store
new relationships. Each of the functions of Project are converted to a method
of a type by the query preprocessor, as of Select operation. The Project
operation of collection applies the methods of predicates to every object
of the collection and creates one tuple for each of the objects. The Ojoin
operation is an explicit join applied to two objects from two collections in
the database. As in selection the predicate is converted to a method which is
executed for every possible pair of objects from two collections. Ojoin makes
a tuple for every pair satisfying the predicate.

Union and Intersection are common set operations of Programming lan
guages. Union/intersection operation plainly merges/intersects two collec
tions creating a new collection. The memberType of two collections have to
have a common anscestor.

3.2. Index System

Collection supports an operation FIND which retrieves obif"cl,s from a
collection depending on values of properties. The Find opeFlli,," 18kes u,
pair of property name and property value, and uses an inde:·: ,-,F I Iw Ilr"perty
to find objects. If a proper index does not exist, it will g'.. Ibrnugh the
collection sequentially. When the query optimization method is developed,

7

the Find operation will be used properly for Select, Project and Ojoin query
operations; actually the Find operation is the in~erface between Collections
and Indexes.

Our index system is an implementation of a top-down B-tree scheme [R.
Sedgewick, 1988]. The advantage of this method is that it provides log(N)
search time, N is linearly dependent on the size of a Btree in terms of num
ber of elements. As is well-known to us, this scheme prevents bad worst case
performance by balancing the levels of trees. This method also has an ad
vantage over hash methods by permitting the collection listed or searched in
sorted order. In Encore, a Btree stores identifiers(UIDs) of member objects,
not physical pointers of objects or objects itself. Because this Btree does not
belong to the file system, it is not appropriate to have physical pointers to
objects; thus the Btree is not dependent on the physical changes of objects.
Since Btree only has identifiers, there are some disadvantages in that it will
need time to not only traverse the Btree but also to search the object itself
using the identifier. We will propose some extensions to traditional Btree to
help correct this problem.

The index system is composed hierarchically of three types, List, Btree
and Segment as follows:

List

(subtype)

B - Tree

(property _01)

8

Currently the List type is an abstract type and behaves as a supertype of
B-tree, supporting operations independent from, the structure of the Btree.
The List type should also be able to behave as a supertype for any other
possible indexing scheme which might be developed as subtypes of List.

The Segment type was created for the nodes of the Btree, which has a
structure of a tree of nodes. Each Segment corresponds to one node and
has an array of records, which are pairs of key values and DID's of objects,
in sorted order by key values. Since the purpose of Btree is to reduce disk
access time during the search and manipulation of objects, the size of the
Segment Objects are the same as of the page size of physical disk system. In
this sense the Segment type could be said to be physical storage dependent.
The Segment type adopts binary search method for the search inside the
segment(node). B-tree type stores B-tree structure of Segments as a property
called members, in this structure Segments are related by Links from parent
Segments to children Segments. The structure of a typical B-tree object is
shown below:

B-Tree Segment

property of property of

a tree structure of Segment an array of records

B-tree type has only the root of the tree structure, the other Segments are
accessible through the parent-child Links between segments; these pointers
are actually DID's of segments.

Search: To look for a object, the Btree appliess its operati()n t<> find the
segment which this object might belongs to. Then tho nlre,,· ~''-'nds a.

lookup-request message to the segment. This segmen l s,::,;,!(:lws itself
sequentially and returns the identifier for the object or t hf:' link to the
next appropriate node(Segment). In addition to the Search 0peration,

9

Segment also supports iterating operations to allow users to iterate
from the first to last.

In Btree we search for a record following links from the root down to
the terminal nodes. The Btree accepts return values from each seg
ments and keep searching until a segment returns objects or it reaches
a terminal segment.

Insert: To insert a new object, the insertion method starts to search for the
proper node to insert into. We are using top-down insertion algorithm
of B-tree. In the bottom-up Btree, if during the insertion the node is
found to be full, the nodes will be split from the leaf up to parents nodes.
Thus, in the worst case the split may occur all the way up to the root
node. In top-down Btree the method splits nodes(Segments), during
the search period when it sees a full Segment. This prevents traversing
the segments twice, one from root down to terminal for search and the
other from root back up to root for split. The split operation is also
implemented as a method of the Btree.

Delete: To delete a record, the deletion method begins with search to find
the segment S containing this record. After the deletion if the segment
S becomes less than half full this method will search a segment T,
which resides immediately to the left or right to the current segment
and has the same parent. If the neighbor segment is exactly half full,
two segments are put into a segment. If the neighbor segment is more
than half full, we distribute the records of Sand T evenly as possible
keeping the sorted order. Then we modify the parent record of Sand
T to trigger the changes in Sand T.

4. Tuple

We query over collections of objects having type CoIOf[T], then queries
return new objects having type ColOf[Q] [G. Shaw 1989]. Since the result of
query is a homogeneous collection of objects we need to determi'I'" what this
type will be. Often it will be a collection of existing type obj':,cl:. I !',wever,
since the properties of existing types may not reflect all relationslli ps desired
by a query, some query operations create new relationships betwpen ,)bjeets.

10

The concept of a Tuple type is introduced into object-oriented database sys
tems to be used as types for some query results, such as Project, or Ojoin.
The Project and Ojoin can create new relationship not explicitly defined in
properties of the one of Joined object types.

Tuple is an abstract parameterized type, parameterized by each attribute
name and type, Tuple[< AI, T1 >, ... , < An' Tn >]. The system defined type
Tuple is used as a template for other parameterized tuple types. The type
Tuple has already all properties and operations necessary as a tuple, so all
other tuple types can be generated automatically by a generation function,
TupleType, with some parameters.

TupleType inherits from ObjectType and defines the generation function
of tuple types. Tuple type provides two different kinds of operations , one for
generating new tuples and the other for maintaining tuple definitions. The
initialization routine of TupleType actually takes the role of the generation
function by copying properties and operations of template type Tuple into
a new Tuple type.

TupleType is similar to the type Type in the sense that it has to store and
maintain attribute lists which are similar to the list of properties in types.
The scheme for accessing attribute lists is to hash by name of all attributes
into a table. We use a double hashing scheme as is used by type Type to
store properties definitions. The attribute list is composed three tables, one
is the table of attribute names, another is the table attribute types and the
other is the list of pointers, in offset, to each of the attribute names.

5. Iterator

Iterators are available in most programming languages to permit users
to iterate over arbitrary types of data in a convenient and efficient way. [the
book]. Obviously an iteration may go through a collection completely from
the first to the last.

We specify the iterator with a pointer and four iterating Oper;]II"I.l~;. first,
Next, Last,and Previous. The pointer has the current positi()n "j iteration

11

and the exploring operations to move the pointer one step(element) back or
forward, move to the first element and move it to the last one. To abstract
the above iteration methods, we need to specify them in an object. Simply we
put them in collection types; each collection has a pointer in it for iteration
and iterating operations may be called like methods of a collection. Given
the abstraction, users can iterate through a collection:

curelms = First(persons);
while(cure1ms! = Last(persons))

{
; do work with curelms.
curelms = Next(persons)
}

end.

Although the above scheme performs iteration for collections, it is incon
venient and insufficient. First, we may not be able to do Nested iteration
upon a collection, because collections have one pointer. Second of all, as
is collection types, the index types(B-tree, List) and built-in primitive table
types(Bytes, UIDBytes) support iteration methods. They may have different
implementations for the representations of operations defined above. For ex
ample, the Next operation of B-tree moves pointer by following links between
nodes, while that of bytes moves the pointer sequentially. Even though the
same implementation of iteration operations can be used for two different
kinds of aggregation types(e.g. Bytes and UIDBytes), they cannot share
operations unless they are related by subtyping.

As an alternative, an Iterator type was created, that has the iteration
methods and pointer. Iterators can be associated with a collection through
a property relationship. Each time an iteration loop is made, an iterator
object is created from a proper iterator type. For an example a iteration
loop for persons objects is represented as follows:

myiterator = Createlnstance(IteratorType, persons)

curelms = First(myiterator);

12

while(curelms! = Last(myiterator))
{
curelms = Next(myiterator)
;1 do work with curelms.
}

end.

6. Future works

6.1. Query optimization

The current implementation of query operations does not include query
optimization scheme, since it is still under development. However, without
query optimization strategy we still can adopt Find operation for processing
simple queries, which are performed on one collection without joining several
collections. After the query optimization is developed, Find can be used
properly for Select and Ojoin.

6.2. More indexing mechanism

Currently, we have two types for indexing, List and B-tree. The List
supports operations independent from the structure of the Btree as a super
type of B-tree. The List type is able to behave as a supertype for any other
possible indexing scheme which might be developed in the future. We might
need other indexing scheme instead of or in addition to B-tree for the reason
of efficiency and convenience.

6.3. More Iterator Types

Since the implementation of Iterator depends on the internal structure of
Aggregate objects, we need one Iterator type for one aggregate type. Even
though we created one Iterator type for Collection type, other Itern.tor types
will be required to be made for aggregate types.

13

7. Acknowledgement

I would like to thank my advisor Stanley Zdonik for providing motiva
tion and encouragement to work for this project. I wish many thanks to
Page Elmore for helping me to solve a lot of hard problems and for giving
constructive advice.

REFERENCES

[W.Kim ,1988] . Kim A Model of Queries for Object-Oriented Databases.
Tech. Rep. ACA-ST-365-88, MCC, 1988

[M.J.Carey et al., 1988] .J. Carey, et al. A Data Model and Query Language
for EXODUS. SIGMOD proceedings, pp.413-423, ACM, June 1988.

[G.M. Shaw	 et al., 1989] .M. Shaw and S.B. Zdonik. A Query Algebra for
Object-oriented Databases. Brown University Technical Report CS-89-1 9,
Mar. 1989

[T.Bloom et al., 1985] . Bloom and S.B. Zdonik. Issues in the Design of
Object-oriented Database. Programming Languages, Technical Rpoort No.
CS-87-19, Brown Univ. 1987.

[R. Sedgewick ,1988]	 . Sedgewick Algorithms, Second Edition. Addison
Wesley Publishing Company, 1988

[J.D.	 Ullman, 1988] .D. Ullman Principles of Database Systems Second Edi
tion. Computer Science Press, 1982

[B.	 Liskov et al., 1986] . Liskov, J. Guttag Abstraction and Specification in
Programming Development. Computer Science Press, 1986

[S.B. Zdonik	 et al., 1986] .B. Zdonik and P. Wegner Language and method
ology for object-oriented Database Environment. Nineteenth Annual Inter
national conference on systems sciences, 1986

[W.D.Wong, 1989] .D. Wong A Query Processor For An ()hl',i ('ncnfed
Database. Master's Thesis in Brown University, 1989

14

[B.P. Elmore et al., 1990] .P. Elmore and S.B. Zdonik (untitled). unpub

lished paper, 1990

15

ObjectType TupleType(Type) :
This is a subtype of Type type and generates new Tuple types and initializes
these new types.

LOCAL PROPERTIES

INTERNAL PROPERTIES

AttrDefList attributeDefs
This property contains the Definitions of attributes for a tuple type.

Integer numAttrs

This property indicates how many attributes a tuple type has.

PUBLIC PROPERTIES

LOCAL OPERATIONS

INTERNAL OPERATIONS

Boolean ITupleType(name:String)
This method generates and initializes a tuple type with the name of it. It
is called by CreateInstance on Type.

Boolean DTupleTypeO
This method undoes the changes made In ITupleType and IS called by
DeleteMe on Object.

Boolean AddAttribute(name:String,valueClass:Type)
This method adds an attribute called "name" to the type. valueClass is the
Type of its attribute.

Boolean RemoveAttribute(attrName:String,valueClass:Type *)
This method removes the property called propName, returning the removed
property. It protects against attempts to remove inherited properties.

PUBLIC OPERATIONS

ENBoolean GetAttribute(attrName:String,attrType:Tvpl"")
This method gets the Type of the attribute by attribut", II;lIlW "attrName".

END

TupleType Tuple (Object) :
Tuple type behaves as a prototype of all other tuple types created by TupleType.
TupleType created tuple types by copying all operation of properties of Tuple.

LOCAL PROPERTIES

INTERNAL PROPERTIES

UIDBytes attrValues: TS
This property has values of attributes " which are defined in attrDefList.
The order of attribute values are dependent on the order of definitions in
attrDefList.

Integer curPosition
This property is used to indicate the current attribute value in the attrVal
ues Property.

Integer numAttrs
This property is used to indicate how many attributes the tuple has.

PUBLIC PROPERTIES

LOCAL OPERATIONS

INTERNAL OPERATIONS

Boolean ITuple(attrList:UIDBytes)
This method initializes the property attrValues and put values of each at
tributes in it.

Boolean DTuple()

This method undoes the initialization made in ITuple.

Object SetAttrValue(attrName:String,value:Objeet)
This method attempts to set value of an attribute, whose name is "attr
Name" .

PUBLIC OPERATIONS

Object GetAttrValue(attrName:String)
This method find the value of the attrbute, whose name is "attrName", and
return this value.

Boolean FirstAttr(attrValue:Object *, pos: Integer *)
This method finds the first attribute va.lue in the list. ",,,I rdurns the Rt

tribute value and it's position.

Boolean NextAttr(attrValue:Objeet *, pas: Integer *)
This method finds the next attribute value in the list depending on the value
of currentPos Property.

END

ObjectType AttrDefList (Object) :
This type is used for storing the attribute definition list of Tuple types.

LOCAL PROPERTIES

UIDBytes attrTypes : TS
This property contains the array of types of attributes in a tuple type.

Bytes members :TS
This property contains the offsets of names of attributes in attrNames '
property.

Integer numPosition : TS
This property indicates how many positions can be used in attrTypes.

Integer nextFreePos : TS
This property indicates which position in attrTypes is the next one available.

Bytes attrNames : TS

This property contains string names of attributes.

Integer nextNamesPos : TS
This property indicates which position in attrNames is the next one avail
able.

Integer sizeOfNames : TS
This property indicates how many bytes can be used in attrNames.

Bytes hashTable : TS
This property contains a hash table of positions for types in members and
names of attrNames.

Integer currentPos : TS
This property contains the identity of the current position marker - only
used and set by First and Next.

INTERNAL PROPERTIES PUBLIC PROPERTIES

Integer numMembers: TS

This property contains the number of attributes.

LOCAL OPERATIONS

INTERNAL OPERATIONS

Boolean IAttrDefList(approxMaxSize:Integer),
The approxMaxSize indicates the guessed size of th,= lif-:I "",'PI' Lime.

Boolean GrowMembers(newSize: Integer);

This method grows the internal lists to the new size

Boolean Add(attrType:Type,name:String)
This method attempts to add an attribute with its name and type at the
position given. It will add it at a new position if the one given is taken, and
will not add the attribute if there is a name conflict.

Boolean Delete(attrName:String)

This method deletes the attribute with name "attrName".

PUBLIC OPERATIONS

Boolean GetAttrNames(name:String,pos:Integer *)
This method gets the name of an attribute by a particular position.

Boolean Find(type:Type * ,name:String,pos:Integer*)
This method finds an attribute value by attribute name and returns the
Type, its position.

Boolean First(name:String,attrType:Type *)
This method finds the first object in the list, and returns the name, and the
Type.

Boolean Next(name:String,attrType:Type *,pos:Integer *)
This method finds the next object (relative to the property currentPos) and
returns the name ,the Type of the attribute and it's position in the list.

END

ObjectType Iterator(Object) :
This type provide a pointer into a collection. Collections have their own pointer
into themselves that moves when you call First, Next etc. An Iterator is used to
give you a "personal" handle on a Collection..

LOCAL PROPERTIES

INTERNAL PROPERTIES

Integer curPosition: TS

This property has the pointer to an object.

Object colObj: TS
This property has the collection which is iterated over by self iterator.

PUBLIC PROPERTIES

LOCAL OPERATIONS

Boolean IIterator(itCol:Collection)

This method initializes an iterator. It checks the type of itCol.

Boolean DIteratorO

This method undoes the changes made in IIterator.

INTERNAL OPERATIONS

PUBLIC OPERATIONS

Object FirstO
This method finds the first element in the collection and return it.

Object LastO
This method finds the last element in the collection and return it.

Object PrevO
This method finds the previous object in the collection depending on the
value of the currentPos property.

Object NextO
This method finds the next object in the collection depending on the value
of the currentPos property.

END

ObjectType CoIType(Type) :
This is a subtype of Type type and is a type for all collections. It generates new
collection types and initializest them. Collection types are generated by getting
copys of all the properties of operations of Type Collection, which roles as a
prototype of all Collection types.

LOCAL PROPERTIES

INTERNAL PROPERTIES

Type Memtype: RO
This property contains the type of members which can be inserted to the
instances of a Collection type. Actually only this property characterize each
Collection types.

PUBLIC PROPERTIES

LOCAL OPERATIONS

INTERNAL OPERATIONS

Boolean ICoIType(memType:Type)
This method initializes Collection types. It makes the name of a Collection
type and initialize the property and operation list.

Boolean DColType()
This method undoes the changes made in IColType and IS called by
DeleteMe on Object.

Object CreateInstance(seg:Integer,name:String)

PUBLIC OPERATIONS

END

ColType Collection(object:Object) :
This is the super type of every collection type which are created for every user
defined type and some system built types. Collection is not an abstract type and
roles as a prototype for generating set types.

LOCAL PROPERTIES

INTERNAL PROPERTIES

UIDBytes reps
This property stores pointers to the indexes a Collection has and some in
formations about indexes, such as the types of indexes, the type of keyvalus
being used, and the UID's of indexes.

UIDBytes uidTable
It is implemented by UIDBytes table. Each entry of reps has the UID of
objects which is inserted into the Collection

Type memType
This property contains the Type of members which can be inserted into the
Colleciton.

Collection super
This property is a collection of super collections from which the self is de
rived.

PUBLIC PROPERTIES

Integer numMems

This property indicates how many elements a collection has.

LOCAL OPERATIONS

INTERNAL OPERATIONS

Boolean ICollection(extsize:Integer,growsize:Integer)
This operation initialize all the properties of a new Collection. 'extsize' is the
initial size of uidTable size and 'growsize' is the size by which the uidTable
is grown whenever the uidTable is full.

Boolean DCollectionO

This method deletes any objects created by ICollection.

Boolean Addlndex(keyprop:ROProperty,dynStat: Integer ,ra.ngeExact :Integer)
This method add an index to the Collection. Inde:-: i" data. structure:'I

helping the search of data in database, such as a B- Trt"

Boolean Insert(obj:Object)
This method insert an object into the uidTable and into every index the seJ[
collection has.

Boolean Delete(obj :Object)
This method delete an object from the collectin. It deletes the UID of the

object from the uidTable and deletes from each indices which the collection
has.

PUBLIC OPERATIONS

Object Select(op,params)
This method apply boolean operation 'op' with 'params' to each object in
the collection and selects the objects which satisfies it.

Object Find(prop:PropertyType,value:Obj-ect)
This method selects objects from the collection using the indices. It chooses
a proper index depending on the 'prop'(key type), and find an objects from
that index by the value 'value'.

Object Image(op:OperationType,params:Bytes)
This method takes the Image of each objects by the operation 'op'. This
method applies 'op' to each objects of the collection and takes the result.
The output of this method is a collection of all the results.

Object Ojoin(jcol: Collection,op:OperationType,params: Bytes)
This method accomplish Oloin operation by applying operation cop' to self
and jcol. This method applies cop' to every possible pair of self and jcol,
and make a set of objects which satisfies cop' with params.

Object Union(ucol:Collectio)
This method make a collection which is the union of self and ucol.

Object Intersect(icol:Collection)
This method make a collection which is the intersection of self and ucol.

Boolean ObjExist(obj :Object)

This method checks whether obj belongs to the self collection.

Boolean IsEmptyO

This method checks whether the self collection is empty or not.

Object FirstO
This method retrieves the first element of the set. The uidTable has a
variable indicating pointer to a current objects which is supposed to be
retrieved by enumaration operations, such as First, Next,Last,and Prevo

Object NextO
This method retrieves the Next element of the current element which pointed
by the 'currentPos' pointer of uidTable.

Object LastO

This method retrieves the Last element of the colledJ"tl

Object PrevO
This method retrieves the Previous element of the current element which
pointed by the 'currentPos' pointer of uidTable.

END

ObjeetType List(Objeet) :
This type behaves as the super type of the Btree and Hash Table, both are
indices. This has all the operations which is common to Btree and Hash table.

LOCAL PROPERTIES

INTERNAL PROPERTIES

Integer numMems _
This property contains the number of the members of the index(1ist).

Type memType
This property contains the type of members which can belongs to the index.

PUBLIC PROPERTIES

LOCAL OPERATIONS

ENObject IntKey(keyval:Object)
This method transform the keyval of string Type into a form which can be
stored inside an index.

INTERNAL OPERATIONS

Boolean IList()
This property initializes two properties,numMems and memType of the in
dex.

Boolean DList()

This method deletes any objects created by IList.

Boolean Add(obj:Object,keyval;Object)
This method add the object 'obj' with the key value 'keyval' into a list.

Boolean Merge(alist:List)

This method merges alist into self list.

Boolean Delete(obj:Object,keyval:Object)
This method delete the object 'obj' with the key value 'keyval' from the self
list.

Boolean Diff(dlist:List)
This method is just the opposite of merge. This method deletes all the
objects which belongs to dlist.

PUBLIC OPERATIONS

List Select(keyval:Object)
This method selects objects which has 'keyval' as a keyva.lue in the self list.

Boolean Exist(obj :Object,keyval:Object)
This method checks the existence of objects of which uid is 'obj', and key
value is 'keyval'.

Boolean IsEmpty()

This method checks whether the self list is empty or not.

Object First()
This method retrieves the first element, depending on the keyvalue, of an
index. All indices has a pointer to a current object.

Object Next()
This method retrieves the Next element from a index, by the key value.

Object LastO
This method retrieves the Last element from a index, by the key value.

Object PrevO
This method retrieves the previous element of the current object from a
index, by the key value.

END

ObjectType BTree(List) :
This type is implementation of the B-Tree. B-Tree is a balanced-tree in external
storage in which one node is one physical disk page.

LOCAL PROPERTIES

INTERNAL PROPERTIES

Object members _
This property contains actual Btree table of which each nodes are Segments
which is defined in belows. Actually members property has UID of root
Segment. Segments are related by Hierarchical pointers, from parent node
to child nodes.

Bytes strings
This property is used only when the type of key, 'keytype', is String. This
property stores all the strings values in it. This is necessary because 'String'
is neither are independent objects, nor store values in UID itself.

PUBLIC PROPERTIES

LOCAL OPERATIONS

Boolean IBtree(keytype:Type,memtype:Type)
This method make a new Segment to initialize members property and also
initialize strings property.

Boolean DBtree()
This method delete all the objects made in IBtree. In case of members
property, it deletes all the child segments which are spawned by the root
Segment.

INTERNAL OPERATIONS

Boolean Add(obj :Object,keyval:Object)
This method add an object 'obj' with keyvalue 'keyval' to a Btree.

Boolean Del(obj :Object,keyval:Object)
This method delete an object 'obj' with keyvalue 'keyval' from a Btree.

Boolean Split(page:Integer,parent:Object)
This method is called when a segment gets full, which means no more space
in a segment. Then this method splits the segment into Ivtlfs and store one
half into a new segment.

PUBLIC OPERATIONS

List Select(keyval:Object)
This method retrieves objects which has keyval as keyvalue from a Btree.

Boolean Exist(obj :Object)
This method checks whether the obj is in a Btree(TRUE) or not(FALSE).

Object FirstO
This method returns First element, which has the smallest key value in a
Btree.

Object LastO
This method returns Last element, which has the least key value in a Btree.

Object NextO
Btree has pointer to a current object. It increases whenever Next is called
and decreases whenever Last is called. "This method retrieves the next ob
ject,which has the next bigger keyvalue than the current object.

Object PrevO
This method retrieves the previous object, which has the next smaller key
value than the current object.

END

ObjectType Segment(Object) :
This type is made to be used as one page for Btree and Hash Table. Btree and
Hash Table both has a set of segments as the value of members property.

LOCAL PROPERTIES

INTERNAL PROPERTIES

UIDBytes members

This property contains objects and its keyvalue.

Object mode
This property indicates to which kind(Btree or Hash Table) of index the
segment belongs.

Type memType

This property contains the type of ob jects.

Type keyType

This property contains the type of key value of objects

Integer nodeLen
This property contains the length of each unit in the members. Each unit
contains objects ,keyvalue and pointers to othe segment.

Integer size
This property shows how many units can fit into a segment. It is necessary
because the unit size is different for Hash table and Btree.

Integer currentPos
This property has the pointer to an object. It is used for the operation First
,Next,Last and Prevo

Integer numOfElms

This property shows how many elements the segment has.

PUBLIC PROPERTIES

LOCAL OPERATIONS

Integer KeyCmp(inkey:Object,valuekey:Object)
This operation compares inkey and value key. It returns EN_ZERO if two
values are equal, returns negative integer if inkey is smaller, and returns
positive integer if valuekey is smaller.

Object ExtUid(strings:Bytes,node: Integer)
This operation is used only when the type of keyvalu,:, i': :-;1 ,-ing. This oper
ation transforms the keyvalue in node 'node' to an external f')rm of string.

Integer Naddr(node:Integer)

This operation computes the address of the node 'node:.

Boolean NdEmpty(node:Integer)

This operation checks whether node 'node' is empty.

INTERNAL OPERATIONS

Boolean ISegment(keytype:Type,memtype:Type,mode:Type)
This operation initialize the properties, keyType, memType,and mode of
segment.

Boolean DSegment

This oepration deletes all the objects made by ISegment.

Boolean ChnItem(node:Integer,item:Integer,valu:Objecte)
This operation change the value of the item 'item' of the node 'node'. For
example, node = 3 and item = keyval, then this operation put 'value' in the
keyvalue part of node 3.

Object GetItem(node:Integer ,item:Integer)

This operation gets the value of the 'item' of the node 'node'.

Boolean Compact(node:Integer)
This operation is used by DelAt operation. When the value of a node is
deleted, then this operation shift left all the values in the segment to fill up
this node.

Boolean DelAt(node:Integer)

This operation delets values of the node 'node' from the segment.

Boolean AddAt(node:Integer,keyval:Object,objjObject)

This operation add object'obj' with keyvalue 'keyval'.

Integer Del(strings:Bytes,keyval: 0 bject ,0bj:0 bject ,mode:Type,
rescol: Collection)
This operation deletes object 'obj' from the segment. Before delete the
objects, this operation finds where the object is.

PUBLIC OPERATIONS

Boolean IsFull()

This operation checks whether the segment is full.

Integer Find(strings,keyval,obj ,mode,rescol)
This operation finds the objects with keyvalue 'keyval'. And it stores all the
found objects into rescol.

Object First()
This operation selects the first object, which has the lE'Rst kf"yvalue in the
segment.

Object Next()
This operation selects the next objects to the current '~lbi,:,,(:L. Segment Type
has the property currentPos, which has the pointer to the current object.

Object Last()
This operation selects the last object, which has the biggest keyvalue in the
segment.

Object PrevO
This operation selects the previous objects to the currentobject. Segment
Type has the property currentPos, which has the pointer to the current
object.

END

