
A Shared, Segmented Memory System for
an Object-Oriented Database
MARK F. HORNICK and STANLEY 6. ZDONIK
Brown University

This paper describes the basic data model of an object-oriented database and the basic architecture
of the system implementing it. In particular, a secondary storage segmentation scheme and a
transaction-processing scheme are discussed. The segmentation scheme allows for arbitrary clustering
of objects, including duplicates. The transaction scheme allows for many different sharing protocols
ranging from those that enforce serializability to those that are nonserializable and require commu-
nication with the server only on demand. The interaction of these two features is described such that
segment-level transfer and object-level locking is achieved.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-
abstract data types; data types and structures; modules and packages; D.4.2 [Operating Systems]:
Storage Management-segmentation; uirtual memory; H.2.2 [Database Management]: Physical
Design-deadlock avoidance; H.2.4 [Database Management]: Systems-distrihted systems;
transaction processing; H.3.2 [Information Storage and Retrieval]: Information Storage--file
organization; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval-
clustering, retrieval models

General Terms: Design, Experimentation, Languages, Performance

Additional Key Words and Phrases: Asynchronous communication, CAD transaction processing,
data models, locking, object clustering, object-oriented databases, object server

1. INTRODUCTION

Modern workstation technology has made possible a new set of applications.
These applications can be characterized as interactive and design based. The
basic model is of a worker designing artifacts by using a set of intelligent tools.
The artifacts will vary depending on the application, but the common activity
seems to be design. Examples of these design environments are electronic and
mechanical computer-aided design (CAD) programming environments and office
information systems. For the latter, the office worker designs reports, graphics,
slide presentations, and decision models.

This research was supported in part by the National Science Foundation under grant DCR 8605597,
by the International Business Machines Corporation under contract 55917 and amendment contract
643513, by the Office of Naval Research under contract N00014-86-K-0621, and by DARPA under
ONR contract N00014-83-K-0146, ARPA order 4786.
Authors’ address: Brown University, Department of Computer Science, Providence, R.I. 02912.
M. Hornick: mfh%cs.brown.edu; S. Zdonik, sbz%cs.brown.edu
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0734-2047/87/0100-0070 $00.75

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987, Pages 70-95.

A Shared, Segmented Memory System 71

In order to support the complex software tools that are needed in these
environments, we need a powerful support platform. This platform must be
capable of providing the glue that makes these applications function as an
integrated unit. Database systems have been successful at providing this service
for data processing applications. We strive to achieve the same goals for the
domain of interactive design.

We believe that object-oriented databases are a step in this direction. They
provide more flexible modeling tools than traditional database systems. They
also incorporate some of the software engineering methodologies, such as data
abstraction, that have proved to be effective in the design of large-scale software
systems.

This paper describes one such system. It further raises a series of issues that
must be addressed in building an object-oriented database. It sketches the
solutions with which we are currently experimenting and focuses on the imple-
mentation of a sophisticated segmenting or data clustering scheme that we are
using to achieve acceptable performance.

2. THE DATABASE MODEL

The database system that forms the basis for this work supports an object-
oriented model of data [25]. It is in the tradition of much of the work on high-
level semantic models [2, 3, 7, 12, 16, 201, but it takes a view of data that is very
closely aligned with many of the object-oriented programming languages
[l, 6, lo]. It illustrates a new direction in database research characterized as
object-oriented databases [4, 5, 8, 9, 14, 221.

In the ENCORE database system [25], all objects are instances of some type
that describes the behavior of its instances. A type T is a specification of behavior.
As such, it describes a set of operations 0, a set of properties P, and a set of
constraints C that pertain to any of the instances of T. Intuitively, an operation
is a program that is used to access or manipulate objects of the given type, a
property relates objects of the given type to other objects in the database, and a
constraint is a predicate that is used to restrict the legal states of objects. If x is
an instance of T, any operation o in 0 can legally be applied to X, any property p
in P is defined for x, and any constraint c in C must be satisfied for x. Types,
operations, and properties are all objects in their own right and as such have a
type that describes their behavior.

Types can be related to each other by means of a special property called IS-A.
The IS-A property induces an inheritance relationship between types. If A IS-A
B, then all operations, properties, and constraints that are defined on B will also
be defined on A. In this case we say that A is a subtype of B and that B is a
supertype of A. The system supports the ability for a type to have more than one
supertype (i.e., multiple inheritance). It is possible for a subtype to redefine an
operation or a property that is defined on its supertype. In this case, an instance
of the subtype will not inherit that operation or property from its supertype.

Operations are active objects that are supported by code. Operation types
correspond to a procedure definition, whereas instances of operation types
correspond to procedure activations. All operation types have an invoke operation
defined for them such that it is possible to invoke an operation defined on type

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 198’7.

72 - M. F. Hornick and S. B. Zdonik

T on any object of type T. Operations are associated with a type. Each type
defines a set of operation types that can be instantiated and invoked on its
instances. A subtype may add operation types that are not defined on its supertype
or may refine some of the operations that are defined on its supertype.

Operation refinement, as defined here, is distinguished from operation replace-
ment, as in Smalltalk. In Smalltalk, a subtype method with the same name as a
supertype method blocks the supertype method, thereby replacing it with the
subtype method. In our system a subtype may provide an operation type that
will substitute for an operation type that is defined on a supertype. Here, however,
that operation type must be a subtype of the operation type that is being blocked
in the supertype. The name of the refinement need not be the same as the
operation type that it is refining. If the supertype A defines an operation f and
the subtype B defines an operation g that is a subtype off, an invocation off on
an instance of B will actually use the operation g.

Properties are objects that are used to relate other objects [23]. For example,
a property called works-for might be defined on the type Person. Works-for would
relate a given person to the company object for which he or she works. As a first-
class object, it is possible for properties to have properties. A common constraint
on property types limits the acceptable values for the property. We will call the
set of all legal values for a propertyp its value class. Since properties are objects,
there is a type called Property that describes how properties behave. There can
be subtypes of this type, such as Single-valued-properties and Multivalued-
properties. The first subtype restricts the value of the property to be a single
entity, whereas the second allows a property value to be a set.

A subtype may refine a property that is defined by a supertype [23]. Just as in
the case of operations, the property type that is defined on the subtype must be
a subtype of the property type defined on the supertype.

Object-oriented databases are intended to support the development of large
and complex applications. We believe that a strong view of encapsulation is
essential for programming in the large. Each type has an implementation that is
hidden. The implementation of a type includes a representation for instances
and code that implements the operations and properties. Code outside of this
type definition cannot access the representation of this type. Type definitions
may only use the exported interface of other types. This includes a type and its
subtypes. No subtype can make use of the implementation of any of its supertypes,
and no supertype can make use of the implementation of any of its subtypes.
A subtype may only interact with a supertype through the exported interface,
just like any other type.

The concepts described above make up the kernel of the object-oriented
database model. We view these as a minimal set of facilities for a database system
of this kind. In addition to the kernel, we provide a set of facilities that are, in
general, useful for design-oriented applications. These additional facilities are
built out of the kernel facilities. The following paragraphs sketch a few of the
additional facilities.

The ability to deal with change is one of the foremost requirements of any
system that supports design activities. Change can occur at both the type level
and the instance level. In order to deal with change at the instance level, we
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System 73

introduce a version control mechanism [24]. This mechanism introduces two
new types, History-Bearing-Entity (HBE) and Version-Set. HBE defines a set of
properties that includes next-version and previous-version, which are used to
express the appropriate temporal relationships between object versions. The
next-version property can be multivalued, thereby allowing a given version object
to have multiple successors. We call any version that is the value of a next-
version property with cardinality greater than 1 an alternative. Any other type T
can be defined to be a subtype of HBE (as well as any other logically related
types), thereby giving instances of T the ability to record versions. Version-Set
is a type that is used to collect all of the versions of an individual. It has an insert
operation that can only add new versions at specific points in the version history.
New versions can only be added at the end of a version sequence or as an
alternative to an existing version.

The user-level transaction mechanism that is built on top of the kernel makes
use of the version control mechanism. A transaction can add a new version to
each of a set of version sets (i.e., its write set). This set of changes is called a
slice, and only slices can be undone. The slice corresponds to a single atomic
action, and undoing it corresponds to nullifying the effect of that transaction.

Since types are objects, we can use the version mechanism described above to
keep track of changes to types. Each object retains its connection to the original
version of the type under which it was created. If one needs to treat an object
that is an instance of an old version of a type as if it were an instance of a newer
version of that type, we use an exception-handling scheme [17, 181 to facilitate
this operation. This scheme works equally well for the case in which we want to
treat an object that is an instance of a new version of a type as if it were an
instance of an older version of that type. We do not directly support the
conversion of instances of old types to conform to new-type definitions. This
process can cause old programs to stop working, is often very expensive, and, in
some cases, loses information.

An object-oriented database needs to be able to model composite objects, that
is, objects that are made up of other objects. In our view, there is a special
property called part-of that is used to express this relationship. Part-of is a
subtype of the type Property. The part-of property has special semantics. It is
used by some operations to perform an action on an object and all of its pieces.
An example of this is locking a whole object (e.g., a report) for update. This type
of lock would first lock the high-level report object and then lock all other objects
that are in the transitive closure of the part-of property. It is also used in the
context of version sets to support version percolation [24].

It is important to realize that the model of data described above is part of a
database system. As such, it governs the way in which persistent, sharable objects
behave. Our system also addresses database notions of transaction, consistency,
associative retrieval, and views.

It is also important to point out that in traditional data models there is always
some fairly high level of abstraction below which programmers cannot have
access. For example, with relational systems it is typically not possible to
reprogram the basic file structures that are used to implement relations. In our
view, an object-oriented database system should allow users to program at

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

74 l M. F. Hornick and S. 6. Zdonik

whatever level best suits their needs. Everything is represented by types, and all
types exist at the same level. Levels of abstraction will certainly be encouraged,
and, in fact, the system provides several very high-level abstractions such as
version sets. However, the very lowest level types, like the type byte-string, are
available to programmers to build their own abstract types as needed. This does
not, however, mean that data abstractions can be compromised. This is critical
in an environment like CAD where performance is key. Programmers have the
choice of using the system-provided higher level abstraction, or, for cases in
which the performance of these types is not adequate, they may choose to create
structures that fit their application more closely.

3. THE ARCHITECTURE

The main focus of this paper is on the storage management aspects of an efficient
object-oriented database. To achieve a better understanding of some of our
choices, we also describe how the storage management function fits into
our overall architecture. The rest of this section describes the main system
modules and the way in which objects are mapped through the various levels
of abstraction.

3.1 The Module Structure

The database system is decomposed into two distinct subsystems. One subsystem
is a typeless backend that is responsible for managing the use of the persistent
object store, and the other piece is responsible for the enforcement of the type
system.

The OBject SERVER, known as Observer, reads and writes chunks of memory
from secondary storage. These chunks are used by the higher level module to
store the state of objects. Observer also has a primitive notion of transactions,
which includes a subset of Moss’s nested transactions [ll]. Through the trans-
action mechanism, it is possible to lock and unlock objects to ensure an appro-
priate level of noninterference. The transaction mechansim can be used in a way
that provides for resilient storage in that if it is used properly, it will not allow
the changes of an aborted or crashed transaction to be permanently installed in
the database.

The transaction scheme makes it possible to support a variety of shared
memory applications. The server is currently being used at Brown University for
two distinct purposes, the backend of an object-oriented database system and the
storage system for an object-oriented, interactive programming environment.
Other examples of systems that could be implemented on top of our server include
mail or blackboard systems.

The type level is normally referred to as ENCORE (Extensible and Natural
Common Object REsource). It is this level that deals with the semantics of
objects through type definitions. This higher level module supports the type
system that was described earlier as the ENCORE data model. It should be noted
that Observer can support other type systems as well. For example, the GARDEN
programming environment defines its own type system, yet it uses the facilities
of Observer to store its persistent objects.
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System l 75

The type level communicates with the server through the UNIX’ remote
procedure call (RPC) mechanism. The communication channel is asynchronous
in the sense that ENCORE (or any application process) sends messages to
Observer requesting services and does not wait for Observer to reply.
When Observer replies, ENCORE may or may not choose to service the reply
message.

A client sends a request to the server and is not suspended while the server
processes the request. At a future time, the client takes reply messages from its
message queue. Reply messages may be delivered soon after a request has been
made or after some delay. For example, lock requests may be granted immediately,
or they may wait in a queue and be granted or denied later. Similarly, messages
for a client regarding changes in objects on which the client holds notify locks
arrive periodically from the server.

3.2 Server Overview

The server is a resource for any application system that needs to manage chunks
of memory allocated in a shared memory space. Here, a chunk is any contiguous
string of bytes. The server must allocate space and a Unique IDentifier (UID)
for each chunk that it stores. The UID is similar to a laundry ticket that is
given out when the object is stored and that guarantees delivery of the same
object when the UID is presented to the server. One of the principal func-
tions of the server is to maintain the correspondence between UIDs and chunks
of memory.

The setting for our system is a network of workstations (i.e., nodes), each
running independent processes. We have adopted a model in which a server and
its data reside on a single node. It is possible for processes on other nodes to
access this server. Concurrent access to the shared memory is accomplished by
means of UNIX remote procedure calls to possibly remote UNIX processes. The
server also supports transaction processing in a manner that is flexible enough
to handle long, interactive transactions, as well as the more traditional type. The
nested transaction processing facility supports atomicity and recovery and dead-
lock detection. Our approach to locking has several novel features that are
discussed in a later section.

Each process that wants to communicate with the server must bind a module
called the client into its image. It is, therefore, possible for the client and the
server to reside on different machines. When a process needs to request a service
from the server, it makes a call on the client code that hides the details of the
RPC interface. The ENCORE module uses the object server as a backend. It
makes calls directly on its own copy of the client module. Notice that if there are
two different processes on two different machines using the ENCORE database,
separate copies of ENCORE must reside on each machine (see Figure 1). As will
be seen (in a future section), we can achieve some performance enhancement by
making the client an intelligent partner in the communication. It can often make
certain decisions locally, thereby minimizing the amount of communication.

’ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

76 l M. F. Hornick and S. B. Zdonik

3.3 ENCORE

/
Process1

Fig. 1.

Overview

Process2

The basic module structure.

The chunks of memory that are managed by the server can be used to implement
type objects as presented by the ENCORE interface. In an object-oriented
database the type lattice introduces the problem of an object’s being an instance
of more than one type. If we have the type Toyota as a subtype of the type Car,
then an instance x of the type Toyota is also an instance of the type Car. Since
our system enforces a strong notion of data abstraction, there will be a chunk
of storage that represents the part of x that is an instance of Toyota, and a chunk
of storage that represents the part of x that is an instance of Car. We use the
term instance to refer to each chunk and the term object to refer to the aggregate
of all instances that make up X.

The system deals with object creation and modification in a way that is
designed to optimize its interaction with the file system and the RPC facility.
The reading and writing of objects is done on a block basis. That is, the application
may request that an aggregate of UIDs be read or that a collection of objects be
written in a single interaction with the server. This generates only one IPC
transfer and also allows the server to optimize the way in which it interacts with
the file system. Upon object creation, UID allocation is separated from storage
allocation. This allows an application to request UIDs in anticipation of their
use without reserving space for them in the file. Space is not allocated until
objects are actually written.

3.4 Multiple Databases

In order to allow multiple databases to be accessed, we have adopted a scheme
by which a separate binder process provides a client with a connection to the
desired database. The interaction between the client, binder, and server allows
both the creation of new databases and a connection to existing databases.

Each database that is being accessed will have a separate server process that
mediates its requests. When a client wants to access a database, it issues a
request to the binder. The binder returns enough information for the client to
connect to the appropriate server. All further requests from the client will
subsequently go directly to that server. The requests to a given server can come
from any of several clients that are possibly on different machines.
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System l 77

3.5 Transaction Management

The transaction-processing facilities of the system were designed for transactions
that are potentially long, interactive processes controlled by a user who is sitting
at a workstation. Conventional transaction-processing schemes are designed for
relatively short transactions that are implemented by a program. For this reason,
we have made choices that are different from what one might expect of a database
transaction facility. Our general philosophy is to provide the proper level of
primitives so that applications built on top of our system can present the
transaction mechanism that best suits their environment. For example, using
our system it is possible to build a set of transactions that are serializable. It is
also possible to use the primitives in a way that does not make such a strong
guarantee about the results of a set of concurrent transactions.

A later section of this paper focuses on the transaction-processing capabilities
provided by Observer. ENCORE can make use of these primitives to construct
transaction mechanisms of its own. We would model ENCORE transactions as
instances of a type called Transaction. The type Operation would be a subtype of
Transaction. We have not included definitions for the Transaction type in the
current ENCORE kernel. If this type were to be built, it would make use of the
Observer facilities and may choose to let some or all of the transaction facilities
show through.

3.6 Storage Mapping

ENCORE deals with abstract objects that are instances of types. These types
participate in inheritance relationships and allow for the implementation of an
object to be distributed across several type definitions. How are these levels of
abstraction mapped onto the basic storage structures provided by Observer?

At the type level, every object might consist of several instances, one for each
type in which it participates. For example, if Toyota is a subtype of Car, Car is a
subtype of Vehicle, and Vehicle is a subtype of Object, then a given Toyota will
be an instance of all four types. Since each type has its own private representation,
as required by our abstract data type scheme, the Toyota object would need four
chunks of storage for its representation. Each of these chunks would be accessible
through the operations of the corresponding type.

We must next ask how these chunks (i.e., one for each instance) are held
together. A single UID is associated with each object. When a UID is dereferenced,
it leads to a header block for that object. Conceptually, the header is a part of
the chunk for the instance of type Object that every object must have. The header
for object x contains some general bookkeeping information, as well as a set of
pairs of the form (t, p), where t is a pointer to a type object, andp is a pointer to
the beginning of the chunk that holds the representation for the instance of t
that is a part of x.

Most often, these chunks are allocated contiguously such that the pointer p is
the offset into that contiguous storage at which the chunk for t begins. In this
case there would be a single UID for the large chunk that contains the instance
chunks. This UID is the one that is used by ENCORE to represent object
identity.

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

78 l M. F. Hornick and S. B. Zdonik

It is also possible for the chunks to be noncontiguous. Since p can be a UID,
the chunks can be stored in any physical location. This allows for a vertical
partitioning scheme in which instances of different types for the same object can
be stored in different storage areas. The decision to perform this type of parti-
tioning would depend on the access patterns for objects of the given type.

Every chunk that is stored by Observer has an Observer-level UID. Only some
of these are exported by the ENCORE interface to application programs as object
surrogates. If one of the internal pointers that binds together the type instances
for an object is a UID, then this UID is never available to be passed to application
programs. It is useful to allow Observer to find the chunk, but since it does not
represent a whole object, it has no semantic meaning at the ENCORE level.

Once we have an object decomposed into its proper storage pattern such that
the chunk or chunks contain all of the necessary instance blocks, we can use
Observer to store those chunks with the appropriate UIDs. Notice that, if all the
instances are stored contiguously, there is only one chunk to store, and the UID
of the instance of Object is used.

4. SEGMENTS

In an environment in which many objects must be frequently accessed, efficiency
becomes a principle design criterion. One approach to improving performance in
a database involves clustering groups of related objects on the disk. The segment
provides this facility. A segment contains objects that the object-oriented data-
base management system expects a client to access during a transaction, thus
eliminating frequent diskhead motion and single object transfers. Thus a segment
clusters a logically related set of objects into a variable-sized single package.
Since we expect a client to access other objects in a transferred segment, greater
system performance results from preloading required objects. A segment is the
unit of transfer for objects between client and server and from secondary storage
to main memory.

Segment objects are only read or modified through the segment operators:
install, find, update, delete. Find, update, and delete have the conventional
meaning. Installing an object refers to inserting an object into a segment.
Migrating an object involves deleting an object from one segment and installing
it into another.

Once a client receives a segment, the objects are individually placed in an
object hash table and the segment is freed. The client has no further use for the
segment structure once it has acquired its objects. Part of the gain in performance
involves the placement of objects on disk. Storing a segment’s objects contig-
uously on disk allows faster disk access, since the segment may be read into main
memory without random diskhead movement. Since the UNIX file system does
not guarantee contiguous storage of segments, Observer employs its own file
mechanism.

The server receives a set of object changes from the client containing a client’s
operations (install, update, delete) and other information necessary (e.g., the
object) to install the changes in the server’s copy of the segment. By returning
only the final changes to the server in one package, we minimize the amount of
network traffic and reduce server processing. If changes are transmitted individ-
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System 79

ually, the server not only installs the changes but must access the communication
network for each change. It may seem that the entire segment should be sent to
the server, thereby eliminating having the server install client changes into the
server’s segments. Since we wish to allow many clients to use copies of the same
segment, the server would then have to merge the returned segments, which is a
much more costly operation. As a result, our segment becomes a unidirectional
unit of transfer, in the direction of the client, for reducing communication from
the client to the server when objects are requested.

It is useful for a client to create different segment groupings or contexts in
which to work. This allows individual segment sizes to remain small and at the
same time define larger working sets above the level of transfer. To allow clients
to retrieve different sets of related segments, we introduce the segment group
(SG). To reference an SG, a unique name is assigned by the client creating the
SG. This notion of grouping a set of segments facilitates having small, very
strongly related sets of objects in segments, while allowing several alternative
larger groupings to be specified. All segments are themselves uniquely named
SGs, and an SG contains one or more SGs. Reading an SG provides a set of
segments. As an example, Figure 2 illustrates nine segments that are involved in
various groupings. Reading SG4 provides segments ~2, s3, ~4, ~5, and 58. As
indicated in Figure 2, a given segment may occur in several segment groups. Each
database maintains its own SC forest, and an SG may only contain the segments
within a database.

When a client requests an object, the server returns the segment s in which
the object resides. The client may further specify an SG that indicates the context
in which it is working. The SG may be selected by the ENCORE module on the
basis of knowledge about how types are used and storage pragmas. In this case
the server returns the other members of the SG asynchronously, while the client
is working on the objects contained in the original segment s. This provides
another level of preloading that can occur in the background.

4.1 Object Access

The object server maintains master segments containing the current versions of
all objects resulting from committed object changes. A client obtains from the
server copy segments that the client accesses locally. Clients may share the same
copy segments by each having a copy at their location; however, object locks may
prohibit specific object accesses.

Whereas segments provide access to objects in groups, the unique identifier
(UID) provides individual object access. Our segmentation scheme employs two
types of UIDs: external and internal. An external UID provides a user with a
constant reference to a database object. When the server dereferences a valid
external UID, there results an internal UID, manipulated by the system to locate
an object physically. Both internal and external UIDs have the same length, but
their internal structures differ. Each external UID maps either directly or
indirectly onto one or more internal UIDs. A mapping to multiple internal UIDs
results from replicating objects (discussed below). The server sequentially allo-
cates external UIDs that are not recycled when objects are deleted. Deleted
objects have external UIDs that map to a tombstone internal UID. This makes it

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

80 . M. F. Hornick and S. 6. Zdonik

so $1 s2 $3 a4 $5 $6 $7 $8

Fig. 2. Example segment groups.

possible to detect a reference to an object that no longer exists. Figure 3 depicts
the dereferencing process from an external UID to an object. The various
mappings are maintained in files called the Object Location Table (OLT) and
Duplicate Object Table (DOT). In Figure 3, the code field in the UID structure
indicates the UID type, either internal or external. This information is used in
both the client and server processes. The OLT maintains the external-to-internal
UID mapping. The DOT is described in more detail in the next section.

4.2 Object Replication

In most clustering schemes, it is only possible to place an object in one group.
The case may arise in which there is more than one reasonable way to cluster a
given object. To resolve such conflicts, we provide an object replication facility.
This scheme, of course, incurs a penalty for update but is extremely useful for
objects that are either seldom updated or read only.

The implementation of replicated objects requires the introduction of a level
of indirection between the external UID and the internal UID. Here, an external
UID maps to an index in the Duplicate Object Table (DOT) that is maintained
by the server and provides the internal UIDs with all copies of a replicated object.
When dereferencing an external UID that maps to a replicated object, the system
checks whether a client already has a segment containing the object. If so, the
corresponding internal UID is returned.

Updating a replicated object is a more costly operation, since the server must
update the object in each segment containing a copy. However, the decision to
maintain multiple copies of an object rests with the database designer at the time
the object is created. The system guarantees that the update of all copies of a
replicated object occurs atomically. Thus a client cannot obtain a segment that
contains a duplicate copy of x until all segments containing x have been updated.
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System 81

OLT File

External UID

(a) code 1 OLTindex I

X

DOT UID

(b) t code

DOT File

UID-1 I- - - IUID-n

DBF
1

Internal UID
SPT

c segment OPT -

Fig. 3. Server UID to object mapping. In (a) X is either an internal UID or a DOT
UID. In (b) one of the n internal UIDs is selected on the basis of the status of the
corresponding segments. In (c) the segment field corresponds to an index in the
SPT. The index field corresponds to an object within the given segment.

Object-level locking, however, introduces a problem with updating replicated
objects. If two clients, C, and Cb, have copies of the same segment, and C, updates
an object that Cb will use after C, commits, Cb now has an outdated copy of the
object in its address space. To solve this problem, the server generates new
timestamps for each object in the transferred segment and for the segment itself.
If other clients have copies of the same objects, the update of these objects by
any client causes new timestamps to be associated with them. The server
determines whether a client has an old copy of an object in its address space by

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

82 l M. F. Hornick and S. 6. Zdonik

comparing the timestamp of the segment (when it was transferred) against that
of the object. Timestamps are kept only for objects in use rather than for all
database objects to reduce the amount of space required for timestamps in
general. If a client tries to lock an object contained in a copy segment and the
object is an old copy, the new object is sent to the client.

4.3 Clustering Objects

The segments collectively provide a partition of the objects within a database.’
All database objects are contained in at least one segment. A Database File (DBF)
represents a separate and independent set of objects and type specifications. It
is often useful to partition objects by means of semantic properties. Some options
for placement are the following:

-One object per segment is intended for very large objects, since they are costly
to transfer and tend to be accessed individually.

-Storing an object with its subobjects transfers a package of related objects that
are almost always accessed together.

-Storing all instances of a type together is used to satisfy queries requiring the
search of all objects of a type.

-Partitioning based on property values is similar to indexing. In using properties,
specific values, such as “red,” or numeric intervals, such as 0 < n < 3, may be
specified. This method allows a client to separate objects containing a property
value of particular interest into one segment.

At the discretion of the designer, any of these methods may be selected to
tailor object placement to expected needs. Establishing an initial partition of
objects, either through direct client specification (e.g., place object x into
segment y) or by semantic criteria, a client may update an object, causing the
original object placement to hold no longer. This mainly affects partitioning by
property specifications. For example, changing an object’s color from red to blue
may violate the original specification of a segment whose objects were to have
the COLOR property value of “red.” We resolve this conflict of an inappropriate
property value by specifying the strictness with which a segment adheres to the
original specification. A segment designated to hold blue objects only holds blue
objects if the segment is labeled as strict. If the object is updated with a property
value violating the segment’s strict specification, the object is moved to another,
more appropriate segment. A segment labeled nonstrict accepts the appropriate
objects when they are initially installed. However, updating the object does not
cause the object to be moved out of the segment. Segments created by our
automatic partitioning mechanism, the Object to Segment Mapping (OSM), have
the segment specifications strictly enforced. Segments explicitly created by clients
are labeled as nonstrict by default, yet may be altered by the client.

* Our use of the term partition does not imply mutually exclusive sets of database objects but a lower
level clustering of both replicated and nonreplicated objects.

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System l 83

4.4 Segment Structure

A segment contains a pointer table and a set of objects. Each segment object is
referenced by exactly one entry in the pointer table. Segments are stored in a
Database File (DBF). The DBF structure is similar to that of the segment: a
pointer table and a set of segments. The pointer table allows a reference to an
object (or segment) without knowing its exact position. This makes it possible to
move objects (or segments) within a segment (or DBF). The pointer table
comprises one or more pointer table block, and additional fixed-size blocks are
inserted as a segment acquires more objects. This feature reduces the frequency
of segment expansion each time an object is installed. Figure 4 depicts the DBF
and segment structures.

A DBF contains the number of Segment Pointer Table Entries (SPTEs), the
Segment Pointer Table (SPT), and segments. The number of SPTEs represents
the next available segment index to allocate. Each SPTE is composed of an offset
and a size. The offset specifies the segment location within a file, and the size
specifies the number of bytes occupied by the segment. The SPT index serves as
the segment identification number and does not change for the life of the segment.

A segment in secondary storage likewise contains three sections: the number
of Object Pointer Table Entries (OPTEs), an Object Pointer Table (OPT), and
objects. The number of OPTEs represents the next available object index to
allocate. Each OPTE contains an offset, size, and OLTindex, (Object Location
Table index). The offset and size are the same as for the DBF. The OLT index
provides a back pointer to the OLT that facilitates object migration.

Overflow blocks are main memory addenda to the segment structure. Upon
the opening of a segment, space is allocated in main memory for the exact size
of the segment. As new objects are installed or existing objects expanded, overflow
blocks are allocated separately from the main segment. To reduce the frequency
of creating overflow blocks, the system allocates enough memory so that several
objects may fit in the same block. The allocation size is determined by a factor
multiplied by the size of the first overflow object. Overflow blocks eliminate
copying a segment each time objects are installed. Objects in overflow blocks are
accessed as though the segment and overflow blocks were contiguous in main
memory. When writing a segment back to its DBF, a new segment space is
allocated in the file to reflect changes in the segment’s size. If overflow blocks
exist for a segment in main memory, the segment is first compacted in memory
and then written to the disk.

The Main Memory Segment Table (MMST) contains information about an
open segment throughout its duration in main memory. System routines refer-
encing a segment use an MMST node as a handle for segment access. Upon
opening a segment, an MMST node is created, initialized, and inserted into the
MMST hash table. An MMST node maintains the overflow block information
as objects are installed. Independent MMSTs are maintained at each client and
at the server.

Object structure depends on the user-defined type specification, but this does
not affect the object server since Observer handles an object as a string of bytes
when installing and retrieving objects.

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System l 85

Table I. Lock Modes and Compatibilities

Lock request

Current lock NULL NR-READ R-READ NR-WRITE R-WRITE

NULL T T T T T
NR-READ T T T T T
R-READ T T T F F
NR-WRITE T T F F F
R-WRITE T F F F F

5. SHARING

5.1 Lock Types

In conventional database systems, the lock set contains the generic read and
write locks with well-defined protocols for their use (e.g., two-phase locking).
The conventional lock types and protocols are too restrictive for the design
environments that we want to support. For example, two-phase locking and
serializability prevent a transaction from seeing the intermediate results of
another transaction. Several designers who are in the middle of a design trans-
action (e.g., editing session) may need to share uncommitted results with their
co-workers. Our objective is to provide a comprehensive lock set that allows users
to define new protocols freely and easily.

We have identified two dimensions for lock definitions: lock mode and com-
munication mode. Our scheme employs five lock modes, NULL, NR-READ,
R-READ, NR-WRITE, and R-WRITE. NR stands for nonrestrictive and R for
restrictive, in the sense of what they allow and disallow. The above ordering of
the lock modes indicates their respective strengths from least to greatest. Their
compatibility is specified in Table I.

The NR-READ lock mode allows a client to read an object without prohibiting
the access privileges of other clients. The R-READ lock mode restricts other
clients from writing to an object for the duration of the lock. The NR-WRITE
lock mode prohibits other clients from obtaining R-READ or R-WRITE lock-
mode locks but allows the reading of an object through the NR-READ lock mode.
The R-WRITE lock provides a client with exclusive access to an object, which
in essence removes the object from the database while the lock holder uses the
object. This lock type is particularly useful when an object or operations on an
object are malfunctioning. As an example, consider an operation that inadvert-
ently overwrites random elements in main memory. To prevent further damage
as a result of other clients invoking the operation, a system programmer wishes
to stop all access to this operation while it is being updated. The lock mode
NULL is useful when specifying soft locks (see below) or in conjunction with the
communication-mode dimension.

The communication-mode dimension refers to communication between clients
as the result of another client’s action. Lock holders may wish to be notified of
the status of an object, including requests from other clients for that object or
committed updates from another client. The five communication modes are

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

86 * M. F. Hornick and S. 8. Zdonik

Table II. Locks and Validity of Mode Combinations

Communication modes

Lock modes U-NOTIFY R-NOTIFY W-NOTIFY RW-NOTIFY N-NOTIFY

NULL V I I I I
NR-READ V I V I V
R-READ I I V I V
NR-WRITE I V V V V
R-WRITE I V V V V

Note: V = valid: I = invalid.

U-NOTIFY--notify lock holder upon update, R-NOTIFY-notify lock holder if
another client requests the object for reading, W-NOTIFY-notify lock holder if
another client requests the object for writing, R W-NOTIFY-notify lock holder
if another client requests the object for reading or writing, and N-NOTIFY
indicating no notification.

By taking the cross product of the lock modes and communication modes, 25
locks result, as depicted in Table II. Of the 25, 11 are nonfunctional, in that the
lock mode prohibits the associated communication mode. As an example, consider
the NR-WRITE/U-NOTIFY combination. An object locked as such could never
be updated while the NR-WRITE was held; hence, notification on update is
meaningless. By using various subsets of the remaining 14 locks, applications
from cooperative programming design environments to those requiring full
serializability may be satisfied.

As an example, the GARDEN [13] system currently uses a hybrid lock,
WRITE-KEEP [19] that, among its other semantics, informs the owner of the
lock of other clients’ lock requests on the locked object. This WRITE-KEEP
lock is used in conjunction with a NOTIFY lock. From our lock set, the subset
NR-WRITE/RW-NOTIFY and NR-READ/U-NOTIFY provides the same func-
tionality. GARDEN uses a NOTIFY lock in place of a read lock and a WRITE-
KEEP lock in place of a write lock. This establishes a demand-driven commu-
nication scheme. When an object that GARDEN has read is updated, GARDEN
is notified, and it can reread the object if necessary. When an object that
GARDEN has for writing purposes is needed, GARDEN is notified, and it can
return the object if desired.

For a more traditional lock environment, the subset R-READ/N-NOTIFY,
NR-WRITE/N-NOTIFY provides the basics for serializable transactions when
used with the proper transaction options (see below). By allowing a rich lock set,
applications may tailor a locking environment to their requirements for sharing.
In an interactive, cooperative design environment, one may wish to employ only
locks with the RW-NOTIFY communication mode. Lock holders, not wishing to
impede other client’s productivity by keeping locks on objects not currently in
use, are notified of other client’s lock requests. Consequently, the lock holder
may opt to free the lock or commit the current object changes, thus allowing the
other users to lock the object.

As another example of the use of the communication mode, consider several
transactions cooperating on a task, each of which has an object x displayed on
its screen. Any one of the transactions is allowed to change x, but the others
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System 87

would like to update their screens when this occurs. If all transactions hold a
NR-READ/U-NOTIFY lock on their objects, then one of the transactions may
convert its NR-WRITE lock to a N-NOTIFY lock. When it writes X, the other
transactions will be sent a notification of the change, and they can reread x and
reset the new value on their displays.

A rich lock set provides flexibility to the user but also greater responsibility to
select a lock subset and consistently use locks from that subset. A lock subset is
equivalent to the complete lock set with the undesirable lock types filtered out,
so we now introduce a lock filter. Lock subsets are specified by selecting from
one of the system-predefined filters (e.g., to ensure serializable transactions) or
by dynamically creating such a filter. Filters guarantee that the specified lock
environment is maintained and allows only the permissible lock requests to reach
the server. Hence, the user has the ability to tailor an environment with the
exact lock desired. A client may set a filter as part of a normal transaction
operation. Later versions of the system will allow a database server to have many
filters that apply to various user categories (e.g., read-only users or full-privileged
users).

5.2 Processing Lock Requests

The server interacts with the client to process both object and nonobject opera-
tions and maintains the files necessary for accessing master segments (see
Section 6). Commands processed from clients involve DBF operations such as
create and open, segment and segment group operations and lock requests.
In satisfying client lock requests, the server must determine three things:
(1) Does the client already have the object requested in the client’s copy segment?
(2) Does the client have the most recent copy of the object? (3) If the client has
neither (1) nor (2), which segment should be sent to the client? We assume that
a client locking an object does so only if it intends to use the object within the
current transaction. Therefore, the object is sent in its segment if the lock is
granted. The server answers the first question by checking the Client Segment
List (CSL) maintained at the server for all clients. If the client already holds the
required segment, the client receives only the object-access information. Other-
wise, the client acquires an appropriate segment from the server. If the client has
an outdated local copy of the object as determined by the object timestamp, the
server sends the current copy of the object to the client and replaces the local
COPY*

5.3 Deadlock Detection

Deadlock can occur whenever two conflicting locks have been requested on the
same object from two distinct transactions. This situation requires that one
transaction wait until the other commits. In our model, the lock compatibilities
that conflict are given in Table I. Our definition of deadlock is somewhat different
from the usual definition. The server allows certain cycles to remain in the waits-
for graph. Here, a deadlock requires that the deadly embrace be between two
transactions that have actually been granted locks for each other’s objects. If
there is a cycle between two transactions that are queued, this cycle is allowed
to remain. The system will not grant a lock request if that request would cause a

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

88 l M. F. Hornick and S. B. Zdonik

deadlock. This potential for deadlock could happen at the time that the lock is
requested, or it could happen at the time that a pending request is finally serviced
(i.e., removed from the queue). Queued lock requests are serviced whenever a
transaction commits or aborts and its locks are released, making them available
to other waiting transactions.

Consider the following example. Transaction T, has objects x1 and x2 locked in
write mode. Transactions T, and Tb request locks for x1 and are queued in that
order. Similarly, transactions T, and Tb request locks for x2 and are queued in
the opposite order. The system will not consider this to be a deadlock, since T,,
Tb, or both of them may abort before T, completes. If they do not abort, the
system will detect deadlock when T, completes, and either T, or Tb will be
informed that its lock request has been dequeued. Notice that in an interactive
environment it is important that a deadlock not cause a transaction to abort.

6. LOCK AND SEGMENT INTERACTION

In our segmentation scheme, we present two levels of granularity for locking:
object-level and segment-level. Locking at the object level implies that a client
must request locks on individual UIDs, whereas when locking at the segment
level, the client could lock all the objects in a segment with a single specification.
Note that, locking an object by its UID locks all copies of the object. Since our
system allows replicated objects to reside in separate segments, it would be
possible with segment-level locking to lock large sections of the database by
locking a single object. In the general case concurrency among clients is signifi-
cantly reduced with segment-level locking, since a client using a single object in
a segment prohibits other clients from obtaining other objects in that segment.

Locking purely at the object level allows clients to share segments, thus
increasing concurrency. Our system supports object-level locking with the addi-
tional facility for locking all objects in a segment easily. This is more efficient
from the user’s standpoint in that procuring locks on all segment objects at the
outset eliminates having the client repeatedly ask the server for locks or individ-
ually specify locks for each object in a segment. To lock all the objects within a
segment, each object must acquire the desired lock. Locks that cannot be granted
are queued, and the segment is sent with the objects that have acquired their
locks.

Recall that our segmentation scheme sends a client an entire segment when
the client requests even a single object. This clustering provides objects expected
to be used by the client during a transaction. Because client/server interaction
is asynchronous, frequent requests to the server for locks impedes client produc-
tivity, since the client must wait for the server to reply. Frequent requests also
increase the work load at the server, hence reducing performance for all clients.

The server makes a distinction between objects explicitly requested by a client
and objects in the remainder of a segment. Objects explicitly requested use hard
loch, and the remaining segment objects in the segment use soft locks. In
specifying a lock mode for the remainder of objects in a segment, the client does
not know exactly which objects it will be getting. Therefore, we view soft locks
as a convenience rather than a necessity (from the client’s point of view). If a
hard lock cannot be granted, it is queued; soft locks are not queued. The client
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System l 89

requesting a hard lock is notified whether the lock was granted or denied, but is
only notified if the lock was granted for soft locks. Using soft locks, we reduce
the size of the lock queue and minimize the amount of information returned to
the client.

When requesting objects, the object and segment-lock specifications need not
be alike, and all locks from the current lock filter are valid for either. A client
specifies a lock request as a quadruple: the object UID to be locked, its lock, a
segment, and the lock for the remainder of the objects in the segment.

7. TRANSACTION MODEL

The traditional transaction model [6] has well-defined features, such as two-
phase locking, that arise from the guarantee that all transactions are atomic.
The measure of correctness here is that all resulting schedules are serializable.
We attempt to identify the basic building blocks that can be used to build all
interesting transaction schemes. We begin by defining a transaction as a series
of operations that occur during some period of time in a well-defined frame, that
is, a frame that is marked by specific delimiters (e.g., begin and end). These
transactions may be nested [ll]. All operations occur during a transaction and
are associated with an individual transaction. Since transactions at the same
client may have different restrictions and allowable lock modes, the operation
must be screened to determine whether it is using a validly locked object for that
transaction and whether the operation itself is valid (e.g., unlocking an object in
the middle of a transaction).

We introduce a set of constraints that may be applied to the skeleton trans-
action to tailor it to the environment in which it is used. The two essential
facilities that a transaction provides are acquiring or releasing a lock and making
changes visible (i.e., committed).

With respect to locking, unlock all objects associated with a transaction when
it ends with the following two options:

-allow explicit unlocking of objects during a transaction,
-disallow explicit unlocking during a transaction.

With respect to committing, atomically commit all object changes at the end
of a transaction with the following two options:

-allow explicit committing of objects during a transaction,
-disallow explicit committing during a transaction.

In general, all explicitly committed object changes are made visible and cannot
be aborted. A transaction may be aborted at any time such that any changes not
committed are thrown away and all objects are unlocked. From these building
blocks, many transaction environments may be created. It should be obvious how
the conventional transaction model can be created out of these options.

8. AN EXAMPLE

Figure 5 is an example depicting the role of hard and soft locks, the reduction of
communication between the client and server as a result of segment transfers,
and the general procedure for accessing objects. Note the following abbreviations:

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

90 l M. F. Hornick and S. B. Zdonik

LOCK MODES COMMUNICATION MODES

O-NULL O-N-NOTIFY
I-NR-READ l-U-NOTIFY
2-R-READ P-R-NOTIFY
3-NR-WRITE 3-W-NOTIFY
4-R-WRITE 4-RW-NOTIFY

Figure 5

SERVER STRUCTURES

Master Segments:
Segment S, contains object 0,
4: 01, o*, a, 04
sz: a, 4, 06
&: 03, 07

Lock Table:
Transaction T, locks object 0, with lock Li,j,/z
T,: (03, bZ.H), (4, &WI), (06, &o,s)

Tz: (03, h3.H)

Client Segment List
Client C, has segment S,
c*: s*
c,: s,

S, segment; 0, object; T, transaction; C, client; Li,j,k, 0 < i < 4 lock modes,
0 < j < 4 communication modes; k: H hard; S soft.

The following are a subset of the client operations that are relevent to this
example: LOCKquery (0,) returns the type of lock Li,j,k currently held on the
object or a NO-LOCK signal if no lock is held. LOCKobjects (O,, 0, S,, S) make
the request for object O,, with the lock O-Lij,k and lock the accom-
panying segment S, with the lock S-Lij,k. This operation informs the server of
the request to which the server later responds. The client then takes the segment
and the corresponding object-access information into its address space.
OBJECTread CO,, buffer) finds the object 0, in the client’s address space and
places it in the provided buffer. Not finding the object results in an error signal.
SEGMENTfind (0,) is separate from the standard routines in that it maintains
a mapping, possibly at the type level, of where objects are stored. Hence, it
determines which segment to request. This provides the client with an intelligent
segment choice rather than a less informed choice from the server.

From here, client C2 in transaction Ts requires object O2 and checks whether
it has a lock on it by making the local procedure call LOCKquery (0,). Since it
does not have the lock and is interested in working on other objects in a specific
segment, T2 finds the segment it wants by the call SEGMENTfind (0,) and
makes a lock request LOCKobjects (O,, L 3,0,u, Si, L2,0,~), asking for a specific
object O2 and segment S1. If the client had not specified a segment, one would
have been selected by the server.

At the server, the hard lock for O2 is granted. The remaining objects on which
to acquire soft locks are Oi, 03, 0,. The soft lock on O1 is denied, since Tl holds
the lock L3,2,H. The soft lock on 0s is not granted, since a hard lock already exists
on the object. If O3 had been soft locked by T2, then, if possible, the existing lock
would have been upgraded. In either case no additional information needs to be
sent to the client about 03. Object 0, acquires the soft lock, and the corresponding
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System 91

access information is sent to the client. Having completed the locking phase, S,
is sent to the client.

At the client, the object O2 may be accessed using the call OBJECTread
(02, Op-buffer). Suppose C, wanted to access 04. Cz makes the call LOCKquery
(04) in T2 and finds that it has an L 2,0,s lock on it, which is sufficient for its
current needs. Since the object is already at the client, and the lock is valid, the
client need not request it from the server, thus giving the client instant access to
the object.

If Tz further wants to write to Oi, it finds that it does not have the appropriate
lock. Making the lock request LOCKobjects (O,, L3,0,H, ANY-SEGMENT, and
LO,o,s) involves the following operations: The server finds that Tl committed and
freed the lock it had on O1. Tz is granted the lock and, through the timestamp
mechanism, it is found to have an outdated copy of the object, so the server sends
the individual updated object to Cz. If 0, had not been updated, then the server
informs the client that the lock is granted.

9. ATTAINING AN OPTIMAL PARTITION

The optimal partition of objects within a database results in the transfer of only
those objects a user will access in one transaction. Although users provide a
partition for objects either by Object-Segment Mapping (OSM) or manual speci-
fication, these may not result in an optimal partition. Therefore, heuristics
provide a more flexible approach to maintaining an optimal object partition
based on observations of object usage over time. The heuristics employ a migra-
tion facility for moving objects from one segment to another. The object migration
process involves the system’s monitoring object usage within segments and
moving objects from one segment to another within the same DBF to aid database
performance.

When objects are created, OSM partitions them by semantic criteria or user-
specified segments. If an object changes logical association with the other objects
in its segment, it needs to migrate or move to another segment to reduce the
number of segments transferred, that is, to improve performance. The database
administrator and system are responsible for this process.

We consider two types of heuristics, transaction-oriented and single-object
evaluation of object usage. Transaction-oriented heuristics involve monitoring
object usage within the context of a transaction. That is, transaction-oriented
heuristics involve monitoring how objects are used together. Single-object
heuristics involve using measurements amassed over a period of time. As an
example of a time-interval heuristic, consider that natural partitions may form
within a segment on the basis of an access count for individual objects, namely,
some objects are used very frequently, and others not at all. If enough objects
exist in each group so that creating another segment is justified, the objects in
the smaller group migrate to the new segment.

Three measures are currently employed for monitoring: the access count, open
count, and access ratio. The access count refers to the number of times an object
was accessed in a given segment. The open count refers to the number of times
the segment was opened. The access ratio is the quotient between the access
count and the open count.

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

92 l M. F. Hornick and S. 6. Zdonik

Some of these heuristics require keeping detailed statistics on both segments
and objects. These are maintained in files at the server and used initially to fine-
tune the database.

10. RELATED WORK

Attaining an optimal data organization to minimize retrieval costs is certainly
not a new idea [21]. Schkolnick devised a clustering algorithm to perform this
task [15]. Although our desired result is the same, our data structures (hierar-
chical data represented in a tree versus objects), work environment, and means
are quite different.

Schkolnick chose to group all instances of a type into a segment. These
segments were then grouped in a hierarchical tree structure. To apply his
algorithm, Schkolnick obtains usage patterns of data access that are basically
the most frequently used access paths in the hierarchy. Examining these patterns
allows the algorithm to determine a partition of the tree segments. Once subtrees
have been produced, the available disk space is divided into linear address spaces
(LASS), one for each partition. The instances of all segments for a given partition
are placed in their corresponding LASS in the same order as they appear in the
hierarchical order. This idea is equivalent to our method of storing objects with
their subobjects. Next, each LAS is divided into blocks of equal length called
pages. The objective is to minimize page faults. The system paging mechanism
acquires the data from secondary storage, and the data are accessed directly
through these pages. A page fault is noted whenever a record is not found on a
page already in the buffer pool. Schkolnick has shown that, for a given access
pattern, the access time can be minimized on the basis of the storage method for
a hierarchical structure. He states, “The predicted optimal storage allocation
does in fact significantly reduce the average number of page faults over that
obtained when the structure is stored in the conventional hierarchical order”
[15, p. 43-441.

This method has several similarities to our segmentation scheme. As men-
tioned, the notion of storing objects with their subobjects is a common thread.
In terms of accessing data, we read a set of related objects expected to be accessed
during a transaction. In our method of fathoming a better partition, we analyze
usage patterns amassed over time. To clarify the term segment in the two
contexts, we allow a melange of instances of object types to reside within a
segment, whereas Schkolnick’s segments are a grouping of type instances which
themselves are grouped into LASS. This latter grouping into LASS is similar to
our use of segment groups, where related segments can be accessed as one larger
unit. However, our segment groups maintain their individual segment identities.
With Schkolnick’s LASS, objects along the same access path within a subtree are
stored contiguously, which shatters the original segment boundaries.

We allow more options for object grouping; hence, a more tailored set of objects
may be placed in one segment. However, the option for all instances of a type is
also provided. Since we devised our method for an object-oriented system, we
pose virtually no restrictions on the overall data configuration and dependencies
between objects. Our method has no immediate concern for the underlying paging
ACM Transactions on Office Information Systems, Vol. 5, No. I, January 1987.

A Shared, Segmented Memory System l 93

mechanism, which makes it freer from hardware idiosyncracies. We also provide
specific segment operators that give exclusive access to database objects.

11. SUMMARY

In this paper we have given an overview of our object-oriented database system.
Within that discussion, our central focus has been the implementation of a
typeless object server that is used as the backend. Specifically, we have described
our segmentation scheme and the mechanisms that are used for controlled
sharing. In a final section we have pointed out the interactions and problems
encountered in building these two facilities, and we have sketched our solution.

A prototype of this system has been implemented. We have linked the prototype
of Observer with the GARDEN [ll] programming environment. GARDEN is a
system for visual programming. It allows programmers to construct their pro-
grams in terms of pictures. GARDEN also contains a set of tools for easily
constructing new pictorial languages. GARDEN treats everything as an object
and, as such, provides an excellent testbed for our system. GARDEN views static
program pieces, such as modules, statements, and variables, as objects. It also
views dynamic structures, such as stack frames, as objects as well. Future versions
of GARDEN will make use of the ENCORE database system to take advantage
of some of the more advanced features, such as version control.

There are many important research issues that need to be investigated. We
view implementation issues as among the most important. This technology will
only succeed to the extent that it can be made to operate efficiently. Many of the
ideas expressed in this paper were derived from experience with our prototype in
the GARDEN environment. We expect this kind of refinement to continue.

The issue of being able to handle objects of widely differing sizes is very
important. How can we manage huge objects, such as bit maps or large programs,
in a homogeneous way with small objects, such as characters or integers? The
data model presents no problem here, but the implementation problems of
managing these objects on a disk are yet to be solved.

At the model level, it is tempting and useful to be able to treat everything as
an object. For example, we might treat paragraphs, sentences, and characters as
objects. It is not unreasonable to incur the overhead associated with an object
for paragraphs and sentences, but this overhead at the character level would be
completely unreasonable. We therefore need a scheme whereby characters can
be conceptually stored as objects, but not as full-fledged objects at the implemen-
tation level. A scheme such as this would require that the container objects know
something about the form of the objects that are contained in them, and that
inbound references be handled specially.

Other research areas include topics like extending and enhancing the data
model to include facilities like triggers and views and designing a more complete
transaction management scheme that supports concurrency control and recovery
differently for different types. The issues involved in effectively supporting the
management of change still require further study. Designing a databased pro-
gramming language whose model of data is precisely the model that we have
described above is currently underway. We are also interested in extending our

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

94 ’ M. F. Hornick and S. B. Zdonik

database system to operate in a distributed database environment and to run on
parallel-processor machines.

ACKNOWLEDGMENTS

The authors wish to thank David Babson, Steve Reiss, and Andrea Skarra
for many invaluable discussions about the design of this system. We would
also like to recognize their help, as well as the help of Mark Lellouch and
Wlodek Nakonieczey, in implementing the prototype.

REFERENCES

1. BOBROW, D., AND STEFIK, M. The Loops Manual. Xerox Corp., Palo Alto, Calif., 1983.
2. CHEN, P. P. S. The entity-relationship model: Towards a unified view of data. ACM Trans.

Database Syst. 1, 1 (Mar. 1976), 9-36.
3. CODD, E. F. Extending the database relational model to capture more meaning. ACM Trans.

Database Syst. 4,4 (Dec. 1979), 397-434.
4. COPELAND, G., AND MAIER, D. Making smalltalk a database system. In Proceedings of the ACM

SIGMOD (Boston, June 18-21). ACM, New York, 1984,316-325.
5. DI~RICH, K., GO~HARD, W., AND LOCKEMANN, P. C. DAMOKLES-A database system for

software engineering environments. In Proceedings of the IFIP 2.4 Workshop on Advanced
Programming Environments (Trondheim, Norway, June), 1986.

6. GRAY, J. The transaction concept: Virtues and limitations. In Proceedings of the Very Large
Database Conference (Cannes, France, Sept.), 1981.

7. HAMMER, M., AND MCLEOD, D. Database description with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (Sept. 1981), 351-387.

8. MAIER, D., AND STEIN, J. Indexing in an object-oriented DBMS. Tech. Rep. CS/E-86-006,
Oregon Graduate Center, Univ. of Oregon, Beaverton, Oreg., (May, 1986).

9. MAIER, D., STEIN, J., OTIS, A., AND PURDY, A. Development of an object-oriented DBMS.
Tech. Rep. CS/E-86-005, Oregon Graduate Center, Univ. of Oregon, Beaverton, Oreg., (Apr.
1986).

10. MOON, D., STALLMAN, R., AND WEINREB, D. The Lisp Machine Manual, chap 20. MIT AI
Laboratory, Jan. 1983, 321-361.

11. MOSS, E. The theory of nested transactions. Tech. Rep., University of Massachusetts, 1986.
12. MYLOPOULOS, J., BERNSTEIN, P. A., AND WONG, H. K. T. A language facility for designing

database-intensive applications. ACM Trans. Database Syst. 5,2 (June 1980), 185-207.
13. REISS, S. P. An object-oriented framework for graphical programming. SZGPLAN Not. 21, 10

(Oct. 1986) 49-57.
14. RUDMIK, A. Choosing an environment data model. In Proceedings of the IFZP 2.4 Workshop on

Advanced Programming Environments (Trondheim, Norway, June), 1986.
15. SCHKOLNICK, M. A. A clustering algorithm for hierarchical structures. Trans. Database Syst.

12,l (Mar. 1977) 27-44.
16. SHIPMAN, D. W. The functional data model and the data language DAPLEX. ACM Trans.

Database Syst. 6, 1 (Mar. 1981), 140-173.
17. SKARRA, A. H., AND ZDONIK, S. B. The management of changing types in an object-oriented

database. In Proceedings of the First Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (Portland, Oreg., Sept. 29-Oct. 2). ACM, New York, 1986,483-495.

18. SKARRA, A. H., AND ZDONIK, S. B. Type evolution in an object-oriented database. In Research
Directions in Object-Oriented Programming. Addison-Wesley, Reading, Mass., 1987.

19. SKARRA, A. H., ZDONIK, S. B., AND REISS, S. P. An object server for an object-oriented database
system. In International Workshop on Object-Oriented Database Systems (Pacific Grove, Calif.,
Sept.). ACM, New York, 1986, pp. 196-204.

20. SMITH, J. M., FOX, S., AND LANDERS. T. ADAPLEX: Rational and Reference Manual. 2nd ed.
Computer Corporation of America, Cambridge, Mass., 1983.

21. STAMOS, J. W. On object grouping experiments in LOOM. Xerox PARC report SC 6-82-2,
Xerox Corp., Palo Alto, Calif.

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

A Shared, Segmented Memory System 95

22. ZDONIK, S. B. Object management system concepts. In Proceedings of the 2nd ACM-SIGOA
Conference on Office Information Systems (Toronto, Canada, June 25-27). ACM, New York,
1984,13-19.

23. ZDONIK, S. B. Why properties are objects or some refinements of Is-a. In Proceedings of the
National Computer Conference (Austin, Tex.). ACM, New York, 1986.

24. ZDONIK, S. B. Version management in an object-oriented database. In Proceedings of the
International Workshop on Advanced Programming Environments (Trondheim, Norway, June),
1986.

25. ZDONIK, S. B., AND WEGNER, P. Language and methodology for object-oriented database
environments. In Proceedings of the Nineteenth Annual Hawaii International Conference on
System Sciences (Honolulu, Jan.) 1986, 378-387.

Received September 1986; revised December 1986; accepted December 1986

ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987.

