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Abstract 
Compensation is the process b y  which a committed 
transaction in  a database is undone b y  running the 
semantic inverse o f  that transaction on the database. 
Compensation has been proposed as a technique for  
undoing committed work in  various situations where 
strict atomicity cannot be maintained [GS87, MR91]. 

In this paper, we discuss compensation i n  long- 
running multidatabase transactions. W e  define the 
step approach to integrating local database schemas 
into a mulitdatabase. In  the step approach, each local 
database is encapsulated b y  a set of procedures (steps). 
Steps can be grouped into atomic global transactions. 
Each step also has an associated compensating step, 
which is called i f  the compensating transaction is run. 

We examine two areas of multidatabase transaction 
management where compensation is required. The first 
is implementing compensation as a recovery technique 
when an open nested transaction is aborted. The sec- 
ond is in backing out the eflects of an atomic multi- 
database transaction when some local database trans- 
action commits before a global abort decision is made. 

1 Introduction 
In situations where a transaction is required to com- 
mit some of its work before it actually makes a decision 
itself whether to commit or abort, compensation is re- 
quired to semantically undo that work if that trans- 
action eventually aborts. Longer transactions release 
resources early because holding them will severely im- 
pact the amount of concurrency in a database [Gra81]. 
In multidatabase environments, local transaction au- 
tonomy requires that the local databases commit their 
parts of a global transaction before a coordinated com- 
mit decision is finalized. 

In this paper, we describe our approach for imple- 
menting compensation in the Mongrel prototype mul- 
tidatabase system. We propose a multidatabase archi- 
tecture and a way of implementing global transactions 
on that architecture that enables us to automatically 
generate compensating transactions. In this architec- 
ture, each local database presents a library of steps 
that the multidatabase can execute on it. If all lo- 
cal databases are only accessed through their step li- 
braries, we can define multidatabase transactions flex- 
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ibly while maintaining the ability to automatically 
compute their compensating transactions as needed. 

The step model is a new variant of the stan- 
dard restricted access multidatabase model [HM85], 
in that each step is not in itself a complete transac- 
tion. Rather, steps in different local databases can be 
grouped into a single atomic global transaction. At 
the other extreme, the unrestricted model for mul- 
tidatabase access allows arbitrary global queries and 
updates on the local databases. Thus, the transac- 
tion definer must explicitly specify how to compen- 
sate. Our model provides some of the flexibility of the 
unrestricted model while not requiring the transaction 
definer to explicitly consider compensation. 

Each step in a database’s Step Library is statically 
associated with its compensating step. We assume 
that the actual call to execute a compensating step 
can be derived from the original step function name, 
arguments, and return value. A compensating trans- 
action executes these steps, in the inverse of the order 
the original steps were executed. We specify a two- 
level logging mechanism for storing the information 
needed for compensation. 

We also examine compensation in two areas of mul- 
tidatabase transaction management. In each area, 
we provide an underlying theory concerning compen- 
satability, or the ability to  decide when compensa- 
tion will unconditionally succeed (given a failure-free 
environment). We provide algorithms for using the 
step/compensating step pairing in the Step Library to 
generate the compensating transactions in a way that 
maintains consistency in the database. 

Open nested transaction models [GS87, Nod93bl 
break up a long transaction into a set of shorter ones. 
If the longer transaction is aborted, compensation is 
required to  undo any short transactions that have al- 
ready committed. For open nested transactions, we 
show how to use compensation to undo this committed 
work. We give approaches for determining when com- 
pensation is straightforward to execute, and when it 
is not. We can place restrictions on the execution and 
commitment of atomic transactions within the open 
nested transaction to facilitate smooth operation of an 
open nested transaction abort. When exact compen- 
sation is not possible, we give alternative approaches. 

The second area in which we examine compensation 
is when emulating a two-phase commit of a atomic 
global transaction. Compensation is required during 
two-phase commit when a local commit decision is fi- 
nalized before a global abort decision is made [MR91]. 
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Figure 1 :  The local database interface to the multi- 
database. 

We show how to ensure that compensation eventually 
succeeds in this case, thus ensuring semantic atom- 
icity of global transactions. In some cases, the mul- 
tidatabase must interfere with the local databases to 
ensure that compensation will always succeed when 
required. 

2 The Step Approach 
In  the Mongrel prototype multidatabase, we take a 
s t e p  approach to integrating the information in the 
local databases into the multidatabase. In this, each 
local databaqe defines an interface of function calls, 
or steps that it is willing to provide for use by the 
multidatabase. These steps are collected together in 
the local database's own S t e p  Library.  This approach 
to integrating heterogeneous systems is similar to that 
proposed by Rusinkiewicz e t  al. [ROELSO] to support 
their Distributed Operation Language. 

Figure 1 shows a local database and its Step Li- 
brary. Note that each step in the Step Library is ex- 
plicitly paired with its compensating step. As stated 
earlier, compensation is a necessary function in a mul- 
tidatabase that attempts to preserve the autonomy of 
its local databases. This explicit pairing allows the 
multidatabase to determine, at  the time a global trans- 
action's step is executed on a local database, what 
the appropriate compensating step is. Since the step 
knows exactly what is run on the local database, it also 
encodes the ability to compute the values required for 
each parameter of the compensating step call. Thus, 
the step can log this information as it executes to en- 
sure that it is available when compensation is required. 

The step approach differs from the two existing ap- 
proaches for integrating local databases, which are the 
restricted and the unrestricted approaches. The re- 
stricted approach (e.g., [HM85, AGS871) states that 
each time a multidatabase application accesses a local 
database, it runs a complete, predefined transaction 
on that local database. The step approach differs from 
the restricted approach in that each step is not itself 
a separate local database transaction. Rather, differ- 

Atomic in h e  
Transadion mulfidafabase 

Figure 2: A global transaction execution. 

ent steps on the same local database can be grouped 
into a single atomic global subtransaction. Steps on 
different local databases can be grouped into a single 
atomic global transaction. Thus, the step model is 
more flexible than the restricted model. 

The unrestricted model (e.g. [CBE93]) allows glo- 
bal transactions in the multidatabase to run arbitrary 
sets of queries in the local databases. The step model 
differs from the unrestricted model in that it only al- 
lows access to the local databases through the defined 
steps. This restriction is useful because it provides a 
uniform way of accessing the information in the mul- 
tidatabase, independent of any local database's data 
manipulation language. It also allows the Step Li- 
brary definer to associate a compensating step with 
each step, and to define how to derive the compensat- 
ing step call during the execution of a step. When a 
global transaction must be semantically undone, these 
compensating step calls are used to generate compen- 
sating global transactions. This frees the user from 
having to specify compensating subtransactions him- 
self. 

3 Global Transaction Execution 
In the step model, different steps on different local 
databases can be combined into a single atomic global 
transaction. Within a global transaction, the steps 
on each local database are grouped into global sub- 
transactions. Thus, the global transactions encom- 
pass multiple global subtransactions and span multi- 
ple local databases. However, to help ensure that the 
global transactions are atomic, no two global subtrans- 
actions of the same transaction execute on the same 
local database. Each global subtransaction begins a t  
the time the global transaction starts executing on the 
local database, and commits atomically with its global 
transaction commit. This ensures that no other trans- 
actions on any local database see partial results of the 
global transaction. 

Figure 2 shows the basic structure of a global trans- 
action execution. It also summarizes the atomicity 
properties of the different parts. The global transac- 
tions in a multidatabase are assumed to be atomic or 
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Figure 3: Summary of atomicity properties. 

at  least semantically atomic. If the global transaction 
is atomic, this means that any other transaction will 
see either no effects of the atomic transaction or all of 
its effects. It sees no effects if it precedes the atomic 
transaction or if the atomic transaction was aborted. 
It sees all the effects if it follows the atomic transaction 
and the atomic transaction was  committed. 

Semantic  atomici ty  differs from atomicity in that 
it may be possible for another transaction to see the 
effects of a semantically atomic transaction even if 
that transaction eventually is aborted. With a se- 
mantically atomic global transaction, some or all of 
the subtransactions of the global transaction may be 
committed in the local database, and other transac- 
tions may read the effects of the committed subtrans- 
actions. Then, if the global transaction is eventually 
“aborted,  those effects will have to be semantically 
undone. A syntactic undo is not possible because the 
data items written by the semantically atomic trans- 
action may have been accessed and/or overwritten by 
some other transaction between the time the semanti- 
cally atomic transaction committed its effects on the 
local database and the time the “abort” is processed. 
Instead, each subtransaction has an associated com- 
pensating subtransaction, which semantically undoes 
the effects of the original subtransaction. For exam- 
ple, a subtransaction that withdraws money from a 
bank account may have a compensating subtransac- 
tion that deposits that money back into the account. 
When a global transaction is “aborted”, the compen- 
sating subtransactions for each of its committed sub- 
transactions must be executed. 

Figure 3 summarizes the visibility properties for 
atomic and semantically atomic global transactions. 

4 Compensating Transactions 
We can now show how a compensating transaction 
can be automatically executed given information de- 
rived during the original global transaction execution. 
First, we assume that all compensating transactions 
are atomic or semantically atomic, and have a similar 

structure to the lobal transactions. While less re- 
strictive models o! compensation have been described 
in certain contexts (e.g., [LKSSl]), making compen- 
sating transactions atomic enables us to generate com- 
pensating transactions that are robust in any situation 
where compensation is needed. It also means that the 
commit protocol for the compensating transactions is 
identical to the one used for global transactions. 

Now, let us consider the compensating steps that 
form a compensating subtransaction on a single local 
database. The original global subtransaction executed 
a sequence of steps, and then committed. Associated 
with each of these steps is a compensating step that se- 
mantically undoes the effects of the original step. Just, 
like with a state-based undo, we need to back out of 
each step in the inverse of the order the original steps 
were executed. So the compensating subtransaction 
execution algorithm is as follows: 

Algorithm 4.1 Input: The  identifier of the subtrans- 
action to  be compensated for. 

1.  Begin a transaction on the local database. 

2. From the log that records compensating subtrans- 
action information,  extract the compensating s tep  
calls using the input subtransaction identifier. 

3. Execute the compensating s teps  in  the inverse of 
the order i n  which they are logged. The  sequence 
in  which they are logged reflects the execution or- 
der of the s teps  i n  the original transaction. 

4. C o m m i t  the global subtransaction as  directed b y  
the global level of the multidatabase. A coordi- 
nated global commit  such as  two-phase commit  i s  
necessary t o  preserve the atomici ty  of the com- 
pensating transaction. 

This algorithm requires a log to maintain local- 
level compensation information for the subtransac- 
tions that execute as a part of the global transactions 
in the multidatabase. We maintain this information 
separately for each local database. The information 
logged for compensation during a global subtransac- 
tion execution includes the following: 

1. The identifier of the global subtransaction on the 

2. The compensating step for each step that was ex- 
ecuted in the global subtransactions, computed 
from the explicit pairing in the Step Library. 

3. The arguments for all of the compensating steps, 
derived from the step’s arguments, its return val- 
ues, and possibly also from the results of sup- 
plementary queries concerning the local database 
state a t  the time the step executed. 

Given that we can log enough information to be 
able to deduce the compensating subtransaction defi- 
nition from the original subtransaction execution, the 
question remains of how to combine the compensat- 
ing subtransactions into a global transaction. If we 

local database. 
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consider that the purpose of the compensating trans- 
action is to undo (inverse) the effects of the original 
global transaction semantically, we can see that the 
different undos on the different local databases should 
be independent. In the original execution, subtrans- 
actions form dependencies because one subtransaction 
reads information from its local database, and that 
information is used as an argument to a step call in 
a different local database. However, the compensat- 
ing transaction is working with changes that are fully 
specified before it executes, and therefore there can- 
not be dependencies among the subtransactions in a 
compensating transaction. 

We therefore assume that the subtransactions of 
a compensating transaction can be executed concur- 
rently (because they are independent). Given this, 
the log of global transaction compensation informa- 
tion at the global level of the multidatabase must con- 
tain only the local database and local identifier for 
each global subtransaction that comprised the origi- 
nal global transaction. 

The algorithm for executing a compensating trans- 
action is as follows: 

Algorithm 4.2 Input: 
transactzon io  be compensated for.  

1. Begin the global iransactzon. 

2. For each commztted subtransactzon of the global 
transactzon, do the followzng: 

The zdentzfier of the global 

Using the global transactzon zdentzfier, re- 
trzeve from the global transactzon log the sub- 
transactzon zdentzfier and the local database 
that the subtransactzon ran on. 
Submzt a request t o  the local database to  run 
the compensatzng subtransactzon, gzven the 
spec zji e d s u b t ra ns a c 1 z o n z den t zji e r 

5. When all local databases have indicated that the 
global subtransaction execution succeeded, initiate 
a coordznated atomic commit protocol. 

Note here that we assume that the compensating 
transaction will commit. If some global subtransac- 
tion does not succeed, that subtransaction must be 
retried until it eventually succeeds. This requirement, 
called persistence of compensation, is recognized as 
necessary for maintaining complete database consis- 
tency in an environment that allows a task to partially 
c.ommit before a comprehensive commit decision can 
be made (see, for instance [KLSSO]). Naturally, we at- 
tempt to manipulate situations where compensation 
is needed to ensure that it succeeds the first time. 

5 Compensatability 
In this section we discuss compensatabzlzty, which de- 
fines the conditions under which compensation is pos- 
sible, and when compensation can be expected to pro- 
ceed smoothly. The compensatability property char- 
acterizes situations where persistence of compensa- 
tion is certain, and where it is problematic to enforce. 

Whether or not a step, global subtransaction, or trans- 
action is compensatable can be derived based on a 
simple syntactic analysis of the compensation code. 

Definition 5.1 (Compensatable) A step, global 
subtransaction, or global transaction is compensatable 
i f  its compensating subtransaction will always succeed, 
regardless of the state of the local database. 

Examples of compensatable steps include a read- 
only step (which has a null compensating subtransac- 
tion), and a withdrawal (because the success of the 
compensating deposit does not depend on the state of 
the particular bank account). 

We define a step, global subtransaction, or trans- 
action as provisionally compensatable if the success 
of the compensating step, global subtransaction, or 
global transaction does depend on the state of the un- 
derlying database. For example, a deposit is provi- 
sionally compensatable; as long as no one withdraws 
the money in the interim it can be compensated for. 

Given that a step, global subtransaction, or global 
transaction has compensating code written or derived 
for i t ,  we can also specify the following theorem that 
relates its structure to its compensatability: 
Theorem 1 A step, global subtransaction, or trans- 
action is compensatable if compensating code can be 
specified and executed, and there are no conditional 
branches in the compensating code that depend on in- 
formation read from the database. 

Intuitively, we see that this follows from the fact 
that, even if some other transaction serializes between 
the global transaction and its compensating transac- 
tion on some local database, that transaction cannot 
change that local database in a way that would affect 
the execution of the compensating transac.tion. 

Theorem 2 A step, global subtransaction, or global 
transaction 2s provisionally compensatable if compen- 
sating code can be specified, even zf it has conditional 
branches tn the compensating code that depend on in- 
formation read from the database. 

Note that we assume here that if a compensating 
subtransaction can be executed, it has permission to 
execute as well. Also, we assume that code that has 
no conditional branches that depend on the database 
state also calls no subroutines that have conditional 
branches that depend on the database state. Proofs 
for these theorems are found in [Nod93a]. 
5.1 Computing the Properties 
In the Mongrel multidatabase model, each step in a 
local database’s step library has a compensating step 
defined for i t .  If the code for the step has conditional 
branches based on information in the local database, 
the step is labeled a t  step definition time as provi- 
sionally compensatable. Otherwise, it is labeled as 
compensatable. This label is associated with the step 
and the compensating step in the Step Library itself. 

Given that all the steps executed as a part of a 
global subtransaction are labeled, we can then com- 
pute whether the global subtransaction itself is com- 
pensatable based on the following (trivial) theorem: 
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Theorem 3 If all of the s teps  in a global subtrans- 
action are compensatable, the global subtransaction i s  
compensatable. Otherwise,  the global subtransaction is 
provisionally compensatable. 

Similarly, we can compute the compensatability of 
a global transaction using the following theorem: 

Theorem 4 If all of the global subtransactions in  a 
global transaction are compensatable, then the global 
transaction is  compensatable. Otherwise,  the global 
transaction is  provisionally compensatable. 

Proofs for these theorems are given in [Nod93a]. 
5.2 Implications 
Given that compensating code can be written for a 
global transaction or subtransaction, its compensata- 
bility properties define exactly when the persistence 
of compensation requirement becomes a problem. If 
a global transaction is compensatable, then only the 
failure of a process, system, or network can prevent 
the compensating transaction from completing imme- 
diately. Retrying the compensating transaction in the 
presence of such a failure should succeed as soon as 
the multidatabase becomes failure-free, so persistence 
of compensation is guaranteed. 

If a global transaction is only provisionally com- 
pensatable, then problems can occur when persistence 
of compensation is also required. This is because a 
change in the state of some data item after the original 
transaction committed could prevent the compensat- 
ing transaction from succeeding. The success of the 
compensating transaction would then depend entirely 
on some third agent changing the state of a specific 
data item in the local database, so the conditional 
test that depends on that value would succeed. 

In this second situation, alternative measures can 
be taken to ensure that persistence of compensation 
holds, or a t  least does not create a problem. Examples 
of these alternative measures include the following: 

1. Find some means to  ensure that critical data 
items are not changed until we can be sure that 
compensation can no longer be invoked (for some 
specific purpose). 

2. Avoid using compensation. 

3. Find alternative means of compensation if the pri- 

In the following two sections we discuss compensation 
in open nested transactions and compensation during 
two-phase commit. We propose using different combi- 
nations of the above methods to facilitate the eventual 
success of compensation in the specific context. 

6 Open Nested Transactions 
An open nested transaction is a partial order of atomic 
global transactions, each of which runs over multiple 
local databases and commits when it completes its ex- 
ecution. An open nested transaction can be viewed 
as a long, non-atomic transaction that is executed as 

mary method fails. 

a partially-ordered set of independent, atomic pieces 
(the atomic global transactions). 

In this section, we examine issues of how open 
nested transactions can use compensation to  enforce 
their semantic atomicity. We first examine how depen- 
dencies form. We then discuss the basic compensation 
algorithm. We give some constraints on the original 
execution that allow for more efficient recoverability. 
We also give an approach to recovery when direct com- 
pensation fails. 
8.1 Global Transaction Dependencies 
The execution of an open nested transaction is spec- 
ified as a partial order because we assume that un- 
related global transactions can execute concurrently. 
We assume that the open nested transaction starts 
out single-threaded, but can fork new threads as it 
executes. A set of threads can join if none of them 
has an active global transaction. 

Different kinds of dependencies form between global 
transactions in an open nested transaction. An exe- 
cution dependency forms between two global transac- 
tions T, and under one of the following conditions: 

1. Ti precedes T j  in the same execution thread. 

2 .  T .  is the first transaction in a forked thread, and 2 is the last transaction that began on the forking 
thread before the fork occurred. 

3. T, is the first transaction after a join operation, 
and Ti is the last transaction that committed on 
one of the joining threads. 

Execution dependencies reflect the specified order of 
global transactions in the open nested transaction ex- 
ecution. 

A second form of dependency can occur among 
global transactions if the open nested transaction 
maintains some form of internal state. We call this 
type of dependency a state  dependency. A state de- 
pendency occurs among two global transactions in an 
open nested transaction when they conflict on an in- 
ternal variable. In this case, even though the two 
global transactions are specified in a way that allows 
them to be executed concurrently, dependencies form 
in the order in which conflicting operations on the in- 
ternal variables are resolved. 

Both state and execution dependencies can be com- 
puted and logged as the open nested transaction exe- 
cutes. 

Formally, we define the partial order of global trans- 
actions in an open nested transaction execution 0 as 
0 = (To, <$) , where 

1. To is the set of global transactions that are exe- 

2. <$ is a partial order of those global transactions 
as executed, where T, <$ Tb if Tb has an execu- 
tion dependency or a state dependency on T,. 

Aborting an open nested transaction means abort- 
ing the uncommitted, but active global transactions 

cuted as a part of 0, and 
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Uncommitted 

1i-n 
Figure 4: (a) Uncommitted Global Transaction B has 
forked a second execution thread, and has a successor 
committed Global Transaction C. (b) Same execution, 
but in this case Global Transaction C is restricted to 
not commit until Global Transaction B commits. 

and then compensating for the committed global 
transactions. We follow principles derived from the 
Sagas work [GS87], and compensate for the commit- 
ted global transactions in the inverse of the partial 
order defined by <: to maintain consistency in the 
multidatabase during compensation. This ensures, for 
instance, that the conflicts on the internal state are re- 
solved appropriately during compensation. Following 
this order is also necessary to correctly inverse the ef- 
fects of the open nested transaction on a data item in 
some local database that is accessed more than once 
hy the open nested transaction. 

Thus, we have the following algorithm for open 
nested transaction abort: 

Algorithm 6.1 (Open Nested Abort) 
Input: <;. 

1. Abort all active, uncommitted global transactions 
zn the open nested transactzon. 

2. Compensate for each committed global transaction 
once all of its successors i n  <: are either aborted 
or compensated for. 

6.2 Global Transaction Commits 
In the multidatabase, we assume that for correctness 
the different global transactions in an open nested 
transaction are serialized in an order consistent with 
that open nested transaction’s partial order <$. 

Ease of compensation is affected by the order in 
which those global transactions commit. When the 
new thread executes its first global transaction, care 
must be taken to ensure that that global transaction 
does not commit before the global transaction in the 
forking thread that precedes it. This could happen 
if the forking thread is in the middle of executing 
a global tra.nsaction when the fork statement is ex- 
ecuted. If the global transaction in the forked thread 
were to commit first,, we would have the situation such 
as the one shown in Figure 4(a). In this situation, if 
the forking global transaction B were to abort, then 
global transaction C would also have to be semanti- 
cally undone. To avoid this cascading, we constrain 

the commit order of the global transactions to be con- 
sistent with the order imposed by its state and execu- 
tion dependencies. 

Thus, we define the following property for an open 
nested transaction: 

Definition 6.1 (Open Nested Recoverability) 
The open nested recoverability property for  an open 
nested transaction states that no global transaction can 
commit until all global transactions that precede it i n  
<$ have committed. 

If this property is enforced, then in no case can the 
abort of some uncommitted global transaction cause 
some later global transaction in <g to be compen- 
sated for. This means that compensation can occur 
regularly and smoothly, with the execution of the com- 
pensating transactions following the inverse of the or- 
der <:, as defined in the previous section. 
6.3 Sloppy Compensation 
Despite the precautions outlined in the previous sec- 
tion to ease compensation, the requirement for persis- 
tence of compensation does not hold in a general open 
nested transaction environment. Open nested trans- 
actions periodically release the resources they hold, al- 
lowing other database transactions to interleave with 
their own operation. This release of control by the 
open nested transaction allows other transactions to 
modify information required for compensation. 

Consider as an example, a travel agent making a 
reservation for a customer on a Pan Am flight. The 
customer pays for the flight and gets his ticket. Then, 
before the customer actually takes the flight, Pan Am 
goes bankrupt. The customer may no longer be able 
to go on the trip, but fully canceling the Pan Am flight 
and getting a refund is impossible. The customer has 
relinquished control over his money.’ 

We propose that compensating steps be specified as 
prioritized sets of guarded code blocks. The top pri- 
ority code block exactly semantically undoes the orig- 
inal step, provided no intervening transactions have 
changed the values of any data items that it reads. 
Lower-priority code blocks could take alternative, au- 
tomated steps if certain conditions hold true (“sloppy 
compensation”). These blocks may not semantically 
undo the transaction at  all, but instead take other 
options to back out of the original work as much as 
possible. For example, one compensating code block 
for buying the ticket could specify that if the airline 
was bankrupt, a letter should be written to claim the 
ticket money. 

7 Emulated Two-Phase Commit 
In this section, we discuss compensation and how it fits 
into emulating an atomic or semantically atomic two- 
phase commit protocol in a multidatabase. We shift 
our focus somewhat because the primary concern here 
is how to enforce the atomicity or a t  least semantic 
atomicity during the commit process itself. 

Ultimately, compensation may succeed once the bankruptcy 
proceedings have completed. However, this process is not timely 
with respect to getting the money back for use on the trip. 
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We begin by briefly summarizing existing work 
in two-phase commitment in distributed databases, 
and in emulating two-phase commitment in multi- 
databases. We then provide some theoretical back- 
ground for understanding two-phase commit, includ- 
ing a discussion of when and how atomic and seman- 
tically atomic commit are possible. We describe a 
two-phase commit algorithm that uses compensation 
to ensure that semantic atomicity is preserved during 
global transaction commit. 
7.1 Two-Phase Commit (Review) 
The two-phase commit protocol [BHG87] is the stan- 
dard protocol used to coordinate commitment in a ho- 
mogeneous, distributed database. In two-phase com- 
mit, a commit coordinator polls the participant (local) 
databases of the transaction being committed to de- 
termine whether or not they are certain to commit. 
Each participant checks whether its part of the trans- 
action executed successfully. If so, it returns a “yes” 
vote and enters the prepared state. If not, it returns 
a “no” vote and aborts its subtransaction. 

Once the commit coordinator receives votes from 
all of its participants, it makes a global decision. If 
all votes were “yes”, the global decision is “commit”; 
otherwise, it is “abort”. The commit coordinator for- 
wards the global decision to the participants, who 
commit or abort their subtransactions from the pre- 
pared state, according to the global decision. 

The prepared state essentially allows the commit 
process to be split into two parts in the local database. 
First, it makes a local decision that can potentially be 
revoked (if the local decision is to commit). Later, 
it possibly revokes the decision. However, once the 
global decision is made it becomes irrevocable. 

In a multidatabase, local database autonomy as- 
sumptions constrain us, in that we cannot ensure that 
the local databases support a prepared state that can 
be used by the multidatabase’s commit coordinator (a  
“visible” prepared state). Thus, we are restricted to 
taking one of the following two tactics for making a 
global decision (from [MR91]): 

Local commit before global decision: the local 
database commits its subtransaction when it  for- 
wards the “yes” vote to the commit coordinator. 
If the global decision is “abort”, a compensating 
subtransaction must be run on the local database 
to undo the committed effects. 

Global commit before local commit: the local 
database makes an educated guess concerning its 
vote, but commits nothing. If the global decision 
is “commit”, the local database commits the sub- 
transaction. If the actual local commit fails, the 
subtransaction must be redone. 

In this work, we choose a local commit before global 
decision strategy. 
7.2 Subtransaction Information Flow 
To understand the commit properties of global trans- 
actions, we first need to examine information flow be- 
tween the subtransactions in the global transaction 

being committed. Let the subtransaction information 
f low (SIF) be a relationship (T, < F ) ,  where 

1. T is the set of subtransactions in the global trans- 
action, and 

2. Ta < F  Tb if subtransaction T, and T b  in T conkin 
conflicting steps sa and sb, respectively, and sb 
reads information local to the global transaction 
that Sa wrote. 

For the purposes of this discussion we assume that 
the subtransaction information flow is acyclic.’ *e 
also assume that there is a begin marker B in the 
subtransaction information flow, and that every sub- 
transaction is a descendant of B. Similarly, we have a 
commit marker C, where every subtransaction has C 
as its descendant. 

Let G be the directed graph representation of < F ,  
with nodes for each subtransaction, as well as for B 
and C.  Given the assumptions in the previous para- 
graph, we can see that G is a directed acyclic graph 
with a single source at  B and a single sink at  C. Define 
B and C to be compensatable. Label each subtrans- 
action in the global transaction with a c if i t  is always 
compensatable or if i t  executes on a local database 
that supports a visible prepared state, and a cp if it is 
only provisionally compensatable. 

We assume that any subtransaction in a local 
database that supports a visible prepared state can 
be considered to be compensatable. This is because 
we can emulate compensatability using the visible 
prepared state. When a local commit decision is 
made, we put the subtransaction in the prepared state. 
This guarantees that the subtransaction will eventu- 
ally commit. Once the global decision is made, the 
subtransaction can commit or abort from the prepared 
state. 

Now, we make the following definition with respect 
to the graph G: 

Definition 7.1 (Max Compensatable Subgraph) 
The  maximum compensatable subgraph i s  the largest 
subgraph of G containing the node B i n  which all the 
nodes have c i n  their label (are compensatable) and 
whose ancestors are also all i n  the max imum compen- 
satable subgraph. 

Figure 5 illustrates the maximum compensatable sub- 
graph for an example global transaction. 

Global transaction commit processing is con- 
strained somewhat by the order < F .  This is because if 
we ever decided to retry a subtransaction, all subtrans- 
actions that follow it in < F  would also have to be re- 
tried to ensure that they read the correct informations3 
Starting at  the source, intuitively we want to commit 
each global transaction once all of its predecessors in 
< F  have committed. Since the maximum compen- 
satable subgraph contains the largest portion of the 

‘Further details concerning cycles in the subtransaction in- 

3Forward recovery techniquesare not discussed in this paper, 
formation flow can be found in [Nod93rrj. 

but a detailed approach can be found in [Nod93a]. 
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global transaction execution that can always be com- 
pensated for, it also represents the set of global sub- 
transactions that can always be committed locally be- 
fore a global decision is made. Thus, we have the in- 
tuition behind following theorem, proved in [Nod93b]: 

Theorem 5 The maxzmum compensatable subgraph 
contazns the maxamum set of subtransactzons that can 
uncondataonally be locally conimztted before a global de- 
ctszon 2s m a d e ,  zf srmantzc atomzczty 2s to  be mazn- 
tazned. 

7.3 Algorithm - 
Given this background, we can now examine two- 
phase commit, in a multidatabase. From Theorem 5, 
we see that if a global transaction has a t  most one 
subtransaction that is not in the maximum compen- 
satable subgraph, we can define a simple strategy 
that, given the labeled subtransaction information 
flow graph can commit its global transaction. First, 
commit all of the the subtransactions of the global 
transaction in the maximum compensatable subgraph. 
If any return a “no” vote, compensate for the commit- 
ted subtransactions and make a global “abort” deci- 
sion. Then, a global decision can be made. If a single 
uncommitted subtransaction remains, the global de- 
cision is made during the process of committing it,  
according to t,he outcome of that specific local com- 
mit. Otherwise, a global “commit” decision is made. 
This algorithm succeeds only because there is a t  most 
one global subtransaction where persistence of com- 
pensation is questionable. 

This algorithm is impractical in that we cannot 
guarantee that, all global transactions will have a sub- 
transaction information flow graph that fits its crite- 
ria. linfortunately, if more than one global subtrans- 
action is not in the maximum compensatable sub- 
graph, then all such subtransactions must cooperate 
to make a unanimous global decision. This cannot 
be done if the local databases are fully autonomous. 
In the following section, we describe ways that others 
have proposed to help the multidatabase make a coor- 
dinated decision while violating the autonomy of the 
local databases as little as possible. 

7.3.1 Blocking Protocols 
Because autonomous local databases in a multi- 
database do not necessarily provide a visible prepared 
state, the multidatabase itself must provide other pro- 
tocols (blockzng protocols) to block other transactions 
from interfering with its subtransactions during vot- 
ing and commit phases of the commit process. These 
protocols intervene in the local databases for a period 
to block the execution of conflicting transactions, and 
thus all violate local database autonomy assumptions. 

Both active and passive blocking protocols have 
been proposed for multidatabases. An active block- 
ing protocol is one that needs to be “turned on” 
and “turned off’. A passive blocking protocol im- 
plements a low-level filtering a t  all times. The 
most widely-proposed passive blocking protocols par- 
tition the multidatabase according to what can be ac- 
cessed in what ways by the global and local transac- 
tions [BSTSO, MRKS91, MRB+92]. 

Several examples of active blocking protocols have 
been proposed. For example, in Hydro [PRRSl], no 
transactions are allowed to pass operations to the lo- 
cal database while a global commit decision is being 
made. This type of blocking protocol requires that the 
multidatabase to be able to delay the local transac- 
tions. Mullenet al. [MJS] propose a reservation proto- 
col where the global transactions use additional data 
in the database to reserve the resources they need. 
Denied local updates, proposed for the 2PC agent 
method [WVSO], require modifying the local databases 
to prevent updates while a global commit decision is 
being made. 

7.3.2 The Generic Algorithm 
We can now formalize a generic algorithm that can 
successfully implement an emulated two-phase commit 
in a multidatabase, provided that all local databases 
support a visible prepared state or a blocking protocol: 

Algorithm 7.1 (Emulated Two-Phase Commit) 
Input: Labeled subtransaction information pow graph 
for  the global transaction. 

1. Coniniit a l l  of the global subtransactions in  the 
niazimtliri compensatable subgraph. If one aborts, 
make a global abort decision, compensate for 
the committed subtransactions, and return abort. 
Note that the commits can all proceed concur- 
rently, because the compensating subtransactions 
should be independent of one another. 

2. For the local databases that participated in the 
global transaction and whose subtransactions did 
not commit zn the first step: I f  one or fewer 
subtransactzons remains to commit, go to  the 
nrxt step directly. Otherwzse, f o r  each such local 
database, if it supports an actiwr blocking protocol, 
turn blockzng on. 

3. ~OPllltl2t a l l  of the remaining subtransactions. I f  
any of these abort (a “no” decision is returned), 
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make a global decision t o  abort. Compensate  f o r  
all of the commit ted transactions, then turn of l  
the blocking protocols on all local databases where 
i t  was  turned on in  the previous s tep.  

4. Make a global decision to  commit .  

Provided that only one global transaction is in the 
commit process at a time, this algorithm succeeds and 
maintains the semantic atomicity of the global trans- 
action. It succeeds because the blocking protocol ef- 
fectively protects the data that the provisionally com- 
pensatable transactions depend on from changing. 

This algorithm only preserves semantic atomicity 
because, a t  least for the transactions committed in the 
first step, their effects become visible and are accessi- 
ble by other transactions on the local database. Even 
if the blocking protocol is run on all local databases 
for the entire duration of the algorithm, this algorithm 
still does maintain full atomicity. This is because there 
may be small side effects in the original global transac- 
tion that cannot be compensated for easily, but whose 
presence is deemed not to be significant by the ap- 
plication designer. If no such side effects are present, 
then full atomicity can be g ~ a r a n t e e d . ~  

8 Related Work 
Open nested transaction models such as Sagas GS871, 
Flex Transactions [ELLRSO] , and ConTracts /WRS1] 
use compensation during recovery. Compensation 
was  first defined in detail by Garcia-Molina and 
Salem [GS87]. In Sagas, each transaction has a cor- 
responding compensating transaction. A correct ex- 
ecution of a Saga looks like a sequence of trans- 
actions: T I ,  Tz, . . . , T,. However, the Saga may 
also be undone in midstream, causing the compen- 
sating transactions to be run in the inverse order: 
TI , T2, . . . , Ti, Ci, . . . , C2, C1. This approach requires 
a Saga’s code and compensating code to be stored per- 
sistently. 

Multilevel transactions also require compensation- 
based recovery strategies [WHBMSO]. Multilevel 
transaction recovery has been implemented in the 
DASDBS project. [WeiSl] notes several other ap- 
proaches for multilevel transactions, with different 
strategies for maintaining (semantic) undo and redo 
information at  the various levels. 

Nodine’s thesis Nod93aI expands on compensation 
and other approac I es to maintaining semantic atom- 
icity during two-phase commit. This thesis presents a 
solid underlying theory concerning global transaction 
properties and how they affect the ability to enforce 
different kinds of atomicity in a multidatabase. 

The Optimistic Commit Protocol [LKSSl] also sup- 
ports semantic atomicity. However, Levy et al. ob- 
serve that the compensating subtransactions do not 
need to be coordinated as strongly because they are 
largely independent. 

Korth et al. [KLSSO] studied compensation with re- 
spect to their entitywise 2PL correctness specification 

4The presence or absence of side effects is a property of the 
step code, and can thus be controlled by the step code definer. 

for transaction execution. This paper provides a good 
characterization of some of the stickier problems en- 
countered when implementing any scheme that uses 
compensation. 

9 Conclusions 
As more and more complex applications rely on 
databases to persistently store information, new and 
advanced transaction models are emerging. Mul- 
tidatabases provide one situation where traditional 
guarantees such as atomicity cannot be easily enforced 
for all transactions, simply because local database 
autonomy is incompatible with coordinating multi- 
database decisions. Also, emerging classes of appli- 
cations such as work flow applications map naturally 
to an open nested transaction model, and may access 
multiple databases. 

Compensation is used to  recover database consis- 
tency semantically when committed work must be 
undone. Work gets committed early in open nested 
transactions because their length precludes using tech- 
niques such as locking for holding the resources the 
transaction touches. Open nesting encourages concur- 
rency among long-lived applications, but also relaxes 
atomicity guarantees. Work also gets committed early 
during a multidatabase two-phase commit, because lo- 
cal database autonomy precludes a commit coordina- 
tor from being able to ensure that a commit of a sub- 
transaction will succeed without actually committing 
that subtransaction and releasing its resources. If the 
global decision is ultimately to abort, compensation 
must be used to  recover database consistency. 

We have discussed issues of compensation in both 
of these situations, within the context of our multi- 
database transaction model. This model is based on a 
notion of steps,  or procedures that encapsulate the ac- 
tual information in the local databases. Global trans- 
actions in the multidatabase can only access the lo- 
cal databases via the steps. The step interface also 
provides adequate information to determine if a step 
is easily compensatable, or likely to cause trouble in 
specific situations. It also encodes additional process- 
ing in the function definition for the step to be able 
to derive and log information that would be required 
to  compensate for the step. At the multidatabase 
level, we can also independently compute dependency 
information to ensure that compensation maintains 
the consistency of the multidatabase at  all times. 
Thus, because of the step library interface, the multi- 
database can use the information logged from an open 
nested transaction execution to generate compensat- 
ing transactions and subtransactions when needed. 

Problems with compensation occur when interfer- 
ence from other transactions prevents compensation 
from succeeding. We provided a theory for determin- 
ing when this interference is possible. In open nested 
transactions, this interference cannot be prevented, 
but we gave approaches to  dealing with such conflicts 
when they occur. In emulating two-phase commit, we 
presented protocols to prevent such interference. 

This multidatabase architecture and automated 
compensation approach have been successfully imple- 
mented in our prototype multidatabase, Mongrel. 
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