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This paper describes the basic data model of an object-oriented database and the basic architecture 
of the system implementing it. In particular, a secondary storage segmentation scheme and a 
transaction-processing scheme are discussed. The segmentation scheme allows for arbitrary clustering 
of objects, including duplicates. The transaction scheme allows for many different sharing protocols 
ranging from those that enforce serializability to those that are nonserializable and require commu- 
nication with the server only on demand. The interaction of these two features is described such that 
segment-level transfer and object-level locking is achieved. 
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1. INTRODUCTION 

Modern workstation technology has made possible a new set of applications. 
These applications can be characterized as interactive and design based. The 
basic model is of a worker designing artifacts by using a set of intelligent tools. 
The artifacts will vary depending on the application, but the common activity 
seems to be design. Examples of these design environments are electronic and 
mechanical computer-aided design (CAD) programming environments and office 
information systems. For the latter, the office worker designs reports, graphics, 
slide presentations, and decision models. 
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In order to support the complex software tools that are needed in these 
environments, we need a powerful support platform. This platform must be 
capable of providing the glue that makes these applications function as an 
integrated unit. Database systems have been successful at providing this service 
for data processing applications. We strive to achieve the same goals for the 
domain of interactive design. 

We believe that object-oriented databases are a step in this direction. They 
provide more flexible modeling tools than traditional database systems. They 
also incorporate some of the software engineering methodologies, such as data 
abstraction, that have proved to be effective in the design of large-scale software 
systems. 

This paper describes one such system. It further raises a series of issues that 
must be addressed in building an object-oriented database. It sketches the 
solutions with which we are currently experimenting and focuses on the imple- 
mentation of a sophisticated segmenting or data clustering scheme that we are 
using to achieve acceptable performance. 

2. THE DATABASE MODEL 

The database system that forms the basis for this work supports an object- 
oriented model of data [25]. It is in the tradition of much of the work on high- 
level semantic models [2, 3, 7, 12, 16, 201, but it takes a view of data that is very 
closely aligned with many of the object-oriented programming languages 
[l, 6, lo]. It illustrates a new direction in database research characterized as 
object-oriented databases [4, 5, 8, 9, 14, 221. 

In the ENCORE database system [25], all objects are instances of some type 
that describes the behavior of its instances. A type T is a specification of behavior. 
As such, it describes a set of operations 0, a set of properties P, and a set of 
constraints C that pertain to any of the instances of T. Intuitively, an operation 
is a program that is used to access or manipulate objects of the given type, a 
property relates objects of the given type to other objects in the database, and a 
constraint is a predicate that is used to restrict the legal states of objects. If x is 
an instance of T, any operation o in 0 can legally be applied to X, any property p 
in P is defined for x, and any constraint c in C must be satisfied for x. Types, 
operations, and properties are all objects in their own right and as such have a 
type that describes their behavior. 

Types can be related to each other by means of a special property called IS-A. 
The IS-A property induces an inheritance relationship between types. If A IS-A 
B, then all operations, properties, and constraints that are defined on B will also 
be defined on A. In this case we say that A is a subtype of B and that B is a 
supertype of A. The system supports the ability for a type to have more than one 
supertype (i.e., multiple inheritance). It is possible for a subtype to redefine an 
operation or a property that is defined on its supertype. In this case, an instance 
of the subtype will not inherit that operation or property from its supertype. 

Operations are active objects that are supported by code. Operation types 
correspond to a procedure definition, whereas instances of operation types 
correspond to procedure activations. All operation types have an invoke operation 
defined for them such that it is possible to invoke an operation defined on type 
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T on any object of type T. Operations are associated with a type. Each type 
defines a set of operation types that can be instantiated and invoked on its 
instances. A subtype may add operation types that are not defined on its supertype 
or may refine some of the operations that are defined on its supertype. 

Operation refinement, as defined here, is distinguished from operation replace- 
ment, as in Smalltalk. In Smalltalk, a subtype method with the same name as a 
supertype method blocks the supertype method, thereby replacing it with the 
subtype method. In our system a subtype may provide an operation type that 
will substitute for an operation type that is defined on a supertype. Here, however, 
that operation type must be a subtype of the operation type that is being blocked 
in the supertype. The name of the refinement need not be the same as the 
operation type that it is refining. If the supertype A defines an operation f and 
the subtype B defines an operation g that is a subtype off, an invocation off on 
an instance of B will actually use the operation g. 

Properties are objects that are used to relate other objects [23]. For example, 
a property called works-for might be defined on the type Person. Works-for would 
relate a given person to the company object for which he or she works. As a first- 
class object, it is possible for properties to have properties. A common constraint 
on property types limits the acceptable values for the property. We will call the 
set of all legal values for a propertyp its value class. Since properties are objects, 
there is a type called Property that describes how properties behave. There can 
be subtypes of this type, such as Single-valued-properties and Multivalued- 
properties. The first subtype restricts the value of the property to be a single 
entity, whereas the second allows a property value to be a set. 

A subtype may refine a property that is defined by a supertype [23]. Just as in 
the case of operations, the property type that is defined on the subtype must be 
a subtype of the property type defined on the supertype. 

Object-oriented databases are intended to support the development of large 
and complex applications. We believe that a strong view of encapsulation is 
essential for programming in the large. Each type has an implementation that is 
hidden. The implementation of a type includes a representation for instances 
and code that implements the operations and properties. Code outside of this 
type definition cannot access the representation of this type. Type definitions 
may only use the exported interface of other types. This includes a type and its 
subtypes. No subtype can make use of the implementation of any of its supertypes, 
and no supertype can make use of the implementation of any of its subtypes. 
A subtype may only interact with a supertype through the exported interface, 
just like any other type. 

The concepts described above make up the kernel of the object-oriented 
database model. We view these as a minimal set of facilities for a database system 
of this kind. In addition to the kernel, we provide a set of facilities that are, in 
general, useful for design-oriented applications. These additional facilities are 
built out of the kernel facilities. The following paragraphs sketch a few of the 
additional facilities. 

The ability to deal with change is one of the foremost requirements of any 
system that supports design activities. Change can occur at both the type level 
and the instance level. In order to deal with change at the instance level, we 
ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987. 



A Shared, Segmented Memory System 73 

introduce a version control mechanism [24]. This mechanism introduces two 
new types, History-Bearing-Entity (HBE) and Version-Set. HBE defines a set of 
properties that includes next-version and previous-version, which are used to 
express the appropriate temporal relationships between object versions. The 
next-version property can be multivalued, thereby allowing a given version object 
to have multiple successors. We call any version that is the value of a next- 
version property with cardinality greater than 1 an alternative. Any other type T 
can be defined to be a subtype of HBE (as well as any other logically related 
types), thereby giving instances of T the ability to record versions. Version-Set 
is a type that is used to collect all of the versions of an individual. It has an insert 
operation that can only add new versions at specific points in the version history. 
New versions can only be added at the end of a version sequence or as an 
alternative to an existing version. 

The user-level transaction mechanism that is built on top of the kernel makes 
use of the version control mechanism. A transaction can add a new version to 
each of a set of version sets (i.e., its write set). This set of changes is called a 
slice, and only slices can be undone. The slice corresponds to a single atomic 
action, and undoing it corresponds to nullifying the effect of that transaction. 

Since types are objects, we can use the version mechanism described above to 
keep track of changes to types. Each object retains its connection to the original 
version of the type under which it was created. If one needs to treat an object 
that is an instance of an old version of a type as if it were an instance of a newer 
version of that type, we use an exception-handling scheme [17, 181 to facilitate 
this operation. This scheme works equally well for the case in which we want to 
treat an object that is an instance of a new version of a type as if it were an 
instance of an older version of that type. We do not directly support the 
conversion of instances of old types to conform to new-type definitions. This 
process can cause old programs to stop working, is often very expensive, and, in 
some cases, loses information. 

An object-oriented database needs to be able to model composite objects, that 
is, objects that are made up of other objects. In our view, there is a special 
property called part-of that is used to express this relationship. Part-of is a 
subtype of the type Property. The part-of property has special semantics. It is 
used by some operations to perform an action on an object and all of its pieces. 
An example of this is locking a whole object (e.g., a report) for update. This type 
of lock would first lock the high-level report object and then lock all other objects 
that are in the transitive closure of the part-of property. It is also used in the 
context of version sets to support version percolation [24]. 

It is important to realize that the model of data described above is part of a 
database system. As such, it governs the way in which persistent, sharable objects 
behave. Our system also addresses database notions of transaction, consistency, 
associative retrieval, and views. 

It is also important to point out that in traditional data models there is always 
some fairly high level of abstraction below which programmers cannot have 
access. For example, with relational systems it is typically not possible to 
reprogram the basic file structures that are used to implement relations. In our 
view, an object-oriented database system should allow users to program at 
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whatever level best suits their needs. Everything is represented by types, and all 
types exist at the same level. Levels of abstraction will certainly be encouraged, 
and, in fact, the system provides several very high-level abstractions such as 
version sets. However, the very lowest level types, like the type byte-string, are 
available to programmers to build their own abstract types as needed. This does 
not, however, mean that data abstractions can be compromised. This is critical 
in an environment like CAD where performance is key. Programmers have the 
choice of using the system-provided higher level abstraction, or, for cases in 
which the performance of these types is not adequate, they may choose to create 
structures that fit their application more closely. 

3. THE ARCHITECTURE 

The main focus of this paper is on the storage management aspects of an efficient 
object-oriented database. To achieve a better understanding of some of our 
choices, we also describe how the storage management function fits into 
our overall architecture. The rest of this section describes the main system 
modules and the way in which objects are mapped through the various levels 
of abstraction. 

3.1 The Module Structure 

The database system is decomposed into two distinct subsystems. One subsystem 
is a typeless backend that is responsible for managing the use of the persistent 
object store, and the other piece is responsible for the enforcement of the type 
system. 

The OBject SERVER, known as Observer, reads and writes chunks of memory 
from secondary storage. These chunks are used by the higher level module to 
store the state of objects. Observer also has a primitive notion of transactions, 
which includes a subset of Moss’s nested transactions [ll]. Through the trans- 
action mechanism, it is possible to lock and unlock objects to ensure an appro- 
priate level of noninterference. The transaction mechansim can be used in a way 
that provides for resilient storage in that if it is used properly, it will not allow 
the changes of an aborted or crashed transaction to be permanently installed in 
the database. 

The transaction scheme makes it possible to support a variety of shared 
memory applications. The server is currently being used at Brown University for 
two distinct purposes, the backend of an object-oriented database system and the 
storage system for an object-oriented, interactive programming environment. 
Other examples of systems that could be implemented on top of our server include 
mail or blackboard systems. 

The type level is normally referred to as ENCORE (Extensible and Natural 
Common Object REsource). It is this level that deals with the semantics of 
objects through type definitions. This higher level module supports the type 
system that was described earlier as the ENCORE data model. It should be noted 
that Observer can support other type systems as well. For example, the GARDEN 
programming environment defines its own type system, yet it uses the facilities 
of Observer to store its persistent objects. 
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The type level communicates with the server through the UNIX’ remote 
procedure call (RPC) mechanism. The communication channel is asynchronous 
in the sense that ENCORE (or any application process) sends messages to 
Observer requesting services and does not wait for Observer to reply. 
When Observer replies, ENCORE may or may not choose to service the reply 
message. 

A client sends a request to the server and is not suspended while the server 
processes the request. At a future time, the client takes reply messages from its 
message queue. Reply messages may be delivered soon after a request has been 
made or after some delay. For example, lock requests may be granted immediately, 
or they may wait in a queue and be granted or denied later. Similarly, messages 
for a client regarding changes in objects on which the client holds notify locks 
arrive periodically from the server. 

3.2 Server Overview 

The server is a resource for any application system that needs to manage chunks 
of memory allocated in a shared memory space. Here, a chunk is any contiguous 
string of bytes. The server must allocate space and a Unique IDentifier (UID) 
for each chunk that it stores. The UID is similar to a laundry ticket that is 
given out when the object is stored and that guarantees delivery of the same 
object when the UID is presented to the server. One of the principal func- 
tions of the server is to maintain the correspondence between UIDs and chunks 
of memory. 

The setting for our system is a network of workstations (i.e., nodes), each 
running independent processes. We have adopted a model in which a server and 
its data reside on a single node. It is possible for processes on other nodes to 
access this server. Concurrent access to the shared memory is accomplished by 
means of UNIX remote procedure calls to possibly remote UNIX processes. The 
server also supports transaction processing in a manner that is flexible enough 
to handle long, interactive transactions, as well as the more traditional type. The 
nested transaction processing facility supports atomicity and recovery and dead- 
lock detection. Our approach to locking has several novel features that are 
discussed in a later section. 

Each process that wants to communicate with the server must bind a module 
called the client into its image. It is, therefore, possible for the client and the 
server to reside on different machines. When a process needs to request a service 
from the server, it makes a call on the client code that hides the details of the 
RPC interface. The ENCORE module uses the object server as a backend. It 
makes calls directly on its own copy of the client module. Notice that if there are 
two different processes on two different machines using the ENCORE database, 
separate copies of ENCORE must reside on each machine (see Figure 1). As will 
be seen (in a future section), we can achieve some performance enhancement by 
making the client an intelligent partner in the communication. It can often make 
certain decisions locally, thereby minimizing the amount of communication. 

’ UNIX is a trademark of AT&T Bell Laboratories. 
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3.3 ENCORE 

/ 
Process1 

Fig. 1. 

Overview 

Process2 

The basic module structure. 

The chunks of memory that are managed by the server can be used to implement 
type objects as presented by the ENCORE interface. In an object-oriented 
database the type lattice introduces the problem of an object’s being an instance 
of more than one type. If we have the type Toyota as a subtype of the type Car, 
then an instance x of the type Toyota is also an instance of the type Car. Since 
our system enforces a strong notion of data abstraction, there will be a chunk 
of storage that represents the part of x that is an instance of Toyota, and a chunk 
of storage that represents the part of x that is an instance of Car. We use the 
term instance to refer to each chunk and the term object to refer to the aggregate 
of all instances that make up X. 

The system deals with object creation and modification in a way that is 
designed to optimize its interaction with the file system and the RPC facility. 
The reading and writing of objects is done on a block basis. That is, the application 
may request that an aggregate of UIDs be read or that a collection of objects be 
written in a single interaction with the server. This generates only one IPC 
transfer and also allows the server to optimize the way in which it interacts with 
the file system. Upon object creation, UID allocation is separated from storage 
allocation. This allows an application to request UIDs in anticipation of their 
use without reserving space for them in the file. Space is not allocated until 
objects are actually written. 

3.4 Multiple Databases 

In order to allow multiple databases to be accessed, we have adopted a scheme 
by which a separate binder process provides a client with a connection to the 
desired database. The interaction between the client, binder, and server allows 
both the creation of new databases and a connection to existing databases. 

Each database that is being accessed will have a separate server process that 
mediates its requests. When a client wants to access a database, it issues a 
request to the binder. The binder returns enough information for the client to 
connect to the appropriate server. All further requests from the client will 
subsequently go directly to that server. The requests to a given server can come 
from any of several clients that are possibly on different machines. 
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3.5 Transaction Management 

The transaction-processing facilities of the system were designed for transactions 
that are potentially long, interactive processes controlled by a user who is sitting 
at a workstation. Conventional transaction-processing schemes are designed for 
relatively short transactions that are implemented by a program. For this reason, 
we have made choices that are different from what one might expect of a database 
transaction facility. Our general philosophy is to provide the proper level of 
primitives so that applications built on top of our system can present the 
transaction mechanism that best suits their environment. For example, using 
our system it is possible to build a set of transactions that are serializable. It is 
also possible to use the primitives in a way that does not make such a strong 
guarantee about the results of a set of concurrent transactions. 

A later section of this paper focuses on the transaction-processing capabilities 
provided by Observer. ENCORE can make use of these primitives to construct 
transaction mechanisms of its own. We would model ENCORE transactions as 
instances of a type called Transaction. The type Operation would be a subtype of 
Transaction. We have not included definitions for the Transaction type in the 
current ENCORE kernel. If this type were to be built, it would make use of the 
Observer facilities and may choose to let some or all of the transaction facilities 
show through. 

3.6 Storage Mapping 

ENCORE deals with abstract objects that are instances of types. These types 
participate in inheritance relationships and allow for the implementation of an 
object to be distributed across several type definitions. How are these levels of 
abstraction mapped onto the basic storage structures provided by Observer? 

At the type level, every object might consist of several instances, one for each 
type in which it participates. For example, if Toyota is a subtype of Car, Car is a 
subtype of Vehicle, and Vehicle is a subtype of Object, then a given Toyota will 
be an instance of all four types. Since each type has its own private representation, 
as required by our abstract data type scheme, the Toyota object would need four 
chunks of storage for its representation. Each of these chunks would be accessible 
through the operations of the corresponding type. 

We must next ask how these chunks (i.e., one for each instance) are held 
together. A single UID is associated with each object. When a UID is dereferenced, 
it leads to a header block for that object. Conceptually, the header is a part of 
the chunk for the instance of type Object that every object must have. The header 
for object x contains some general bookkeeping information, as well as a set of 
pairs of the form (t, p), where t is a pointer to a type object, andp is a pointer to 
the beginning of the chunk that holds the representation for the instance of t 
that is a part of x. 

Most often, these chunks are allocated contiguously such that the pointer p is 
the offset into that contiguous storage at which the chunk for t begins. In this 
case there would be a single UID for the large chunk that contains the instance 
chunks. This UID is the one that is used by ENCORE to represent object 
identity. 
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It is also possible for the chunks to be noncontiguous. Since p can be a UID, 
the chunks can be stored in any physical location. This allows for a vertical 
partitioning scheme in which instances of different types for the same object can 
be stored in different storage areas. The decision to perform this type of parti- 
tioning would depend on the access patterns for objects of the given type. 

Every chunk that is stored by Observer has an Observer-level UID. Only some 
of these are exported by the ENCORE interface to application programs as object 
surrogates. If one of the internal pointers that binds together the type instances 
for an object is a UID, then this UID is never available to be passed to application 
programs. It is useful to allow Observer to find the chunk, but since it does not 
represent a whole object, it has no semantic meaning at the ENCORE level. 

Once we have an object decomposed into its proper storage pattern such that 
the chunk or chunks contain all of the necessary instance blocks, we can use 
Observer to store those chunks with the appropriate UIDs. Notice that, if all the 
instances are stored contiguously, there is only one chunk to store, and the UID 
of the instance of Object is used. 

4. SEGMENTS 

In an environment in which many objects must be frequently accessed, efficiency 
becomes a principle design criterion. One approach to improving performance in 
a database involves clustering groups of related objects on the disk. The segment 
provides this facility. A segment contains objects that the object-oriented data- 
base management system expects a client to access during a transaction, thus 
eliminating frequent diskhead motion and single object transfers. Thus a segment 
clusters a logically related set of objects into a variable-sized single package. 
Since we expect a client to access other objects in a transferred segment, greater 
system performance results from preloading required objects. A segment is the 
unit of transfer for objects between client and server and from secondary storage 
to main memory. 

Segment objects are only read or modified through the segment operators: 
install, find, update, delete. Find, update, and delete have the conventional 
meaning. Installing an object refers to inserting an object into a segment. 
Migrating an object involves deleting an object from one segment and installing 
it into another. 

Once a client receives a segment, the objects are individually placed in an 
object hash table and the segment is freed. The client has no further use for the 
segment structure once it has acquired its objects. Part of the gain in performance 
involves the placement of objects on disk. Storing a segment’s objects contig- 
uously on disk allows faster disk access, since the segment may be read into main 
memory without random diskhead movement. Since the UNIX file system does 
not guarantee contiguous storage of segments, Observer employs its own file 
mechanism. 

The server receives a set of object changes from the client containing a client’s 
operations (install, update, delete) and other information necessary (e.g., the 
object) to install the changes in the server’s copy of the segment. By returning 
only the final changes to the server in one package, we minimize the amount of 
network traffic and reduce server processing. If changes are transmitted individ- 
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ually, the server not only installs the changes but must access the communication 
network for each change. It may seem that the entire segment should be sent to 
the server, thereby eliminating having the server install client changes into the 
server’s segments. Since we wish to allow many clients to use copies of the same 
segment, the server would then have to merge the returned segments, which is a 
much more costly operation. As a result, our segment becomes a unidirectional 
unit of transfer, in the direction of the client, for reducing communication from 
the client to the server when objects are requested. 

It is useful for a client to create different segment groupings or contexts in 
which to work. This allows individual segment sizes to remain small and at the 
same time define larger working sets above the level of transfer. To allow clients 
to retrieve different sets of related segments, we introduce the segment group 
(SG). To reference an SG, a unique name is assigned by the client creating the 
SG. This notion of grouping a set of segments facilitates having small, very 
strongly related sets of objects in segments, while allowing several alternative 
larger groupings to be specified. All segments are themselves uniquely named 
SGs, and an SG contains one or more SGs. Reading an SG provides a set of 
segments. As an example, Figure 2 illustrates nine segments that are involved in 
various groupings. Reading SG4 provides segments ~2, s3, ~4, ~5, and 58. As 
indicated in Figure 2, a given segment may occur in several segment groups. Each 
database maintains its own SC forest, and an SG may only contain the segments 
within a database. 

When a client requests an object, the server returns the segment s in which 
the object resides. The client may further specify an SG that indicates the context 
in which it is working. The SG may be selected by the ENCORE module on the 
basis of knowledge about how types are used and storage pragmas. In this case 
the server returns the other members of the SG asynchronously, while the client 
is working on the objects contained in the original segment s. This provides 
another level of preloading that can occur in the background. 

4.1 Object Access 

The object server maintains master segments containing the current versions of 
all objects resulting from committed object changes. A client obtains from the 
server copy segments that the client accesses locally. Clients may share the same 
copy segments by each having a copy at their location; however, object locks may 
prohibit specific object accesses. 

Whereas segments provide access to objects in groups, the unique identifier 
(UID) provides individual object access. Our segmentation scheme employs two 
types of UIDs: external and internal. An external UID provides a user with a 
constant reference to a database object. When the server dereferences a valid 
external UID, there results an internal UID, manipulated by the system to locate 
an object physically. Both internal and external UIDs have the same length, but 
their internal structures differ. Each external UID maps either directly or 
indirectly onto one or more internal UIDs. A mapping to multiple internal UIDs 
results from replicating objects (discussed below). The server sequentially allo- 
cates external UIDs that are not recycled when objects are deleted. Deleted 
objects have external UIDs that map to a tombstone internal UID. This makes it 
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so $1 s2 $3 a4 $5 $6 $7 $8 

Fig. 2. Example segment groups. 

possible to detect a reference to an object that no longer exists. Figure 3 depicts 
the dereferencing process from an external UID to an object. The various 
mappings are maintained in files called the Object Location Table (OLT) and 
Duplicate Object Table (DOT). In Figure 3, the code field in the UID structure 
indicates the UID type, either internal or external. This information is used in 
both the client and server processes. The OLT maintains the external-to-internal 
UID mapping. The DOT is described in more detail in the next section. 

4.2 Object Replication 

In most clustering schemes, it is only possible to place an object in one group. 
The case may arise in which there is more than one reasonable way to cluster a 
given object. To resolve such conflicts, we provide an object replication facility. 
This scheme, of course, incurs a penalty for update but is extremely useful for 
objects that are either seldom updated or read only. 

The implementation of replicated objects requires the introduction of a level 
of indirection between the external UID and the internal UID. Here, an external 
UID maps to an index in the Duplicate Object Table (DOT) that is maintained 
by the server and provides the internal UIDs with all copies of a replicated object. 
When dereferencing an external UID that maps to a replicated object, the system 
checks whether a client already has a segment containing the object. If so, the 
corresponding internal UID is returned. 

Updating a replicated object is a more costly operation, since the server must 
update the object in each segment containing a copy. However, the decision to 
maintain multiple copies of an object rests with the database designer at the time 
the object is created. The system guarantees that the update of all copies of a 
replicated object occurs atomically. Thus a client cannot obtain a segment that 
contains a duplicate copy of x until all segments containing x have been updated. 
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OLT File 

External UID 

(a) code 1 OLTindex I 

X 

DOT UID 

(b) t code 

DOT File 

UID-1 I- - - IUID-n 

DBF 
1 

Internal UID 
SPT 

c segment OPT - 

Fig. 3. Server UID to object mapping. In (a) X is either an internal UID or a DOT 
UID. In (b) one of the n internal UIDs is selected on the basis of the status of the 
corresponding segments. In (c) the segment field corresponds to an index in the 
SPT. The index field corresponds to an object within the given segment. 

Object-level locking, however, introduces a problem with updating replicated 
objects. If two clients, C, and Cb, have copies of the same segment, and C, updates 
an object that Cb will use after C, commits, Cb now has an outdated copy of the 
object in its address space. To solve this problem, the server generates new 
timestamps for each object in the transferred segment and for the segment itself. 
If other clients have copies of the same objects, the update of these objects by 
any client causes new timestamps to be associated with them. The server 
determines whether a client has an old copy of an object in its address space by 
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comparing the timestamp of the segment (when it was transferred) against that 
of the object. Timestamps are kept only for objects in use rather than for all 
database objects to reduce the amount of space required for timestamps in 
general. If a client tries to lock an object contained in a copy segment and the 
object is an old copy, the new object is sent to the client. 

4.3 Clustering Objects 

The segments collectively provide a partition of the objects within a database.’ 
All database objects are contained in at least one segment. A Database File (DBF) 
represents a separate and independent set of objects and type specifications. It 
is often useful to partition objects by means of semantic properties. Some options 
for placement are the following: 

-One object per segment is intended for very large objects, since they are costly 
to transfer and tend to be accessed individually. 

-Storing an object with its subobjects transfers a package of related objects that 
are almost always accessed together. 

-Storing all instances of a type together is used to satisfy queries requiring the 
search of all objects of a type. 

-Partitioning based on property values is similar to indexing. In using properties, 
specific values, such as “red,” or numeric intervals, such as 0 < n < 3, may be 
specified. This method allows a client to separate objects containing a property 
value of particular interest into one segment. 

At the discretion of the designer, any of these methods may be selected to 
tailor object placement to expected needs. Establishing an initial partition of 
objects, either through direct client specification (e.g., place object x into 
segment y) or by semantic criteria, a client may update an object, causing the 
original object placement to hold no longer. This mainly affects partitioning by 
property specifications. For example, changing an object’s color from red to blue 
may violate the original specification of a segment whose objects were to have 
the COLOR property value of “red.” We resolve this conflict of an inappropriate 
property value by specifying the strictness with which a segment adheres to the 
original specification. A segment designated to hold blue objects only holds blue 
objects if the segment is labeled as strict. If the object is updated with a property 
value violating the segment’s strict specification, the object is moved to another, 
more appropriate segment. A segment labeled nonstrict accepts the appropriate 
objects when they are initially installed. However, updating the object does not 
cause the object to be moved out of the segment. Segments created by our 
automatic partitioning mechanism, the Object to Segment Mapping (OSM), have 
the segment specifications strictly enforced. Segments explicitly created by clients 
are labeled as nonstrict by default, yet may be altered by the client. 

* Our use of the term partition does not imply mutually exclusive sets of database objects but a lower 
level clustering of both replicated and nonreplicated objects. 
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4.4 Segment Structure 

A segment contains a pointer table and a set of objects. Each segment object is 
referenced by exactly one entry in the pointer table. Segments are stored in a 
Database File (DBF). The DBF structure is similar to that of the segment: a 
pointer table and a set of segments. The pointer table allows a reference to an 
object (or segment) without knowing its exact position. This makes it possible to 
move objects (or segments) within a segment (or DBF). The pointer table 
comprises one or more pointer table block, and additional fixed-size blocks are 
inserted as a segment acquires more objects. This feature reduces the frequency 
of segment expansion each time an object is installed. Figure 4 depicts the DBF 
and segment structures. 

A DBF contains the number of Segment Pointer Table Entries (SPTEs), the 
Segment Pointer Table (SPT), and segments. The number of SPTEs represents 
the next available segment index to allocate. Each SPTE is composed of an offset 
and a size. The offset specifies the segment location within a file, and the size 
specifies the number of bytes occupied by the segment. The SPT index serves as 
the segment identification number and does not change for the life of the segment. 

A segment in secondary storage likewise contains three sections: the number 
of Object Pointer Table Entries (OPTEs), an Object Pointer Table (OPT), and 
objects. The number of OPTEs represents the next available object index to 
allocate. Each OPTE contains an offset, size, and OLTindex, (Object Location 
Table index). The offset and size are the same as for the DBF. The OLT index 
provides a back pointer to the OLT that facilitates object migration. 

Overflow blocks are main memory addenda to the segment structure. Upon 
the opening of a segment, space is allocated in main memory for the exact size 
of the segment. As new objects are installed or existing objects expanded, overflow 
blocks are allocated separately from the main segment. To reduce the frequency 
of creating overflow blocks, the system allocates enough memory so that several 
objects may fit in the same block. The allocation size is determined by a factor 
multiplied by the size of the first overflow object. Overflow blocks eliminate 
copying a segment each time objects are installed. Objects in overflow blocks are 
accessed as though the segment and overflow blocks were contiguous in main 
memory. When writing a segment back to its DBF, a new segment space is 
allocated in the file to reflect changes in the segment’s size. If overflow blocks 
exist for a segment in main memory, the segment is first compacted in memory 
and then written to the disk. 

The Main Memory Segment Table (MMST) contains information about an 
open segment throughout its duration in main memory. System routines refer- 
encing a segment use an MMST node as a handle for segment access. Upon 
opening a segment, an MMST node is created, initialized, and inserted into the 
MMST hash table. An MMST node maintains the overflow block information 
as objects are installed. Independent MMSTs are maintained at each client and 
at the server. 

Object structure depends on the user-defined type specification, but this does 
not affect the object server since Observer handles an object as a string of bytes 
when installing and retrieving objects. 
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Table I. Lock Modes and Compatibilities 

Lock request 

Current lock NULL NR-READ R-READ NR-WRITE R-WRITE 

NULL T T T T T 
NR-READ T T T T T 
R-READ T T T F F 
NR-WRITE T T F F F 
R-WRITE T F F F F 

5. SHARING 

5.1 Lock Types 

In conventional database systems, the lock set contains the generic read and 
write locks with well-defined protocols for their use (e.g., two-phase locking). 
The conventional lock types and protocols are too restrictive for the design 
environments that we want to support. For example, two-phase locking and 
serializability prevent a transaction from seeing the intermediate results of 
another transaction. Several designers who are in the middle of a design trans- 
action (e.g., editing session) may need to share uncommitted results with their 
co-workers. Our objective is to provide a comprehensive lock set that allows users 
to define new protocols freely and easily. 

We have identified two dimensions for lock definitions: lock mode and com- 
munication mode. Our scheme employs five lock modes, NULL, NR-READ, 
R-READ, NR-WRITE, and R-WRITE. NR stands for nonrestrictive and R for 
restrictive, in the sense of what they allow and disallow. The above ordering of 
the lock modes indicates their respective strengths from least to greatest. Their 
compatibility is specified in Table I. 

The NR-READ lock mode allows a client to read an object without prohibiting 
the access privileges of other clients. The R-READ lock mode restricts other 
clients from writing to an object for the duration of the lock. The NR-WRITE 
lock mode prohibits other clients from obtaining R-READ or R-WRITE lock- 
mode locks but allows the reading of an object through the NR-READ lock mode. 
The R-WRITE lock provides a client with exclusive access to an object, which 
in essence removes the object from the database while the lock holder uses the 
object. This lock type is particularly useful when an object or operations on an 
object are malfunctioning. As an example, consider an operation that inadvert- 
ently overwrites random elements in main memory. To prevent further damage 
as a result of other clients invoking the operation, a system programmer wishes 
to stop all access to this operation while it is being updated. The lock mode 
NULL is useful when specifying soft locks (see below) or in conjunction with the 
communication-mode dimension. 

The communication-mode dimension refers to communication between clients 
as the result of another client’s action. Lock holders may wish to be notified of 
the status of an object, including requests from other clients for that object or 
committed updates from another client. The five communication modes are 
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Table II. Locks and Validity of Mode Combinations 

Communication modes 

Lock modes U-NOTIFY R-NOTIFY W-NOTIFY RW-NOTIFY N-NOTIFY 

NULL V I I I I 
NR-READ V I V I V 
R-READ I I V I V 
NR-WRITE I V V V V 
R-WRITE I V V V V 

Note: V = valid: I = invalid. 

U-NOTIFY--notify lock holder upon update, R-NOTIFY-notify lock holder if 
another client requests the object for reading, W-NOTIFY-notify lock holder if 
another client requests the object for writing, R W-NOTIFY-notify lock holder 
if another client requests the object for reading or writing, and N-NOTIFY 
indicating no notification. 

By taking the cross product of the lock modes and communication modes, 25 
locks result, as depicted in Table II. Of the 25, 11 are nonfunctional, in that the 
lock mode prohibits the associated communication mode. As an example, consider 
the NR-WRITE/U-NOTIFY combination. An object locked as such could never 
be updated while the NR-WRITE was held; hence, notification on update is 
meaningless. By using various subsets of the remaining 14 locks, applications 
from cooperative programming design environments to those requiring full 
serializability may be satisfied. 

As an example, the GARDEN [13] system currently uses a hybrid lock, 
WRITE-KEEP [19] that, among its other semantics, informs the owner of the 
lock of other clients’ lock requests on the locked object. This WRITE-KEEP 
lock is used in conjunction with a NOTIFY lock. From our lock set, the subset 
NR-WRITE/RW-NOTIFY and NR-READ/U-NOTIFY provides the same func- 
tionality. GARDEN uses a NOTIFY lock in place of a read lock and a WRITE- 
KEEP lock in place of a write lock. This establishes a demand-driven commu- 
nication scheme. When an object that GARDEN has read is updated, GARDEN 
is notified, and it can reread the object if necessary. When an object that 
GARDEN has for writing purposes is needed, GARDEN is notified, and it can 
return the object if desired. 

For a more traditional lock environment, the subset R-READ/N-NOTIFY, 
NR-WRITE/N-NOTIFY provides the basics for serializable transactions when 
used with the proper transaction options (see below). By allowing a rich lock set, 
applications may tailor a locking environment to their requirements for sharing. 
In an interactive, cooperative design environment, one may wish to employ only 
locks with the RW-NOTIFY communication mode. Lock holders, not wishing to 
impede other client’s productivity by keeping locks on objects not currently in 
use, are notified of other client’s lock requests. Consequently, the lock holder 
may opt to free the lock or commit the current object changes, thus allowing the 
other users to lock the object. 

As another example of the use of the communication mode, consider several 
transactions cooperating on a task, each of which has an object x displayed on 
its screen. Any one of the transactions is allowed to change x, but the others 
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would like to update their screens when this occurs. If all transactions hold a 
NR-READ/U-NOTIFY lock on their objects, then one of the transactions may 
convert its NR-WRITE lock to a N-NOTIFY lock. When it writes X, the other 
transactions will be sent a notification of the change, and they can reread x and 
reset the new value on their displays. 

A rich lock set provides flexibility to the user but also greater responsibility to 
select a lock subset and consistently use locks from that subset. A lock subset is 
equivalent to the complete lock set with the undesirable lock types filtered out, 
so we now introduce a lock filter. Lock subsets are specified by selecting from 
one of the system-predefined filters (e.g., to ensure serializable transactions) or 
by dynamically creating such a filter. Filters guarantee that the specified lock 
environment is maintained and allows only the permissible lock requests to reach 
the server. Hence, the user has the ability to tailor an environment with the 
exact lock desired. A client may set a filter as part of a normal transaction 
operation. Later versions of the system will allow a database server to have many 
filters that apply to various user categories (e.g., read-only users or full-privileged 
users). 

5.2 Processing Lock Requests 

The server interacts with the client to process both object and nonobject opera- 
tions and maintains the files necessary for accessing master segments (see 
Section 6). Commands processed from clients involve DBF operations such as 
create and open, segment and segment group operations and lock requests. 
In satisfying client lock requests, the server must determine three things: 
(1) Does the client already have the object requested in the client’s copy segment? 
(2) Does the client have the most recent copy of the object? (3) If the client has 
neither (1) nor (2), which segment should be sent to the client? We assume that 
a client locking an object does so only if it intends to use the object within the 
current transaction. Therefore, the object is sent in its segment if the lock is 
granted. The server answers the first question by checking the Client Segment 
List (CSL) maintained at the server for all clients. If the client already holds the 
required segment, the client receives only the object-access information. Other- 
wise, the client acquires an appropriate segment from the server. If the client has 
an outdated local copy of the object as determined by the object timestamp, the 
server sends the current copy of the object to the client and replaces the local 
COPY* 

5.3 Deadlock Detection 

Deadlock can occur whenever two conflicting locks have been requested on the 
same object from two distinct transactions. This situation requires that one 
transaction wait until the other commits. In our model, the lock compatibilities 
that conflict are given in Table I. Our definition of deadlock is somewhat different 
from the usual definition. The server allows certain cycles to remain in the waits- 
for graph. Here, a deadlock requires that the deadly embrace be between two 
transactions that have actually been granted locks for each other’s objects. If 
there is a cycle between two transactions that are queued, this cycle is allowed 
to remain. The system will not grant a lock request if that request would cause a 
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deadlock. This potential for deadlock could happen at the time that the lock is 
requested, or it could happen at the time that a pending request is finally serviced 
(i.e., removed from the queue). Queued lock requests are serviced whenever a 
transaction commits or aborts and its locks are released, making them available 
to other waiting transactions. 

Consider the following example. Transaction T, has objects x1 and x2 locked in 
write mode. Transactions T, and Tb request locks for x1 and are queued in that 
order. Similarly, transactions T, and Tb request locks for x2 and are queued in 
the opposite order. The system will not consider this to be a deadlock, since T,, 
Tb, or both of them may abort before T, completes. If they do not abort, the 
system will detect deadlock when T, completes, and either T, or Tb will be 
informed that its lock request has been dequeued. Notice that in an interactive 
environment it is important that a deadlock not cause a transaction to abort. 

6. LOCK AND SEGMENT INTERACTION 

In our segmentation scheme, we present two levels of granularity for locking: 
object-level and segment-level. Locking at the object level implies that a client 
must request locks on individual UIDs, whereas when locking at the segment 
level, the client could lock all the objects in a segment with a single specification. 
Note that, locking an object by its UID locks all copies of the object. Since our 
system allows replicated objects to reside in separate segments, it would be 
possible with segment-level locking to lock large sections of the database by 
locking a single object. In the general case concurrency among clients is signifi- 
cantly reduced with segment-level locking, since a client using a single object in 
a segment prohibits other clients from obtaining other objects in that segment. 

Locking purely at the object level allows clients to share segments, thus 
increasing concurrency. Our system supports object-level locking with the addi- 
tional facility for locking all objects in a segment easily. This is more efficient 
from the user’s standpoint in that procuring locks on all segment objects at the 
outset eliminates having the client repeatedly ask the server for locks or individ- 
ually specify locks for each object in a segment. To lock all the objects within a 
segment, each object must acquire the desired lock. Locks that cannot be granted 
are queued, and the segment is sent with the objects that have acquired their 
locks. 

Recall that our segmentation scheme sends a client an entire segment when 
the client requests even a single object. This clustering provides objects expected 
to be used by the client during a transaction. Because client/server interaction 
is asynchronous, frequent requests to the server for locks impedes client produc- 
tivity, since the client must wait for the server to reply. Frequent requests also 
increase the work load at the server, hence reducing performance for all clients. 

The server makes a distinction between objects explicitly requested by a client 
and objects in the remainder of a segment. Objects explicitly requested use hard 
loch, and the remaining segment objects in the segment use soft locks. In 
specifying a lock mode for the remainder of objects in a segment, the client does 
not know exactly which objects it will be getting. Therefore, we view soft locks 
as a convenience rather than a necessity (from the client’s point of view). If a 
hard lock cannot be granted, it is queued; soft locks are not queued. The client 
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requesting a hard lock is notified whether the lock was granted or denied, but is 
only notified if the lock was granted for soft locks. Using soft locks, we reduce 
the size of the lock queue and minimize the amount of information returned to 
the client. 

When requesting objects, the object and segment-lock specifications need not 
be alike, and all locks from the current lock filter are valid for either. A client 
specifies a lock request as a quadruple: the object UID to be locked, its lock, a 
segment, and the lock for the remainder of the objects in the segment. 

7. TRANSACTION MODEL 

The traditional transaction model [6] has well-defined features, such as two- 
phase locking, that arise from the guarantee that all transactions are atomic. 
The measure of correctness here is that all resulting schedules are serializable. 
We attempt to identify the basic building blocks that can be used to build all 
interesting transaction schemes. We begin by defining a transaction as a series 
of operations that occur during some period of time in a well-defined frame, that 
is, a frame that is marked by specific delimiters (e.g., begin and end). These 
transactions may be nested [ll]. All operations occur during a transaction and 
are associated with an individual transaction. Since transactions at the same 
client may have different restrictions and allowable lock modes, the operation 
must be screened to determine whether it is using a validly locked object for that 
transaction and whether the operation itself is valid (e.g., unlocking an object in 
the middle of a transaction). 

We introduce a set of constraints that may be applied to the skeleton trans- 
action to tailor it to the environment in which it is used. The two essential 
facilities that a transaction provides are acquiring or releasing a lock and making 
changes visible (i.e., committed). 

With respect to locking, unlock all objects associated with a transaction when 
it ends with the following two options: 

-allow explicit unlocking of objects during a transaction, 
-disallow explicit unlocking during a transaction. 

With respect to committing, atomically commit all object changes at the end 
of a transaction with the following two options: 

-allow explicit committing of objects during a transaction, 
-disallow explicit committing during a transaction. 

In general, all explicitly committed object changes are made visible and cannot 
be aborted. A transaction may be aborted at any time such that any changes not 
committed are thrown away and all objects are unlocked. From these building 
blocks, many transaction environments may be created. It should be obvious how 
the conventional transaction model can be created out of these options. 

8. AN EXAMPLE 

Figure 5 is an example depicting the role of hard and soft locks, the reduction of 
communication between the client and server as a result of segment transfers, 
and the general procedure for accessing objects. Note the following abbreviations: 
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LOCK MODES COMMUNICATION MODES 

O-NULL O-N-NOTIFY 
I-NR-READ l-U-NOTIFY 
2-R-READ P-R-NOTIFY 
3-NR-WRITE 3-W-NOTIFY 
4-R-WRITE 4-RW-NOTIFY 

Figure 5 

SERVER STRUCTURES 

Master Segments: 
Segment S, contains object 0, 
4: 01, o*, a, 04 
sz: a, 4, 06 
&: 03, 07 

Lock Table: 
Transaction T, locks object 0, with lock Li,j,/z 
T,: (03, bZ.H), (4, &WI), (06, &o,s) 

Tz: (03, h3.H) 

Client Segment List 
Client C, has segment S, 
c*: s* 
c,: s, 

S, segment; 0, object; T, transaction; C, client; Li,j,k, 0 < i < 4 lock modes, 
0 < j < 4 communication modes; k: H hard; S soft. 

The following are a subset of the client operations that are relevent to this 
example: LOCKquery (0,) returns the type of lock Li,j,k currently held on the 
object or a NO-LOCK signal if no lock is held. LOCKobjects (O,, 0, S,, S) make 
the request for object O,, with the lock O-Lij,k and lock the accom- 
panying segment S, with the lock S-Lij,k. This operation informs the server of 
the request to which the server later responds. The client then takes the segment 
and the corresponding object-access information into its address space. 
OBJECTread CO,, buffer) finds the object 0, in the client’s address space and 
places it in the provided buffer. Not finding the object results in an error signal. 
SEGMENTfind (0,) is separate from the standard routines in that it maintains 
a mapping, possibly at the type level, of where objects are stored. Hence, it 
determines which segment to request. This provides the client with an intelligent 
segment choice rather than a less informed choice from the server. 

From here, client C2 in transaction Ts requires object O2 and checks whether 
it has a lock on it by making the local procedure call LOCKquery (0,). Since it 
does not have the lock and is interested in working on other objects in a specific 
segment, T2 finds the segment it wants by the call SEGMENTfind (0,) and 
makes a lock request LOCKobjects (O,, L 3,0,u, Si, L2,0,~), asking for a specific 
object O2 and segment S1. If the client had not specified a segment, one would 
have been selected by the server. 

At the server, the hard lock for O2 is granted. The remaining objects on which 
to acquire soft locks are Oi, 03, 0,. The soft lock on O1 is denied, since Tl holds 
the lock L3,2,H. The soft lock on 0s is not granted, since a hard lock already exists 
on the object. If O3 had been soft locked by T2, then, if possible, the existing lock 
would have been upgraded. In either case no additional information needs to be 
sent to the client about 03. Object 0, acquires the soft lock, and the corresponding 
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access information is sent to the client. Having completed the locking phase, S, 
is sent to the client. 

At the client, the object O2 may be accessed using the call OBJECTread 
(02, Op-buffer). Suppose C, wanted to access 04. Cz makes the call LOCKquery 
(04) in T2 and finds that it has an L 2,0,s lock on it, which is sufficient for its 
current needs. Since the object is already at the client, and the lock is valid, the 
client need not request it from the server, thus giving the client instant access to 
the object. 

If Tz further wants to write to Oi, it finds that it does not have the appropriate 
lock. Making the lock request LOCKobjects (O,, L3,0,H, ANY-SEGMENT, and 
LO,o,s) involves the following operations: The server finds that Tl committed and 
freed the lock it had on O1. Tz is granted the lock and, through the timestamp 
mechanism, it is found to have an outdated copy of the object, so the server sends 
the individual updated object to Cz. If 0, had not been updated, then the server 
informs the client that the lock is granted. 

9. ATTAINING AN OPTIMAL PARTITION 

The optimal partition of objects within a database results in the transfer of only 
those objects a user will access in one transaction. Although users provide a 
partition for objects either by Object-Segment Mapping (OSM) or manual speci- 
fication, these may not result in an optimal partition. Therefore, heuristics 
provide a more flexible approach to maintaining an optimal object partition 
based on observations of object usage over time. The heuristics employ a migra- 
tion facility for moving objects from one segment to another. The object migration 
process involves the system’s monitoring object usage within segments and 
moving objects from one segment to another within the same DBF to aid database 
performance. 

When objects are created, OSM partitions them by semantic criteria or user- 
specified segments. If an object changes logical association with the other objects 
in its segment, it needs to migrate or move to another segment to reduce the 
number of segments transferred, that is, to improve performance. The database 
administrator and system are responsible for this process. 

We consider two types of heuristics, transaction-oriented and single-object 
evaluation of object usage. Transaction-oriented heuristics involve monitoring 
object usage within the context of a transaction. That is, transaction-oriented 
heuristics involve monitoring how objects are used together. Single-object 
heuristics involve using measurements amassed over a period of time. As an 
example of a time-interval heuristic, consider that natural partitions may form 
within a segment on the basis of an access count for individual objects, namely, 
some objects are used very frequently, and others not at all. If enough objects 
exist in each group so that creating another segment is justified, the objects in 
the smaller group migrate to the new segment. 

Three measures are currently employed for monitoring: the access count, open 
count, and access ratio. The access count refers to the number of times an object 
was accessed in a given segment. The open count refers to the number of times 
the segment was opened. The access ratio is the quotient between the access 
count and the open count. 
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Some of these heuristics require keeping detailed statistics on both segments 
and objects. These are maintained in files at the server and used initially to fine- 
tune the database. 

10. RELATED WORK 

Attaining an optimal data organization to minimize retrieval costs is certainly 
not a new idea [21]. Schkolnick devised a clustering algorithm to perform this 
task [15]. Although our desired result is the same, our data structures (hierar- 
chical data represented in a tree versus objects), work environment, and means 
are quite different. 

Schkolnick chose to group all instances of a type into a segment. These 
segments were then grouped in a hierarchical tree structure. To apply his 
algorithm, Schkolnick obtains usage patterns of data access that are basically 
the most frequently used access paths in the hierarchy. Examining these patterns 
allows the algorithm to determine a partition of the tree segments. Once subtrees 
have been produced, the available disk space is divided into linear address spaces 
(LASS), one for each partition. The instances of all segments for a given partition 
are placed in their corresponding LASS in the same order as they appear in the 
hierarchical order. This idea is equivalent to our method of storing objects with 
their subobjects. Next, each LAS is divided into blocks of equal length called 
pages. The objective is to minimize page faults. The system paging mechanism 
acquires the data from secondary storage, and the data are accessed directly 
through these pages. A page fault is noted whenever a record is not found on a 
page already in the buffer pool. Schkolnick has shown that, for a given access 
pattern, the access time can be minimized on the basis of the storage method for 
a hierarchical structure. He states, “The predicted optimal storage allocation 
does in fact significantly reduce the average number of page faults over that 
obtained when the structure is stored in the conventional hierarchical order” 
[15, p. 43-441. 

This method has several similarities to our segmentation scheme. As men- 
tioned, the notion of storing objects with their subobjects is a common thread. 
In terms of accessing data, we read a set of related objects expected to be accessed 
during a transaction. In our method of fathoming a better partition, we analyze 
usage patterns amassed over time. To clarify the term segment in the two 
contexts, we allow a melange of instances of object types to reside within a 
segment, whereas Schkolnick’s segments are a grouping of type instances which 
themselves are grouped into LASS. This latter grouping into LASS is similar to 
our use of segment groups, where related segments can be accessed as one larger 
unit. However, our segment groups maintain their individual segment identities. 
With Schkolnick’s LASS, objects along the same access path within a subtree are 
stored contiguously, which shatters the original segment boundaries. 

We allow more options for object grouping; hence, a more tailored set of objects 
may be placed in one segment. However, the option for all instances of a type is 
also provided. Since we devised our method for an object-oriented system, we 
pose virtually no restrictions on the overall data configuration and dependencies 
between objects. Our method has no immediate concern for the underlying paging 
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mechanism, which makes it freer from hardware idiosyncracies. We also provide 
specific segment operators that give exclusive access to database objects. 

11. SUMMARY 

In this paper we have given an overview of our object-oriented database system. 
Within that discussion, our central focus has been the implementation of a 
typeless object server that is used as the backend. Specifically, we have described 
our segmentation scheme and the mechanisms that are used for controlled 
sharing. In a final section we have pointed out the interactions and problems 
encountered in building these two facilities, and we have sketched our solution. 

A prototype of this system has been implemented. We have linked the prototype 
of Observer with the GARDEN [ll] programming environment. GARDEN is a 
system for visual programming. It allows programmers to construct their pro- 
grams in terms of pictures. GARDEN also contains a set of tools for easily 
constructing new pictorial languages. GARDEN treats everything as an object 
and, as such, provides an excellent testbed for our system. GARDEN views static 
program pieces, such as modules, statements, and variables, as objects. It also 
views dynamic structures, such as stack frames, as objects as well. Future versions 
of GARDEN will make use of the ENCORE database system to take advantage 
of some of the more advanced features, such as version control. 

There are many important research issues that need to be investigated. We 
view implementation issues as among the most important. This technology will 
only succeed to the extent that it can be made to operate efficiently. Many of the 
ideas expressed in this paper were derived from experience with our prototype in 
the GARDEN environment. We expect this kind of refinement to continue. 

The issue of being able to handle objects of widely differing sizes is very 
important. How can we manage huge objects, such as bit maps or large programs, 
in a homogeneous way with small objects, such as characters or integers? The 
data model presents no problem here, but the implementation problems of 
managing these objects on a disk are yet to be solved. 

At the model level, it is tempting and useful to be able to treat everything as 
an object. For example, we might treat paragraphs, sentences, and characters as 
objects. It is not unreasonable to incur the overhead associated with an object 
for paragraphs and sentences, but this overhead at the character level would be 
completely unreasonable. We therefore need a scheme whereby characters can 
be conceptually stored as objects, but not as full-fledged objects at the implemen- 
tation level. A scheme such as this would require that the container objects know 
something about the form of the objects that are contained in them, and that 
inbound references be handled specially. 

Other research areas include topics like extending and enhancing the data 
model to include facilities like triggers and views and designing a more complete 
transaction management scheme that supports concurrency control and recovery 
differently for different types. The issues involved in effectively supporting the 
management of change still require further study. Designing a databased pro- 
gramming language whose model of data is precisely the model that we have 
described above is currently underway. We are also interested in extending our 
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database system to operate in a distributed database environment and to run on 
parallel-processor machines. 
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