Efficiently Building a Matrix to Rotate One Vector to Another

Tomas Möller and John F. Hughes

June 1999, revision December 1999

Abstract

We describe an efficient (no square-roots or trigonometric functions) routine that constructs the 3×3 matrix that rotates a unit vector f into another unit vector t, rotating about the axis $f \times t$. An implementation in C is provided.

1 Introduction

Often in graphics, we have a unit vector, f, that we wish to rotate to another unit vector, t; in other words, we seek a rotation matrix $R(f, t)$ such that $R(f, t)f = t$. This paper describes a method to compute the matrix $R(f, t)$ from the coordinates of f and t, without square-root or trigonometric functions, and compares it to other methods, one based on direct quaternion computation, another based on change of bases [1], and another described by Goldman [3]. Fast and robust C code can be found on the accompanying web site. In the event that unit vectors are not available, normalization requirements are comparable for all methods tested.

2 Derivation

Rotation from f to t can be generated by letting $v = f \times t$, letting $u = v/\|v\|$, and then rotating about the unit vector u by $\theta = \arccos(f \cdot t)$. A formula for the matrix that rotates about u by θ is given in Foley et al. [2], namely

$$
\begin{pmatrix}
 u_x^2 + (1 - u_z^2) \cos \theta & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z + u_y \sin \theta \\
 u_x u_y (1 - \cos \theta) + u_z \sin \theta & u_y^2 + (1 - u_z^2) \cos \theta & u_y u_z - u_x \sin \theta \\
 u_x u_z - u_y \sin \theta & u_y u_z + u_x \sin \theta & u_z^2 + (1 - u_x^2) \cos \theta
\end{pmatrix}
$$

It involves $\cos(\theta)$, which is just $f \cdot t$, and $\sin(\theta)$, which is $\|f \times t\|$, i.e., $\|v\|$. If we let

$$
c = f \cdot t
$$

(1)
and

\[h = \frac{1 - c}{1 - c^2} = \frac{1 - c}{\mathbf{v} \cdot \mathbf{v}} \]

then, after considerable algebra, one can simplify the matrix to

\[
\mathbf{R}(\mathbf{f}, \mathbf{t}) = \begin{pmatrix}
 c + hv^2_x & hv_x v_y - v_z & hv_x v_z + v_y \\
 hv_x v_y + v_z & c + hv^2_y & hv_y v_z - v_x \\
 hv_x v_z - v_y & hv_y v_z + v_x & c + hv^2_z
\end{pmatrix}
\]

(3)

Note that this formula for \(\mathbf{R}(\mathbf{f}, \mathbf{t}) \) has no square-roots or trigonometric functions.

When \(\mathbf{f} \) and \(\mathbf{t} \) are nearly parallel (i.e., \(|\mathbf{f} \cdot \mathbf{t}| > 0.99 \)), the computation of the plane that they define (and the normal to that plane, which will be the axis of rotation) is numerically unstable; this is reflected in our formula by the denominator of \(h \) becoming close to zero.

In this case, we observe that a product of two reflections (angle-preserving transformations of determinant \(-1\)) is always a rotation, and that reflection matrices are easy to construct: for any vector \(\mathbf{u} \), the Householder matrix \([4]\)

\[
\mathbf{H}(\mathbf{u}) = \mathbf{I} - \frac{2}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \mathbf{u}^T
\]

reflects the vector \(\mathbf{u} \) to \(-\mathbf{u}\), and leaves fixed all vectors orthogonal to \(\mathbf{u} \). In particular, if \(\mathbf{a} \) and \(\mathbf{b} \) are unit vectors, then \(\mathbf{H}(\mathbf{b} - \mathbf{a}) \) exchanges \(\mathbf{a} \) and \(\mathbf{b} \), leaving \(\mathbf{a} + \mathbf{b} \) fixed.

With this in mind, we choose a unit vector \(\mathbf{x} \) and build two reflection matrices: one that swaps \(\mathbf{f} \) and \(\mathbf{x} \), and the other that swaps \(\mathbf{t} \) and \(\mathbf{x} \). The product of these is a rotation that takes \(\mathbf{f} \) to \(\mathbf{t} \).

To choose \(\mathbf{x} \), we determine which coordinate axis \((x, y, \text{or } z)\) is most nearly orthogonal to \(\mathbf{f} \) (the one for which the corresponding coordinate of \(f \) is smallest in absolute value) and let \(\mathbf{x} \) be a unit vector along that axis.

We now build \(\mathbf{A} = \mathbf{H}(\mathbf{x} - \mathbf{f}) \), and \(\mathbf{B} = \mathbf{H}(\mathbf{x} - \mathbf{t}) \), and the rotation we want is \(\mathbf{R} = \mathbf{B} \mathbf{A} \). The entries of \(\mathbf{R} \) are

\[
\nu_{ij} = \delta_{ij} - \frac{2}{\mathbf{u} \cdot \mathbf{u}} u_i u_j - \frac{2}{\mathbf{v} \cdot \mathbf{v}} v_i v_j + \frac{4 \mathbf{u} \cdot \mathbf{v}}{(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v})} u_i v_j\]

where \(\mathbf{u} = \mathbf{x} - \mathbf{f} \), \(\mathbf{v} = \mathbf{x} - \mathbf{t} \), and \(\delta_{ij} = 1 \) when \(i = j \) and \(\delta_{ij} = 0 \) when \(i \neq j \).

3 Performance

The new routine was tested for performance against all (by the authors) previously known methods for rotating a unit vector into another unit vector. A naive way to rotate \(\mathbf{f} \) into \(\mathbf{t} \) is to use quaternions to build the rotation directly; letting \(\mathbf{u} = \mathbf{v} / ||\mathbf{v}|| \), where \(\mathbf{v} = \mathbf{f} \times \mathbf{t} \), and letting \(\phi = (1/2) \arccos(\mathbf{f} \cdot \mathbf{t}) \), we define \(\mathbf{q} = (\sin(\phi) \mathbf{u}; \cos(\phi)) \) and then convert the quaternion \(\mathbf{q} \) into a rotation via the method described in by Shoemake [5]. This rotation will take \(\mathbf{f} \) to \(\mathbf{t} \), and we refer to this computation as Naive. The second is called Cunningham and is simply
a change of bases [1]. A routine for rotating around an arbitrary axis has been presented by Goldman [3], and in our third method we simplified his matrix for our purposes. The third method is denoted Goldman. All three of these require that some vector be normalized; the quaternion method requires normalization of \(\mathbf{v} \); the Cunningham method requires that one input be normalized, and then requires normalization of the cross-product. Goldman requires the normalized axis of rotation. Thus the requirement of unit-vector input in our algorithm is not exceptional.

For the statistics below, we used 1,000 pairs of random normalized vectors \(\mathbf{f} \) and \(\mathbf{t} \), each pair was feed to the matrix routines 10,000 times in order to produce accurate timings. Our timings were done on a Pentium II 400 MHz with compiler optimizations for speed on.

<table>
<thead>
<tr>
<th>Routine:</th>
<th>Naive</th>
<th>Cunningham</th>
<th>Goldman</th>
<th>New Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (s):</td>
<td>18.6</td>
<td>13.2</td>
<td>6.5</td>
<td>4.1</td>
</tr>
</tbody>
</table>

The fastest of previous known methods (Goldman) still takes about 50% more time than our new routine, and the naïve implementation takes almost 350% more time. Similar performance can be expected on most other architectures, since square roots and trigonometric functions are expensive to use.

4 Acknowledgement

Thanks to Eric Haines for encouraging us to write this.

References

