
Site

A Language and System for Configuring Many Computers as One Computing Site

Bent Hagemark

Brown University

Providence, RI 02912

April 30, 1990

Abstract

This work describes the design and implementation of a language and system for use in main

taining the configuration of many computers as one computing site.

Introduction

A modem computing site typically consists of many computers networked together. This

represents the next step in the evolution from large centtal time sharing computers accessed via many

terminals. Among the problems encountered in ensuring that a site of many networked computers

works as intended is the problem of maintaining an accurate and consistent configuration of the com

puters in the site. 1bere are few solutions which address the broad scope of specifying configuration

infonnation on a network-wide basis in a site where many computers which must cooperate with each

other and with common resources. This work presents a solution to the specification problem for the

configuration of the subsystems found on a typical site consisting of networked UNIX workstations

and servers. A simple utility demonstrates the use of this specification language as a basis for automat

ing maintenance of site configuration. This tool is intended, for use by computer novices as well as

expert systems programmers.

Organization of This Thesis

This paper consists of 4 chapters and an appendix.

O1apter 1 introduces and motivates the problem.

O1apter 2 outlines the framework of the solution.

O1apter 3 describes other approaches to solving the problem.

O1apter 4 is a detailed description of the implementation of the system.

The Appendix is the User's Guide to the system.

II

Contents

Cllapter 1: Statement of the Problem 1

The Problem 1

Configuring a Large Site 1

Config Fl1es in a Large Site 10

Why Solve This Problem 11

Cllapter 2: Framework of the Solution 13

The Solution 13

Character of the Solution 13

Use of the Site System 16

The 3 Conceptual Levels of a Sitefile 18

Using Sitefiles 20

Pulling the Levels Together 27

Object Oriented 32

Theory of the Site System 34

Future Work 38

Cllapter 3: Other Attempts 40

rdist 40

make 43

Interactive Programs 43

config 44

yp 44

Chapter 4: Implementation and Reference 46

iii

iv

Site 1.0 Implementation . 46

Site 1.0 Modes of Operation . 46

Site 1.0 Low Level Modules .. 50

Sitefile Granunar .. 62

Appendix: User's Manual .. 65

Using Site 1.0 .. 65

How To Prepare a Sitefile . 65

How to Write a Driver . 67

Invoking the site command . 73

Bibliography

[1]	 Chapter 14: The Sun Yellow Pages Service, System and Administration Guide, SunOS

4.0, Sun Microsystems, May 1988.

[2]	 make(1), 4.3BSD UNIX Users's Reference Manual, University of California, Berkeley,

California, April 1986.

[3]	 rdist(1), 4.3BSD UNIX Users's Reference Manual, University of California, Berkeley,

California, April 1986.

[4]	 S. 1. Leffler and M. 1. Karels, Building 4.3BSD Unix Systems with Conftg, 4.3BSD UNIX

System Manager's Manual, University of California, Berkeley, California, April 1986.

CHAPTER 1

Statement of the Problem

1.1. The Problem

Managing the configuration of many computeIS which together fonn a single computing site is

the problem addressed in this work. This section motivates the problem using UNIX workstations and

servers as an example.

Terminology

To help avoid confusion about tenns often used to describe a computing facility we define how

the following tenus are used in this work.

computer A single self-contained worlcstation, server or traditional computer. A part of a site.

installation This tenn refeIS to the activity of setting up a computer or site.

network The physical local area or long distance methods for connecting computeIS to each other.

Not all computeIS on a particular network necessarily belong to the same site.

site One or more computeIS and peripherals all under the same ownership or administrative

domain The computeIS and peripherals of a site are often interconnected with one or

more networks.

1.2. Configuring a Large Site of Many Computers Running UNIX

The following sections describe some of the activities one must perform to configure a computer

running UNIX and how to configure each computer for common site-wide services and resources. The

"activities" of configuring a site are mostly those of editing a lot of files on a lot of computeIS. The

following sections show that editing a lot of files on a lot of computers is tedious and error prone when

done by human hand, but rote enough to suggest an automated solution.

Chapter 1 The Problem

2 Chapter 1 The Problem

The Workstation Refinement of Time-Sharing

Our primary concern is with the coDfiguration needs of a large site (on the order of l00's of
-

computers) under centralized administrative control We further asswne that the intent is to configure

a site which the user's view of the system is similar to a large computer which they accessed using

serial line tenninals. This workstation refinement of timesharing involves configuring a set of servers

and client woIkstatiODS to provide the same degree of transparency as that of timesharing systems in

the past. That is, the user sees the same home directory, and the same site-wide services and resources

such as printers, mail, and news service no matter which machine uses. The user also plays no role in

administering "their" machine in such an enviromnent. It's not our feeling that a user should be

prevented from doing so more than we feel that a user shouldn't have to.

Basic Systems Configuration

The following sections are presented to provide the reader with a common basis for understand

ing what problems we trying to solve (and which problems we are not trying to solve!). They do not

pretend to be an exhaustive guide to the systems software found on actual UNIX workstations.

On each computer the administrator must prepare a variety of files to configure each aspect of

the computer. These are files which specify the basic configuration of the system itself (i.e., the peri

pheral devices such as displays, mice, keyboards, serial lines for terminals, tape drives, disk drives and

network interfaces and file systems.) In addition one must configure the system for site-wide services

which include network routing, network name service lookup, remote printers, electronic mail, and

distributed file systems.

We will refer to any file used in the configuration of a subsystem on a computer as a config file.

Figure 1.1 lists the names of various config files found on a computer running UNIX. (We will be

using the Berkeley UNIX derivative of SunOS for the examples in this work. Refer to the UNIX Sys

tems Administrators Guide or the appropriate manual pages for more complete information about

configuring a UNIX or SunOS system).

3 Chapter 1 The Problem

Config file name Subsystem
letclfstab file systems
lete/exports NFS
kernel config file devices
letc/printcap printers
lete/sendmail.cf mail
letclttytab terminals
letclhosts networking

Figure 1.1: Some UNIX config files

When configuring a single machine or a small number of machines in a relatively quiescent site it is

relatively straight forward to edit these files directly. When one faces many lO's, 100's, or 1000's of

computers it is no longer reasonable to manage each machine by editing the resulting loo's, 1000's, or

1O,000's of files.

The following paragraphs discuss the more important and interesting subsystems and their

configuration requirements. It is very important to notice how single pieces of information become

part of many different config files. Our focus is on the information needed to produce each config file

and where this information comes from. We highlight information used in many different config files

on the same computer as well as information used in the same config file on many different computers.

Disks and Filesystems

Each computer in a site usually has its own disk drive. Although diskless machines differ at a

lower level they have roughly the same configuration needs as a machine with disks at the level of dis

cussion in these sections.

One aspect of configuring a disk drive for use on a UNIX system is dividing the disk into several

partitions which are either used as paging devices or as file systems. The letc/fstab file describes this

information. See Figure 1.2 for an exanlple of the contents of this file.

4 Chapter I The Problem

/etclfstab

Disk devices:

/dev/sdOa / 4.2 rw,nosuid 1 1
/dev/sdOb swap swap rw 0 0
/dev/sdOg /usr 4.2 rw 1 2
/dev/sdOd Itmp 4.2 rw 1 3
/dev/sdOe faux 4.2 rw 1 4

Figure 12: Contents ofletclfstab file

Each line of the file describes an association between a disk partition (/dev/sdOg) and a file sys

tern directory name (/usr). In this case the "sdO" part of the disk partition name means "SCSI disk,

unit 0". The "g" is a slice or partition of that disk unit. Some other aspect of configuring the disk drive

defines exactly which physical tracks and sectors are in this partition. When the UNIX system boots

up the mount command takes each line of this file as input and tells the UNIX kernel which partition of

the disk to access for files in (and below) these directories. For example, any file name starting with

the name /usr (such as /usr/people/bh) resides on the disk partition /dev/sdOg; the file Itmp/foo/ is

found on the /dev/sdOd partition. Adding more disks to the system requires additions to this file.

Changing the layout of the disk -- changing the sizes or locations of the disk partitions -- may involve

changes to this file.

The cases covered so far pertain only to the local system. That is, the contents of the /etc/fstab

file depends only on information about the computer on which it is located. In summary this informa

tion includes:

• disk devices and partitions, and

• file system directories.

The following section describes information placed in the /etc/fstab fIle to configure distributed

file systems.

5 Chapter I 1be Problem

Network File Systems (NFS)

1be /etc/fstab file also describes how remote file systems are configured. The /etclfstab also

describes mappings of directories on the local machine to directories on other computers. In Figure

1.3 are some example lines from an letclfstab configured for NFS. As with local file systems the

second word in the line refers to the name of the directory on the local system. The first word in this

case takes the form <hostname:>:<directory>. For example, this file indicates that the files in and

below the directory /pro are physically located in the directory /pro on the server named garcon, and

that files in !home/ober are on ober in its !home directory. The remaining information on each line

is a set of parameters used by the NFS subsystem. We won't describe what they mean except to note

that these parameters are not dependent on information outside the host itself and there is generally no

requirement that these panuneters need to be consistent with information on other systems.

NFS directories

doorknob:lvar/spool/maillvarlspool/mail nfs lW,hard,bg,intr,timeo=14 0 0
garcon:Jpro /pro nfs lW,hard,bg,intr,timeo=28 00
garcon:Jhome /home/garcon nfs lW,hard,bg,intr,timeo=28 00
Ober:!home /home/ober nfs rw,hard,bg,intr,timeo=28 0 0
ober:Jmap /map nfs rw,hard,bg,intr,timeo=28 0 0

Figure 1.3: NFS client configuration in /etclfstab

1bis configuration information is our first example of information which needs to be consistent

between 2 or more separate computers in the site. The administrator of the local host is free to decide

independently where the remote NFS directories should be mounted. But, the information about

remote file server names and the names of directories on those machines obviously depend on how

those remote systems are configured.

An NFS server must configure which directories its making available to other machines. TIlls

information is found in the /etc/exports file on the server. (Typically, the presence of an /etc/exports

file defines a system as a file server). See Figure 1.4 for the contents of an example tete/exports file.

Each line of this file defines a directory which can be exponed (NFS-mounted on a remote machine)

6 O1apter 1 The Problem

and the names of machines which are permitted to do so.

/etclexports for machine garcon

/pro -access=bob
/home/garcon -access=bob,mary

Figure 1.4: NFS server configuration

For a machine to properly access files remotely over NFS the information found in its own

fetclfstab must be consistent with the information found in each server's fetclexports file. Adding a

disk to a file server or a whole new file server requires updating the letclfstab and fetclexports file on

the server and the letclfstab of each computer in the site.

NFS involves a number of pieces of infonnation which must be consistent between several

machines and between several files:

• NFS server host names,

• NFS server directory names,

• NFS client host names.

Funbermore, an NFS file server must keep information consistem between its /etclfstab and

fetclexports files. Any directory exported by the server must be located on a disk device on the

server. This information includes:

• access pennissions,

• server bostname

• file system directories

Network Name Service

Each computer on a network is known by a hostname. Most network-based subsystems require

consistency in the host name lookup mechanism in that each host must agree on the mappings between

host names and host network addresses. For example, clients and servers need to know about eacb

7 Chapter I The Problem

other to share file systems over NFS (as described in the above section).

Hostname and network number infonnation is stored in an fetclhosts file which is distributed to

each computer, or through a network distributed database such as yP or BIND. However, even with

yP each computer must have its own fetclhosts with an entry for at least itself so that the boot up pro

cess can start up the yP service! From the perspective of an administrator taking care of a large

number of computers in a site it's usually more difficult to distribute to each computer a unique file for

each than it is to distribute the same file to each. In any event the infonnation about a mapping from

hostname to appears in the fetclhosts file as in Figure 1.5.

fetc/hosts

128.148.32.34
128.148.32.56
128.148.32.93
128.148.32.45

barney
garcon
doorknob
ober

Figure 15: hostsIde entries

Printers, spool directories and letcJprintcap

The Berkeley UNIX line printer spooling system provides site-wide access to printers. Under

this system each computer in the site is configured for access to printers connected directly to the com

puter or to those connected to other computers in the site. Whether a printer is local or remote can be

hidden from the user by configuring the print system appropriately. That is, the user can always print

to the same printer and know it by the same name from any host in the site if the printer subsystem

configuration infonnation is consistent throughout the site.

8 Cbapter 1 'The Problem

/etclprintcap

psO:sd=/usr/spoolllpd/psO:if=/usrllocalllib/pscomm:lp=ldev/psO
ps1:sd=/usr/spoolllpd/ps1:if=/usrllocal/lib/pscomm:lp=/dev/ps1

Figure 1.6: letclprintcap entries on a print server

The printer system is configured on each host - whether it has a printer connected directly to it

or not - by making entries in the /etc/printcap file. On a host with its own printelS the /etclprintcap

file describes the names of the printers and the various print filters supported by each printer. See Fig-

ore 1.6 for an example of this case. Each line in Figure 1.6 configures a printer. TIle first word in the

line before the ':' is the name of the entry (and. usually the name given to the printer). 'The 'sd=' field

in the entry gives the name of the spooling directory, the 'if=' entry gives the name of the print filter

and the 'lp=' entry specifies the device file corresponding to ttJe printer.

/etclprintcap

psO:sd=/usr/spoolllpdlpsO:rp=psO:rm=kelner
ps1 :sd=/usr/spoolllpdlps1 :rp=ps1 :llTl=kelner

Figure 1.7: letclprinteap entries on a print client

On hosts wishing to access to printers on other hosts the /etclprintcap file describes the host-

name and printer name as appropriate. See Figure 1.7 for an example /etclprintcap for a print client.

Adding a new printer involves adding an entry to the print server's /etc/printcap and an entry in

the /etclprintcap file or each host in the site. That is, each host in the site depends on information

about each print server in the site. The following list summarizes the configuration information needed

in the print spooling system.

• printer name

• remote printer name and bostname of print server

9 Chapter I The Problem

• printer device

• print filter(s)

Unlike the letClhosts file where the same file can be put on each system, here the file for a

machine that has a printer locally is different than the file on a machine that uses it remotely.

Kernel

1be kernel is the operating system executable image. 1be bootup process of the computer

involves reading this in and running it

Production of the BSD UNIX kernel itself is handled by config. 1bere are several pieces of

information which must be consistent between the kernel and other subsystems for a computer to work

properly.

The Idev/MAKEDEV script file automates the production device files. 1be major and minor

device numbers of device files (usually found in Idev) must be consistent with information in data

structures found in the UNIX kernel.

The kernel config file must be consistent with the letclfstab file for information about the root

file system and swapping/paging device.

The following lists some of the information needed to configure the kernel:

• cpu type,

• disk drive(s),

• tape drive(s),

• network interface(s),

• display device(s).

The important point here is that the kernel config file depends only on the local machine. This

differs from the letc/hosts/fP and letc/printcap files which depend on information about other

computers in the site.

10 Chapter I The Problem

User accounts, home directories, /etc/passwd, /etc/group

Infonnation about the people who use the site are in a way part of the site's configuration. A
~

user is defined by an entry in the /etc!passwd file (or yP passwd map) and possibly several entries in

the /etc/group file or yP map. The infonnation associated with a user includes the user's login name,

the user's uid and gid names and numbers, their real name, office, and phone number, their home

directory and the login shell. Some sites "hide" the seIVer or file system location of user's home direc

tories using symbolic links and NFS mounts which adds to the information about a given user. There

is information inherent in these symbolic links or NFS mount which by nature is usually not in the

letclpasswd file.

There are also users which don't represent people. These users identify processes and files of

various subsystems. The print spooling seIVer and user access processes run as the user lpd and the

spool directories are owned by lpd. The user lpd must be defined in the password file or yP password

map for the print spooling software to operate properly.

1.3. Problems With Config Files in a Large Site

The administrator of a large site must maintain many config files on many computers. Some of '

these files are unique to each computer and some are the same on each. Some files depend on informa

tion about other computers. For example, the configuration of NFS and printer system clients depends

on information about NFS and print seIVers. Adding a file seIVer, adding a disk to a file server, or

adding new printer often requires editing at least one file per machine in the site in addition to editing

some files on the machine directly affected

Additionally, there are a wide variety of syntactic demands each subsystem imposes on the asso

ciated config files. Even the smallest syntax error can lead to disastrous consequences often with little

or no diagnostic warning about the problem being a simple as a syntax error in a file.

Even though there are tools for perfonning systems administration activities on individual

machines there are few tools for dealing with many machines which together fonn a site. Current

tools often can bring a single machine up and running on its own to the point where it's a usable as an

11 Chapter I The Problem

individual system. But in sites managed in the .trnnsparent fashion we discussed at the outset this is

only a small part of the initial configuration process. After the machine's basic installation is complete

-
(loading software or doing diskless configuration on the server side) the administrator must configure

the machine for services specific to that site.

Tools and systems to help automate the initial installation of a machine AND the initial

configuration and customization for site-specific services are needed. It sbould be straight-forward for

a machine new to the site to configure itself on bootup based on site information it retrieves through a

well-known location serviced elsewhere on the network.

1bere exists no formal method for documenting to users (or other administrators for that

matter!) any site-specific configuration, customization, and tailoring information. There are manual

pages for describing bow to use various network. services, but rarely is the information about printer

servers, and file servers presented in the same form. Documentation about the site also depends on

infonnation about the configuration of the site. For example, most users do not know to find or read

the /etc/printcap file to determine whicb printers exist.

Service technicians and customer support people also need to understand a site's configuration.

A person in this position is often less familiar with the site and its various parts than an administrator

which works with the site daily and thus must piece together the bigger picture by perusing many dif

ferent config files on many machines before they can be of help in solving a problem with the site.

1.4. Why Solve This Problem

Maintaining the configuration of a large site requires keeping track of a many configuration files

on many computers. The information about the site inherent in these files is spread site-wide with

many individual pieces of information repeated.

This is an important problem to solve as inconsistencies between configuration files can lead to

failure of parts or or even the wbole site. These files additionally have stringent format requirements.

Thus, a large site often demands the attention of a "gum" or "wizard" merely to keep it configured

properly even though the repetitious nature of this work suggests this could be automated. As

12 Chapter I The Problem

networks of workstation'> and even personal computers become more popular and replace or at least

augment traditional centralized time-sharing and mainframe environments there is greater need for

-
easy to use systems management tools. The solution presented in the remainder of this work sets the

groundwork for automating the configuration aspects of managing such a site.

CHAPTER 2

Framework of the Solution

2.1. The Solution

This chapter describes the Site system and the Sitefile which we use to solve the problems

described in Chapter I.

TIle solution takes a step back from the configuration files themselves and focuses on managing

the information inherent in configuration files - the goal being to automate the production and mainte

nance of configuration files. The key design feature in automating this process is to generate all

configuration files from a single common representation. Figure 2.1 illustrates the solution.

We consider the specification problem the issue of greatest importance in automating this aspect

of site administration. The visual appearance and related user interface issues and the technical details

of a robust and secure networking implementation for distributing configuration information are each

separate problems and outside the scope of this work.

Character of the Solution

TIle Site system design reflects I) the activities performed in configuring a site AND the people

who perform them, and 2) the information needed to configure the site. Site is based on a design

which includes a philosophy of who should be doing what activities as well as on the lower level con

cerns of the most "natural" and effective way to describe a computing site and its various pieces. The

system is designed to be easiest to use for those activities which are performed most often, yet power

ful enough to be used by expert systems programmers to describe low-level customization and

modification of the systems software. The key is that one would like to and can decouple the two

activities and cover most of the configuration needs of a site in the former case.

Chapter 2 The Solution 13

Chapter 2 The Solution 14

Sitefile

I
local data I

I
local types I

I
vendor types I

Site

I site "engine" I
I drivers I

configuration files

sub-systems

Figure 2J : Framework of the solution

Our experience with modern UNIX systems administration is that it is mostly an organizational

and administrative task. In fact it is often the case that some knowledge may be more dangerous than

little knowledge! This is a departure from UNIX systems administration of the past where "kernel

backing" and related systems programming activities were considered an immutable part of managing

the site (a "site" of probably only a single mini computer). In modem world of commercial UNIX sys

terns one finds a drastically more complex site than this single machine of the past. The site now

includes many machines potentially from several different vendors, and each macbine is several times

15 Chapter 2	 The Solution

more complex than the original machines UNIX ran on. It is no longer possible to be a "guru" for

every aspect of the system any more. The final point is UNIX users are increasingly "real" people who

don't care how the machine is set up. They are interested in using the system for various applications.

We do not intend to satisfy the UNIX "guru" -- at least not directly. Indirectly we hope to satisfy the

"guru" by relieving such a person from some set of mundane tasks.

The next most important set of design goals are to describe the site as a whole effectively for

both people and software tools. A central database describes the site from a conceptual level. The

information in the database is stored independently from the configuration files and is the source of the

data required to generate the configuration files. The databse uses a text file "mini-language" which in

a declarative style using object oriented data abstraction with multiple inheritance. The central data

base is not merely a central repository of configuration files.

Finally, the design permits an efficient network-based implementation. Since the Sitefile and

Site system are intended for use on large sites it is important that the processing involved can be distri

buted. In this chapter we describe the higher level design which permits this. In Chapter 4 we present

the actual implementation details.

The following list summarizes the design goals and features roughly in order of importance.

• target different config activities at appropriate people
•	 automate as much as possible while allowing for extensibility

and customization

• lean and mean "tools" approach to technical implementation
• provide a precise, formal, and natural description of the site
• organize information about the site, NOT the configuration files

in the site

• declarative data description style
• object oriented: hierarchical typing with multiple inheritance
• efficient client-server network implementation

Design Goals and Style

16 Cbapter2 The Solution

2.2. Use of the Site System

The Site system consists of the site program which processes a Sitefile. A Sitefile is the central -
database representing all infonnation about the site. The multi-level use of a Sitefile is the most

significant aspect of this solution and is the subject of most of the discussion in this part of the Chapter.

(Technically speaking a Sitefile doesn't really have 3 sections. We just use it that way).

. lbis system identifies and separates 3 levels of understanding and activity in the configuration of

a large computing site. 'The top level includes the activities of adding, moving, and changing comput

ers, networks, and printers. The information needed to do so is conceptually easy to understand and

most importantly, requires little programming expertise or knowledge of how things are implemented.

The middle level is concerned with an overall site-wide view of the design of the site and its services

as a whole. This involves policy decisions of issues such as network topology and network name ser

vice. lbis sort of activity is less frequent than that of making small additions or changes to the site.

Working at this level requires some knowledge of how the site and the parts of the site work. The

infonnation at this level is logically disjoint from the top level. The bottom level presents information

about systems internals which may be necessary in configuring the site. This level differs from the

middle level in that it does not try to group parts of a site together. This level of the system describes

what parts are available while the middle level describes how those parts are used at a given site. For

example, this level may describe several types of network name service leaving the decision of which

to use on what machines to the middle level. This level includes descriptions of "vanilla" software and

hardware products from vendors.

The goal of targeting different configuration activities at the appropriate people is realized as

follows. In good information-hiding practice the mechanisms below a given level are automated. At

the top level we target the non-programmer whose work is carried out by automation at the middle

level. At the middle level we target a site's systems programmer who works in tenns of the lowest

level. The lowest level is aimed at the computer vendor's engineering staff who provide the hooks to

the specifics of their underlying system.

17 OJ.apter 2 'The Solution

The Site Program

'The Site system consists of a simple utility which takes a Sitefile as input and outputs all
-

configuration files for all the computers in the site. 'The program Site is a "configuration file compiler"

of sorts with the format of the Sitefile being the '1anguage".

Site Client-Server Model

In order to permit efficient and scalable network-based use the Site system implementation

defines an internal query protocol. The protocol is based on splitting the processing of a Sitefile into

client and server parts. The most scalable network implementation places as much processing as pos

sible on the client side. The possible interdependency of infonnation between any set of objects in the

site leaves the server side with the task of reading and parsing the Sitefile. However, after the Sitefile

bas been parsed one may produce the config files for each computer in the site in parallel. The best

place for this processing is on each computer itself. The intended use of this split is for each computer

in the network to periodically (daily, and at system start up, for example) contact the Site server to

retrieve the site infonnation needed to produce the correct configuration files. This "pull" model is

more efficient than a "push" model whereby the Site server (sequentially) produces all config files for

all computer and then distributes them. The details of the protocol and client-server implementation

are described in Chapter 4.

We talk more about the Site program, the Site client-server model and protocol, Site system

implementation, and use in Chapter 3 and the Appendix.

18 Cbapter2	 The Solution

2.3.	 The 3 Conceptual Levels of a Sitefile

Figure 2.2 summarizes our view of how site configuration activity and infonnation is best organ

ized. We divide the Sitefile into the Local Data area, the Local Types area, and the Vendor Types

area.

At the Local Data level are the data directly specifying the inventory of the site. This data is

conceptually the easiest to understand and manipulate and also is the type of configuration data which

sees the most activity.

Local Data most activity, least expertise

Local Types some activity, some expertise

Vendor Types little activity, most expertise

Figure 2.2: Multi-Level Solution

19 Cbapter2 1be Solution

For example, the actions involved in adding a new computer of a previously existing type takes

place at this level and only at this level. This only involves Sitefile manipulation analogous to filling in

-
a few blanks in a form.

1be Local Types level contains the data specifying site-wide policy and other information

specific to the site as a whole, but not directly associated with any particular object in the site. This

information is more conceptually difficult to understand and manipulate as the information here is

mostly of local classification of the way a site sets up a vendor'S systems. To work: at this level

requires some computer programming expertise.

For example, adding a new type of machine to the site first may involve some work at this level

for the installation of the first such new machine. Future similar machines should only involve making

a few Sitefile entries in the Local Data area. While work: at the Local Data area is pretty much filling

in blanks, the work at the Local Types area is specifying what the blanks should be.

The Vendor Types level contains information from the vendors supplying the systems to the

site. This information includes default configuration information for the systems listed in a vendor's

price book, for example. Ideally this information should provide reasonable defaults for that vendor's

hardware and software systems which would result in a configuration either most recommended by the

vendor or at least one which provides a usable system. These defaults may stand or may be over

ridden by the site's administration. Any such over-riding belongs in the Local Types area.

The following sections examine each level in greater detail. This is followed by discussion of

how the levels are used along with some example configuration activities which further illustrate when

and how things change at the different levels. We conclude with a discussion of the theoretical or con

ceptual basis of the solution.

20 Chapter 2 The Solution

2.4. Using Sitefiles

Here we present a detailed description of what appears at each level of the Sitefile.

The Top Level of a Sitefile: Local Data

1be top level of a Sitefile directly describes the inventory of the site such as the workstations

and servers, the networks, the printers, and any other such items that comprise the site. This level

holds high-level infonnation associated with these items such as its name, and what kind of item it is,

and other infonnation most administrators would most commonly know and understand about it The

idea of separating the information describing parts of the site from how the information is used

is the most important feature of this systeDL This technique is certainly nothing new or novel.

What is new and novel is applying this to configuring a large computing site.

It is also not new or novel to talk about systems and configurations in tenns of types. In the

"real world" of computers (the one where computer vendors sell systems to customers who put them

together and make a site out of them) a sales person puts together a quote or bid listing the types of

systems they can offer. These are listed in the vendor's price book in various tables and lists which the

salesman understands. If a customer wants a Sun3/60 with 8 megabytes of memory, color display, and

140 megabyte disk the salesman consults his price book and responds with a name such as "Sun-3/6~

S4". Even at the time of purchase of the computer there is discussion of types and even type names!

Unfortunately this is also usually the last time someone in a site deals with a system having a type.

This top level of the Sitefile is known as the Local Data area. Figure 2.3 presents some example

Sitefile entries from this area.

21 O1apter2 1be Solution

Sitefile Local Data entries

BrownWs bob {

hostname =
netaddr =

BrownPrinter psO {
printemarne =
printserver =

EtherNet lab33 {
networkname =
networkaddr =
gateway =
gateway =

bob;
128.148.32.42;

psO;
kelner;

1ab33;
128.148.33;
garcon to net32;
garcon to default;

Figure 23: Sitefile Local Data Entries

Each Sitefile entry at the Local Data level is a Sitefile variable entry whose general fonn is as

follows.

variable-name type-name {
[field ;]

As indicated by the square brackets a variable entry need not contain any fields. Also, newlines

are not significant as semi-colons ";" separate fields from one another and the curly braces "{ J" mark

the start of the fields and the end of the whole variable entry.

A variable entry field can take one of two fonns:

attribute-name =attribute-value ...
component-name := component-driverO

The first fonn is an attribute entry and the second fonn is a component entry. Note that an

attribute's value may consist of one or more words. Also, note that we often refer to "variable entry"

22 Cbapter2 The Solution

or other varieties of "entry". This is to make clear the distinction between the syntactic form which

appears in the file and the the overall meaning and value a variable when considered along with its

-
type. (More on types in the next section).

Given the basic syntax we present some example Local Data entries. See Figure 2.3 for some

example entries as they would appear in a Sitefile. The first entry is the variable bob which is of the

type BrownWs. The first attribute of bob is its hostname which has the value bob. Obviously this is

intended to mean that this woIkstation's hostname is "bob"; however, it's important to note that the

Sitefile itself has no idea what it means for a BrownWs to have a hostnarne. It merely stores the

association of the variable bob having this thing called a hostname valued at bob. It is up to the

reader of the Sitefile -- be that a human or a software tool -- to extract meaning from this association.

A variable entry may specify the same attribute name in more than one field. In the case of

lab33 it is meaningful to understand that the host garcon is the gateway from this network to two

other networks.

The following summarizes the concepts behind the Local Data area of a Sitefile.

• The Local Data entries represent the list of items (objects!) comprising the site.

• Each entry describes high-level site-specific information about each item.

The Middle Level of a Sitefile: Local Types

The next lower level of a Sitefile describes site-specific policy of how various parts of the site

are used and information about how the parts are most naturally organized at the site. This is known

as the Local Types area of the Sitefile.

o

23 Chapter 2 The Solution

Sitefile Local Type entries

class Printer {

printernarne =
printserver =

class BrownPrinter: Printer QmsPrinter {
}

class BrownWs : Sun-3/60-S4 VPClient {
ypdomain =

class EtherNet {
networkname =
networkaddr =
netmask= 255.255.255.0;
domain = cs.brown.edu;

Figure 2.4: Sitefile Local Type Entries

Each Sitefile entry at the Local Types level is a Sitefile type entry whose general fonn is as fol

lows.

class type-name [: base-type-name ...] {
[field ;]

As with variable entries a type entry need not contain any fields, and newlines are not

significant A type entry field is in general the same as a variable entry field, except that a type entry

may specify attributes or components which have no value or driver, respectively. We refer to a

value-less or driver-less entry as a virtual attribute or component. The meaning of such an entry is

covered shortly. A type entry field takes one of the two forms:

attribute-name = [attribute-value ...]
component-name := [driver-nameOl

24 O1apter2 1be Solution

Figure 2.4 presents some example entries found at this level. The first entry defines the type

Printer as something which needs a printemame and a printserver. (This entry does not indicate that

-
the site necessarily has any printers nor does it imply that there are any objects in the site classified as

a Printer.)

The second entry in Figure 2.4 defines the type BrownPrinter to be a combination of a Printer

and a QmsPrinter. This introduces the Sitefile feature of multiple inheritance of type definitions. In

this case the type BrownPrinter incorporates all of the fields from the types Printer and QmsPrinter.

As presented in Figure 2.3 the variable psO was defined to be of the type BrownPrinter where it was

given the values of the printemame and printserver fields. (1be type QmsPrinter is defined in the

lowest level of the Sitefile which is the subject of the next section).

The third entry defines the type BrownWs in terms of the types Sun-3/SQ-S4 and YPClient.

1be actual definition of these types is defined in the lowest level of the Sitefile. The meaning at this

level is that a woIkstation in this site is the same hardware configuration of a Sun3/60 and is also

configured at this site to be a client in the yP system. There are some important and powerful features

in this simple syntax. As promised at the outset each level can "black box" anything going on below it.

1be point with the Local Types level is to isolate these site-specific "policy" and classification entries

from the raw list of site inventory AND to isolate these entries from those produced by the vendor.

(We've jumped the gun here a bit: the lowest level is known as the Vendor Types area with the inten

tion that entries at this level be produced and maintained by the vendor's engineering staff and are dis

tributed along with the systems software to the customer site where they are treated as "read only" and

used as the basis for what we're discussing in this section). That is, entries at the Local Data level do

not need to' know that a BrownWs is either a Sun3/60 or a yP client. A BrownWs still has a host

name and networkaddr and most importantly the people making entries at the Local Data level also

do not need to know whether a BrownWs is getting its name service from yP or from its own

/etc/hosts file or from something else such as BIND. Most importantly, though, is that someone

working at the Local Data level does not have to know how name service lookup is implemented.

(Consult a UNIX systems administrators guide for more information about network name service).

25 Cbapter2 TIle Solution

TIle features of hierarchical type definition in terms of multiple types is a powerful object

oriented technique which proves very useful and natural in organizing information about a computing

site.

Beforing describing the next level of a Sitefile we summarize the concepts of the Local Type

level.

• Local Type entries define site-specific policy and classification of site objects.

• Local Type entries are defined in terms of Vendor Types.

• TIle Local Type area is targeted at the site's systems programmer(s)

Depending on how much a site customizes and tailors a vendors systems it may have a very sim

ple or very complex Local Type area.

The Lowest Level of a Sitefile: Vendor Types

TIle lowest level of a Sitefile describes vendor-specific classifications of a product line. EnDies

at this level are produced by the vendor as part of the same engineering effort which produces the sys

tem software itself. The vendor then distributes these entries which each site would then place in the

area of the Sitefile known as the Vendor Types area Hopefully, that this will more formally and accu

rately transfer the vendor's intent of how their systems should be pieced together out there in customer

sites.

BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-90-M4

Site

A Language and System for Configuring Many Computers as One Computing Site

by

Bent Hagemark

Site
. A Language and System for Configuring Many Computers as One Computing Site

Master's Thesis

Bent Hagemark

Department of Computer Science

Brown University

April 30, 1990

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Computer Science at Brown University

Professor Kenneth Zadeck

Advisor

26 Olapter2 TIle Solution

Sitefile Vendor Type entries

class Sun-3/SQ-S4 {

cpu =
mem=
disk =
device =
device =
maxusers =
/vmunix =

class YPClient {
ypdomain =
/etclhosts :=

class YPServer {
ypdomain =
/etc/hosts :=

class QrnsPrinter {
filter =
filter =
filter =

MCS8000;
8mb;
140 mb scsi;
cg4;
leO;
1S;
SunKemelO;

StubEtcHostsO;

,
FullEtcHostsO;

if /usrllocalllib/ps/psif;
of /usr/locaillib/ps/psof;
df /usr/locaillib/ps/psdf;

Figure 25: Siteflie Vendor Type Entries

As with the Local Types level, the Vendor Types level consists of Sitefile type entries. The

Sitefile type features discussed above apply here as well. Figure 2.5 illustrates the use of the com

ponent field. A component represents a config file. The name to the left of the ":=" is the config file

name; the name to the right is the driver which is called in the processing of the Sitefile to produce the

contents of the file. We present config file drivers in a later section. The salient feature of a driver is

that it properly formats a config file given the infonnation that should appear within. This is a

reflection of the system design which describes the site not just the config files in the site. There is a

clean split between the description of the site data from the description of how a config file should

look.

27 O1apter2 The Solution

2.5. Pulling the Levels Together

Each level can be organized into one or more files. The separate files are #include'ed into a

Sitefile for use as input to the Site system. The following sections illustrate how a Sitefile is changed

to reflect different kinds of configuration activities in the site. Figure 2.6 is the initial state of the

Sitefile which is altered in the following sections.

BrownWs bob { # Local Data level
naddr = 42;
display = cg4;

class BrownWs : Sun3-6Q-S4 { # Local Types level
memsize = 8 mb;

class Sun3-6Q-S4 { # Vendor Types level
disksize = 140 mb;
naddr=
display =

Figure 2.6: A simple Sitefile

Chapter 2 The Solution 28

Adding An Object To The Site

Figure 2.7 illustrates how the Sitefile changes to reflect the addition of an object--in this case a

computer--to the site. Sitefile variables are so called because they represent the parts of a site which

vary from site to site. Each Sitefile variable represents a single real world site object such as a com

puter, network or printer. Adding such an object to the site involves adding exactly one variable entry

to the Sitefile.

In this example we are adding the workstation mary. The bold entry in Figure 2.7 is the addi

tion to the file. This workstation is the same type, and hence the same Sitefile "Type"!, as bob. The

variable entry takes the same form as for bob.

The significant point of this illustration is that this type of change to the site requires a change

only to the Local Data area of the Sitefile. This reflects our high-level goal of making the Sitefile rela

tively easy to edit as well as satisfying our data description goals of describing the site in the most

"natural" manner.

BrownWs bob { BrownWs mary {
naddr= 42; naddr = 137;
display = cg4; display = cg4;

}

class BrownWs : Sun3-6o-S4 {
memsize = 8 mb;

class Sun3-60-S4 {
disksize = 140 mb;
naddr =
display =

Figure 2.7: Adding an object to the site

29 Chapter 2 'The Solution

Factoring Common Information

If, for example, we are planning to add many workstations all of the same type we can factor out

any commonality and place this common information in a lower level entry. This is illustrated in Fig

ute 2.8. We have now factored out the commonality of bob and mary by moving this information to

BrownWs.

BrownWs bob { BrownWs mary {
naddr = 42; naddr = 137;

class BrownWs : Sun3-GO-S4 {
memsize = 8 mb;
display = cg4;

class Sun3-GO-S4 {
disksize = 140 mb;
naddr =
display =

Figure 2.8: Adding an object to the site

30 Chapter 2 The Solution

Local Customization, Extensibility

A number of features pennit local customization and extensibility of the site description. The

Sitefile fonnat has no built-in types or attributes and therefore no built-in notion of what anything in

the file means. A Sitefile only organizes infonnation There is no predefined or required way to

organize the site info. This pennits the local site administration to describe their local modifications

and customization in the same manner as any standard pieces of infonnation

In Figure 2.9 we present a simple example of this. The vendor's standard notion of their product

offering doesn't include a notion of office location. It is significant to notice what changes as well as

what doesn't change. Since the changes reflect how a Snn3-60-P4 is used at tb:~ local site the changes

are isolated to the Local Types area and nothing changes in the Vendor Types area. In fact all Vendor

Type Entries should be considered "read only" and ideally are produced at the factory along with the

vendor's price book. Any changes a vendor's idea of what their product is should be made in the

BrownWs bob { BrownWs mary {
naddr = 42; naddr = 137;
office = 575; office =576;

dass BrownWs : Sun3-60-S4 {
memsize = 8 mb;
display = cg4;
office =
fllesys = /cs NFS;

dass Sun3-6Q-S4 {
disksize = 140 mb;
naddr =
display = ,
filesys = / at sdOa;
filesys = /usr at sdOg;

Figure 2.9: Customization and Extensibility

31 Chapter 2 The Solution

Local Type area of the Sitefile. We have been using the Type BrownWs to isolate any local changes

to a Sun 3/60 from the Type Sun3-60-S4.

We have also added a filesystem Attribute to BrownWs. This describes a local enhancement

where all the site's workstations NFS-mount the directory "/cs".

More Local Customization and Extensibility

The example in Figure 2.10 illustrates the use some Sitefile features useful in specifying

configuration policy for the site. In this case we are stating that our workstations are yP clients which

implies that their letc/hosts file contain minimal information required in the boot process. Our server

machine is a yP server whose letc!hosts file should contain hosts database infonnation for the whole

site. It is important to note that these changes to the description do not require any modification to the

entries supplied by the vendor nor do they effect how one creates entries at the Local Data area.

Adding a new workstation to the site is still the same procedure as above even if the site's name

lookup policy were changed. This illustrates the power of the object oriented concept of type hierar

chy in general and the utility of this concept in organizing site information.

32 Cbapter2 1be Solution

BrownWs bob {
naddr =
office =

42;
575;

BrownWs mary {
naddr=
office =

137;
576;

Brownserver kelner {
naddr = 55;

class BrownWs : Sun3-60-S4 YPCllent {
memsize = 8 mb;
display = cg4;
office =

class BrownServer : Sun4-280 YPServer {
memsize = 32 mb;

class YPCllent {
/etc/hosts:=

}
StubHosts();

class YP5erver {
/etc/hosts :=

}
FullHosts();

class Sun3-6Q-S4 {
disksize =
naddr =
display =

140 mb;

Figure 2.10: Customization and Extensibility

2.6. Object Oriented

The Sitefile demonstrates the power of object oriented data respresentation. Object oriented

design is significant enough in the character of this work to warrant a special section on the topic. The

following paragraphs summarize use of specific object oriented concepts.

33 Chapter 2 The Solution

Factoring Common Information

Factoring common Sitefile attributes and components into lower-level types allows almost any
-

single piece of site configuration information to appear in one and only one place in the Sitefile.

Extensibility

Defining new classes based on old ones allows extensibility without modification of existing

classes. This is important for maintaining commonality with a standard configuration. The new

classes specific to a site precisely describe how that site differs from the default configuration.

Exceptions to Classes

Often times one is faced with classifying an object which is mostly of a certain type but differs

in a few minor aspects. The attribute and component look-up mechanism permits an effective way to

describe objects which are roughly of a certain type but which differ only in a couple of attributes or

components. Since a Sitefile variable entry is consulted first it may contain attributes or components

which over-ride a default value specified lower in the type hierarchy.

Multiple Inheritance

The Sitefile uses multiple inheritance to pennit "mixing" of different types of objects. For

example, a computer which is plays the role of file server, print server, and network gateway can be

represented by classes for each of these roles.

Multi Level

We have presented Sitefiles divided into 3 levels. The hierarchical typing system permits clean

separation ofthese levels. This is useful for organizing information effectively, but, more importantly,

also has the effect of separating complex and simple Sitefile entries. The significant result is that a

novice may work at the highest level in terms comfortable to them with the information they manipu

late expanding and flowing into the more complex machinery at the lower level.

34 Cbapter2 1be Solution

2.7. Theory of the Site System

1be Site system incoxporates most of the ideas presented in this section. See Chapter Three for
-

the implementation details of the Site system and details of features which are not based on ideas

presented in this section.

A Sitefile represents a set of directed graphs. A graph is formed by variables and types

representing nodes connected by edges pointing from base types to derived types and from types to

variables. All non-terminal nodes are types, and each terminal node is a variable. (A non-terminal

node has no out-pointing edges.) Each node has data in it containing the attribute and component

entries of the corresponding variable or type entry. Types derived from more than one type have one

inpointing edge for each base type.

See Figure 2.11 for an illustration of part of Figure 2.10 as a graph. The arrows point in the

direction of data flow. This picture perhaps makes more apparent the scope of attributes and com

ponents implied by type inheritance. For example, the component /etclhosts := StubHosts(); "flows"

to BrownWs and fwtberto bob and mary.

The purpose of the graph is to model the flow of data from the objects to form information use

ful in producing a config files. The source of the data flow is the information about objects in the site,

infonnation about the site as a whole. The initial design tried to capture the flow of data all the way

into specific syntactic pieces of each config file. It proved too complicated to cover the full diversity

of file formatting required of the wide variety of config files. The current design, therefore, decouples

the description of data from the description of how to format it. The former can be done with declara

tive data-description constructs such as hierarchical types, while the latter requires more general pur

pose programming constructs of sequences, conditionals, and loops. The present design gathers all of

the information needed to produce the file and leaves the formatting of the file to a driver which takes

this information as input. The drivers hide their implementation and are hidden from the structuring of

the information in the graph. The bulk of this thesis deals with data description side of this scheme

and generally leaves the machinery for formatting each file to systems which are already well suited

for this such as the UNIX tools of awk and sh and the C language.

35 Chapter 2 The Solution

Figure 2.11: Graph ofSitefile

Data Flow Through the Graph

The following data flow "algorithms" describe how the graph is used. The overall idea is to

traverse the graph and produce on output a stream of hooks --calls to driver programs. The traversal

essentially "flanens" the hierarchy inherent in the directed graph and computes an environment of

name/value information which each driver uses to produce a config file.

Data flows through the graph in two ways, each corresponds to a dependency between a config

file and the information in it. In Chapter One we highlight the source of several individual pieces of

infonnation for a set of config files. There are config files which depend only on information about the

computer on which the config file is located; and there are config files which depend on information

about many other objects in the site.

36 Chapter 2 TIle Solution

For example, the kernel configuration file for a computer depends only on information about that

computer such as the hardware devices connected to it, wbile the /etc/printcap file depends on infor

mation about which printers exist and information about each printer such as its print server.

TIle two data flow algorithms are presented in Figure 2.12. Each algorithms traverses a graph

gathering up an environment as it visits each node. The environment consists of a set of triples where

each triple consists of a variable name, field name, and field value. TIle variable name is included to

group a set of attributes on a per-variable basis. TIle edges point in the direction of data flow from

base types to derived types and from types to variables. Conflict resolution on attribute names and

component names is designed. such that a variable or type may specify its own value or driver for an

per_variable_flatten{input: a graph)

termina'-node:
1) do single_node-.9ather
2) for each component gathered

a) do per_type_flatten
b) return/emit call to driver with gathered environment

single_node-.9ather:
1) gather env from parent
2) gather env from current node

(envon current node overrides env from parent)

multi....parent-Jlode-.9ather:
1) gather env left->right from each parent

(left overrides right on conflict)
2) consider the gathered env that of a "pseudo-parent"
3) do single_node-.9ather

per_type_flatten{input: graph, type node, attribute names)

1) generate list of downstre~:\mterminal nodes
(all variables of that type)

2) do a per_variable_flatten of the graph
3) for each variable grab any attributes of interest (omit components)
4) return environment

Figure 2.12: Siteftle Graph Data Flow Algorithms

37 Chapter 2 The Solution

attribute or component, respectively.

Example Output of Graph Traversal

Figure 2.13 contains the output of traversing the graph in Figure 2.11 (which is the Sitefile in

Figure 2.10). The intention is to feed this command stream to a UNIX shell whose command search

path includes a directory which contains the programs StubHosts and FullHosts. These programs are

the drivers whose implementation is external to this system and hence not specified. A typical driver is

easily implemented with a simple awk or sh program.

StubHosts bob < 'mary,naddr,137;bob,naddr,42;kelner,naddr,55; • > etc.hosts.bob
StubHosts mary < 'rnary,naddr,137;bob,naddr,42;kelner,naddr,55; " > etc.hosts.mary
FullHosts kelner < "mary,naddr,137;bob,naddr,42;kelner,naddr,55; " > etc.hosts.kelner

Figure 213: Sitefile Graph Data Flow Algorithms

38 Chapter 2	 1be Solution

2.8.	 Future Work

The current implementation of Site requires one to relinquish control of configuration files to

Site and a Sitefile. A facility for "reverse compiling" existing configuration files coupled with some

heuristics for resolving conflicts between the information inherent in a configuration file and the infor

mation in a Sitefile would permit direct editing of configuration files under the control of site. A more

important use for such a capability would allow implementation of a finer grain "incremental" change

mechanism. That is, Site would be smart enough to generate only those files which need changing

based on an incremental change to the Sitefile.

We do not address netwoIk security or authentication The Sitefile '1anguage" described in this

work does not allow expression of the concepts of administrative domain and ownership of parts of a

site. One could possibly extend the language to permit ownership of update permission to types, vari

ables, components or attributes and extend the implementation of Site to use this information -

presumably along with a netwoIk authentication mechanism.

The most radical implementation would call for the outright removal of all configuration files.

The functionality of attribute lookup currently used by drivers to scan their environment could instead

be moved to the C library functions used to peruse the "/etc/blah" file. For example, the implementa

tion of the getfsentO routine could be replaced by (netwoIk transparent) Sitefile calls. This already

class Ws {
hostname =

"/usr" :=
"/dev" :=
"/usrllocal" :=

MountPointsO;
LpdSpoolDirsO;

UsrO;
DevO;
UsrLocalO;

1* fstab dirs */
1* printcap dirs */

Figure 2.14: Future Sitefile entry

39 Cbapter2 The Solution

has precedence in the implementation of C library functions such as the getpw*O and gethost*O for

use with YF.

The current implementation of Site uses Sitefile components to represent configuration files.

This implementation could be extended to permit use of Sitefile components to describe specific direc

tories which need to exist with certain mode, owner and group settings, as well as special--/dev--files,

and finally for actual software "subsets". Rdist Distfiles already can handle the transport issues of

most of these situations. A more comprehensive implementation of Site would allow processing of

Sitefile entries such as the one in Figure 2.14.

CHAPTER 3

Other Attempts

3.1. Other Approaches

There are very few systems designed for configuring a site as a whole. This chapter briefly men

tions systems related to managing a site's configuration and relates this work to other tools which

inspired the design of Site.

Many ideas in Site stem from the experience of using rdist [3] and Distfiles to manage the

configuration of a Computer Science Department site consisting of 100+ workstations and servers

from several vendors. A discussion of some of the specific problems is included in this chapter.

3.2.	 rdist

The strategy in using rdist to manage the configuration of a large site was to gather up all

configuration files for all machines into a directory on a server. A very complex Distfile CI000 lines)

described how these files where to be installed on various machines. 'The most difficult problem in

using rdist for this task: was in trying to impose a classification scheme for the various types of

machines in the site. Beyond the basic mechanism of providing the actual transport of files to remote

machines there are few facilities for actually producing the configuration files let alone the managing

of the information needed to produce the files.

Rdist works fine as a file transport mechanism and for specifying which files and directories

should be distributed to which machines. The most important limitation for the purpose of maintaining

configuration files is its lack of general ability to organize information.

More specifically rdist has no method for declaring types or for classifying information, and it's

difficult to factor out common information and express "minor" exceptions to a rule.

Chapter 3	 Other Attempts 40

41 Chapter 3 Other Attempts

Rdist example

The following example will illustrate some problems in using a Distfile. A goal in maintaining

the Distfile is to mention each hostname and each unique file once in the Distfile. This is accomplished

largely by using macro definitions as much as possible in the rules; these macros essentially define

classes of hosts and files. This is all straight forward in the case where the intent is to distribute

exactly the same files to a set of hosts. The Distfile in Figure 3.1 distributes all of the same files to four

hosts.

FILES=(... {a11 files} ...)
HOSTS=(a bed)

${FILES} -> ${HOSTS}
install;

Figure 3.1: A Distfile

However, any single exception forces the split of a HOST "type" in to two. For example, all

hosts are to be configured identically except for host d, which is to have a different /etc/passwd than

the rest. The fact that a host needs a "special" /etclpasswd effectively introduces a new class of host.

In the Distfile this is described by the new macro HOSTS_SPECIAL Figure 3.2 shows the resulting

Distfile.

42 Chapter 3 Other Attempts

CONF=/etc/cont

ALL_FILES=(...{all tiles except letc/passwd}...)

HOSTS_NORMAL=(a b c)

HOSTS_SPECIAL=(d)

HOSTS-ALL=(${HOSTS_NORMAL} ${HOSTS_SPECIAL})

${CONF}lpasswd.special-> ${HOSTS_SPECIAL}
install/etc/passwd;

${CONF}/passwd.normal -> ${HOSTS_NORMAL}
instali/etc/passwd;

${ALL_FILES} -> ${HOSTS_ALL}
install;

Figure 3.2: More Complex Distfile

Things get considerably more complex each time a new exception is introduced If, for exam

pIe, the host b needs a special/etclfstab the Distfile would look as in Figure 3.3. There are now three

classes of hosts. Qearly this could get out of hand quickly in a real site.

HOSTS_NORMAL=(a c)

HOSTS_SPECIAL=(d)

HOSTS_SPECIAL2=(b)

HOSTS_ALL=(${HOSTS_NORMAL} ${HOSTS_SPECIAL} $(HOSTS_SPECIAL2})

ALL_FILES=(... {all tiles except letclpasswd AND letclfstab} ...)

${CONF}/passwd.special -> ${HOSTS_SPECIAL}
install/etc/passwd;

${CONF}/passwd.normal -> ${HOSTS_NORMAL} ${HOSTS_SPECIAL2}
install letc/passwd;

${CONF}/fstab.speciaI2 -> ${HOSTS_SPECIAL2}
install/etc/fstab;

${CONF}/tstab.normal-> ${HOSTS_NORMAL} ${HOSTS_SPECIAL}
install/etc/fstab;

${ALL_FILES} -> ${HOSTS_ALL}
install;

Figure 3.3: Even More Complex Distfile

43 O1apter3	 Other Attempts

Fixing rdist

Initial designs for a site configuration tool began with attempts to fix rdist to better deal with
-

problems such as the ones described here. One such improvement involved a richer set of operations

for assembling files from templates and from smaller pieces of files. We discovered what we really

wanted to do was describe the information in the files and to automate production of the contents of

the files. This is a separate issue from how to transport a file from one machine to another in a net

work. We also discovered that our use of macro definitions for classifying hosts was very similar to an

object oriented type hierarchy. We left rdist alone and moved on to wode out a scheme for organizing

configuration information along a classification of machines in the site. The key was to separate

configuration information from the configuration files.

3.3.	 Make

Make [2] is generally used as a software engineering tool to describe dependencies between

software components. Make was studied for it's declarative rule-based style and was indirectly the

source of the idea organizing site objects and parts into a multi-way tree or directed graph. That is,

each config file to be made was put in a make rule which had dependencies on other rules which had to

fire first to assemble sub-parts of the config file. Again, this did not lead to much success as the com

plexity of piecing together files by using things that could be called from a Makefile rule -- such as

awk, sed, and cat -- became more cumbersome than describing a classification of the site.

A proposed extension to make added variables to each make rule. A variable set in a dependent

rule stays active in the current rule unless the current rule overrides the value. The rule name and

dependent rule names evolved into Site class or type names; and the variables and values evolved into

Site attributes.

3.4.	 Interactive Programs

This section mentions some interactive utilities offered by various vendors familiar to the author.

Sun's suninstall and Encore's devconfig, configure, and partition are examples of such programs.

44 Chapter 3	 Other Attempts

Computer vendors more commonly approach assisting a systems administrator by providing

"user friendly" utilities which front-end the preparation of various configuration files by presenting the

-
administrator with an "easy to use" interactive program. Interactive programs either produce

configuration files directly or preserve input in an internal (tool dependent) representation form.

There are several problems with this approach. While this may simplify initial setup, it doesn't

provide much assistance for further on-going maintenance which largely consists of incremental

changes. Another affect of this information loss is to prevent recording of what input was provided.

Any interaction method should be optional and should operate only and completely on a common

representation.

If the representation form is simple enough one can make direct use of tools specifically

designed to provide management of incremental change such as RCS and SCCS.

Interactive tools often times require the administrator to fill out (paper!) work sheets before run

ning the utility anyways!

3.5.	 config

The BSD UNIX kernel is created and configured by the conftg program [4J. This tool deserves

mention here as some of the ideas used in Site were inspired by conftg.

The foremost idea is of automating the production of the UNIX kernel through the use of a "sin

gle, easy to understand, file". From this standpoint Site is merely an extension of conftg to describe not

just the system kernel image, but the entire site. In fact, the syntax of Site attributes is a direct descen

dent of the device specifications found in a conftg file.

3.6. YP

The Sun Yellow Pages system [IJ is a network-distributed lookup service. Standard UNIX data

base files such as /etc/hosts, /etc/passwd, /etc/group, and /usr/lib/aliases are replaced by corresponding

yP "maps" while retaining the same library function interface used to access the files. While this sys

tem does address some problems in large systems administration it does not directly address site

45 Chapter 3	 Other Attempts

configuration. In fact, yP itself must be configured on a per-host basis!

3.7.	 Summary

Little work has been done to solve the problems of site administration. Interactive tools cer

tainly have appeal for ease of use, but this issue is really independent of the more important problem of

accurately and precisely describing site information. For the work described in this thesis the ideas

behind make, rdist and config are the most important.

CHAPTER 4

Implementation and Reference

4.1. Site 1.0 Implementation

This chapter describes "Site 1.0" which is the initial version of the Site system. Site 1.0 is based

on the ideas presented in Chapter One. 1be information in this Chapter is restricted to Site 1.0 imple

mented for UNIX. (UNIX feanues described here are generally available on any version of UNIX).

For information on using Site 1.0 refer to Appendix A.

4.2. Site 1.0 Modes of Operation

Site 1.0 consists of the command site which may be invoked in one of three modes.

In interactive mode site reads a Sitefile and produces a directory of config files along with a

Distfile for distributing the files to remote machines.

In client mode site connects to a site server. A site command running in this mode is called a

site client. A site client sends commands to a site server, and uses the information gathered from these

commands to produce config files on the local host.

In server mode site reads a Sitefile and executes commands sent to its TCP socket. A site com

mand running in this mode is called a site server. A site server accepts and executes commands and

returns the response to the remote IPC port.

Each of the three modes is implemented in terms of modules which implement lower level

features of the Site system including: Sitefile parsing, access to Sitefile variables, types, attributes, and

components; access to config file drivers; low level abstract (C language) types used by all of these

modules.

Chapter 4 Implementation and Reference 46

47 Chapter 4	 Implementation and Reference

4.2.1.	 Interactive .Mode

See Figure 4.1 for a pseudo-code representation of interactive mode. The function

readsitefileO reads in the Sitefile and stores its contents in internal data structures. After the Sitefile

bas been completely parsed this mode calls varevalO which evaluates each Sitefile variable. Evaluat

ing a Sitefile variable involves evaluating each the of the variable's components; and evaluating a

component results in calling a driver to produce a coofig file. See the Sitefile Parsing section for more

infonnation on readsitefileO and the Variables section for information about varevalO.

interaetiveO
{

readsitefileO;
for (each Sitefile variable)

varevalO;

Figure 4.1: Implementation ofInteractive Mode

4.2.2.	 Client/Server Mode

In this section we summarize the implementation of client and server modes. See Figure 4.2 for

the pseud<H:ode representation of server mode. As with interactive mode a site server begins by read

ing a Sitefile into an internal representation. 1be servermodeO function implements the standard

structure of a Berkeley UNIX network server. For each connection this function spawns a child pro

cess running the serverO function which reads commands from the socket and writes the response of

each command on the socket Before describing the site client we present a summary of the "protocol"

interface to the site server.

48 Chapter 4	 Implementation and Reference

servermodeO
{

readsitefileO;
init a socket to listen on:

socketO

bindO

listenO

for(EVER)

acceptO

forkO

if (child)
serverO

serverO
{

while (getline from port)
parse line into command and arguments
execute command

Figure 4.2: Implementation o/Server Mode

Site Protocol

This section describes each of the commands or queries accepted by the site server. All input to

the server is in ASCII text as is all output. The output is returned on the same connection as input-the

client process sends queries and reads the response to each on the same file descriptor. Most output

consists of multiple lines. The first line echoes back a summary of the command. The next line indi

cates the number of following output lines. Each of the following output lines is typically a single

string.

varlist	 The first line of output consists of the number of variables, each subsequent line consists

of a variable name. The older of names returned has no meaning, need not be the same

order in which they appear in the Sitefile and is not guaranteed to be consistent for each

invocation of this command.

typelist var	 This returns the names of all types which var is based on. The first line of output is the

number of lines to follow. Each following line is the name of a type.

49 Chapter 4 Implementation and Reference

varsoftype type

This returns the names of all variables based on type. The first line of output is the

-
number of lines of output to follow. Each following line is the name of a variable. The

final line of output consists of a single '.'.

attrval var attr

This returns the value of the single-valued attribute attr in the context of the variable var.

The first line of output is the number of words in the value of the attribute.

attrva12 var attr val

This returns the value of the specified attribute whose first value word is val.

attrvaln var attr n

This returns the value of the n-th occurrence of the specified attribute in the specified

variable.

attrcount var attr

This returns the number of times the variable var specifies a value for the attribute aUr.

attrlist var This retums a list of all attribute names found in this variable.

compcount var

This retums the number of components in the specified variable.

complist var This returns a list of the components of the variable var. Each line of output consists of

two words: the first word is the target name (configuration file name), and the second

word is the name of the driver.

compargs var targ driv

This returns the arguments to the driver which is uniquely specified by the variable name

var, target name targ and driver name driv.

50 Chapter 4 Implementation and Reference

Site Client

See Figure 4.3 for the pseudo-code of a site client. The site client communicates with the server

to get the information needed to create the configuration files for the local host--the host the site client

is run on. To do so involves evaluating the variable associated with the the client host. The site client

is implemented in terms of the Sitefile Access Library which in tum uses the Site Protocol to common

icate with the site server.

The site client calls the function SITEvareval() which is a function in the Sitefile Access Library.

This function gathers the names of all components in the variable representing the local host and calls

the driver for each corresponding config file. A driver uses the SITEattrval() function to gather values

of attributes needed to produce the config file. More about the SITE*() library appears in a later sec

tion.

clientmodeO
{

clientinit(serverhost)
clientevalO

clientinit(serverhost)
{

connect to server:
socket()
connectO

clientevalO
{

SITEvareval(thishost)
}

43

4.3. Site 1.0 Low Level Modules

The following sections describe the interfaces to low level modules internal to Site 1.0. The

most important modules are those which implement the interpretation of the Sitefile types and

51 Cbapter4 Implementation and Reference

attribute-value lookup; see the Types and Attributes sections respectively.

4.3.1. Site LISTs

1be functions in this module implement the operations on the LIST· type. A Sitefile is

represented internally in terms of USTs. See figure 4.4 for a summary of UST functions used to con

struct or write to USTs.

52 Chapter 4 Implementation and Reference

#include wlist.hw

int Iistinit(L1STP listp, int max, char *name, int type);
1*
* initialize a new list to have a maximum of wmaxw elements
* give it a name and a type (see L1ST_* above)
*/

int listset(L1STP Iistp, int ix, caddr_t val);
1*
* set the wix'h element of the list to "val"

*/

L1STP Iistfromchain(L1STP listp, CHAINP chp);
r
* put the elements in the linked list wchpw into
* the list wlistpw. this calls "listinitW.

*/

int listadd(L1STP Iistp, caddr_t obj);
1*
* Append wobr to WlistpW

*/

int Iistcat(L1STP listp, L1STP catlistp);
r
* concatenate the elements in WcatlistpW to the end of "listpW
*/

listfromfio(L1STP listp, FlOP fiop);
r
* Produce a list of STR from lines found in the stream ~iopw

* The first line in wfiopw must be a number which will be taken
* as the number of lines of input to put in the list
*/

Iistfromfiopairs(L1STP listp, FlOP fiop);
r
* Produce a list of PAIR from lines found in the stream "fiopW
* The first line in wfiopw must be a number which will be taken
* as the number of lines of input to put in the list. Each
* following line must have 2 space separated strings.
*/

Figure 4.4: LIST Constnlction Functions

Figure 4.5 summarizes the routines used to read USTs. The example in Figure 4.7 describes how

some of these routines are used.

53 Chapter 4 Implementation and Reference

int listiterinit(L1STP Iistp, ITERP iterp);
r
* Initialize the list iterator "iterp" for "listp"
*1

caddr_t listiter(L1STP Iistp, ITERP iterp);
r
* Get the next element in the iteration
* ("listerinitO" should be called before using this)
*1

int Iistlen(L1STP Iistp);
r
* return the current number of elements in "Iistp"
*1

int Iistcap(L1STP Iistp);
r
* return the capacity "listp". This is the "max" value
* supplied to 'listinitO'.
*1

int listtype(L1STP Iistp);
1*
* return the type (LIST_*) of the list
*1

caddr_t listrnem(L1STP Iistp, int nx);
r
* Return the "nx"th object in "listp"
*1

caddr_t listfirst(L1STP Iistp);
r
* Return the first object in "listp"
*1

Figure 4.5: LIST Reading Functions

4.3.2. Variables - var*O

'This module implements access to Sitefile variable entries. The interface consists of the func

tions described in Figure 4.6. Internal to Site a Sitefile variable is represented by a C variable of type

VAR. A VAR describes the variable entry from the Sitefile and describes the Sitefile variable name,

the Sitefile type name and the body of the variable entry.

54 Olapter4 Implementation and Reference

L1STP variistO
r
* Return a pointer to the LIST of VARPs representing
* all variables in the Sitefile.

*'
char *vamarne(VARP varp);

r
* Return the name of the given variable.
*,

char *vartype(char *vname);
r
* Return the name of the type of the given variable.
*,

L1STP varbody(char *vname);
r
* Return a pointer to the LIST representing the
* body of the variable entry of the specified variable.

*'
vareval(char *vname, char *dir)

r
* evaluate the variable 'vname', put the config files
* in the directory 'dir', add an entry to the Distfile
* in 'dir'.
*,

Figure 4.6: Sitefile Variable Functions

Figure 4.7 gives an example of how the Variables and USTs modules are used internal to Site.

The variable Iter of type ITER holds the state of the iteration through the liST pointed to by v\. Each

call to listiterO returns a pointer to the next element in this list; after the end of the list listinterO

returns NULL.

55 Chapter 4	 Implementation and Reference

sitefileeval(dir)
char *dir;
{

1*
* evaluating a sitefile means to evaluate each variable
*/

L1STP vi;

ITER iter;

caddr_t varp;

distinit(dir);

vi =variistO;

Iistiterinit(vl, &iter);

while (varp=(caddr_t)listiter(vl, &iter))

vareval(varname(varp), dir);

distfiniO;

Figure 4.7: Example use ofliSTs and Variables

4.3.3.	 Types - type*O

The Type module provides access to type entries and implements the "flattening" of the type

hierarchy. The function typelistO is very significant in the implementation of Site 1.0 in that it

exclusively embodies and hides the interpretation of type hierarchies in the Sitefile. Given a typename

it returns a list of typenames in the order of look-up precedence. There is one important implementa

tion assumption made in doing so. This assumption is that the meaning of the precedence implicit in a

type hierarchy described in the Sitefile--essentially as a multi-way tree--can be reduced to linear pre

cedence list. For example, the attrvalO function does not operate on the type hierarcby as tree, but as

a list of types the ordering of which is used to resolve conflicts on attribute names. That is, when

searching for the value of an attribute in the given variable it returns the value found in the first type in

the list returned by typelistO.

56 Cbapter4 Implementation and Reference

L1STP typebody(char ,otypename)
r
* Returns a pointer to the LIST representing the body
* of the type entry for the type named 'typenarne'.
,o/

typelist(L1ST &Iist. char ,otypename)
r
* Produces a list of the typenames representing the "flattenedR

* type hierarchy on which the type 'typename' is based.
,o/

Figure 4.8: Sitefile Type Interface

Linear Interpretation of the Type Hierarchy

The function typelistO returns a linear ordering of the type hierarchy as follows. The first type

in the list is always the base type -- the typename given to typelistO. This is immediately followed by

the super type names in the order found in the type entry for the type typename - in the Sitefile type

entry these are the names following the ':'. TIle rest of the list is the result of a depth-first search down

each super type. For example, given the (skeletal) type entries in Figure 4.9 typelistO would return

the list:

CsSun-3Disked Sun-3/60Disked CsClient CsMachine Sun-3/60Base SunBase Machine.

class CsSun-3Disked : Sun-3/60Disked CsClient CsMachine { .., }

class Sun-3160Disked : Sun-3/60Base { ... }

class Sun-3/60Base : SunBase { ... }

class SunBase { }

class CsClient { }

class CsMachine : Machine { ... }

Figure 4.9: Skeletal Type Hierarchy

57 Chapter 4	 Implementation and Reference

4.3.4. File JiO • fio*O

Routines for file I/O are documented in Appendix A.

4.3.5. Bodies· body*O

The Body module implements access to the body of a variable or type entry. These routines are

used by the Attribute and Component modules. Figure 4.10 summarizes the Body interface.

int bodyn(L1STP bodyp. int which);
r
* Return the number of attributes/components (which == ATTRICOMP)
* in the body represented by "bodyp". Use "varbodyO" or
* "typebodyO" to get the body of a variable or type entry.
*/

int bodylist(L1STP Iistp. L1STP bodyp. int Which);
r
* Put in "Iistp" all attrs/comps (which == ATTRICOMP)
* found in the body "bodyp". Use "varbodyO" or
* "typebodyO" to get the body of a variable or type entry.
*/

Figure 4.10: Siteftle Body Interface

4.3.6.	 Attributes· attr*O

The Attributes module implements attribute lookup in variables. See Figure 4.12 for a summary

of the interface to Attributes. The attribute-value look-up functions in this module use the typelistO

function described in the Types Section for computing the basis for conflict resolution.

There are two different ways to detemtine the value of an attribute for a given variable. The first

way is to use attrvalO for a single-valued attribute; and the second way is to use attrvalnO.

attrcountO, and attrval20 for a multi-valued attribute. The Sitefile does not specify which attributes

are single valued and which are multi valued. The interpretation of an attribute as single valued or

,// multi valued is left to the routines using the attr*O functions.

58 Chapter 4 Implementation and Reference

Single-Valued Attribute Lookup

We present single-valued attribute look-up using the example of a variable which represents a

networked computer and the hostname attribute. A routine which operates on variables which

represent networked computers may need the value of the hostname attribute. Since a computer is

known by a single hostname this routine will use the attrvalO function to carry out a single-valued

attribute lookup. 1be search for the value of a single valued attribute begins in the variable entry. If

no value for the attribute is found in the variable entry the search continues into the type "hierarchy" in

the order of the type entries whose names are returned by typelistO. If a search of a given variable or

type entry reveals that there is more than one attribute of the given name in that entry an error is

returned.

Multi-Valued Attribute Lookup

A routine which needs to find the disks connected to a given computer may use multi-valued

attribute lookup on the disk attribute. Such a routine would use attrcountO to detennine the number

of disk attributes and would use attrvalnO to get the value of each instance of this attribute.

The function attrval20 is useful on an attribute which has a multiple word value. See Figure

4.11 for example attribute entries with multiple word values. Using attrval2(... , "filesystem", "r)

would return the first attribute.

filesystem = / at sdOa;
filesystem = /usr at sdOg;

Figure 4.11 : Multiple Word Attributes

59 Cbapter4 Implementation and Reference

int attrtotal(char *varname);
1*
* Returns total number attributes
*j

L1STP attrval(char *varname, char *anmame);
r
* Returns value of single valued attribute
*j

L1STP attrval2(char *varname, char *attrname, char *val);
r
* Returns attribute whose first val word is "val"
*j

L1STP attrvaln(char *varname, char *attrname, int n);
1*
* Returns the 'n'th attribute named "attrname"
* Attributes are in top->bottom order first by variable body,
* then by type body in order of type level and left->right in
* each level.
*j

char *attrname(L1STP attrp);
r
* Returns name of attribute
*j

int attrcount(char *varname, char *attrname);
r
* Returns number of attributes named "attrname"
*j

Figure 4.12: Sitefile Attribute Access Functions

4.3.7. Components. comp*O

60 Chapter 4 Implementation and Reference

char *comptarg(L1STP compp);
r
* Returns target name of the component
*j

char *compdriv(L1STP compp);
r
* Returns driver name of the component
*j

int comptotal(char* varname);
r
* Returns the total number of componets of the specified variable
*j

int complist(L1STP compl (RETURN), char *varname);
r
* Returns a list of all components of the specified variable
* "compl" should be a pointer to a LIST
*j

L1STP compargs(char* varname, char *targ, char *cname);
r
* Returns the component of the specified variable with
* the specified target and name
*j

int compeval(L1STP compp, char *varname);
r
* evaluate the specified component
* "vamame" identifies the associated variable
*j

Figure 4.13: Site/de Component Interface

4.3.8. Sitefile Parsing - readsitefileO

This module implements the readsitefile() function and consists of the yacc grammar and lex file

which implement the lexical analysis and parsing of a Sitefile. The yacc code constructs a LIST of

variables and a LIST of types of the variable and type entries found in the Sitefile.

4.3.9. SITE Access Library

This module consists of a C language interface to the Site Protocol. This set of function calls is

documented in the Sitefile Access Library section in the Site User's Guide in Appendix A.

61 Cbapter4 Implementation and Reference

4.3.10. Drivers· driv*O

'The whole pwpose of describing site infonnation in a Sitefile is to automate the production of

configuration files. Drivers are part of the implementation of the Site program.

EteHosts(target, arglist, thisvar, ofile)
char *target;
L1STP arglist;
char *thisvar;
char *ofile;
{

FIOfio;
LIST vi;
ehar *vam;
ITER iter;

LIST hostname; r
LIST hostnumber; * attributes
LIST ipsubnet; */

SITEfioopen(&fio, ofile);

SITEfioprintf(&fio, "# fete/hosts for %sO, thisvar);

SITEfioprintf(&fio, "# generated from %sO, ofile);

SITEvamamelist(&vl, thisvar);

SITElistiterinit(&vi, &iter);

while (varn=(char*)SITElistiter(&v1, &iter)) {

SITEattrval(&hostname, varn, "hostname");
SITEattrval(&hostnumber, varn, "hostnumber");
SITEattrval(&ipsubnet, vam, "ipsubnet");

if (SITElistlen(&hostname) == °)
continue;

SITEfioprintf(&fio, "%s %s.%sO,
SITElistfirst(&hostname),
SITElistfirst(&ipsubnet),
SITElistfirst(&hostnumber»;

}
SITEfioelose(&fio);

Figure 4.14: Example driver

62 Chapter 4 Implementation and Reference

A driver is a C function which uses a set of Sitefile access routines to look up attribute values in

variables as the somce of information needed to produce the corresponding configuration file. For

-
example, the VendorFStab driver looks for disk attributes of the variable for information needed to

produce an /etclfstab file. Additionally, the VendorKemel accesses the same information for its

needs in producing a Ivmunix file. See Figure 2.11 for an example driver for a full/etc/hosts file.

The Hosts driver in Figure 2.11 produces a file (named in ofile) in the format of an /etc/hosts

file. SrrEvamamelistO returns a list of names of all variables defined in the Sitefile. The while loop

iterates through this list looking up the values of the hostname, hostnumber, and ipsubnet attributes for

each variable. Any variable with a hostnarne attribute will yield an entry in the file.

4.4. Sitefile Grammar

The following is the formal definition of Sitefile formal

63 Chapter 4 Implementation and Reference

file:
fileforms

fileforms:
empty
files fileform

fileform:
variable
type

variable:
typename varname body

type:
class typename body
class typename : namelist body

body:
{bodyform }

bodyform:
empty
bodyformform

form:
aform ;
cform ;

aform:

name = ;

name = namelist ;

cform:

name:= ;

name := name (arglist) ;

name (arglist) ;

arglist:

empty

arg

arglist • arg

arg:

name = name

namelist:

empty

namelist name

Figure 3.13: Sitefile grammar

64 Chapter 4 Implementation and Reference

APPENDIX A

User's Manual

5.1. Overview of Using Site 1.0

Site 1.0 consists of a single command called site. Ibis command can be used in one of three

modes:

• interactive mode.

• server mode.

• and client mode.

In interactive mode the administrator prepares a Sitefile which site takes as input. The output is

a directory containing properly formatted config files along with a Distfile for distributing them to the

machines on which they belong. Interactive mode represents a "push" or "one to many" model of

maintaining site configuration.

In server mode the administrator uses the same Sitefile as above and runs site with an option

which tells it to run as a "Sitefile server" for Sitefile access requests from remote client mode site com

mands. In client mode site connects to the server and gathers information needed to produce

configuration files only for the local host. The site client-server mode represents a "pull" or "many

from one" model.

The first section presents some hints on how to organize a Sitefile. The next section describes

the Sitefile programmatic interface used in writing config file drivers. The final section describes how

to run the site command

5.2. How To Prepare a Sitefile

Refer to Chapter One for a detailed presentation of the syntax. and semantics of a Sitefile. In this

section we restrict our comments to helpful hints in organizing and using the Sitefile.

Appendix User's Manual 65

66 Appendix User's Manual

The following summarizes the basic content of the Sitefile. 1be Sitefile has one variable for

each object in the site. Each variable is defined to be of a single specific type. All types must be

-
defined in the Sitefile. 1bere are no built-in types, variables, attributes or components.

It is suggested that a Sitefile be organized into 3 parts and that these 3 parts be placed in dif

ferent files. For the remainder of this discussion we will assume that this is the case and will refer to

the 3 parts of the Sitefile as the Vendor Types file, the Local Types file and the Local Data file. (Site

1.0 uses the UNIX C preprocessor to implement #include and #define directives.) Site 1.0 assigns no

meaning to what's found in a particular file or even the order of Sitefile entries as resulting from the

output of #include 'ing each of the files together into one.

The Vendor Types file contains vendor specific classification information. (Ideally the Sitefile

entries of this variety would be supplied by the vendor and would be part of the distributed systems

software). This part should be considered uread only" and should only changed to reflect changes in

a vendor's product offerings. This part should contain enough default infounation to enable the pro

duction of valid config files even if there are no Sitefile entries in the Local Types part. The resulting

configuration thus represents the vendor's default uncustomized "vanilla" configuration for their sys

tems.

The Local Types files of the Sitefile contains site specific classification infounation. Most type

entries in the Local Types file are based on types found in the Vendor Types file. Any hardware or

software systems developed locally at the site probably will not be based on any Vendor Type entries.

The Local Data file contains the variable entries representing the inventory of all objects in the

site. There is one variable entry here for each individual workstation, server, printer, network:, etc, in

the site. The most common operation on tbis file will be to make new entries or get rid of entries as

objects are added or removed from the site. In general the first Local Data entry of a particular type of

object will be created by a person with systems programming expertise usually when the correspond

ing Local Types entry is created for this object as it's tailored for use in the site. Later, when a new

object of this type is added to the site a less experienced administrator edits this file by copying this

first entry and then altering it to reflect information which makes this object different than the first one

67 Appendix User's Manual

- variable name, hostname, network address, etc.

5.3. How To Write a Driver

This section describes the programmatic interface used to access Sitefile data from a

configuration file driver. There is a library of routines available for retrieving infonnation from the

Sitefile about attributes, components, types and variables. Also available are routines for manipulating

USTs arxt for file I/O.

Drivers generally come in two flavors which reflect the source of the data needed to complete

the corresponding coofig file. The first flavor of driver produces a config file based on attribute values

of only the associated variable. The other flavor produces a file based on attribute values of some if

not all other variables. A driver may look for attribute values in all variables derived from a specified

type or it may look through the attributes of all variables using its own heuristics to determine which

variables are of interest A driver may be a mix of both or may produce "constant" information not

based on the attribute values of any variables.

5.3.1. Driver Calling Sequence

When a component is evaluated Site 1.0 makes a C function call to the component's driver. All

drivers are called as follows:

Driver(target, arglist. thisvar, ofile)

char *target;

L1STP arglist;

char *thisvar;

char *ofile;

target Path name of the config file.

arglist UST of PAIRs of arguments to thisvar's instance of the component.

thisvar The variable name of the associated variable.

ofile The path name of the output of this driver.

A driver is called with the component's target name which is the string on the left hand side of

the assignment operator (:=) from the Sitefile component. The arglist is the list of PAIRs of left harxt

68 Appendix User's Manual

side and right hand side names found between the "0" of the component 1be driver is also passed

the name (thisvar) of the variable associated with this component. Fmally, the driver is passed the

name of the file to which it should direct its output (ofile).

See Figure 3.14 Chapter 3 for the C code of an example driver.

5.3.2. SitefiJe Data Access Routines

1bis section documents the routines available for use from the drivers to access data in the

Sitefile. Internal interfaces to variables, types, attributes and components is documented in the thesis

Part 3: Implementation Description.

Names of all SitefiJe Variables

S ITEvamamelist(listp)

L1STP Iistp; r RETURN */

1bis 1bis fills in the LIST with the names of all the variables found in the Sitefile

Names of An Variables of a Given Type

S ITEvarsoftype(listp, type)

L1STP listp; r RETURN */

char *type;

listp Pointer to a LIST.

type Name of type.

1bis fills in a LIST of the names (STR) of all variables of the specified type. LISTP must be a

pointer to memory allocated as a LIST.

Evaluate Variable

SITEvareval(vname, dir)

char *vname;

char *dir;

69 Appendix User's Manual

vname Variable name.

dir Directory to place config files.

This find all components of the named variable and calls SITEcompeval for each.

Evaluate Component

SITEcompeval(targ, driv, vname, dir)

char *targ;

char *driv;

char *vname;

char *dir;

targ Target config file name.

driv Name of driver.

vname Variable name.

dir Directory to place config file.

This calls the named driver -- an internal table maps the name to a function. The completed

coofig file is placed in a file in dir with a name of the drivers choosing. The targ name is entered in a

Distfile in dir in a role which specifies how to copy the completed config file to this name on the host

represented by the variable.

Value of a Single-Valued Attribute

L1STP

SITEattrval(vamame, attrname)

char *vamame;

char *attrname;

varname Name of the variable.

attrname Name of the attribute.

This returns a pointer to a liST representing the first single-valued attribute found in the hierar

chy associated with the variable and its type. It returns NULL if there are multiple instances of the

attribute or if there is no such attribute in the variable. uh "Constrained Value of a Single-Valued

70 Appendix User's Manual

Attribute"

SITEattrval2(listp, Yarn, anarne, valO)
- L1STP Iistp; r RETURN LIST_STR */

char *vam;
char *anarne;
char *vaIO;

listp Pointer to liST for return value.

yam Variable name.

anarne Attribute name.

val0 First word of attribute's value.

This does the same thing as SITEattrval with the additional constraint that the first word of the

value of the attribute is valO.

Count of Attributes in Variable

SITEattrcount(vname. anarne)

char *vnarne;

char *aname;

vnarne Variable name.

anarne Attribute name.

Returns the number of attributes named aname in the specified variable. Useful in multi-value

attribute lookups.

Multi-Value Attribute Lookup

L1STP

SITEattrvaln(varname. attrname. n)

char *vamame;

char *attrname;

int n;

varname Variable name.

71 Appendix User's Manual

attmame Attribute name.

n Which attribute

Retmns the n-th attribute named attmame in the specified variable. Attributes are in top to bot

tom order first by variable entty. then by type entry in order of type level and left to right in each type

level.

5.3.3. List Access Routines

For iofonnation about LIST routines see the Site LISTs section in Chapter 3.

5.3.4. File I/O Routines

The following routines front-eod the UNIX stdio routines. An flO records the file name and

stdio FILE pointer.

SITEfioopen(fiop,ofile)

FlOP fiop;

char *ofile;

SITEfioprintf(fiop, format, arg, ...)

FIOPfiop;

char *format;

char *arg;

SITEfioclose(fiop)

FlOP fiop;

fiop Pointer to a flO.

format Pointer to a printfO fonnat specification string.

ofile Name of output file.

5.3.5. Example: Use of Sitefile, list and file I/O Routines

The following code fragment demonstrates the use of the Sitefile and list access and file I/O rou

tines. This code fragment creates the file Itmp/ofile and writes into it a line for each variable contain

ing the value of the name attribute ofeach variable.

72 Appendix User's Manual

FIOfio;

LIST list;

ITER iter;

STRvamame;

srrEfioopen(&fio, WItmp/ofileW);

SITEvamamelist(&list);

SITElistiterinit(&list, &iter);

while (vamame=(STR)SITElistiter(&list, &iter» {

LIST name;
SITEattrvaJ(&narne. vamame. WnameW);
SITEfioprintf(&fio. "%s: w, vamarne);
SITEfioprintf(&fio, Wname=%sO, SITElistfirst(&name»;

Appendix User's Manual 73

5.4. How To Run Site

NAME

site - configure a site using a Sitefile

SYNOPSIS

site [-f Sitefile]
site -S
site -C sitehost

DESCRIPTION
Site is a configuration file compiler. A Sitefile describes the infonnation needed to produce

config files for computers in the site.

INTERACTIVE MODE

In the first mode site reads in the specified Sitefile or if one is not specified it uses the file Sitefile in the
cunent directory. The output of site is a directory called .Icon/which will be populated with config
files for aU systems in the site -- as specified in the Sitefile. A Dist/lle is also created in this directory
which can be used by rdist(l) to distribute these files to the computers in the site.

CLIENT-SERVER MODE

When in invoked with the -S option site reads in the Sitefile and listens for commands on a netwoIk
port. When in invoked with the -C option site connects to the site server on the specified host to evalu
ate the variable associated with the local host.

FILES Sitefile
conf/Distfile

SEE ALSO

ntist(l)
Site - A Language and System For Configuring Many Computers as One Computing Site

