
36 Issue 188 March 2006 CIRCUIT CELLAR® www.circuitcellar.com

other robots to remove the mess and
wipe the floor clean. Additional robots
in the grocery store network might
specialize in different cleaning tasks,
restocking shelves, and even leading
customers around the store.

One of the hurdles to implementing
this kind of robotic team is the prob-
lem of localization, which is a key
part of any mobile robotic network.
Localization is the process of deter-
mining the location of nodes within
the network as accurately as possible.
In this article, we’ll present a ZigBee-
based localization solution for esti-
mating a robot’s position.

SYSTEM OVERVIEW
The 802.15.4 ZigBee wireless stan-

dard is a compelling platform for
implementing an elegant localization
method. In addition to being inexpen-
sive and low power, it allows for
enough bandwidth for other types of
communication, such as commands
and tasks for robots within the net-

Imagine you’re in a grocery store
comparing the ingredients in different
brands of applesauce. As you’re read-
ing one of the labels, the jar slips from
your hand and shatters on the floor in
a miniature explosion of glass shards
and apple puree. Looking over the
damage, you begin to contemplate
whom you should inform about the
mess, when suddenly, a small wheeled
robot rounds the corner and makes a
beeline toward the blast site

Intrigued, you watch as the robot
seems to pause and assess the situa-
tion. Two more robots then arrive on
the scene. One efficiently scoops up
the mess, and the other wipes the
floor clean. The first robot monitors
their progress. After a few minutes,
the mess is gone, along with the
robots, and the store’s management
has been informed of its applesauce
casualty.

Such a team of robots is the result
of an area of research that deals with
autonomous robot teams and swarm
robotics. This interesting
field covers problems that
involve a diverse network
of specialized robots sent
out to accomplish a vari-
ety of specific tasks. In the
grocery store example, one
robot is a first-response
unit that determines
which kind of job is to be
done. After surveying the
situation, it calls on two

work. We used a ZigBee evaluation kit
from Freescale Semiconductor to
implement a proof-of-concept network
for a WowWee Robosapien 1.0, which
is a humanoid robot. We implemented
the prototype using the kit’s three
ZigBee nodes to simultaneously local-
ize the robot with signal strength
measurements while controlling it
with a minimal command set.

Our localization and control system
features a Freescale MC13192 evalua-
tion board with three accelerometers

(MMA6261Q for the x- and
y-axes and MMA126OD
for the z-axis) mounted
on the Robosapien robot
(see Photo 1). The system
also includes an MC13192
SARD board connected
to a PC via an RS-232
serial connector and
another MC13192 evalu-
ation board in the envi-
ronment.

FEATURE ARTICLE by Ethan Leland, Kipp Bradford, & Odest Chadwicke Jenkins

Robot Localization
and Control

This team shows you how to use wireless nodes to simultaneously localize and control a
WowWee Robosapien humanoid robot.The ZigBee nodes’outputs mimic the control signals.
A simple GUI makes controlling the robot a cinch.

R

T C

Robosapien

Third node Computer node

Serial (RS-232) Computer

Figure 1—The ZigBee nodes are labeled R, T, and C. The arrows represent sent packets.

Photo 1—Check out the Robosapien 1.0. We attached a
Freescale ZigBee node to its back so we could control it.

CONTEST WINNER

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2006 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 188 March 2006 37

Figure 1 shows the nodes attached
to the Robosapien. The communica-
tions model we used is based on a
broadcast model in which the senders
and receivers aren’t addressed specifi-
cally, but the packets incorporate a
basic header describing the kind of data
they contain.

LOCALIZATION
The localization process is fairly

straightforward. The Robosapien
node (R) frequently sends out packets
containing accelerometer data. Both
the computer node (C) and the third
node (T) receive the packets. (The
accelerometer data isn’t used in this
implementation, but we’ll explain it
later when we describe some possible
improvements to the system.)

After a packet is successfully
received, a signal strength reading is
taken by calling the PLME_link_quality
method, which is found in the
simple_phy class of the Freescale
support code. After the third node has
accomplished this, it constructs a
packet containing the resulting signal
strength measurement and sends it to
the computer node. At that point, C,
which has both the signal strength
reading from R/T and R/C, composes
a packet with these measurements to
be sent via the serial port to the
computer.

When the computer receives both
signal strength measurements, it can
begin hypothesizing about the
robot’s location. However, this can’t
be done with a straightforward geo-
metric calculation because of the
uncertainty associated with noisy
data and the signal strength’s nonlin-
earity.

This noise is such that if simple
distance calculations were applied
at each time step, the computer
might find that the robot’s location
would vary on the order of meters
when it is standing still. To deal
with this large degree of uncertainty
in our data, we used a probabilistic
Monte Carlo localization technique
to implement a particle filter to
localize the robot. Let’s take a look
at how the particle filter reduces
the uncertainty of the robot’s loca-
tion.

SOFTWARE
We wrote software for the PC in

Java to receive signal strength meas-
urements from the computer’s serial
port and incorporate the data into the
current localization model. Our local-
ization model is a probabilistic tech-
nique known as a particle filter, which
is described in Sebastian Thrun et al.’s
Probabilistic Robotics. Particle filters
work by first distributing random
samples called particles over the space
being observed. Each particle repre-

sents a possible physical location in
the environment. A probability value
is assigned to each particle. This prob-
ability represents the likelihood that
the robot is at the location specified
by the particle.

At each time step, each particle is
reevaluated and its probability value is
updated according to the ZigBee signal
strength measurements. Less likely
particles are then redistributed around
more likely particles. This is done by
building a cumulative sum graph of the

38 Issue 188 March 2006 CIRCUIT CELLAR® www.circuitcellar.com

normalized probabilities of
each particle (see Figure 2).
This graph is then random-
ly sampled to create a his-
togram that dictates where
the particles should be dis-
tributed at the next time
step. The particles concen-
trate around locations that
have a higher probability of
being the robot’s location.

Finally, after the particles
have their new coordinates,
a small amount of random
noise is added to each parti-
cle’s location so that they’re
distributed around likely locations
instead of concentrating at a single point.
This helps maintain a small degree of
uncertainty in our model and better
reflects real-world conditions.

In our project, the localization software
reevaluates each particle’s position and
probability when the PC receives the sig-
nal strength measurements from the com-
puter node. It first performs a simple geo-
metrical computation to convert the
measurements into a coordinate pair
(xDATA, yDATA) representing the approximate
robot location. Because we only had the
three ZigBee nodes that came with the
Freescale kit to work with, we were not
able to perform true triangulation, which
requires at least three nodes to triangulate
a forth node. Instead, we assumed that
the T and C nodes were placed on a wall
that the R node couldn’t pass through.

If you were to assume that the signal
strength measurements were 100% accu-
rate, the location of the robot would
reside at the intersection of two imag-
inary spheres centered at each of the
sensing nodes, with radii proportional to
the signal strength. The intersection of

these two spheres is a circle that resides
in a plane perpendicular to the line con-
necting the two sensors. If you use the
plane of the floor as a constraint, you
know that robot must be at one of two
points on that circle. Finally, you can
eliminate one of these points by putting
the two sensors on the same wall and
guaranteeing that the robot will always
be on the same side of that wall.

On the computer, the coordinate pair
(xDATA, yDATA) was averaged over 10 data-
consecutive data points before being fed
to the particle filter. Averaging helped
reduce some of the noise in the data. The
particle filter then used 1,000 particles to
localize the robot. The probability value
for a single particle was determined by
plugging the particle’s coordinates
(xSAMPLE, ySAMPLE) into a standard Gaussian
function based on the xDATA, yDATA point
determined by the signal strength meas-
urements. To guess at the robot’s loca-
tion, we simply took the weighted
average of the 1,000 samples.

Photo 2 shows the particle filter run-
ning for three consecutive time steps. You
can see the rapid convergence of the parti-

cles to the area of the robot
marked in blue in the center
of each picture. As the robot
moves in the environment,
the signal strength measure-
ments are frequently updat-
ed, and the particle filter is
updated in real time.

ROBOT CONTROL
A simple GUI runs on the

PC during the localization
process. The GUI gives you
some simple options for com-
manding the Robosapien. For
this project, the commands

were limited to Stop, Go Forward, Turn
Left, and Turn Right. When you select a
command, the computer sends a com-
mand packet down the serial port to the
C node, which broadcasts the command
packet over the wireless network. When
the R node receives this packet, it exe-
cutes the command specified on the
Robosapien and then broadcasts a packet
to signify that it has performed the
command. Meanwhile, the T node stops
sending information after it receives the
command packet so it won’t bog down
the network. It then begins its transmis-
sions once it receives the command-
executed packet from the R node.

To ensure that the correct command
has been executed, both the command
and command-executed packets also
contain a command number indexed
from zero at the beginning of operation.
It wraps back to zero when the maxi-
mum command number has been
reached. Table 1 includes all of the
packets and their formats.

The final phase of our project involved
executing a command at node R on
the Robosapien. After dissecting the
Robosapien, we decided that the easi-
est way to command the robot using a
Freescale ZigBee node would be to
replace the Robosapien’s infrared receiver
with the ZigBee node. The node was pro-
grammed to mimic the signals from the
Robosapien’s infrared receiver. These
signals were discovered experimentally
with an oscilloscope. We found that
command signals sent to the Robosapien
were made up of four distinct time
slices: 7, 3.3, 1, and 0.7 ms. When data
isn’t transmitted, the logic level for the
command signal is high (logic 1).

1
0

2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

fr
om

 G
au

ss
ia

n
fu

nc
tio

n 1

R
an

do
m

 s
am

pl
es

1

0 1 2 3 4 5 6 7 8 9 10

Cumulative sum graph

10

9

8

7

6

5

4

3

2

1

0

2

1

0

0

3

1

1

1

1

Sample
number

Hit
count

Figure 2—The left graph shows the normalized probability versus robot locations 1 to 10,
shown on the x-axis. By randomly sampling the cumulative sum graph (shown in the middle),
we computed where the particles should be located given the latest signal strength measure-
ment.The histogram shows that the particles will be relocated mostly in the proximity of loca-
tions 5 and 9. The particles are concentrated around the robot’s most likely position.

Photo 2—The GUI displays three consecutive iterations of the particle filter while it’s running. The two green
squares in the lower corners represent the ZigBee T and C nodes. The blue square in the middle represents the
best guess at the robot’s location.

www.circuitcellar.com CIRCUIT CELLAR® Issue 188 March 2006 39

For example, take a look at the Go
Forward command in Figure 3. These
signals include only four time slices,
so they are easily stored on a Freescale
node as an array.

Take a look at the Go Forward com-
mand stored on a node:

int FORWARD_COMMAND[] = {1,2,3,4,3,4,3,

4,3,4,3,2,3,2,3,4,3,-1};

Each number represents one time slice.
The terminating -1 exists because not
all commands are the same number of
time slices. This format allows for a sim-
ple while loop command implementation
that uses a delay function to create each
time slice. Port C5 on the MC13192
evaluation board was connected to the
Robosapien’s IR receive wire in place of
the actual IR receive module. We were
able to transmit commands from the
ZigBee network to the Robosapien by
toggling port C5 high and low.

POTENTIAL IMPROVEMENTS
There are many improvements that

you can make to our project. You can
use the accelerometer data sent by the
Robosapien’s Freescale node to predict
which way the robot is moving relative
to the accelerometers. This could be used
to increase the accuracy of the probabili-
ty function that evaluates samples in the
particle filter. The result would be more
accurate localization estimates. We suc-
cessfully implemented this idea in the

SOURCES
MC13192 Evaluation board
Freescale Semiconductor, Inc.
www.freescale.com

Robosapien
WowWee
www.wowwee.com

PROJECT FILES
To download the code, go to ftp://ftp.
circuitcellar.com/pub/Circuit_Cellar/
2006/188.

Ethan Leland (eleland@cs.brown.edu) is
working on a Master’s degree in com-
puter science at Brown University.
Ethan is interested in artificial intelli-
gence and robotics. He is currently
working on a RoboCup project for his
Master’s degree.

Odest Chadwicke Jenkins (cjenkins@
cs.brown.edu) is an assistant professor of
computer science at Brown University.
He earned a B.S. in computer science
and mathematics at Alma College, an
M.S. in computer science at Georgia
Tech, and a Ph.D. in computer science at
the University of Southern California.

7 ms

0.7 ms
3.3 ms

1 ms

Figure 3—We deciphered the Go Forward signal using
an oscilloscope.

Kipp Bradford (kb@kippworks.com) holds
Bachelor’s and Master’s degrees in engi-
neering from Brown University. For the
past 10 years, he has been inventing and
designing electro-mechanical medical
devices, toys, and consumer products.

RESOURCE
S. Thrun et al., Probabilistic Robotics,
The MIT Press, Cambridge, MA, 2005.

particle filter code, but it was impractical
because of the Robosapien’s motion.
When the Robosapien moves, it shifts its
weight from side to side violently, mak-
ing the accelerometer readings useless.
For this method to contribute to the
localization estimates, you’ll need a
robot that moves more smoothly.

The best possible improvement, how-
ever, would be to add more ZigBee
nodes. We didn’t have the resources to do
so, but adding more nodes (to behave like
the T node) would supply the localiza-
tion routine with much more data. The
result would be more accurate guesses as
to robot’s location and thus better
control over the robot.

FORWARD THINKING
To take this project further, you

could develop a client/server relation-
ship in which the localization for all
the robots would be performed on the
server. The server could provide a host
for other valuable functions to which
client programs could subscribe in
order to use the system. Robot control
and message routing would be among
these functions. The clients shouldn’t
have to handle any of them.

A low-power ZigBee radio is an inex-
pensive base for an autonomous robot
team. By using inexpensive mobile
robotics platforms with this kind of
functionality, you can implement pow-
erful higher-level applications such as
the robot team we described at the
beginning of this article.

There are other potential applica-
tions to consider as well. You can use
robot localization for search-and-res-
cue missions, terrestrial exploration,
and natural resource extraction. Using
robots to move in potentially haz-
ardous areas can save lives.

The world of gaming could be revo-

lutionized too. Imagine
physical embodiments of
real-time strategy games
that act out the commands
that gamers send them.

This technology has the
potential to change our
lives. In the near future,
autonomous robots may
finally fulfill the promise of
removing humans from dan-
gerous situations. ZigBee

technology can empower robot develop-
ers to create inexpensive, task-specific
robots that may one day autonomously
navigate through and perform work in
highly dynamic, real-world situations. I

Table 1—The various packets contain different information. Each packet broadcast over a wireless radio begins with data describing
the sender. The HIGH and LOW bits of each number were used because larger 16-bit numbers had to be broken up into two small-
er 8-bit numbers in order to be sent using the ZigBee radios.

Sent by
node

Description Received and acted
upon by node(s)

Packet format

R Accelerometer data (A) C + T [r, AXHIGH, AXLOW, AYHIGH, AYLOW, AZHIGH, AZLOW]

T Signal strength reading (R/T) C [t, SSHIGH, SSLOW]

C Command packet R + T [c, Command, Command_Number]

R Command executed packet C + T [e, Command_Number]

C Data to the computer over
the serial (RS-232) port

Only the computer [SS1HIGH, SS1LOW, 1, SS0HIGH, SS0LOW, 0, AXHIGH, AXLOW,
AYHIGH, AYLOW, AZHIGH, AZLOW]

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2006/188
http://www.freescale.com
http://www.wowwee.com

