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Abstract

The visual nature of geometry applications makes them a natural area where visualization can be an effective tool
for demonstrating algorithms. In this paper we propose a new model, calledMocha, for interactive visualization of
algorithms over the World Wide Web. Mocha is a distributed model with a client-server architecture that optimally
partitions the software components of a typical algorithm execution and visualization system, and leverages the
power of the Java language, which has become the standard for distributing interactive platform-independent
applications across the Web. Mocha provides high levels of security, protects the algorithm code, places a light
communication load on the Internet, and allows users with limited computing resources to access executions
of computationally expensive algorithms. The user interface combines fast responsiveness with the powerful
authoring capabilities of hypertext narratives.

We describe the architecture of Mocha, show its advantages over previous methods, and present a prototype that
can be accessed by any user with a Java-enabled Web browser. The Mocha prototype has been widely accessed
over the Web, as demonstrated by the statistics that we have collected, and the Mocha model has been adopted by
other research groups. Mocha is currently part of a broader system, calledGeomNet, which performs distributed
geometric computing over the Internet. 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Algorithm visualization and animation appeal to the strengths of human perception by providing
a visual representation of the data structures and by allowing for smooth image transitions between
time-related visual representations that correspond to different states of the execution of the algorithm.
The end-user can understand algorithms by following visually their step-by-step execution, otherwise
a complex task if relying on the textual program alone. Extensive work has been done on algorithm
animation and program visualization [8–11,14,19,22,26,36,40,45,46]. Interactive algorithm visualization
is also a powerful tool to demonstrate new algorithms to others in an intuitive, often appealing fashion,
which is therefore highly suitable for pedagogical use either by students individually or in class
demonstrations [5,13,43,52]. Visualization can also be used as a debugging tool for large software
applications [39].

The visual nature of geometry applications makes them a natural area where visualization can be
an effective tool for communicating ideas. This is enhanced by the observation that much research in
computational geometry occurs in two and three dimensions, where visualization is highly plausible.
Given these observations, it is not surprising that there has been noticeable progress during the past
few years in the production of visualizations of geometric algorithms and concepts (see, e.g., [1,15,
29,31,48,49] and the collections of videos accompanying the proceedings of the ACM Symposium on
Computational Geometry since 1992). An extensive survey by Hausner and Dobkin on the visualization
of geometric algorithms is also available [25].

There is every reason to believe that work on the visualizations of geometric algorithms will
continue and even accelerate in the future [50]. There are many technical challenges in doing algorithm
visualization and animation. For example, the development of a conceptual framework to modularize
and simplify the design process (part of theauthoring process), for which Stasko proposes thepath-
transition paradigm[44], 3D visualization [12,41,38], and automatic graph drawing [16,17]. Another
challenge, which extends beyond algorithm animation, is the visualization of large sets of data [35].
As pointed out in [25], a major issue in the visualization of geometric algorithms is the realization of
interactive animations, where the user has direct control over the input to the algorithm (e.g., through a
geometric editor integrated with the animation system), the visualization (e.g., by selecting a 3D view
and/or a 2D projection), and the timeline of the animation (e.g., through controls that allow the viewer to
travel forward and backward in time).

A new challenge relates to making animation and interactive visualization available to a broad
audience, in particular in a distributed computing platform such as the World Wide Web. Previous
approaches use the X Window system and, more recently, the distributed and platform-independent
programming environment associated with the Java language.

TheX Windowsystem [42] provides a basic client-server mechanism for algorithm animation over the
Internet, which we shall call theX model. Namely, an animation program running on a remote machine
can interact with the X server on the local user’s machine (display) by opening there a window, sending
graphic output (display requests) and receiving the user’s keyboard and mouse actions (display events).
While this mechanism is simple to implement, there are significant security problems associated with
remote X sessions, and the communication load placed on the Internet is quite high.

The Java language [23] and its environment opens the possibility of embedding interactive applications
in HTML documents, which are executed through the Web browser on the user machine after their
code has been transferred. Java has become ade factostandard for distributing interactive platform-
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independent applications across the Web. It is object-oriented, and therefore easily extensible, while
providing a wide-range of authoring capabilities given its interface with the Web. In addition, Java has
a variety of built-in security features that protect both the user and the provider of the animation. Java
provides an attractive possibility for animations provided that the user’s machine is powerful enough to
run a sophisticated animation algorithm, and that the provider of the animation does not mind sharing the
code with the rest of the world.

To overcome the problems inherent in the X and the Java model, we propose a new model, called
Mocha, for interactive algorithm visualization over the World Wide Web. Mocha is a distributed model
with a client-server architecture, which, given a list of criteria that we establish, optimally partitions the
software components of a typical algorithm visualization and animation system, and leverages the power
of the Java language. In the Mocha model, only the interface code is exported to the user machine, while
the algorithm is executed on a server that runs on the provider’s machine.

Mocha provides high levels of security (which are inherent to Java), protects the algorithm code, places
a light communication load on the Internet, and allows users with limited computing resources to access
animations of computationally expensive algorithms. The user interface combines fast responsiveness
with the powerful authoring capabilities of hypertext narratives.

Our vision for Mocha is in fact a part of the even broader vision ofGeomNet[4], a system for
performing distributed geometric computing over the Internet. GeomNet consists of a family ofgeometric
computing serversthat execute a variety of geometric algorithms on behalf of remote clients, which
can be either users interacting through a Web browser interface, or application programs connecting
directly through sockets. GeomNet provides a variety of services including algorithm execution,
algorithm animation, consistency checking of topological and geometric structures, experimental study
and comparison of algorithms, and electronic commerce for “metered” services.

In Section 2, we describe the Mocha model and show its advantages over the X model and the
Java model for algorithm animation over the Internet. In Section 3, we present a prototype of an
animation system for geometric algorithms that can be accessed by any user with a Java-enabled Web
browser at URLhttp://www.cs.brown.edu/cgc/demos/Mocha.html . Browsers supporting
Java include Netscape Navigator, Microsoft Internet Explorer, and Sun’s HotJava. Details of the design,
architecture and implementation of Mocha are provided in Section 4.

2. Models for algorithm visualization over the Internet

In this section, we examine the currently used mechanisms for providing algorithm visualization over
the Internet, and present our new architecture.

2.1. Components of an algorithm visualization system

Following the event-driven approach advocated by Brown [9] and the conceptual framework
pioneered by Stasko [44–46], we view interactive algorithm visualization as an event-driven system
of communicating processes: thealgorithm augmented with annotations of interesting events, called
algorithm operations, and the interactive visualization component that provides the multimedia
visualization of the algorithm operations. We further subdivide the interactive visualization component
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Fig. 1. Components of an interactive system for visualizing and animating algorithms.

into theGUI (graphical user interface), which handles the interaction with the user, and theexecutor,
which maps algorithm operations and user requests into dynamic multimedia scenes.

The interaction of the user with the components of an interactive algorithm visualization system is
illustrated in Fig. 1.

2.2. Comparison criteria

We use the following criteria to evaluate models for algorithm visualization over the Internet, where
a distinction is made between the roles of theuser of the visualization and of theprovider of the
visualization.

Security. Both the user and the provider should be protected from intruder attacks.

Code protection.The provider’s code should be protected from possible software piracy.

Authoring. It should be easy for the provider to create new visualizations and make existing
visualizations available on the Internet.

Communication complexity.The communication load on the Internet should be kept as light as possible.

Accessibility.Users with limited computing resources should be able to access visualizations of
computationally expensive algorithms.

2.3. The X model

TheX Windowsystem [42] provides a basic client-server mechanism for algorithm visualization over
the Internet, which we shall call theX model. Namely, an interactive visualization program running on a
remote machine can interact with the X server on the local user’s machine (display) by opening there a
window, sending graphic output (display requests) and receiving the user’s keyboard and mouse actions
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Fig. 2. X model example: a visualization of a convex hull algorithm using the XTango system.

(display events). For example, this mechanism is used to provide on-line demonstrations of theXTango
visualization system [46], illustrated in Fig. 2, where the visualization program can be activated by a
cgi-bin script (see, e.g., [24]) launched in a Web browsing session.

The X model of algorithm visualization is schematically illustrated in Fig. 3. The three main functional
components of the visualization system (GUI, executor, and algorithm) reside on the remote machine of
the provider. All communication is performed with the X system protocol.

The X model fully protects the entire visualization code, which is not revealed to the user. Authoring
for the provider is relatively easy, since all the algorithmic, GUI, and visualization computations are
performed in the machine of the provider. However, the provider cannot easily create a new visualization
by re-using existing libraries unless they have been locally installed. Accessibility for the user is high,
since the X model allows users to display complex visualizations on computers that are not very powerful.

The main drawbacks of the X model are security and communication complexity. There are significant
security problems associated with the X model, both for the user and the provider. The user must give
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Fig. 3. Algorithm visualization in the X model. The vertical arrow denotes the Internet. The horizontal arrows
denote the communication between the end-user and the remote X server. These arrows are drawn thick to indicate
that the communication load of the X model is high. The users’ computers are drawn small to indicate that low
computation power is needed at the users’ sites in the X model.

access to the visualization program with anxhost + command (orxauth authentication procedure),
and hence allows a “Trojan horse” visualization program to manipulate the windows on the user’s
machine. Conversely, the provider allows the user to execute a program on its machine, and must take
special precautions to prevent attacks from malicious users.

In the X model, the communication between the remote GUI and the user (display events and requests)
is carried by the Internet. Low level graphic primitives (including those associated with mouse click and
drag actions) are transported over the Internet. Hence, visualizations with complex dynamic scenes send
large amounts of data through the Internet, which makes poor use of the Internet bandwidth and slows
down the interaction with the user.

2.4. The Java model

Java [2] is an object-oriented language designed to be dynamically redistributable over the Internet,
especially in conjunction with the World Wide Web. The Java virtual machine provides a uniform
set of services across all platforms, such as graphics display, multithreading, and distributed objects,
and it loads classes stored in a portable byte code as needed [33]. In the Web environment, these
classes are generally transported to the Web browser through the HTTP protocol for execution on
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Fig. 4. Algorithm visualization in the Java model. The thin arrows indicate that the communication complexity of
the Java model is low. The large computers of the users indicate that high computational power may be needed at
the users’ sites.

the user’s machine as an applet contained on a Web page (other mechanisms exist; see, for example,
http://www.marimba.com ).

Java incorporates safety and security into its design as follows:
• no pointer arithmetic;
• checked array bounds;
• automatic garbage collection;
• code authentication of loaded modules;
• byte code running on a virtual machine but otherwise isolated from the user’s local environment (this

isolation is called the “sandbox” metaphor);
• exception handling;
• name-space management via hierarchical packages.
Although these features are worthy in themselves, they interlock to provide a high assurance of security.
For example, the virtual machine provides for code authentication, arranged by the name space packages.
Name space packages, exception handling, and lack of pointer arithmetic prevents access to the file
system or network, except through privileged (local) packages and only if the user has enabled this right.
Automatic garbage collection, no pointer arithmetic, and array bound checking prevents overflow errors
that can be used for “cuckoo’s egg”-type attacks [47].

Java provides a general framework for interactive applications over the World Wide Web. When
specialized to the algorithm visualization domain, we obtain what we call theJava modelof algorithm
visualization, which is schematically illustrated in Fig. 4. The three main functional components of the
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visualization system (GUI, executor, and algorithm) reside on the user’s machine and receive their Java
code and multimedia objects from a server on the provider’s machine. All communication is performed
with the HTTP protocol. A sorting visualization (inspired by Balsa [9]) that uses the Java model is shown
in Fig. 5.

Thanks to its built-in features, the Java model provides a high level of security for both the user and
the provider. Also, since the visualization program is transported over the Internet and locally executed
on the user’s machine, the communication complexity is low.

Authoring in the Java model is only partially satisfactory. On one hand, the provider can easily develop
new visualizations by accessing remote repositories of images, sounds and Java code through the World
Wide Web. On the other hand, the Java model forces the provider to implement in Java all the components
of the visualization system: GUI, executor, and algorithm. The latter can be particularly disadvantageous
since the provider may want to use directly existing algorithm libraries (e.g., LEDA [34]).

The main drawbacks of the Java model are code protection and accessibility. The user has full access to
the Java byte code; hence, the entire algorithm visualization code is given away to the user in a form that
can be “decompiled”. Also, the user must have sufficient computing resources to execute the visualization
program; hence, effective access to interactive visualizations of computationally expensive algorithms is
denied to users with low-power machines.

2.5. The Mocha model

The Merriam-Webster OnLine dictionary (http://www.m-w.com/ ) defines “mocha” as follows:

mo·cha (mō′k∂) n [Mocha, seaport in Arabia]1a1:superior arabica coffee with small green or yellowish
beans grown in Arabia1a2:a coffee of superior quality1b: a flavoring made of a strong coffee infusion
or of a mixture of cocoa or chocolate with coffee2: a pliable suede-finished glove from African
sheepskins.

We introduce theMocha modelas a strong infusion of the Java programming language and
execution environment with a mixture of client-server and framework paradigms for interactive algorithm
visualization. Mocha consequently defines an architecture, as well as a design and implementation.

Much of Mocha’s strength, like other Internet tools, is that it leverages existing tools, standards, and
architectures, which enabled us to quickly deploy a very usable prototype (see Section 3). Our efforts have
been directed to the definition of a common visualization protocol that allows a large number of different
clients and servers to interact, without incurring large authoring costs to coordinate and maintain this
architecture.

The Mocha model employs a novel configuration of software frameworks, client-server partitioning,
mediators, and layered protocols to provide openness and extensibility. We further use the new
architectural composition capabilities of Java that allow dynamic redistribution of executable code. In this
section we present the main features of the Mocha model. A prototype system for animating geometric
algorithms that uses the Mocha model is presented in Section 3 (see also Figs. 8–11, 14, 15 and 18).
Details of the design, architecture and implementation of Mocha are provided in Section 4.

The Mocha model, which is schematically illustrated in Fig. 6, is a distributed architecture for
algorithm visualization, where the algorithm is executed on the provider’s machine(s), while the executor
and GUI are executed on the user’s machine. The above partitioning of the components maximizes ease
of authoring and accessibility, protects the algorithm code, and has low communication complexity. The
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Fig. 5. A sorting visualization in the Java model.



134 J.E. Baker et al. / Computational Geometry 12 (1999) 125–152

Fig. 6. Algorithm visualization in the Mocha model. The algorithm runs on the provider’s computer, while the
executor and GUI run on the user’s computers. The thin arrows denote the light communication load associated
with downloading the Java byte code and multimedia objects for the GUI and executor. The medium-thickness
arrows indicate the moderate communication load for the exchange of data between the algorithm and the executor
and GUI. The users’ computers are drawn small to indicate that low computation power is needed at the users’
sites in the Mocha model. Some local computation is requested, involving locally running visualization code and
GUI code.

communication between the components over the Internet is achieved through a distributed client-server
scheme and is performed with the HTTP protocol and a specific visualization protocol (see Section 4).
Also, the security features of Java are used to guarantee security for the user and provider.

The provider employs a first server to send Java byte code and multimedia objects to the GUI on the
user’s machine by means of the HTTP protocol. The provider also employs another server to execute the
algorithm and exchange data (inputs, operations, and control) with the executor and GUI on the user’s
machine by means of a newly designed visualization protocol, which is transported over Internet sockets.

We employ multithreading in the implementation of the GUI and executor to provide more responsive
feedback to the user. Also, we use an object-oriented container/component software architecture that
guarantees expandability. Finally, we have mediators that isolate the commonality between the interaction
of the clients and servers and provide a high degree of interoperability.

2.6. Comparison

In this section we compare the X model, the Java model, and the Mocha model, with respect to the
five quality criteria described in Section 2.2. Table 1 provides a qualitative comparison. An entry with a



J.E. Baker et al. / Computational Geometry 12 (1999) 125–152 135

Table 1
Comparison of the three models for algorithm visualization. For an explanation of the five
criteria, see Section 2.2

Security Code Authoring Communication Accessibility
protection complexity

X model −− ++ + −− +
Java model ++ − + ++ −−
Mocha model ++ + ++ + +

“++” means that the model of the corresponding row matches at best the quality criterion of the given
column. In contrast, a “−−” stands for lack of that criterion within the model. Intermediate scores like
“+” and “−” are also possible.

For example, both the X model and the Java model have one “+” with respect to their authoring since,
as explained in Sections 2.3 and 2.4, both the models are only partially satisfactory with respect to this
criterion. For a contrast, the Mocha model matches very well the authoring criterion and thus it is scored
with a “++”. Notice the versatility of the Mocha model, that for most criteria is as good as the best one
of the other two models and never scores “−” in all other cases.

We have performed an experiment aimed at providing a quantitative comparison of the communication
load in the Mocha model vs. the X model. The experimental setting is one of a user interacting with the
Mocha prototype. We observe that when the Mocha model or Java model is used on a system using X
for display operations, the underlying low-level GUI operations for the Web browser are provided by X.
In a workstation environment, both the X client (the Web browser) and X server (the display of the Web
browser) run locally on the given workstation. By comparing the X stream between the X client and the
X server with the Mocha stream between the algorithm and the visualization component (executor and
GUI), we can determine the additional cost of using the X model.

The experiment uses the following instrumentation to compare the communication load for an
interactive visualization of the Delaunay triangulation (see Section 3.1).
• XScope, a utility provided in the standard X distribution, which monitors the X stream.
• An instrumented algorithm server supporting the Delaunay triangulation visualization.
The instrumentation data consist of the timestamp (to a hundredth of a second resolution) and the
number of bytes transmitted. The two data streams are then synchronized by a marker event to align
their timestamps. (The synchronization is required because the algorithm server is started before the Web
browser.) The results of the experiment are shown in Fig. 7. We have found that even for our simple
prototype, which does not maintain state in the client to support incremental updates, the Mocha model
outperforms the X model by a factor of about three.

3. Interactive visualization of geometric algorithms with Mocha

In this section we describe a prototype that shows the feasibility of the Mocha model de-
scribed in Section 2.5. This prototype, calledMocha Geometry Serverand available on the Web at
http://www.cs.brown.edu/cgc/demos/Mocha.html , provides visualizations of computa-
tional geometry algorithms.
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Fig. 7. Experimental comparison of the communication load in the X and Mocha models. The histograms show the
sizes of X stream and of the Mocha stream for a typical user interaction involving inserting, deleting, and moving
25 points in the visualization of the Delaunay triangulation.

Geometric algorithms have interesting characteristics. For example, their representation is in a sense
less abstract than that of other combinatorial algorithms, such as sorting, and are close to applications
such as geographical databases and computer graphics. From the end-user point of view, the main
characteristics of the Mocha Geometry Server are itsvisual interfaceand interactivity. The visual
interface consists of a hypertextual document where the algorithms are displayed on canvases embodied
in the hypertext. Interactivity is obtained by providing real-time responses to operations such as insertion,
deletion, or movement of the geometric objects of interest in the application.

3.1. The LEDA visualization service

LEDA[34] is a C++ library of data structures and algorithms. It includes efficient and robust algorithms
for computing the convex hull, the Voronoi diagram, and the Delaunay triangulation of a set of points in
the plane. TheLEDA Serveris a component of the Mocha Geometry Server that provides visualizations
of the above geometric algorithms in the LEDA library.

The hypertextual interface of the LEDA Server is an HTML document downloaded on the user’s
computer via the HTTP protocol. Of course, this document is itself but one of many hypertext narratives
that could employ these applets. The hypertext interface is structured into three different sections,
describing visualizations of convex hulls, Voronoi diagrams, and Delaunay triangulations, respectively.
Each section has a canvas supporting standard user-interface facilities, such as zoom-in and zoom-out,
addition, deletion and displacement of objects.

Suppose the user wants to visualize the convex hull computation using the LEDA Server. The
visualization is interactive, since the user can perceive in real-time how the convex hull changes when a
point is inserted, deleted or moved around in the canvas (see Fig. 8).

Similar interactive visualizations are provided for the LEDA algorithms that compute the Voronoi
diagram and the Delaunay triangulation of a set of points in the plane (see Figs. 9–11).
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(a) (b) (c)

Fig. 8. Convex hull visualization in Mocha: (a) initial view; (b) selection of three points; (c) dragging the selected
point causes the convex hull to be interactively updated.

(a) (b) (c)

Fig. 9. Voronoi diagram and Delaunay triangulation visualization in Mocha: dragging the selected point causes the
Voronoi diagram and Delaunay triangulation to be interactively updated.

Mocha has also revealed itself as a powerful tool for experimenting with existing implementations of
geometric algorithms. For example, interacting with Mocha helped us discover a peculiar aspect of the
LEDA implementation of Voronoi diagrams. In LEDA, each infinite ray of a Voronoi diagram is replaced
by a finite-length segment that ends at a dummy point with “large” coordinates. Also, the dummy points
are connected in a polygon by dummy edges. When displaying the Voronoi diagram, the dummy polygon
is usually invisible. However, in the example of Fig. 11, the dummy polygon is a triangle and two of its
edges become visible when the three sites are almost collinear.

The LEDA Server contains just three of the many geometric algorithms that are available in LEDA.
It can be easily extended to include other geometric algorithms, as illustrated in the code fragment of
Fig. 12.

3.2. The proximity visualization service

A proximity graphrepresents a relation on a set of points by connecting with edges pairs of points that
are deemedcloseby some proximity measure. A classical way to measure the closeness of two pointsp
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(a) (b) (c)

Fig. 10. Voronoi diagram and Delaunay triangulation visualization in Mocha: dragging a point to create a
degenerate configuration with four cocircular points where one of the vertices of the Voronoi diagram has degree 4.

(a) (b) (c)

Fig. 11. Experimenting with the LEDA implementation of Voronoi diagrams and Delaunay triangulations in
Mocha: the visualization seems to indicate that an error in the algorithm occurs when dragging a point creates
an “almost degenerate” configuration with three points that are almost collinear. Indeed, lines that are not part of
the Voronoi diagram appear. The error lies instead in the interpretation of the output data structure, which includes
dummy vertices and edges.

andq in a setS is to use a region of the plane associated withp andq, called theproximity regionof
p andq. The pointsp andq are considered to be close if their proximity region isempty, i.e., it does
not contain any other point ofS. The shape of the proximity region determines the type of graph that
results. For example, theGabriel region[20] of p andq is the disk havingp andq as antipodal points;
the corresponding proximity graph is calledGabriel graph. Another example is thelune of p andq,
defined as the intersection of two (open) disks whose radius is the distance fromp to q, with one disk
centered atp and the other atq; the corresponding graph is called therelative neighborhood graph[51].
See the examples in Fig. 13. For a survey on proximity graphs and on their applications to graph drawing
see [18,27].

TheProximity Serveris a component of the Mocha Geometry Server that provides visualizations of
proximity graphs. The user, through the canvas of the hypertextual interface, specifies both the point setS



J.E. Baker et al. / Computational Geometry 12 (1999) 125–152 139

Fig. 12. A Java class in the implementation of the LEDA server.

and a nonnegative parameterβ that unambiguously defines the shape of the proximity region, called the
β-region. For a formal definition ofβ-regions see [28]. We provide here an intuitive description of them
(see Fig. 13(d)):
• for β = 1 the 1-region ofp andq is their Gabriel region;
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Fig. 13. (a) A point setS. (b) The Gabriel graph ofS. (c) The relative neighborhood graph ofS. (d) β-regions for
two pointsp andq .

• asβ increases theβ-region “stretches out” until, forβ =∞, it becomes the infinite strip orthogonal to
the line-segments withp andq as endpoints;
• for β < 1, theβ-region decreases in its size “contracts” until, forβ = 0, it becomes the straight line

with endpointsp andq.
Theβ-graph of a point setS is the proximity graph induced by the emptyβ-regions of all the pairs of
points ofS. It is easy to see that theβ-graph ofS becomes dense as theβ decreases (ifβ = 0 and no three
points are collinear, theβ-graph is the complete graph), while it becomes sparse asβ approaches∞.

Two proximity graphs visualized by the Proximity Server on the same set of points are shown in
Figs. 14 and 15. In the first figure, we haveβ = 1 (Gabriel graph); in the second figure we haveβ = 2
(relative neighborhood graph). Observe that the proximity graph of the second figure is a subgraph of the
one in the first figure.

An advanced interaction technique of the Proximity Server allows the user to define the value ofβ by
sliding a cursor along a logarithmic-scale ruler. The following values ofβ, which are of special interest
in the theory of proximity graphs (e.g., see [6,7]), are explicitly highlighted below the ruler and cause the
cursor to “snap” when dragged near them:

β =
√

3

2
, β = 1

1− cos(2π/5)
, and β = 1

cos(2π/5)
.

3.3. Prototype usage statistics

For the period January 1997 to May 1998, we have analyzed the usage of the Mocha Geom-
etry Server prototype by counting the number of distinct hits to the main demo page linked to
http://www.cs.brown.edu/cgc/demos/Mocha.html .
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Fig. 14. Visualization of the Gabriel graph of a point set obtained by settingβ = 1.
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Fig. 15. Visualization of the relative neighborhood graph of a point set obtained by settingβ = 2.
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Table 2
Details of the monthly usage of the Mocha Geometry Server prototype

Month Africa Asia Austral Brown Europe N Amer Num IP S Amer Hits

Jan-97 11 2 2 82 78 20 3 198

Feb-97 5 1 8 43 143 17 14 231

Mar-97 2 12 13 18 52 184 49 2 332

Apr-97 4 12 10 35 129 114 33 2 339

May-97 5 2 27 70 99 26 229

Jun-97 7 18 36 84 101 21 267

Jul-97 1 4 2 1 93 90 31 4 226

Aug-97 2 10 26 11 49

Sep-97 13 1 4 70 84 32 6 210

Oct-97 8 5 8 84 95 48 6 254

Jan-98 3 1 7 29 44 8 92

Feb-98 2 11 4 63 64 19 163

Mar-98 8 3 5 40 70 11 137

Apr-98 16 1 8 67 137 30 3 262

May-98 12 2 2 66 102 18 6 208

Total 7 118 72 167 982 1431 374 46 3197

Table 2 shows the details of the monthly usage by continent. We report separately accesses from Brown
University and from IP addresses that do not resolve to symbolic domain names in our distributed name
service database (DNS). The bar chart of Fig. 16 shows the total monthly number of hits. The pie chart
of Fig. 17 shows the overall geographic distribution.

3.4. Other visualization systems based on the Mocha model

The Mocha model has been successfully used by other developers of algorithm animations:
• At Brown, with minimal interaction with the authors of this paper, Mike Walczak created algorithm

animations of 1-D and 2-D range trees and segment trees as part of a course project using the Mocha
model as depicted in Fig. 18.
• At the Max-Planck-Institut für Informatik, the Mocha model and the “look and feel” of the graphical

user interface of the Mocha Geometry Server have been adopted by the developers of the LEDA library
to make available over the Web demonstrations of graph and geometric algorithms; seehttp://
batman.ag1.mpi-sb.mpg.de:22222/LEDA-in-the-Web/ .
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Fig. 16. Monthly usage of the Mocha Geometry Server prototype.

Fig. 17. Geographic distribution of accesses to the Mocha Geometry Server prototype.

4. Technical details

In this section we re-visit the architecture of Mocha already introduced in the previous sections and
give a detailed description of selected technical issues that have been addressed in the implementation of
our prototype.
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Fig. 18. Mike Walczak’s visualization of a 2-D range tree. The user has placed the points and the query rectangle,
and is now stepping through the visualization of the query algorithm.
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4.1. Design goals

Many of our design goals are derived from the comparison criteria that distinguish Mocha from other
models, see Section 2.2.

Security. Java provides support for security on the user side. On the provider side, security is guaranteed
both by Java and the design of the algorithm servers.

Authoring. Mocha provides full support of the World Wide Web by being embedded in a Java-compatible
browser. Authors and users of algorithm visualizations can place the desired visualization applet as
simply another component of an HTML file, comparable to an image, for example. Java also enables
the use of CGI scripts from the applet itself, image files (GIF, JPEG), audio streams, etc. Also, the
Mocha clients can take full advantage of existing or new services, written in a variety of languages,
such as C or C++, as long as such services are designed to use the Mocha visualization protocol or an
ad-hoc wrapper is designed to enable its use.

Communication complexity, accessibility, code protection.Using the client-server paradigm is a well-
known means of localizing functionality, code, and computation so that these goals can be achieved.

Responsive feedback.Maintaining high responsiveness to the user’s interaction is especially important
in the case of client-server environments, where there is a possibility of network latency; yet, it
is also important from the standpoint of accessibility, since users are allowed to access potentially
very expensive computations. Mocha’s support of interactive algorithm visualization provides for
multiple levels of responsive feedback, ranging from instantaneous to longer range. Display pointer
correspondence to the user’s mouse, or other input device, should be instantaneous, as well as any
drag-and-drop or other direct manipulation of geometric objects. Additional threads, conveniently part
of the Java language, provide for other feedback which may not be instantaneous, such as servicing
the communication of an expensive geometric computation on the server.

Attractiveness.Although this is subjective, we consider the prototype to be attractive and of interest to
a user seeking to better understand the geometric algorithms that have been implemented. The ease
of authoring, especially from the standpoint of using resources available on the Internet for creating
attractive Web pages, may be the more objective criterion.

Support of multiple views.Mocha employs a model-view-controller paradigm that simplifies the support
for multiple views.

Advanced interaction.Geometric structures and their algorithms have many parameters and attributes.
Additionally, robust interaction is often required. For example, the support of proximity graphs using
the parameterβ requires the input ofβ at exact points to visualize the transitions between special
points of interest, as detailed in Section 3.2. A simple scaling would not produce these numbers;
instead the client applet provides for “gravity” near these special points of interest. Other possible
input mechanisms would be special grids (hexagonal, octagonal) and coordinate systems (polar) to
precisely enter input to observe interesting algorithmic behavior.
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4.2. Frameworks

Architectural frameworks[21,37] provide for the reusability of the design and implementation of a
set of cooperating classes over a given application domain. The advantage that frameworks provide
over a monolithic API is that they define the interactions, collaborations, and responsibilities of the
components, including the novel parts, in the framework. Frameworks thus provide for “generic software
architectures” [37].

Java provides a GUI framework in terms of itsjava.awt package and especially the applet class.
Users of this GUI framework are constrained to how the framework dispatches events, such as mouse
events or repaints. This simplifies the programming of the component written in Java, as well as its
integration on a Web page, potentially with other Java components.

However, the Java framework does not address such issues as the use of the Model-View-Controller
(MVC) paradigm [30] or a client-server architecture. In fact, client-server architectures exist outside of
Java since they introduce non-Java components such as the interfaces and protocol that connect these
components. Mocha can be seen both as an implementation framework and as a design framework for
integrating algorithm services.

4.3. The model-view-controller paradigm

The Model-View-Controller (MVC)paradigm [30] separates the task of modeling from that of
displaying and interacting with the model. For example, an implementation with MVC of an algorithm
that visualizes a Voronoi diagram separates the task of managing the geometric structure (i.e., a planar
map with points associated with its vertices and regions), from its display which may render the points as
shaded spheres. The controller provides facilities for interacting with the display, such as drag and drop,
which is then updated in the model.

Note that as the attributes of interest in the visualized geometric objects increase, or as we distin-
guish the abstract characterization of a geometric object from its implementation as a data structure, it
is possible to derive several interesting views. By using MVC we can ensure the correspondence of each
view to the model without increasing the complexity of the design (at least beyond the design’s initial
incorporation of MVC). The importance of this approach for algorithm visualization was introduced by
BALSA [9].

Mocha extends the conventional use of MVC by partitioning both the model and the controller between
the client and the server. The client will typically employ implementations of the structures optimized for
rendering and user control, whereas the server maintains structures for efficient use by the supported algo-
rithms. The visualization protocol supports the maintenance of the correspondence between these models.

MVC on the client supports a high degree of parallelism, which can be exploited through the use of
threads on the client. Additional parallelism is through the client-server partitioning. We exploit MVC’s
parallelism by allocating one or more threads to each task: modeling (interacting with the server), viewing
(rendering the display), and interaction (controller).

4.4. Mediators and protocol support

A client-server architecture is the result of a partitioning of the system, that aims at localizing
functionalities and/or responsibilities in order to provide better performances, increase security, and
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enhance reusability. However, naive application partitioning can result in high maintenance costs and
even in a lack of openness if each client-server pair has its own interface. As the number of clientsn

and the number of serversm expand, the number of relationships can become as large as course,n×m.
Mediators[53] are a well-known mechanism for reducing such interoperability problem.

Mediators isolate the commonality between the interaction of the client and the server. A mediator can
be running on a dedicated machine—for example, to enable fault tolerance or security—but this is a result
of the partitioning, not a necessary condition. Indeed, it would often be undesirable to make the mediator
the hot spot of communication, but instead to provide it as part of the system design. Mocha provides a
mediator as part of the framework for both the GUI clients and algorithms servers. This mediator then
supports the visualization protocol.

4.5. Client implementation

Clients are composed by the following components:

Java-enabled WWW browser.Currently Sun HotJava, Netscape Navigator, and Microsoft Internet
Explorer provide support for Java; other browsers will likely do so in the future because of the appeal
of interactive content.

GUI. The GUI supports the view and controller of the MVC paradigm. It is written in terms of Java and
its GUI framework.

Executor. The executor maintains the model in response to both the user and the annotated algorithms
through the visualization protocol.

We have implemented our framework for the Java clients on top of the existing applet/panel GUI
framework. The internal architecture of the Java framework is based on a container/component pattern
that is becoming widely adopted, such as in OLE, OpenDoc, and other systems. Containers distribute
events (repaint , mouseDown, mouseDrag ) to their components through event handlers that can be
further derived through inheritance. In the Mocha framework, we introduce the additional events and
handlers corresponding to the specific geometric application domain. For example, we support the entry
of point sets throughmovePoint and addPoint events. These events are then routed through the
geometry manager (a mediator), which supports the visualization protocol between the client and the
geometry services.

4.6. Server implementation

The simplest component of our architecture are the servers. Servers are created from the following:

Session manager.This element supports the creation of a context (state) through the use of processes. As
new clients attach to the session manager through the sockets protocol, additional processes are forked
to handle the desired service.

Protocol manager.Supports the visualization protocol.

Model manager.Model support of geometric objects. Typically this is a large component of the service,
as it is with LEDA, which has rich support for robust geometric objects.
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Service implementation.The actual annotated algorithms, such as Voronoi orβ-proximity.

We currently support two services, based on the libraries that they were built on: proximity and LEDA.
Other services will become useful in future versions of this architecture. Simple services are easy to
construct with existing libraries or filters through the wrapping with a thin socket dispatcher and model
translator. A database of interesting geometric objects that are created and viewed with these tools is an
example of a service that could be readily accommodated in the architecture.

5. Extensions

Collaborative environments enable members of communities to interact with each other over the
Internet with not only traditional tools (email, news, etc.) but also through specialized tools [3]. In
particular, we envision the development of collaborative environments which provide access to geometric
animations and visualizations in the context of Web browsers.

For example, members of the computational geometry research community could experience together
interactive algorithm visualizations on a shared geometric white board, potentially while using other
Internet collaboration tools developed by other parties, commercial and academic.

Introducing collaboration extends the possibilities of use of the Mocha environment, and some
preliminary work has been done in the development of a collaborative version of our Mocha project [32].

Issues to be considered in collaborative environments is the consistency of views, the synchroniza-
tion of these views, and the policy for updating the collaborative space. At Brown, we have de-
veloped an initial prototype of collaborative Mocha; seehttp://loki.cs.brown.edu:8080/
CollaborativeMocha/pages/CMocha.html . The prototype supports users joining and leaving
at different times in a common room. Users can manipulate the white board and observe the manipu-
lations of other users as they occur. The floor policy is simultaneous updates on discrete entities—first
come, first served on contention.

We are currently working on the following extensions of Mocha:
• Dynamic partitioning of the algorithm visualization system. The Java class loader loads and garbage

collects classes (from the Web server, file system, or other sources) as they are used by instance objects.
It is possible to use this mechanism to progressively increase the functionality of an applet as it is
running or to move functionality and responsibility from the server to the client applet, assuming a
common Java code base.
• Providing a Java beans implementation of Mocha. The Java beans component model was developed

to support both visual programming tools as well as the arbitrary composition of Java beans, which
extends the existing embedding capabilities of the Java applet model in documents. Implementing
Mocha within the Java beans framework would significantly simplify the development of palette-
oriented white-boards.
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