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Abstract— Recently, we proposed a Kalman filter method
to model the probabilistic relationship between neural firing
in motor cortex and hand kinematics. In this paper, we
demonstrate on-line, closed-loop, neural control of cursor
motion using the Kalman filter. In this task a monkey moves
a cursor on a computer monitor using either a manipulandum
or their neural activity recorded with a chronically implanted
micro-electrode array. A number of advantages of the Kalman
filter were explored during the on-line tasks and we found
that the Kalman filter had superior performance to previously
reported linear regression methods. While the results suggest
the applicability of the Kalman filter for neural prosthesis
applications, we observed the decoded cursor position was
nosier under brain control as compared with manual control
using the manipulandum. To smooth the cursor motion without
decreasing accuracy we propose a method that smoothes the
neural firing rates. This smoothing method is described and
its validity is quantitatively evaluated with recorded data.

Index Terms— neural prosthesis, neural control, brain-
machine interface, closed-loop control, primary motor cortex,
Kalman filter.

I. INTRODUCTION

Real-time neural decoding algorithms are necessary for
the development of neural motor prostheses. A variety of
algorithms have been proposed to convert neural activity into
a voluntary control signal [1]–[4]. In our recent work, we
proposed a Kalman filter to decode the neural firing rate
obtained from multi-electrode recordings [5], [6] to produce
an estimate of hand kinematics. We showed that the method
has a number of benefits for neural prosthesis applications:
1) it requires only a small amount of “training” data; 2) the
computational cost for the parameter estimation (learning) of
the model is negligible; 3) it provides accurate and efficient
state estimation (less than 10ms for each time step). Because
of these advantages, we argued that the Kalman filter could
be used for closed-loop neural control.

This paper is a continuation of our recent work; here,
for the first time, we demonstrate the Kalman filter in a
closed-loop neural control task. The experimental paradigm
required a monkey to control the two-dimensional (2D)
motion of a feedback cursor viewed on a video monitor.
The animal’s task was to move the cursor to hit targets
that appeared at random locations on the screen. In the
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experiment, a single macaque monkey was implanted with
an electrode array and the Kalman filter was used to decode
the neural activity in real time to estimate the cursor position.
By closed-loop we mean that the brain directly controls the
cursor and the visual feedback to the animal about the cursor
position closes the loop.

To evaluate the performance of the method we com-
pared the animal’s ability to hit targets with both the Kalman
filter and a simple linear regression method which has been
widely used for neural decoding. We also evaluated the
accuracy of the method in off-line data analysis. While the
advantages of the Kalman filter have been clearly described
in our previous work [5], [6] here we show that the Kalman
filter outperforms the linear regression method in the closed-
loop neural control task.

Though accurate and efficient, the estimates produced
by the Kalman filter are not as smooth as those observed
under manual control using a manipulandum. While the
significance of this is unclear from the viewpoint of neural
control, we explored various methods to produce smooth
neural decodings that more closely approximate the motion
under manual control. In previous work the decoded hand
position produced by the linear regression method was
smoothed using a simple windowed average method [2].
In this paper, we propose an on-line smoothing approach
that instead smoothes the neural firing rate data. This results
in smooth reconstructions of hand motion while providing
a good balance between bias (accuracy) and the variance
(smoothness) [7].

II. METHODS

A. Experimental paradigm
Simultaneous recordings of spikes are acquired from

an array consisting of 100 micro-electrodes chronically
implanted in the arm area of primary motor cortex (MI)
in a Macaque monkey [8]. Multi-unit firing activity on each
channel is detected using simple filtering and thresholding.
We use the behavioral paradigm described in [2] for two
tasks described below.

Manual-control task: The behavioral task for the mon-
key is referred to as a step-tracking task, or more intuitively,
a pinball task which is designed to test direct neural control
performance [2]. During the task, a target dot was shown on
the screen in front of the monkey and the monkey moved a
manipulandum on a 2D tablet that was parallel to the floor.



The position of the manipulandum (same as the hand) was
shown as a feedback cursor on the same screen. The monkey
was required to move this cursor to “hit” the target (within
a pre-specified distance). When the target was acquired, it
disappeared and then reappeared in a new random location.
Each time the target appeared, the monkey moved to hit the
new location.

The hand trajectory and the neural activity were
recorded simultaneously. The spiking activity was detected
via empirically determined threshold settings and a firing
rate was computed using non-overlapping 70ms time bins
[6]. The position, velocity, and acceleration of the hand were
also computed every 70ms.

Neural-control task: In the closed-loop neural control
task the experiment remained the same except that the
motion of the cursor was controlled by the decoded neural
signals. This decoding was performed using a Kalman filter.
To quantitatively compare with related work, the same
procedure was repeated using a linear regression method for
decoding. These two methods are described below. Record-
ings were made during experiments over several months and
details of the experiments are described in Section III.

B. Statistical methods

1) Kalman filter: Here, we briefly describe the Kalman
filter model and its decoding algorithm. The details can
be found in our recent work [5], [6]. In general, decoding
involves estimating the state of the hand at the current
instant in time; i.e. xk = [x, y, vx, vy , ax, ay]Tk representing
x-position, y-position, x-velocity, y-velocity, x-acceleration,
and y-acceleration at time tk = k∆t where ∆t = 70ms in
our experiments. The Kalman filter model assumes the state
is linearly related to the observations zk ∈ <C which here
represents a C × 1 vector containing the firing rates at time
tk for C observed neurons; the state itself is linearly related
over time as well.

Such assumptions can be described in the following two
equations:

zk = Hxk + qk, (1)
xk = Axk−1 + wk, (2)

where k = 1, 2, · · · , M , M is the number of time steps
in the trial, and H ∈ <C×6, Ak ∈ <6×6 are the linear
coefficient matrices. The noise terms qk, wk are assumed
zero mean and normally distributed, i.e. qk ∼ N(0,Q),Q ∈
<C×C , wk ∼ N(0,W),W ∈ <6×6. These equations
define a linear Gaussian model from which the state and
its uncertainty can be estimated recursively using the the
Kalman filter algorithm [5], [6].

2) Linear regression method: The linear regression
method (also referred to as a discrete Wiener filter [4]) has
been used in the decoding of neural signals in motor cortex,
and particularly in closed-loop neural control tasks [1], [2],
[4]. We briefly describe it here as the baseline method for
comparison.
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Fig. 1. Reconstruction for the x and y-position using the Kalman filter:
first row: x-position; second row: y-position; dashed lines: true trajectories;
solid lines: reconstructed trajectories.
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Fig. 2. Reconstruction for the x and y-position using the linear regression
method: the notations are the same as Figure 1.

The linear regression method reconstructs hand position
as a linear combination of the firing rates over some fixed
time period; that is,

xk = a +
C∑

i=1

N∑

j=0

zi
k−jf

i
j ,

where xk is the x-position (or, equivalently, the y-position)
at time tk = k∆t (∆t = 70ms), k = 1, · · · , M , where M

is the number of time steps in a trial, a is a constant offset,
zi

k−j is the firing rate of neuron i at time tk−j , and f i
j are

the filter coefficients. The coefficients can be learned from
training data using a simple least squares technique. In our
experiments here we take N = 10 which means that the
hand position is determined from firing data over 0.7s.

III. RESULTS

A. Off-line reconstruction
For off-line analysis we performed six experiments.

For each experiment the recorded data was divided into
separate training and testing datasets. Each dataset (training
or testing) was approximately 1 to 2 minutes long. For
each experiment we trained both the Kalman filter and



TABLE I
OFF-LINE RECONSTRUCTION

# of Kalman filter linear regression
cells CC MSE(cm2) CC MSE(cm2)
23 (0.79,0.82) 13.0 (0.70,0.72) 18.9
30 (0.88,0.79) 10.6 (0.85,0.72) 12.2
36 (0.75,0.74) 19.0 (0.77,0.64) 19.2
26 (0.71,0.76) 20.1 (0.71,0.74) 19.3
69 (0.88,0.89) 9.7 (0.72,0.78) 28.1
69 (0.86,0.88) 10.6 (0.71,0.80) 15.9
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Fig. 3. Histogram of time to the target using Kalman filter decoding
method in the fourth experiment. We see that most of time the target is
promptly acquired, while there are a few outliers for which it took the
animal 5-6s to acquire the target.

linear regression models using the training set, then recon-
structed trajectories were computed for the corresponding
test dataset. Some example reconstructions (for the 5th test
dataset) are shown in Figures 1 and 2. As a summary, Table
I shows the decoding results in all six test datasets where
the correlation, CC, and the mean squared error, MSE,
are used to quantitatively describe the accuracy. Note that
the number of recorded cells differed from day to day and
consequently we tested using the model trained on data from
that same day. The significant increase in the number of cells
for the last two experiments was due to the implantation of
a new array.

Table I, shows that the Kalman filter has better decoding
performance than the linear regression method for both
criteria. This is consistent with our previous observations on
different datasets [5], [6]. Note that the linear regression re-
sults are reported without the post hoc smoothing described
below; the accuracy is consistently lower with smoothing.

B. Closed-loop neural control

Each closed-loop experiment had two phases. The train-
ing phase was the same as in the off-line experiments. The
subject’s hand movement and neural firing were recorded
and used to train the two models.

After building the model, we switched to the second
phase involving closed-loop neural control. In this stage, the
motion of the feedback cursor was controlled by either the
Kalman filter or the linear regression method. We performed
four experiments using the Kalman filter and three using
the linear regression method. The results are summarized in
Table II.

Table II shows the total time for the experiment, the
number of targets hit during this time, and the rate at
which the animal hit the targets. For more detail we show

TABLE II
CLOSED-LOOP NEURAL CONTROL

# of Kalman filter linear regression
cells time targets rate time targets rate
17 60sec 38 38/min
30 105sec 55 31/min 58sec 24 25/min
36 57sec 28 29/min 42sec 15 21/min
69 45sec 28 37/min 60sec 22 22/min

a histogram of the time required to hit the targets using the
Kalman filter for the fourth experiment in Figure 3. Most
of time the targets were quickly acquired, while there a
few outliers requiring much longer. To provide a criterion
for the comparison of the Kalman filter and the linear
regression method we take the number of targets hit per unit
time (see the columns under “rate” in Table II). For these
initial experiments we observe that the monkey appears to
consistently acquire targets at a higher rate with the Kalman
filter as compared with to the linear regression method.

IV. DISCUSSION

The results suggest that the Kalman filter decoding of
motor cortical activity is appropriate for neural prosthesis ap-
plications and our preliminary results suggest that it is more
accurate in this context than traditional linear regression
methods. More experiments with more animals, however,
are needed to confirm these observations.

We note here that the linear regression reconstruction
is very erratic and requires post hoc smoothing to produce
useful closed-loop cursor control (see [2]). We performed
this smoothing using a moving average filter where the
average is computed over 10 time bins (700ms). Figure 4
is an example of the reconstruction of the x hand position
after smoothing. The figure illustrates that the averaging
procedure introduces a time lag that contributes to a decrease
in decoding accuracy in off-line experiments. Quantitatively,
we obtained the decoding accuracy: CC = (0.55, 0.58),
MSE = 33.4. For comparison, the accuracy of the linear
regression method without smoothing for this data was
CC = (0.72, 0.78) and MSE = 28.1.
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Fig. 4. Linear regression method with smoothing; reconstructed x-position.
Dashed lines: true trajectory; solid lines: reconstructed trajectory.

The state equation in the Kalman filter links the estimate
at neighboring time steps and this helps to smooth decoding
results. While the Kalman filter was less jerky than the linear
regression method without smoothing, the decoded cursor
motion was still less smooth than the cursor motion observed
during manual control. This can be seen in Figure 5 where



the power spectra of the true and reconstructed trajectories
are shown overlaid. The reconstructed trajectory has larger
power in the high frequencies (above 4Hz) than does the
true motion.

We posit that the jerkiness in the reconstruction is due
to the finite approximation of the neural firing rate derived
from our 70ms time bins. With more cells, this is less likely
to be a problem but, for the near term, the population size for
neural prosthesis applications is unlikely to be significantly
larger than that used here.
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Fig. 5. Logarithm of power spectra of true x-position and reconstructed
x-position in the 5th test dataset using the Kalman filter: dashed line: true;
solid line: reconstructed.

To produce a smoother control signal, we propose a
weighted low-pass filter of the firing rate signals. In order
to minimize the time lag introduced by smoothing the firing
rate we weight current measurements more heavily. Assume
for the ith cell, the observed firing rate at the kth time step
is: zi

k; then the smoothed firing rate at the same time step
is:

w1z
i
k−N+1 + w2z

i
k−N+2 + · · · + wN−1z

i
k−1 + wNzi

k,

where N is the length of the smoothing window,
{w1, · · · , wN} are the weights of firing rates. Note for
neural control the smoothing window cannot look forward
in time without introducing a time lag.

Figure 6 shows the power spectra for the true and
reconstructed trajectories where the reconstruction uses the
smoothed firing rates in both training and test datasets.
Here we took N = 5 and the linear weights to be wi =
i
15

, i = 1, · · · , 5. The reconstructed trajectory has similar
power in the high frequencies to the true one suggesting
that smoothing the firing rate also smoothes the estimated
reconstruction. In contrast to the smoothed linear regression
results, we do not observe as large a decrease in accuracy.
Quantitatively, we obtain the decoding accuracy of CC =
(0.84, 0.85), MSE = 12.0 for the smoothed case. For the
unsmoothed firing rates the accuracy was CC = (0.88, 0.89)
and MSE = 9.7.

V. CONCLUSION

Through off-line and on-line experiments we demon-
strated that the Kalman filter decoding method can be suc-
cessfully exploited for closed-loop 2D neural motor control
tasks. Furthermore, we compared the Kalman filter with a
linear regression method with respect to their closed-loop
performance. For this limited dataset the results showed that
the Kalman filter was superior (in terms of number of targets
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Fig. 6. Logarithm of power spectra of true x-position and reconstructed
x-position in the 5th test dataset using the Kalman filter with smoothed
firing rates: dashed line: true; solid line: reconstructed.

hit in unit time). We also proposed an on-line approach
for smoothing the firing rate and showed that it produced
smoother off-line hand reconstructions without significant
loss of decoding accuracy.

Future work will focus on determining the source of
jerkiness in the Kalman reconstruction and will explore
additional smoothing approaches. In the work here we used
a very simple linear system model to propagate the hand
state over time. In the future we will explore new dynamic
state models and test their performance in closed-loop tasks.
These experiments will be repeated in additional animals
and with more complex tasks including both motion and
static hold periods. The use of multiple arrays will allow us
to explore neural control using activity from multiple brain
areas (parietal in addition to motor cortex).
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