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A b s t r a c t .  Currently, there is a significant gap between  the  
best  sequent ia l  and parallel complexities of many fundamental 
problems related to digraph reachability. This complexity bot- 
tleneck essent ia l ly  reflects a seemingly unavoidable reliance on 
transitive closure techniques in parallel algorithms for digraph 
reachability. To pinpoint the nature of the bottleneck, we de* 
velop a collection of polylog-time reductions among reachability 
problems. T h e s e  reduct ions  use  only linear processors and work 
for general graphs. Furthermore, for planar digraphs, we give 
polylog-time algorithms for the following problems: (1) directed 
ear decomposition, (2) topological ordering, (3) digraph reacha- 
bility, (4) descendent counting, and (5) depth-first search. These 
algorithms use  only linear processors and therefore reduce the  
complexity to within a polylog factor of optimal. 

1. I n t roduc t i on .  In its simpliest form, the di. 
graph reachability problem is to test whether a graph 
contains a directed path from a given vertex to another. 
The best sequential algorithms for the problem use sim- 
ple graph searches and run in optimal linear time [3]. In 
contrast, all known polylog-time parallel algorithms for 
the problem compute the transitive closure of the given 
graph; the best of them currently uses O(n 2"3~6) proces- 
sors for an n-vertex graph [21], [12], [7]. Thus, there is a 
significant gap between the best sequential and parallel 
complexities of the problem. The reliance on transi- 
tive closure techniques and the associated complexity 
bottleneck are not limited to the digraph reachability 
problem [21]. Indeed, they are also shared by many fun- 
damental problems related to digraph reachability such 
as strongly connected components and directed span- 
ning trees. Motivated by the fundamental nature of 
digraph teachability, a substantial amount of research 
work has been directed towards overcoming the seem- 
ingly unavoidable reliance on transitive closure. The 
ultimate goal is to design polylog-time algorithms that 
use only linear processors and therefore reduce the com- 
plexity to within a polylog factor of optimal. 

The first two breakthroughs have come only very 
recently. For planar digraphs, Kao has shown that 
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the strongly connected components can be found in 
O(log an) time using O(n) processors [18], [20]. For 
planar digraphs that are strongly connected, Kao and 
Shannon together have proved that a directed spanning 
tree can be computed in O(log ~ n) time using O(n) pro- 
cessors [19], [20]. 

In this paper, we report further breakthroughs. We 
show that for planar digraphs the following five funda- 
mental problems can be solved all in polylog time using 
a linear number of processors: (1) directed ear decom- 
position, (2) topological ordering, (3) digraph reachabil- 
ity, (4) descendent counting, and (5) depth-first search. 
Previously known NC algorithms for these problems all 
require far more than linear processors, even for planar 
digraphs. Among the five problems, depth-first search 
is the most difficult. In fact, depth-first search for gen- 
eral digraphs is not even known to be in deterministic 
NC [2], and the planar case has only very recently been 
shown by Kao to have a deterministic NC algorithm 
using O(n 4) processors [17]. 

In addition to devising these linear-processor NC 
algorithms, we also take the first step in developing 
a general theory for understanding the nature of the 
transitive-closure bottleneck. We discover a collection 
of NC reductions among reachability-related problems 
that use only linear processors and do not depend on 
planarity at all. Our goal is to eventually establish a 
broad complexity hierarchy among reachability-related 
problems via linear-processor NC reductions, and then 
use this hierarchy to guide further research efforts to- 
wards overcoming the transitive-closure bottleneck. 

We further outline our results as follows. A directed 
ear decomposition of a digraph is a partition of the edges 
into internally vertex-simple directed paths P x , ' " ,  Pk 
such that (1) the two endpoints of P1 are the same ver- 
tex and (2) the endpoints of each Pi 5~ P1 lie in some 
lower-indexed Pj's but the internal vertices of Pi are 
not in any lower-indexed Pj's. These Pi's are called 
ears. By simple induction, a directed ear decompo- 
sition exists if and only if the graph is strongly con- 
nected. The undirected version of ear decomposition 
has proved tremendously useful in parallel algorithms. 
For instance, it is the basis of efficient algorithms for 
st-numbering [26], triconnectivity [27], [34], [10], [9], 4- 
connectivity [16], and planarity [22], [33]. We expect 
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that directed ear decomposition will also be very use- 
ful. Indeed, it has been used by Kao for computing 
planar directed cycle separators [17] and by us for find- 
ing a topological ordering in tile present paper. Lovasz 
has previously given a directed ear decomposition algo- 
rithm for general digraphs that relies on breadth-first 
search and has a high complexity [25]. We give a par- 
allel reduction for obtaining a directed ear decomposi- 
tion from an arbitrary pair of directed spanning trees, 
one convergent, one divergent, and both rooted at the 
same vertex. This reduction works for general graphs 
and has an optimal complexity of O(log n) time using 
O((n + e)/log n) processors for a graph with n vertices 
and e edges. For strongly connected planar digraphs, 
because such a pair of spanning trees can be found in 
O(log 2 n) time using O(n) processors [19], [20], the re- 
duction implies an algorithm for computing a directed 
ear decomposition in O(log 2 n) time using O(n) proces- 
sors. 

A topological ordering of a digraph is a linear ordering 
of its vertices such that every edge in the graph points 
from a lower-indexed vertex to a higher-indexed vertex 
in the linear ordering. A topological ordering exists if 
and only if the graph is a dag. In this paper, we give 
an algorithm that computes a topological ordering for 
an n-vertex planar dag in O(log 2 n) time using O(n) 
processors. A key fact used in our algorithm is that the 
dual of a planar dag is a strongly connected digraph. 
This fact has played a crucial role in the linear-processor 
NC algorithms for planar strongly connected compo- 
nents and planar directed spanning trees [18], [19], [20]. 
Based on this fact, to find a topological ordering of a 
planar dag, we exploit the structure in the dual of the 
input graph. Because the input graph is acyclic, the 
dual graph is strongly connected and therefore has a 
directed ear decomposition. Such an ear decomposi- 
tion is used to cut the plane into small regions with a 
useful boundary orientation. Correspondingly, the in- 
put graph is partitioned into small pieces with a useful 
ordering property. This partition induces an natural 
divide-and-conquer strategy and allows us to compute 
a topological ordering of the input graph by recursing 
on the small pieces in parallel. 

The digraph teachability problem can be formulated 
in several different ways. For brevity, this outline fo- 
cuses on the following two versions: the multiple-source 
(or single-source) teachability problem is to find all 
the vertices reachable through directed paths from a 
given set of vertices (respectively, a given single ver- 
tex). The single-source version is clearly a special case 
of the multiple-source version. For general graphs, these 
two versions are in effect identical because the multiple- 
source version can be reduced to the single-source ver- 
sion by merging the sources into a super-source. How- 

ever, for planar graphs, such a reduction may destroy 
the planarity if the sources are not connected. This sub- 
tlety has also been a fundamental constraint in many 
other algorithms for planar graphs including the recent 
network flow algorithm by Miller and Naor [30]. For the 
purpose of future study, we address this fundamental is- 
sue in the context of minor-closed families; a family of 
graphs is called minor-closed if it is closed under dele- 
tions and contractions of edges [13]. We show that for 
a minor-closed family, the reachability problem can be 
transformed via linear-processor NC reductions to the 
problems of computing strongly connected components 
and topological ordering. It is a classic theorem that 
the family of planar graphs is minor-closed [13]. Con- 
sequently, for planar digraphs, this transformation im- 
plies that the digraph reachability problem is solvable 
in polylog time and linear processors using the strongly 
connected component algorithm by Kao [18] and the 
topological ordering algorithm of this paper. The best 
previously known NC algorithms for the multiple-source 
and single-source teachability problems require O(n 2) 
processors and O(n 15) processors, respectively. These 
complexity bounds are obtained using the path algebra 
algorithms by Pan and Reif [31] in conjunction with 
the randomized planar undirected separator algorithm 
by Gazit and Miller [11]. As for smaller classes of pla- 
nar digraphs, there have been several optimal NC algo- 
rithms for the digraph teachability problem all based on 
properties unique to the class in question; in particular, 
for planar st-digraphs, Vitter and Tamassia have given 
optimal algorithms that solve the digraph teachability 
problem as well as other problems [39]. 

The descendent counting problem is to compute for 
each vertex the number of vertices that can be reached 
from the vertex through directed paths. More generally, 
the problem is to sum the weights of the descendents of 
each vertex using commutative semigroup operations. 
This fundamental problem appears as a subproblem in 
many digraphs problems. In particular, it plays an im- 
portant role in the parallel depth-first search algorithms 
for planar and general digraphs [17], [2]. In this paper, 
we show that for a rooted planar digraph, the descen- 
dent counting problem can be solved in polylog time 
using linear processors. The algorithm builds upon the 
planar teachability algorithms and employs separator- 
based accounting arguments. The algorithm is an es- 
sential component of our linear-processor NC algorithm 
for planar directed depth-first search. 

The depth-first search problem is to construct a for- 
est that corresponds to performing depth-first search 
in a given graph starting from specified vertices [38], 
[3]. For lexicographic depth-first search, Reifshows that 
the problem is P-complete even for general undirected 
graphs [35]. For unordered depth-first search, Smith 
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gave the first deterministic NC algorithm for planar 
undirected graphs [37]; the processor complexity for this 
case was later shown to be linear by Ja 'Ja  and Kosaraju 
[15] and by He and Yesha [14]. Aggarwal and Ander- 
son give the first randomized NC algorithm for general 
undirected graphs [1]. Kao gives the first deterministic 
NC algorithm for planar directed graphs [17]. Aggar- 
wal, Anderson, and Kao give the first randomized NC 
algorithm for general directed graphs [2]. While these 
results have placed depth-first search in NC, they all 
have very high complexity except those for planar undi- 
rected graphs. Thus, it remains an open problem to find 
truly efficient parallel algorithms for depth-first search. 
For planar digraphs, this fundamental open problem 
has in part motivated the study of strongly connected 
components [18], directed spanning trees [19], and all 
four problems discussed above. With this paper, we 
move one step closer to the final goal. We give a de- 
terministic NC algorithm for planar directed depth-first 
search that uses only linear processors and thus achieves 
a complexity to within a polylog factor of optimal. As 
expected, this result uses all linear-processor NC algo- 
rithms for planar digraphs highlighted above. 

The above discussion has outlined the key results of 
this paper. The following sections proceed to provide 
the details. In section 2, we review basics of planar 
graphs. In sections 3 through 7, we discuss directed ear 
decomposition, topological ordering, digraph teachabil- 
ity, descendent counting, and depth-first search, respec- 
tively. 

2. Basics for  p l ana r  graphs .  A planar digraph 
is one that can be drawn on a plane such that the edges 
in the drawing intersect only at common ends [13], [5]. 
A drawing of a planar digraph can be specified by the 
clockwise cyclic order of edges incident with each vertex. 
Such a specification is called a combinatorial embedding 
and is useful for algorithmic purposes. Klein and Reif 
give the first linear-processor NC algorithm for finding a 
combinatorial embedding [22]. Ramaehandran and Reif 
have very recently reduced the complexity of finding an 
embedding to optimal O(log n) time using O ( n / l o g n )  
processors for an n-vertex graph [33]. In the following 
discussion, we first review the definitions of faces, orien- 
tations, and duals for planar digraphs, and then quote 
related theorems from previous work. 

Let G be a connected embedded planar digraph. If 
the edges and vertices of G are deleted from the em- 
bedding plane of G, then the plane is divided into dis- 
connected regions. Each region is called a face of G. 
The boundary of a face f is the set of edges and vertices 
surrounding f. The orientation of a boundary edge with 
respect to f is determined by an observer staying inside 
f and walking along the boundary of f .  The dual of G, 
denoted by G, is obtained by placing a vertex in each 

face of G and turning each edge of G counterclockwise 
by 90 degrees. 

THEOREM 2.1. [18] Let G be a connected planar di- 
graph. Then G is strongly connected if  and only i f  G is 
acyelie. 

THEOREM 2.2. [18] Let G be a planar digraph with 
n vertices. Then the strongly connected components of 
G can be computed in O(log 3 n) time using O(n) pro- 
cessors on a CRCW PRAM. 

THEOREM 2.3. [18] Let G be a planar dag with n 
vertices. Let G ~ be the planar digraph constructed from 
G by contracting a connected subgraph into a single ver- 
tex. Then the strongly connected components of G ~ can 
be computed in O(log 2 n) time using O(n) processors on 
a CRCW PRAM. 

THEOREM 2.4. [19] Let G be a strongly connected 
planar digraph with n vertices. Then a directed span- 
ning tree of G rooted at a specified vertex can be com- 
puted in O(log ~n) time using O(n) processors on a 
CRCW PRAM. 

The next theorem is concerned with graph separa- 
tors. The notion of separators has been extremely use- 
ful in many divide-and-conquer graph algorithms. For 
the purpose of this paper, an undirected separator of 
a graph G is a set S of vertices such that the largest 
connected component in G - S contains at most 2 .  n 
vertices. In the theorem, let G be a connected planar 
graph with n vertices; let T be an undirected spanning 
tree rooted at r. 

THEOREM 2.5. There exist two vertices x , y  E G 
such that the vertices in the two tree paths o f T  from r 
to x and from r to y form an undirected separator of 
G. Furthermore, such a pair of x and y can be found 
in O(log n) time using O( n / log n) processors 

Proof. Lipton and Tarjan give an existence proof [24]. 
Miller gives a linear-processor algorithm [29]. [:1 

3. D i r ec t ed  ear  decompos i t ion .  In this section, 
we show that finding a directed ear decomposition is 
optimally NC-equivalent to finding a CD-pair of span- 
ning trees as defined below. A convergent (or divergent) 
spanning tree of a digraph is a directed spanning tree in 
which every edge points from child to parent (respec- 
tively, from parent to child). A CD-pair of spanning 
trees consists of a convergent spanning tree and a diver- 
gent spanning tree both rooted at the same vertex [20], 
[19]. Observe that a digraph has a CD-pair of spanning 
trees if and only if it is strongly connected. Also recall 
that a digraph has an ear decomposition if and only if 
it is strongly connected. Consequently, a digraph has 
an ear decomposition if and only if it has a CD-pair of 
spanning trees. These facts provide the basis for the op- 
timal NC-equivalence. The following theorem formally 
states the equivalence. 

183 



THEOREM 3.1. For a strongly connected digraph with 
n vertices and e edges, given CD-pair of spanning trees, 
an ear decomposition can be computed in O(logn)  time 
using O((n+e)/logn) processors. Conversely, given an 
ear decomposition, a CD-pair of spanning trees can be 
computed in the same complexity. The algorithms are 
deterministic and run on an EP~EW PRAM. 

THEOREM 3.2. For a strongly connected planar di- 
graph with n vertices, a directed ear decomposition can 
be computed in O(log 2 n) time using O(n) processors. 
The algorithm is deterministic and runs on a CRCW 
PRAM. 

Proof. By Theorems 3.1 and 2.4. 0 

We proceed to prove Theorem 3.1 by describing the 
optimal NC-equivalence. To facilitate the description, 
we first elaborate on the definition of a directed ear de- 
composition. Let G be a digraph and let r be a vertex 
in G. An ear sequence of G rooted at r is a sequence 
P 1 , ' " ,  Pk of directed paths in G such that  (the end- 
point condition) each endpoint of each Pi either is r or 
lies in a lower-indexed Pj .  These Pi's are called ears. 
Note that  since P1 is the lowest-indexed ear, both end- 
points of/91 must be r. Also note that  ears are not nec- 
essarily simple. In fact, our discussion involves inter- 
nally simple path and half-simple paths. A half-simple 
path is a directed path formed by concatenating a pair 
of simple paths. An internally simple path is a directed 
path in which an internal vertex appears only once in 
the entire path but  the two endpoints may be the same 
vertex. An ear sequence is further called an ear cover 
of G if the ears contain all vertices of G. Finally, an ear 
cover is called an ear decomposition of G if the following 
three conditions are met: (1) (the simplicity condition) 
each ear is internally simple, (2) (the intersection con- 
dition) each ear Pi 5 £ P1 intersects lower-indexed ears 
only at the endpoints of Pi, and (3) (the partition con- 
dition) each edge of G occurs exactly once in the ear 
cover. 

The reduction from an ear decomposition to a CD- 
pair is based on the following simple observations [20], 
[19]. A convergent spanning tree can be found by delet- 
ing the first edge of each ear. Symmetrically, a divergent 
spanning tree can be found by deleting the last edge of 
each ear. Both trees are rooted at the root of the given 
ear decomposition and thus form a CD-pair of spanning 
trees. By a straightforward implementation, this sim- 
ple reduction can be done deterministically in O(log n) 
time using O((n + e ) / log  n) processors on an EREW 
PRAM [20], [19]. 

In the remainder of this section, we describe the re- 
duction from a CD-pMr to an ear decomposition. Let 
G be a strongly connected digraph. Let C and D be a 
CD-pair of spanning trees for G rooted at vertex r. An 
ear decomposition for G is built from C and D in four 

stages as follows. Stage 1 decomposes C and D into 
an ear cover of G such that  each ear is a half-simple 
path formed by a tree path from C and another from 
D. Stage 2 partitions each half-simple ear into smaller 
internally simple ears, satisfying the simplicity condi- 
tion. Stage 3 further partitions each internally simple 
ear into even smaller ones such that  the intersection 
condition is satisfied. Finally, to satisfy the parti t ion 
condition, Stage 4 adds to the ear cover all missing edges 
and deletes from the cover all redundant  appearances 
of edges. To finish the proof of Theorem 3.1, it suffices 
to show that  each stage takes only O(logn)  t ime using 
O((n + e) / log n) processors. We detail these stages and 
prove their complexity bounds in the next  four lemmas 
respectively. 

LEMMA 3.3 (STAGE 1). Given C and D, an ear 
cover for G with half-simple ears can be computed in 
O(logn)  time using O(n / l ogn )  processors. F,,rther- 
more, the ear cover contains at most 2(n - 1) edges. 

Proof. This stage works exclusively with the edges 
in C and D. Let z l , . - . , x k  be the leaves of D i n  an 
arbitrary order. The goal is to construct an ear cover 
R 1 , . . . ,  Rk for G with Ri corresponding to xi. R/ is a 
half-simple path formed by a directed tree path Ai in 
D that  ends at zi and a directed tree path Bi in C that  
starts at zi. The  Ai's and Bi's are defined as follows. 
Ai is the tree path between xi and the lowest ancestor 
ai of zi in D such that  ai either is r or lies in some 
lower-indexed Aj. Note that  a vertex is considered an 
ancestor of itself. Also note tha t  al must be r because 
A1 has the lowest index. In fact, A1 is simply the tree 
path between the root r and the leaf Xl. The Bi's are 
constructed in the same way. Bi is the tree path be- 
tween zi and the lowest ancestor bi of xi in C such that  
bi either is r or lies in some lower-indexed Bj.  Again bl 
is actually r because B1 has the lowest index. Notice 
that  unlike Ai, Bi can be a single-vertex path without 
any edge because the Xi'S are the leaves of D but  not 
necessarily leaves of C. We now verify that  the R/ 's 
form an ear cover with half-simple ears. Because D is 
divergent, Ai ends at xi; because C is convergent, Bi 
starts from zi. Therefore Ri is a directed path. Be- 
cause Ai and Bi are simple paths, Ri is half-simple. 
From the definitions of ai and bi, the Ri's clearly form 
an ear sequence of G rooted at r. Because the xi 's  are 
the leaves of D, the Ai's actually parti t ion D. Thus, 
the R/'s contain all the vertices of G. As for the com- 
plexity, the idea for computing the ai's and Ai's is to 
use tree contraction techniques [28] to compute for each 
vertex v the lowest-indexed zi tha t  is a descendant of 
v in D. This descendant information can then be used 
to identify ai and At. The bi's and Bi's are processed 
in the same way. I1 

LEMMA 3.4 (STAGE 2). Given an ear cover for G 
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with half-simple ears and at most 2 ( n -  1) edges, an ear 
cover for G with internally simple ears can be computed 
in O(log n) time using O(n /  log n) processors. Further- 
more, the new ear cover also contains at most 2(n - 1) 
edges. 

Proof. Let R x , . . . , R k  be the given ear cover. This 
stage works exclusively with the edges in the R/'s. For 
each R/, the goal is to parti t ion the edges of R/ in to  a se- 
quence of internally simple directed paths S i : , . . . ,  Si,t~ 
such that  the endpoints of Si,1 are those of R/, and for 
each h > 1, each endpoint of Si,h lies in a lower-indexed 
Si,h,. Intuitively, Si ,1 , . . . ,  Si,t~ form an ear cover for Ri 
rooted at the endpoints of R~. Based on this intuition, it 
is easy to see that  the Si,j's form an ear cover for G with 
internally simple ears under the lexicographic order in- 
duced by the double-index (i, j ) .  After the Si,j 's and 
ti 's are computed, the double-indexing can be converted 
into single-indexing by parallel prefix computation [8] 
in O(log n) time using O(n/ log  n) processors. To finish 
the proof, it suffices to describe how to efficiently com- 
pute Si,1,. . . ,Si, t~ for R/. For notational brevity, the 
index i is omitted in the following discussion. Let R 
be formed by two simple directed paths A from a to z 
and B from x to b. The ears $1 , . - - ,  Sh are constructed 
from A and B in the same way as an ear cover is from 
a CD-pair in the proof for Lemma 3.3. More precisely, 
let Y l , ' " ,  Y9 be the vertices shared by A and B in the 
order of appearance in A. Note that  yg -- x. Now, 
consider A a divergent tree rooted at a and consider B 
a convergent tree rooted at b. Let Ph be the tree path 
in A between Yh and the lowest ancestor Ph of Yh in A 
such that  Yh either is a or lies in a lower-indexed ph,. 
Let Qh be the tree path in B between Yh and the lowest 
ancestor % of Yh in B such that  Yh either is b or lies 
in some lower-indexed Ph'. Let Sh be the directed path 
formed by concatenating Ph and Qh at Yh. ['i 

The following two lemmas are easy to prove. 
LEMMA 3.5 (STAGE 3). Given an ear cover for G 

with internally simple ears and at most 2 ( n -  1) edges, 
an ear cover for G satisfying the simplicity and intersec- 
tion conditions can be computed in O(logn) time using 
O(n /  log n) processors. Furthermore, the new ear cover 
also contains at most 2(n - 1) edges. 

LEMMA 3.6 (STAGE 4). Given an ear cover for G 
that contains at most 2(n - 1) edges and satisfies the 
simplicity and intersection conditions, an ear decom- 
position for G can be computed in O(logn)  time using 
O((n + e) / log n) processors. 

4. T o p o l o g i c a l  o r d e r i n g .  In this section, we give 
an efficient parallel algorithm that  computes a topolog- 
ical ordering for a planar dag. As already highlighted, 
this algorithm relies on the planar orientation structure 
described in Theorem 2.1 and builds on the ear decom- 
position algorithm developed in §3. The following the- 

orem formally states the complexity of the algorithm. 

THEOREM 4.1. For a planar dag with n vertices, a 
topological ordering can be computed in O(log 2 n) lime 
using O(n) processors on a CRCW PRAM. 

To prove the theorem, we describe the topological 
ordering algorithm as follows. Let G be an aeyclic di- 
graph; the goal is to find a topological ordering of G. 
A new notion is in order. A topological segmentation of 
G is a partit ion of the vertices into a sequence of sets 
V1, • •. ,  Vk such that  each edge in G either points from 
some V/to V/itself or points from a lower-indexed Vi to 
a higher-indexed Vj. Intuitively, a topological segmen- 
tation is an approximation to a topological ordering. 
The approximation scheme is based on two immediate 
facts. First, for any topological segmentation, there 
always exists a consistent topological ordering, one in 
which the vertices of a lower-indexed ~ are placed all 
before those of a higher-indexed V/. Second, if each 
V/ contains exactly one vertex, then the topological 
segmentation is actually a topological ordering of G. 
Therefore, to find a topological ordering of G, it suf- 
fices to starts with a coarse topological segmentation 
and then iteratively refine the segmentation until it be- 
comes a topological ordering. In the following discus- 
sion, we give such a refinement process; for ease of un- 
derstanding, we first explain the refinement process as a 
sequential algorithm and then discuss how to parallelize 
the process. 

We now detail the sequential version of the refine- 
ment process. First of all, the coarsest segmentation 
of G is G itself. This trivial segmentation can be re- 
fined into a segmentation consisting of two subsets as 
follows. Let G denote the dual of G. From Theorem 
2.1, G is strongly connected and thus has a directed 
ear decomposition E 1 , ' " , / ~ k .  Because /~1 is actually 
a vertex-simple directed cycle in (~, the ear E1 divides 
the plane into two disconnected regions. Let A be the 
region such that  E1 runs counterclockwise as observed 
from inside A; symmetrically, let B be the region such 
that  E1 runs clockwise as observed from inside B. No- 
tice that  the faces of G are divided between A and B. 
Because the faces of G correspond to the vertices in G, 
the vertices of G are also divided between A and B. 
Let VA and VB be the sets of vertices of G in A and B, 
respectively. Because the edges of/~1 run counterclock- 
wise with respect to A, the edges of G between VA and 
VB all go from VA to VB. This unidirectional property 
ensures that  there are no directed paths in G from VB 
to VA. Thus, the sequence VA, VB forms a topological 
segmentation of G. This segmentation is finer than the 
trivial segmentation G itself. To continue the refine- 
ment process, we add ~72 to the discussion. From the 
planarity of G and from the intersection condition of 
an ear decomposition, ~7~ is either within A or within 
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B. Without loss of generality, assume that E2 is within 
A. From the endpoint condition of an ear sequence,/~2 
divides A into smaller regions. From the simplicity and 
intersection conditions of an ear decomposition, A is di- 
vided into exactly two regions C and D such that /~2 
runs counterclockwise with respect to C and runs clock- 
wise with respect to D. Using the same analysis as for 
El, the set of vertices of G inside A are divided into two 
sets; let Vc and VD be the sets of the vertices inside C 
and D, respectively. Because/~2 runs counterclockwise 
with respect to C, the edges of G between Vc and VD all 
go from Vc to VD. This unidirectional property ensures 
that there are no directed paths from VD to Vc. Thus, 
the sequence Vc, VD is a topological segmentation for 
the subgraph of G induced by VA. In sum, the sequence 
Vc, VD, VB is a topological segmentation for G. If this 
process is iterated until the last ear is also considered, 
then from the partition condition of an ear decomposi- 
tion, every region contains only one face of G and thus 
only one vertex of G. Consequently, the resulting topo- 
logical segmentation is a genuine topological ordering 
for G. 

The refinement process can be parallelized by ap- 
plying a bisection strategy to the ear decomposition 
E1, . ' . , /~k;  a similar strategy has been used by Kao 
to compute daisy graphs for planar directed depth- 
first search [17]. Let G' denote the graph formed by 
Ex,.- -, E[k/~]. By induction, G' divides the plane into 
[k/2] + 1 regions Rx,.. ",R[k/23+l. Let Vi be the set 
of vertices of G inside Ri; let Gi be the subgraph of 
G induced by Vi. Furthermore, let I]i be the set of 
ears/~j'  inside each P~. These P~'s, Gi's, and l]i's can 
be found using undirected connected component algo- 
rithms [36]. By induction, the t~'s can be arranged into 
a topological segmentation T' for G. To refine T' into 
a topological ordering of G, it suffices to first compute 
a topological ordering Ti for.each Gi and then substi- 
tute the sequence Ti for the set ¼ in the segmentation 
T'. After the substitution, the vertices in the resulting 
topological ordering can be reindexed by parallel prefix 
computation. To finish describing the parallelization, 
it suffices to show that T',T1,.. ",T[k/2] can be recur- 
sively and independently computed in parallel. It can 
shown that the problem of computing T' involves only 
/~1,'",/~[k/2], and the problem of computing each Ti 
involves only fIi. In other words, each of these sub- 
problems involves no more than half of the original ears; 
consequently the depth of recursion is at most [log k]. 
To elaborate on the recursion for T', let G' be the graph 
constructed from G by contracting each Vi into a single 
vertex. Notice that G' is in effect the dual of G' and 
the sequence Ex,'--,/~[k/2] is an ear decomposition of 
G'. More importantly, a topological segmentalion of G 
formed by the Vi's is in effect a topological ordering for 

G'. Consequently, the problem of computing T ~ is one 
of computing a topological ordering for G ~. To elabo- 
rate on the recursion for Ti, let Xi be the subgraph of 

formed by the edges and vertices of the faces inside 
Ri. Let Gi be the graph constructed from Xi by con- 
tracting the boundary of Ri into a single vertex. Let 
Ai be the set of paths obtained by contracting into a 
single vertex all endpoints of IIi on the boundary of Ri. 
Observe that the dual of Gi is in effect Gi. Further- 
more, ~xl forms an ear decomposition for Gi; thus, an 
ear decomposition for Gi with a small number of ears 
is easily obtained without recomputation from scratch. 
This finishes the proof of Theorem 4.1. 

5. D ig raph  reachabi l i ty . In  addition to the 
multiple-source and single-source teachability prob- 
lems, we also consider the following third version: the 
single-source single-sink teachability problem is to find 
all the vertices that can reach a specified vertex and 
at the same time can be reached from another speci- 
fied vertex. In this section, we describe linear-processor 
NC reductions from the problems of computing digraph 
teachability to those of computing strongly connected 
components and topological ordering. As highlighted in 
the Introduction, these reductions apply to any minor- 
closed family of digraphs. All these reductions em- 
ploy divide-and-conquer strategies based on the given 
oracles for computing strongly connected components 
and topological ordering. In the following discussion, 
we first abstract two useful ideas from the divide-and- 
conquer strategies, and then detail the reductions for 
the three reachability problems. 

Throughout the following discussion, let G denote the 
input graph to the teachability problems for a minor- 
closed family. Without loss of generality, we assume 
that G is a dag. Otherwise, using the given oracle for 
strongly connected components, we can find these com- 
ponents in G and then contract each component into a 
single vertex. The resulting dag not only contains all 
information for the digraph teachability in the original 
graph but also remain in the given minor-closed family. 
The oracle for strongly connected components is also 
used repeatedly elsewhere. In contrast, the oracle for 
topological ordering is used only once for an entire re- 
duction. Therefore, our discussion assumes that the in- 
put dag G is equipped with a topological ordering. The 
NC reductions then manipulate G and this ordering; 
the topological orderings for the subsequent versions of 
G are derived efficiently from the initial ordering. The 
only two operations used to manipulate the input graph 
are those of partitioning a graph and contracting a con- 
nected subgraph. Such a partition actually consists of a 
sequence of edge deletions, and such a contraction con- 
sists of a sequence of edge contractions. Consequently, 
all subsequent versions of the input graph remain in the 
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given minor-closed family. 
For convenience, a few notations are in order. Let 

n and e denote the number of vertices and edges in 
G. Let Ts~(-) and Psc(') denote the t ime and proces- 
sor complexities for computing the strongly connected 
components of a graph in the given minor-closed family. 
Given a digraph H and two sets of vertices A and B, 
let RH(A, B) denote the set of vertices in H that  can 
be reached from A and can reach B through directed 
paths. In particular, RH(H,B)  is the set of vertices 
that  can reach B, and RH(A, H) is the set of vertices 
that can be reached from A. 

The first key idea for divide-and-conquer is captured 
in the next lemma. The lemma describes a crucial step 
for recovering the reachability information encoded in 
small-size subproblems. 

LEMMA 5.1. Let H be a dag. Let t be a vertex in H. 
Let S be a subset of Rn(H, t ) .  I f  H, t, RH(H, t ) ,  and 
S are given, then RH(S,t)  can be found in O(logn + 
T,¢(n)) time using O(n + e + Pse(n, e)) processors. 

Proof. RH(S,t)  can be found in two stages. The 
first stage is to compute a convergent tree T of H that 
is rooted at t and consists of the vertices in RH(H,t).  
The tree T is built as follows. For each vertex u E 
RH(H, t ) -  {t}, choose an edge u --* v in H such that 
v is also in RH(H, t). Because H is a dag, these cho- 
sen edges form a tree with the desired properties. The 
second stage proceeds to identify Rtt(S, t) as follows. 
First identify all tree paths in T between t and S. Then 
contract all these paths into a single vertex. Let H '  de- 
note the resulting graph. Let C'  denote the strongly 
connected component in H '  that  contains S and t. Be- 
cause S and t are contracted into the same vertex in 
H '  and because the contracted vertices are in RH(S, t), 
the component C'  actually consists of RH(S,t).  Be- 
cause the contracted paths are all connected to l, the 
graph H '  is in the given minor-closed family. Con- 
sequently, C '  can be found using the given oracle for 
strongly connected components. As for the complexity, 
it is straightforward to implement the above two stages 
in O(log n+Ts¢(n)) t ime and O(n+e+Psc(n, e)) proces- 
sors using well-known fundamental parallel algorithms. 
rl 

Using the above idea, we can now describe the reduc- 
tion for the single-source single-sink reachability prob- 
lem. The complexity of the reduction is stated in the 
next theorem. 

THEOREM 5.2 (SINGLE-SOURCE 
SINGLE-SINK REACHABILITY). Given two vertices s 
and t in G and a topological ordering for G, the set 
RG(s,t) can be found in O(log 2 n + Tse(n) . logn) time 
using O(n + e + Pse(n)) processors. 

Proof. First, two simplifying assumptions are in or- 
der. Let v x , ' " , v n  be the given topological ordering 

of G. The vertices that  appear before s in the or- 
dering cannot belong to RG(s,t); symmetrically, the 
vertices after t cannot belong to Ra(s, t) .  Thus, the 
following discussion assumes vl = s and vn = t. Be- 
cause the problem is trivial for n less than a small con- 
stant, the discussion further assumes that  n is greater 
than a constant big enough to cover all base cases. 
Under these assumptions, RG(s,t) is computed recur- 
sively in three stages as follows. Stage 1 prepares 
RG(s,t) for recursion. Let Vs = {v l , . . . , v fn /~]} ,  and 
let Vt = {v[n/2l+l , '" ,vn}.  Let ns  (or Ht) be the 
subgraph of G induced by Vs (respectively, Vt). Let 
Cs (or Ct) be the connected component of Hs (respec- 
tively, Ht) that  contains s (respectively, t). Let I be 
the subgraph of G induced by Cs tO Ct. Notice that  
there is no edge in G from Cs to V8 - Cs. Thus, the 
vertices in V8 - Cs can be discarded without affecting 
RG(S, t). Symmetrically, the set Vt - Ct can also be 
discarded. In sum, RG(s,t) = Rt(s , t ) .  Stage 2 breaks 
the problem of computing Rl(s,  t) into two small-size 
subproblems. Let Is (or lt) be the graph constructed 
from 1 by contracting Ct (respectively, Cs) into a sin- 
gle vertex t '  (respectively, s'). Observe that  1 is a dag 
in the given minor-closed family. Furthermore, Ca and 
Ct form a topological segmentation of I, and are each 
connected in I. Therefore, Is and It are dags in the 
given minor-closed family. Also, a topological ordering 
for each of I,  and It can be easily obtained from the 
given ordering of G. Thus, the reduction may recur- 
sively compute R1,(s,t') and Ri,(s',~). The progress 
made by this stage is as follows. Because Cs and Ct 
form a topological segmentation of I, Ri ,(s , t ' )  - {t'} 
consists of the vertices in Cs that  can be reached from 
s and can reach Ct. Symmetrically, R i , ( s ' , t ) -  {s'} 
consists of the vertices in Ct that  can be reached from 
Cs and can reach t. Stage 3 recovers Rl(s , t )  from 
Ri,(s , t ' )  and Ri,(s ' , t )  in O( logn + Tse(n)) time and 
O ( n + e + P s c ( n ) )  processors. Let Ws = {u I u is a 
vertex in Cs such that  there is an edge e = u -* v in I 
with v E R],(s',t).}. Symmetrically, let Wt = {v I v is 
a vertex in Ct such that  there is an edge e = u --* v in I 
with u E RL(s, t ' ) .} .  Let W = RI,(s, Ws)U Rt,(Wt, t) .  
It is straightforward to verify that  Rl(s,  t) = W. As for 
the complexity of this stage, Ws and Wt can be found 
by testing every edge in I between Cs and Ct. The set 
W can be computed using Lemma 5.1. Therefore, the 
total complexity for the third stage is O(log n + Tsc(n)) 
t ime and O(n + e + Psc(n)) processors. I-I 

THEOREM 5.3. For a planar digraph with n ver- 
tices, the single-source single-sink teachability problem 
can be solved in O(log z n) lime using O(n) processors 
on a CRCW PRAM. 

Proof. Notice that  in the proof of Theorem 5.2, 
the strongly connected component oracle is applied 
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only to graphs that  are built from a dag by contract- 
ing a connected subgraph. Thus, from Theorem 2.3, 
T,c(n) = O(log 2 n) and P,c(n, e) = O(n). D 

The second key idea for divide-and-conquer is the no- 
tion of a bottleneck vertex defined as follows. To define 
the notion, let v l , . . ' , v n  be the given topological or- 
dering for G. Let vk be the highest-indexed vertex such 
that  the subgraph induced by {vk, . . . ,  v,} contains a 
connected component with at least n/2 vertices. Let B 
denote this large component. Let A denote the set of 
vertices in G -  B. Let C a , . . . ,  Cp denote the connected 
components in the subgraph induced by B - {vk}. Ob- 
serve that  A, vk, and the Ci's form a topological seg- 
mentation of G, and that  there is an edge from vk to 
every Ci. This observation suggests the following termi- 
nology. The vertex v~ is called the bottleneck vertex, the 
set A the pre-bottleneck subgraph, the components Ci' 
the post-bottleneck components, and the triple (A, vk, B) 
the bottleneck triple. To formulate a general divide-and- 
conquer strategy, let G' be the graph constructed from 
G by contracting B into a single vertex t '. Because B is 
connected, G ~ is in the given minor-closed family. Be- 
cause A and B form a topological segmentation of G, 
the graph G' is acyclic and a topological ordering for G' 
can be easily obtained from the given ordering for G. 
The divide-and-conquer strategy consists of two stages. 
The first stage solves a teachability problem in G' so as 
to find the representatives in B of the sources of A. The 
reachability problem for G' is of a simpler version than 
the version for G. More precisely, the multiple-source 
problem is reduced to the single-source problem, which 
is in turn reduced to the single-source single-sink prob- 
lem. The second stage computes the reachability of A 
and the Ci's independently in parallel. These teacha- 
bility problems are of the same version as that  for G. 
Because [A[ < n/2 and [Ci[ < n/2, these subproblems 
are at most half the size of the original problem for G. 
This half-size property ensures that  the depth of recur- 
sion is at most [log n]. To control other aspects of the 
recursion complexity, the reductions for the teachabil- 
ity problems also satisfy the following three properties. 
First, the total size of graphs induced from G at any re- 
cursion level is at most linear in the size of G; this prop- 
erty is for achieving the desired linear-processor com- 
plexity. Second, the graphs induced from G for recur- 
sion are dags in the given minor-closed family. Third, 
a topological ordering for each of these induced graphs 
can be easily obtained from the given ordering for G. 
For the reduction theorems below, these recursion prop- 
erties can be verified in the same way as in the proof of 
Theorem 5.2, and thus some of the verification details 
are omitted for brevity. 

THEOREM 5.4 (SINGLE-SOURCE REACHABILITY). 
Given a vertex s in G and a topological ordering for 

G, the set Ra(s, G) can be found in O(log a n + T,~(n) . 
log 2 n) time using O(n + e + P,e(n, e)) processors. 

Proof. To compute RG(s, G), first find the bottleneck 
triple by binary search. Then there are three cases: 
s E B - { v k } ,  s = vk, or s E A. In the first two 
cases, the problem can be immediately reduced to half- 
size subproblems. We concentrate the discussion on the 
third case. Case (3): s E A. First find RG,(s,t'); this 
is a single-source single-sink teachability problem and 
can be solved using Theorem 5.2. Then find the the set 
L of vertices in RG,(s,t') -- i t '}  that  can reach B via a 
single edge. There are two subcases based on whether 
or not L can reach v~ via a single edge. Case (3a): 
L can reach vk. Let H be the subgraph of G formed 
by L and B. Let H ~ be the graph constructed from 
H by contracting L U {v~} into a new vertex s'. Then 
Re(s,  G) =- R(s, A) O {vk} U (RH,(S', H') - is '}).  Case 
(3b): L cannot reach vk. Let H be the subgraph of 
G formed by L and B -  {vk}. Let H '  be the graph 
constructed from H by contracting L into a new vertex 
s'. Then RG(S, G) = RA(s,A) (.J (RH,(s',H') - is '}).  
In either subcase, Rg,(s  I, H I) can be broken into small 
pieces, as is RB(S, B) in Case (2). D 

THEOREM 5.5. For a planar digraph with n vertices, 
the single.source teachability problem can be solved in 
O(log4n) time using O(n) processors on a CRCW 
PRAM. 

THEOREM 5.6 (MULTIPLE-SOURCE REACHABIL- 
ITY). Given a set S of vertices in G and a topologi- 
cal ordering for G, the set Re(S,  G) can be found in 
O(log 4 n + T,e(n). log a n) time using O(n + e + Pse(n)) 
processors. 

Proof. Ra(S, G) is computed in two stages. The first 
stage is to compute the set Z of vertices in B - {vk} 
that  can be reached from S f3 (A U {vk}) via a directed 
path in A O {vk } and an edge from A O {vk } to B -  {vk }. 
Intuitively, Z represents the sources of A t9 {vk} to the 
subgraph B - i r k } .  It is easy to compute Z once we have 
computed Ra(S, B). To do this, we first contract B to 
a single vertex t', obtaining G'. We compute Ra,(A, t') 
using a single-sink reachability algorithm. By Lemma 
5.1, we can then compute Ra(S, t '),  which is RG(S, B). 
The second stage is to recursively compute Ra(S, G) = 
RA(S CI A,A) U (S f) {vk}) O RB_{~k}((Z U S) t~ (B - 
{vk}), B - {vk}). The first stage is more complicated 
than it would ideally be. The complication is due to the 
following subtle difficulty: because B - {vk} may not 
be connected, the set cannot be directly contracted to 
simplify G without possibly destroying the membership 
of G in the given minor-closed family. I1 

THEOREM 5.7. For a planar digraph with n vertices, 
the multiple-source teachability problem can be solved 
in O(log 5 n) time using O(n) processors on a CRCW 
PRAM. 
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6. Descenden t  count ing .  In this section, we 
give a linear-processor NC algorithm for planar descen- 
dant counting. The algorithm makes use of the two- 
path separator in Theorem 2.5 and builds upon the 
single-source reachability algorithm in ~5. To precisely 
state the result, a few definitions are in order. A digraph 
is rooted at a vertex if that vertex can reach every other 
vertex via directed paths. Let G be a rooted planar 
dag. Let w(.) be an assignment of weights to the ver- 
tices of G. The descendant counting problem for G is to 
compute for each vertex v, the sum a(v) of the weights 
assigned to the descendents of v. A prototypical ap- 
plication of the algorithm is to count the descendents 
of each vertex, where all weights are 1. The algorithm 
can also compute a(v) in any commutative semigroup 
as long as binary addition takes constant time. 

THEOREM 6.1. Let n denote the number of vertices 
in G. The descendant counting problem for G can be 
solved in O(log 6 n) time using O(n) processors on a 
CRCW PRAM. 

To prove the theorem, we detail the descendant 
counting algorithm in the following subsections. In §6.1, 
we discuss an easier counting problem. Given a directed 
path P = vl, • •., vk in G, the path subproblem is to com- 
pute the sum ~(v) only for each vertex v in the path P. 
In §6.2, the solution to the path subproblem is used to 
solve the original problem. For ease of understanding, 
we describe a recursive algorithm for the descendant 
counting problem without addressing the issue of time 
and processor efficiency. In §6.3, we explain how to 
implement this basic algorithm so that the depth of re- 
~:ursion is polylog in the size of G. The key to ensuring 
such a small recursion depth is the use of the two-path 
separator given in Theorem 2.5. In §6.4, we modify 
the basic algorithm so that the processor complexity is 
linear in the size of G. 

6.1. The  p a t h  subproblem.  The path subprob- 
lem has the following simple solution. 
P1 For each vertex vi, determine the set R(vi) of de- 

scendents of v that are not descendents of vi's suc- 
cessor V i +  1 . 

1'2 For each 1 < i < k, let f (v i )  be the sum of weights 
of vertices in R(vi). 

P3 For each 1 < i < k, compute tr(vi) -- )"~=i f (v j ) .  
The set R(vi) computed in step P1 is a variant of the 
dangling subgraph defined for directed depth-first search 
[2]. To compute these subgraphs, we use a divide-and- 
conquer technique. If P contains only one vertex, we 
can solve the problem directly. Otherwise, first deter- 
nfine the set A of descendents of v[k/2] as a single-source 
reachability problem. Then recurse in parallel on two 
subproblems, one for the subgraph A and the subpath 
vrk/2], • • ", vk, and the other for the subgraph G - A  and 
the subpath vl , . . . ,v[k/2]_l .  Once step P1 has been 

carried out, step P2 is easy because the sets R(vi)'s are 
disjoint. Step P3 can then be implemented using paral- 
lel prefix computation. This completes the description 
of our solution to the path subproblem. 

LEMMA 6.2. The path subproblem can be solved 
in O(log s n) lime using O(n) processors on a CRCW 
PRAM. 

6.2. A basic a lgor i thm.  Now we use the solution 
to the path subproblem in our recursive solution to the 
original problem. At each level of recursion, we are 
given a vertex-weighted graph G in which some of the 
vertices v have already been assigned labels a(v); our 
task is then to assign labels to the remaining vertices of 
G. We proceed as follows. 
D1 Find a directed path P = v l , . . . , vk  in G. 
D2 For each . . . ,  compute ~r(vi). This step can be car- 

ried out using the procedure for the path subprob- 
lem. Now the vertices of P are all labelled. 

D3 Identify the connected components Cq of G - P 
that contain unlabelled vertices. 

D4 For each component Cq in parallel, 
D5 let Gq be the subgraph of G induced by Cq U P; 
D6 for 1 < i < k, let fq(vi) be the sum of weights 

of proper descendents of vi in Gq that are not 
descendents of vi+l. 

D7 For each component Cq, for 1 < i < k, assign a 
new weight to the vertex vi, 

wq(v,) : =  w(vi) + ~ fq,(vi) 
¥#q 

where the sum is over indices q' of components 
different from Cq. The weight wq(vi) is w(vi) 
plus the sum of weights of descendents of vi that 
lie in components other than Cq and are not 
reachable from vi+l. Weights wq(v) for vertices 
not in P are the same as the previous weights 
w(v). 

D8 Recurse on each Gq with weights wq(.). 
The correctness of the procedure is straightforward 

to verify. Let us focus on a particular subgraph Gq. 
When components Cq, are stripped away from G leaving 
only the graph Gq, they leave their mark in the form 
of updated weights on the boundary P. These new 
weights ensure that the sum of weights of descendents 
of each vertex v E Cq in the graph Gq is the same as in 
the graph G. 

Now we consider implementation. Steps D2 and D6 
can be executed using the techniques of the path sub- 
problem, and step D3 can be done using any undirected 
components algorithm [36]. 

6.3. L imi t ing  the  recurs lon  dep th .  The key to 
the algorithm's efficiency is a careful choice of the path 
P in step D1. At the top level, before commencing the 
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recursion, we choose a divergent directed tree Do of the 
initial graph Go. We will maintain the invariant that, 
at every level of recursion, for each subgraph G being 
recursed on, the subgraph D0[G] induced by G is in fact 
itself a directed tree with the same root as Do. We call 
this the directed tree invariant. 

Given a tree T and a vertex u, let Pu(Tree) denote 
the root-to-u path in the tree. At each level ofrecursion, 
we choose as our path P of step D1 a root-to-vertex path 
Pu(Do[G]) of the induced directed tree D0[G]. Consider 
the resulting subgraphs Gq = G[Cq U P] obtained in 
step D5. The directed tree invariant states that the 
subgraph Do[Gq] of D0 induced on each subgraph is 
itself a directed tree. To prove this invariant, let v be 
any vertex of Gq; we claim that the parent of v is also 
in G~. If the parent of v is in P,  certainly the parent 
is in Gq, for Gq contains P. Otherwise, the parent is a 
vertex of G - P  that is adjacent to v, and hence a vertex 
in the same component Cq as v. But Cq is contained in 
Gq, so the claim is proven. 

We choose the root-to-vertex path in a way that en- 
sures logarithmic depth of recursion. Recall from The- 
orem 2.5 that we can choose a pair u, v of vertices such 
that each component of G - Pu(Do[G]) - P~(Do[G]) is 
small in that it contains at most two-thirds of the un- 
labelled vertices of G. Having found such a pair u, v 
of vertices, we let Pu(Do[G]) be the path P of step D1. 
Since the tree D0[G] is directed, the path P is a directed 
path. Consequently, every subgraph Gq of step D5 is 
small except possibly the one containing v. For that 
one large subgraph Gq, at the next level of recursion, 
we use the path P,(Do[G]) as P in step D1. Conse- 
quently, every resulting subgraph of step D5 is small 
relative to G. This strategy ensures that the recursion 
depth is at most 2 loga/2 ]Go[. 

6.4. L imi t ing  t h e  p roce s so r  coun t .  It remains 
to ensure that, at every level of recursion, the sum of 
the sizes of all subgraphs being recursed on is linear in 
the size of the original graph. Unfortunately, that is not 
true of the algorithm as it stands; we must make a slight 
modification. The difficulty is that in constructing the 
graphs Gq = G[Cq U P] from the components Cq, we 
duplicate each vertex of P many times, once for each 
component Cq. The fix for this difficulty is to duplicate 
a vertex vi of P only for components from which arcs 
enter vi. This modification allows fis to charge each 
duplication of vi to one of its incoming edges. In the 
remainder of this section, we outline this approach in 
greater detail. 

Conceptually, the algorithm proceeds as follows. Im- 
mediately before the recursion step, the algorithm ob- 
tains a contracted version G~ from Gq by contracting 
edges (vi,vi+x) of P where the child vi+l has no in- 
coming edge from Cq, and adding the weights of the 

identified vertices. Let Pq be the resulting contracted 
version of P in Gq. This modification to the graph and 
the weights does not change the sum of weights of de- 
scendents of a vertex v E Cq, as we now show. If the 
child vi+t was reachable from v in Gq, then the parent 
vi was also reachable from v, because in Gq the only 
arc entering vi+l comes from vi. Hence identifying vi+l 
with vl and adding the weight of vi+l to that of vi does 
not change the sum of weights of descendents of v. 

Because of the edge contractions in the modified al- 
gorithm, we must modify the directed tree invariant. 
We still maintain a convergent directed tree D for G, 
but to do so we must contract edges of the directed 
corresponding to edge contractions in G. 

We will presently describe how to efficiently imple- 
ment the modified algorithm, but first we show that 
the modified algorithm achieves the desired goal: at 
each level of recursion, the sum of the sizes of all the 
graphs being recursed on is linear in the size of the orig- 
inal graph Go. The argument has four parts. First 
we observe that the nontree edges of Go are parti- 
tioned among the various graphs being recursed on at 
a given level of recursion. This holds inductively be- 
cause when the graph is decomposed into subgraphs, 
then only edges that could lie in several subgraphs are 
the edges of P,  which are tree-edges. Hence the number 
of nontree edges overall is at most the number of nontree 
edges in Go. Second, we infer that the number of du- 
plicates of an original nonroot node v E Go is bounded 
by the number of incoming nontree edges. This follows 
inductively from the modification of the algorithm: a 
nonroot node vi E P appears in a subgraph G~ only if 

I Gq contains a nontree edge entering vi. Hence the total 
number of nonroot nodes overall is at most the number 
of nodes in Go, plus the number of nontree edges in Go. 
Third, we observe that there is at most one tree edge 
per duplicated nonroot node. Hence the number of tree 
edges overall is at most the number of nodes in Go plus 
the number of nontree edges in Go. Fourth, we note 
that the number of duplicates of the root node at any 
level of recursion is bounded by the number of distinct 
subgraphs being recursed on at that level. In each such 
subgraph, there is at least one node that has not yet 
been labelled by tr, else there is no need to recurse on 
that subgraph. Such a node has never been duplicated. 
Thus the number of duplicates of the root is at most 
the number of original nodes of G0. It follows, finally, 
that the total size of all subgraphs being recursed on at 
a given level is within a constant factor of the size of 
the original graph Go. 

It remains to describe how to efficiently implement 
the modified algorithm. Once the components Cq have 
been identified, there are two tasks to perform before 
the recursions may commence. (1) The algorithm must 
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construct for each component C a the contracted path 
Pq in which every node has an incoming edge from Cq. 
This task can be done using sorting and simple graph 
manipulations in O(log n) time using one processor per 
edge incident to the path P. (2) The algorithm must 
compute the new weights for nodes of Pq. We omit 
details; the key is the following well-known lemma. 

LEMMA 6.3 (FOLKLORE). One can process a se- 
quence A1,. . . ,Ak of values in O(logk) time using k 
processors so that subsequently, a single processor can 
in O(logk) time obtain the sum Ai + Ai+I + - - . +  A i of 
any subsequence. 

7. D e p t h - f i r s t  search .  In the following discus- 
sion, we combine all the techniques we have developed 
up to now to give a linear-processor NC algorithm for 
depth-first search in planar directed graphs. The dis- 
cussion is divided into three parts. First, we review 
the notion of directed separators defined by Kao [17]. 
The notion plays a crucial role in the NC algorithms for 
directed depth-first search [17], [2]. Next, we reformu- 
late the key reduction theorems for depth-first search 
by Kao [17] and by Aggarwal, Anderson, and Kao [2]. 
Finally, we show that  the techniques in the previous sec- 
tions suffice to implement the depth-first search reduc- 
tions in polylog time using linear processors for planar 
directed graphs. 

Intuitively, a separator of a graph is a subgraph whose 
removal disconnects the graph into small pieces. This 
section follows the directed separator definition given 
by Kao [17]: a separator of an n-vertex directed graph 
G is a set of vertices S such that  the largest strongly 
connected component in G - S contains at most a • n 
vertices for some constant a between zero and one. A 
:lirected path separator is a vertex-simple directed path 
whose vertices form a separator; a directed multipath 
separator is a set of vertex-disjoint vertex-simple di- 
.retted paths whose vertices form a separator; a directed 
cycle separator is a vertex-simple directed cycle whose 
vertices form a separator. A single vertex is considered 
a cycle of length zero; thus, if the removal of a vertex 
separates a graph, the vertex is a cycle separator. For 
~ = 1/2, Kao has shown that  every directed graph has 
a directed path separator and a directed cycle separa- 
tor, and that  these separators can be found efficiently 
in sequential and parallel computation [17]. 

The next two theorems rephrase related results from 
the papers on directed depth-first search by Kao [17] 
and by Aggarwal, Anderson, and Kao [17]. Both the- 
orems apply to any given minor-closed family of di- 
graphs. For notational brevity, we employ the fol- 
lowing abbreviations. Let scc, dst, ssssr, ssr, msr, 
dc, and dcs stand for, respectively, strongly connected 
components, directed spanning trees in strongly con- 
nected graphs, single-source single-sink reachability, 

single-source reachability, multiple-source reachability, 
descendant counting for rooted digraphs, and directed 
cycle separators for strongly connected digraphs. In 
general, the abbreviations are composed of the first ini- 
tials of the terms. For each abbreviation x, let T,(n)  
and P,(n) denote the time and processor complexities 
of the corresponding problem for an input graph with 
n edges and vertices. 

Let T,~er(n) = (2. flog n] + 3). (T,~c(n) + Td, t(n)). 
Let Pm,r(n) = P,~¢(n) + Pa, t(n). 
THEOREM 7.1. Let G be a digraph of size n. Let 

Q be a multipath separator of G with k disjoint paths. 
Given G and Q, a directed cycle separator for G can be 
found in k .  Truer(n) lime using Pmer(n) processors. 

Proof. The proof directly follows that  of Theorem 3 
and the discussion in §2.2 in [17]; a more detailed expo- 
sition of the same discussion is in §4.2 in [2]. Tm,~(n) 
and Pn~e~(n) are the time and processor complexities of 
merging the two ends of a path or merging two ends 
from two paths. 1"i 

Let Tda,(n) --- T, ce(n)q-Td¢(n)+T4¢,(n)+T,,,,r(n)q- 
Ta, t(n) + logn .  T,,r(n).  

Let P~,,n(n) = P,¢c(n)+Pdc(n)+P,c, (n )+P, , , , , (n )+ 
Pd,,(n) + P,,,(n). 

THEOREM 7.2. [,el G be a digraph of size n. Then 
the depth-first search problem for G can be solved in 
flog n] "Tm,, (n)+ flog n] 2.Tdan (n) time using Pmsr(n)+ 
Prin,(n) processors. 

Proof. The proof directly follows that of Theo- 
rem 3.3 in [2]. In the complexity estimate, the terms 
[ l o g n ] .  Tm,~(n) and Pm,~(n) account for breaking 
G with several starting vertices into several rooted 
digraphs each with one starting vertex. The terms 
Tdan(n) and Pa~,(n) account for using a cycle sepa- 
rator to break a rooted digraph into several rooted sub- 
graphs. The term flog n] ~ accounts for the fact that 
the breakup process is iterated at most flog n] ~ times. 
r] 

We now prove the main results of this section. 
THEOREM 7.3. For a strongly connected planar di- 

graph with n vertices, a directed cycle separator can 
be found in O(log 4n) time using O(n) processors on 
a CRCW PRAM. 

Proof. Let G denote the given graph. A directed cycle 
separator for G is constructed in three steps as follows. 
Step 1 uses Theorem 2.4 to compute a directed spanning 
tree T for G. Step 2 uses Theorem 2.5 to compute from 
T a two-path undirected separator for G. Notice that 
because T is a directed tree, this two-path undirected 
separator is also a two-path directed separator. Step 
3 uses Theorem 7.1 to convert the two-path separator 
into a directed cycle separator. The total complexity of 
these steps follows the estimates in Theorems 2.4, 2.5, 
7.1, and 2.2. [3 
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THEOREM 7.4. For a planar digraph with n vertices, 
the depth-first  search problem can be solved in O(log s n) 
t ime  using O ( n )  processors on a C R C W  P R A M .  

Proof. The  proof  follows Theorems  7.2, 5.7, 2.2, 6.1, 
7.3, 5.3, 2.4, and  5.5. The  mos t  expensive subrou t ine  is 
the descendant  coun t ing  a lgor i thm,  rl 
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