
A Visual Interface for a Database
with Version Management

JAY W. DAVISON
AT&T Bell Laboratories
and
STANLEY B. ZDONIK
Brown University

This paper describes a graphical interface to an experimental database system which incorporates a
built-in version control mechanism that maintains a history of the database development and changes.
The system is an extension of ISIS [6], Interface for a Semantic Information System, a workstation-
based, graphical database programming tool developed at Brown University. ISIS supports a graphical
interface to a modified subset of the Semantic Data Model (SDM) [7]. The ISIS extension introduces
a transaction mechanism that interacts with the version control facilities.

A series of version control support tools have been added to ISIS to provide a notion of history to
user-created databases. The user can form new versions of three types of ISIS objects: a class
definition object (a type), the set of instances of a class (the content), and an entity. A version-
viewing mechanism is provided to allow for the comparison of various object versions. Database
operations are grouped together in atomic units to form transactions, which are stored as entities in
the database. A sample session demonstrates the capabilities of version and transaction control
during the creation and manipulation of database objects.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: user/machine systems--human
factors; H.2.1 [Database Management]: Logical Design--data models; H.4.1 [Information Sys-
tems Applications]: Office Automation

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Historical database, semantic data model, transaction processing,
version control, visual interfaces

1. INTRODUCTION

An office environment is characterized by the production of artifacts that are
used in the execution of office procedures. For example, an office worker will
routinely generate reports that describe the progress of some project, graphical
images that are used in presentations to help bolster a new idea, or a spread-

This work was supported in part by the Office of Naval Research under contract N0014-83-K-0146
and DARPA under order 4786.
Authors’ addresses: Jay W. Davison, Department D-111, MITRE Corporation, Burlington Road,
Bedford, MA 01730; Stanley B. Zdonik, Department of Computer Science, Brown University,
Providence RI 02912; sbz@brown.csnet.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0734.2047/86/0700-0226 $00.75

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986, Pages 226-256

Visual Interface for a Version Management Database l 227

sheet that will be used in making a financial decision. We envision an office
information environment in which all of these objects are stored in a powerful
database facility. Artifacts such as these typically undergo continual change as
the office worker refines his or her notion of what is needed.

We might say then that the office worker is involved in a kind of design
activity. We believe that any such activity needs support tools for managing this
change over time. Workers will need to compare past versions of an object with
its most current version. Adding a time dimension potentially adds to the
complexity of the system. It is important to develop new ways to provide access
to this additional information such that it enhances productivity instead of
obscuring the real focus of a task. The development of intelligent interfaces that
are able to deal with the time dimension is an important step in this direction.

ISIS-V is a database system interface that allows users to access graphically a
database that supports a high-level, semantic data model similar to the Semantic
Data Model (SDM) [7]. This paper describes the design of an experimental
vehicle that has been developed at Brown to test the feasibility of adding access
to the time dimension in a visual database environment.

ISIS-V extends the ideas in [6] to include simple notions of versions and
transactions. There has been much recent interest [5, 9, 10, 13, 17, 211 in the
notion of databases that can record the intermediate states of an object as it
evolves through time. It is possible to apply general version-handling operations
to three types of ISIS-V objects: the class definition, the class content, and the
data entity. By performing database operations that alter the definition of any
of these database entities, the user can create successive versions of the object in
a linear version set. These versions are stored in the database as changes to
the original definition, and can be compared using ISIS-V version-viewing
mechanisms.

An ISIS-V transaction is a grouping of operations that is viewed as an atomic
action on the database state. ISIS-V is always operating in the context of some
transaction. A user can explicitly start a new transaction and thereby end the
previous one. When a transaction ends, any changes that are made by that
transaction are committed to the database.

We treat transactions as objects and store them in a reserved TRANSACTION
class. It is possible to access the write-set of each of these transactions. This
makes is possible to access prior states of the database for viewing and comparison
purposes. In this sense, ISIS-V transactions provide a means for tracking the
history of the database. Completing a transaction is analogous to creating a new
version of the database.

For the remainder of this document we shall use the name ISIS to refer to the
ISIS-V system. If we want to refer to the predecessor of ISIS-V, we shall explicitly
say “the original ISIS.”

2. SYSTEM DESCRIPTION

The original ISIS [6] is an experimental, workstation-based system, exploiting a
two-dimensional visual display to allow for graphical manipulation in database
programming. The original ISIS provides a rich set of graphical operations to

-construct a new database, or modify an existing one,
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

228 l J. W. Davison and S. B. Zdonik

-browse through both the schema and data levels,
-build complex queries, the results of which can be saved for future use.

2.1 Semantic Database Model: The ISIS Subset
ISIS is based on the Semantic Data Model [7]. To make the construction of ISIS
more tractable, a relationally complete subset of SDM has been chosen for
implementation. This modified subset expresses the essential features and
reflects the basic design principles of SDM.

The three primary building blocks in the ISIS system are the entity, class, and
attribute. An ISIS database consists of a collection of entities that are organized
into classes. Entities are defined to have named attributes whose values are other
entities. An ISIS schema consists of a set of class definitions. A class is a named
collection of entities that all have the same attributes.

A class can be designated as either base or nonbase. A base class is defined
independently of all other database classes. Nonbase classes are dependent on
base classes and are logically related to them through interclass connections. ISIS
contains two types of interclass connections-subclass connections and grouping
connections. A subclass S of a class T is constrained to contain some subset
of the membership set for T. We say that T is a superclass of S. A grouping
class G of a class T contains sets whose members are drawn from T. Each
member of a particular set in G shares a common value for one designated
grouping attribute.

ISIS has five predefined base classes, of which the following four are available
to the ISIS user as value classes: INTEGERS, REALS, YES/NO (Booleans),
and STRINGS. The fifth predefined class, the TRANSACTION class, described
in a later section, is not available for general access since it is used to store
version control information.

Entities and classes in ISIS have an associated collection of attributes that are
used to describe their characteristics and relate them to other classes and entities.
Each attribute has a value class from which the values of the attribute are drawn.
These attribute values are used to give descriptive information about ISIS entities.
Attributes are either single valued or multivalued. A single-valued attribute has
one value drawn from the attribute’s value class, and a multivalued attribute has
a set of values that constitutes a subclass of the attribute’s value class. Members
of subclasses have single-parent inheritance of attributes. That is, if S is a
subclass of T, S automatically inherits all attributes defined on T. Inheritance
is recursive, and S inherits all attributes that are defined on any superclass
of T as well.

2.2 Interface Characteristics

At each level, an ISIS screen consists of a collection of disjoint windows (see
Figure 4, p. 243). There are four possible window types. The largest of these
windows is the work area for the current level. This rectangle typically contains
the class(es) or entity(ies) under consideration at the moment. A hand with a
pointed-finger icon is usually present at each level, and is used to denote the
current database object. If the hand is not in view, then either there is no current
object or the current object is not currently in view (in which case panning is
necessary).
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

Visual Interface for a Version Management Database l 229

Menu keys appear at the bottom of every ISIS screen. The selection of menu
keys varies from level to level in ISIS, and furthermore may vary according to
the current object in the database. Command functions are standardized,
however, so that menu keys in different levels that have the same name will also
have the same semantics. Generally speaking, the first four commands alter the
description of the current object, whereas the last four commands allow for
traversal to different screens and levels.

Each screen also has a corresponding set of menu keys that provides access to
version operations. These menu keys can be viewed by pressing the third mouse
button. This puts the use of the version control mechanism totally under the
user’s control; if the user does not wish to use version control, no version control
operations will appear. Any time that the version menu is toggled to the standard
menu again, the database is automatically brought back to its most recent state,
since modification of database objects can only be performed on the current
database state.

The final type of window is a pop-up edit window, which provides the user
with a set of graphical editing operations that can be performed on the current
object. This window appears at the current cursor location when the user picks
the second mouse button. The user is presented with a box, which is dragged
over the menu operations until the desired operation is within the box. Picking
any mouse botton at this point will perform the chosen operation on the current
object. Each ISIS screen has its own graphical editing menu, since the type of
operations that can be performed may vary according to the current object and
its method of representation within the current screen.

2.3 ISIS Levels

ISIS views a database as consisting of two interdependent levels, the schema
level and the data level, each of which contains a series of screens which allow
navigation using maps formed by attribute value classes and attribute values (see
Figure 1). In addition, version comparison is available at both levels through the
use of an additional screen, the version card screen. The hand icon is present at
each level and in each screen to indicate the current database object.

2.3.1 Schema Level. The schema level provides a view of the schema plane
through the use of three different screens: inheritance forest, semantic network,
and predicate work sheet.

Upon entering ISIS, the inheritance forest is the first screen that comes into
view (see Figure 4, p. 243). This screen provides a view of the classes, groupings,
and attributes that comprise the schema. Interclass connection lines connect
groupings (which lie above the father class) and subclasses (which lie below) to
their respective father classes. The hand icon points to the currently selected
schema object. When the user toggles the menu keys to the version menu, those
class types that have previous versions are redrawn with a three-dimensional box
outline. The user can then create new versions of a class and view preceding and
succeeding versions. The inheritance forest will be redrawn to reflect the changes
performed to the schema objects as a result of the version traversal. The box
outline remains for each class type that has a preceding version. As the user
views past versions of a class type, a small arrow appears at the lower left corner

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

230 l J. W. Davison and S. B. Zdonik

Fig. 1. Interconnections of ISIS schema and data levels.

of the class to signify that it has succeeding versions. Only when the user is
viewing the most recent version of the class does the succession indicator arrow
disappear.

If the hand icon is not pointing to any schema object, the user is working with
the database in its entirety. Toggling to the version menu keys at this point will
cause the transaction menu to appear. It is now possible to complete transactions,
causing a new version of the entire database, or to view preceding and succeeding
transactions. As a final note, the user must be in this screen in order to exit ISIS.

The semantic network provides an alternate view of the currently selected
database object (if the current object is an attribute, then the current selection
will automatically change to the attribute’s value class before entering the
semantic network) (see Figure 6 p. 245). The semantic network depicts two types
of mappings. The right side of the screen names each attribute of the current
class and draws its associated value class. The left side of the screen shows those
classes that have an attribute having the currently selected class as its value
class. Navigation occurs by picking any class box that maps into or out of the
current class. This class then becomes the current class, and the semantic network
is redrawn. Upon return to the inheritance forest, the hand icon will point to the
new current class, unless the new current class is predefined, in which case there
is no current object. The user can also toggle the menu keys to the version menu
in this screen, and again, all objects which have past versions will be redrawn
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

Visual Interface for a Version Management Database l 231

with the three-dimensional outline, and all objects with succeeding versions will
have the succession indicator arrow at the lower left corner.

The predicate work sheet allows for the construction of derived subclasses and
derived attributes. The predicate for a derived subclass S is used to indicate
which members of parent(S) are also members of S. A derived attribute is
computed from other class and attribute information in the database. ISIS views
the definition of a newly derived attribute (or class) to be equivalent to construct-
ing a query. The query is formed by applying attributes as functions to sets of
objects to map those objects to other sets of objects. A mapping is depicted as a
stack of class icons, one icon for each attribute application. A query clause is
represented by two stacks of classes (i.e., mappings) between which a chosen
comparison operator is placed [6]. The query is composed of clauses in disjunctive
or conjunctive form. The result of the query is saved in the derived class for
further examination. These clauses are constructed by editing atoms using the
mapping facilities provided to specify the two operands and the operator. No
version control is currently provided in this screen.

2.3.2 Data Level. The data level is used for browsing the current state of the
database and for updating the database contents. The data level provides a view
of the data plane through the use of two different screens: class content and entity
network. The class content screen can only be entered from the schema level
through the inheritance forest, and the entity network can only be entered from
the data level through the class content screen.

When first drawn, the class content screen displays a page containing the
current schema selection, and a pannable list of that class’s membership set (see
Figure 11, p. 250). If the current object was an attribute, then the new current
object becomes the attribute’s value class. It is possible to create and delete
entities from the current object’s membership set, or to select (by highlighting in
boldface type) certain entities for attribute reassigning. Navigation is possible at
this level by following attributes in the current class. The followed attribute’s
value class will then become the current class, and a new page containing entities
of the value class will be displayed on top of the previous page. Entities highlighted
in boldface type on the current top page are attribute values for the set of entities
highlighted on the previous top page. Furthermore, the ISIS user can specify a
user-defined membership set for a new subclass by selecting members in the
parent class, then temporarily entering the inheritance forest to position and
name the new subclass.

The class content (i.e., the set of all objects belonging to that class) is treated
as a database object and, therefore, can be tracked with the version mechanism.
As in the schema level, the user can toggle the menu keys to the version menu
and create a new version of the class content, or view preceding and succeeding
versions of the class content for the current class. When traversing object
versions, each page in the class content screen is redrawn to reflect any changes
that were indirectly made to the contents of that page. The box outline and
indicator arrow are present on this screen in the same manner as in the schema
level, but now indicate the presence of preceding and succeeding versions of the
class content for the current class page.

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

232 l J. W. Davison and S. B. Zdonik

The entity network provides a more isolated view of an entity and its attribute
values (see Figure 14, p. 253). This screen is obtained by selecting an entity for
viewing from the top page of the class content level. The entity network is similar
in structure and usage to the semantic network, and is also illustrated through
two types of mappings. The right side of the screen shows the entity’s attribute
values, and the associated value class for the particular attribute. On the left side
of the screen are those classes with member entities which use the currently
selected entity as an attribute value. Any class box except the father class box
may be picked as the current class under consideration. The entity list for that
class may then be panned, which may be necessary, since space limitations
severely restrict the number of entities that may be shown for those value classes
of multivalued attributes. As in the semantic network, navigation is also possible
here by selecting an entity from the currently selected class, whereby the entity
network is redrawn with the new current entity and its pertinent information.
As navigation occurs, a class content page is added in the background on the
class content screen to reflect the navigational changes. The version menu is
again available for use in viewing preceding and succeeding versions of the
current entity. To simplify the user interface, a new version of the entity is
created each time its attribute values are reassigned, and so there is no version
creation menu key provided in the version menu. The box outline and indicator
arrow are once again used on the father class to indicate that the current entity
being viewed has preceding and succeeding versions.

2.3.3 Version Card. The version card screen makes it possible for the user to
compare several versions of the currently selected database object. This screen
may be entered from the version menu in the inheritance forest screen (to view
class type versions, see Figure 8, p. 247), the class content screen (to view class
content versions), or the entity network screen (to view entity versions, see
Figure 15, p. 254). Object versions are drawn on version cards, which are stacked
on the left side of the workstation screen. Selecting a version card moves the
hand icon, making that version the current one under consideration. The current
version card may be moved to the right side of the screen to allow for an expanded
comparison of object versions, and pages may also be removed from the right
side of the screen and placed back in the stack in the original order. If the current
object is a class type or a class content, then the user may follow an attribute to
another class by picking that attribute on the current version card. If the current
object is an entity, then the user may inspect the attribute values for a single
attribute (due to space limitations) by picking the desired attribute. It is then
possible to navigate to another entity by choosing that entity from the list of
attribute values displayed for the chosen attribute. The now familiar succeeding
version indicator arrow, as well as a preceding version indicator arrow, will appear
below the top page and above the bottom page, respectively, to announce the
existence of succeeding and preceding version cards for the current object. This
is necessary because only four stacked version cards will be drawn at any one
time. When the arrow(s) appear, the user is able to view the indicated versions
by panning to the front or back versions through the graphical editing menu. In
such a manner, the user can pan all the versions of an object and move to the
right side of the screen those versions which are necessary for the desired
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

Visual Interface for a Version Management Database . 233

version *l version *2 version *3 version *n

Fig. 2. Linear version set for the class type people.

comparison. Upon exit of this screen, the database will remain at the exact state
it was in when the creation of the object version on the current version card
occurred.

3. VERSION MANAGEMENT AND CONTROL

The following sections describe in detail the primary focus of this extension to
ISIS, namely, a system that provides a visual interface to version control in a
semantic database model.

3.1 Linear Version Sets

ISIS collects new versions of an object in the object’s version set. The version
set represents an ordered collection of version instances for the object in question.
Each time the user creates a new version of the currently selected object, a new
instance of the object is placed in the version set for that object.

This manner of collecting versions coincides with the notion of a linear version
set [19]. The linear version set produces a version collection as described above,
where each version instance, except the oldest, has a unique predecessor, and
each version instance, except the most recent, also has a unique successor. A new
version is always added to the version set as the successor of the latest version.
If the object has been altered in some way since its most recent version has been
created, it is assumed to be in the middle of the next version creation. Figure 2
shows some of the members of a possible linear version set for the class people.
The arrow between the version instances represents the passage of time between
the creation of object versions.

3.2 Transactions

When the database user operates on a database, he or she performs a series of
operations that affect the objects in the database. Often these operations are
logically related. For example, when new employee Jane Q. Worker begins
employment at the Widget Corporation, all the information that the Widget
Corporation deems important about Jane will have to be entered into their
company database. When this occurs, it is often desirable to group the operations
together such that their cumulative effect is guaranteed to be atomic. ISIS
provides such a capability and refers to the ordered set of operations as a
transaction.

ACM Transactions on Office Information Systems, Vol. 4, NO. 3, July 1986.

234 - J. W. Davison and S. B. Zdonik

As the user modifies objects in the database, ISIS places copies of these objects
into an open transaction. The user can close the transaction by using the
complete-transaction operation described below, or by exiting ISIS, which auto-
matically closes and saves the current transaction.

Transactions themselves are also placed into an ordered grouping-the linear
version set for the entire database. The database object is simply the set of all
known objects and can evolve like any other object. This allows ISIS to record
information about the relative occurrences of transactions. Thus the linear
version set for the database incorporates information about all the operations
ever performed on the database. This makes it possible for the user to view
preceding and succeeding database transactions, using operations described be-
low, to browse through a series of alterations made to the database.

A new ISIS transaction begins as soon as the previous transaction is completed
(or when the user first starts ISIS). As objects are modified, the transaction
receives its own “copy” of the object, signifying that some change was made to
the object in this transaction.

Figure 3 gives a graphical demonstration of the creation of a series of trans-
actions, showing how the completion of each transaction provides a snapshot of
the database changes. When transaction 1 ends, it has a copy of two classes,
since each apparently was created in this transaction. When transaction 2 opens,
we see outlines of the two classes, since neither has yet been modified. As
transaction 2 progresses, an attribute is added to one of the classes, and so a new
copy of the class is brought forward from the first transaction. Since trans-
action 2 closes at this point, a new copy of the other class is never obtained.
Transaction 3 makes several changes to both classes, so a new copy of the left
class is brought forward from the second transaction, and a new copy of the right
class is brought forward from the first transaction.

3.2.1 Transaction Operations. The following transaction commands are
accessible while in the inheritance forest with no currently selected object (i.e.,
the entire database is the current object), with the version menu toggled on:

complete-transaction (transaction-id) + transaction-version-set

delete-transaction (transaction-id) + transaction-version-set

preceding-transaction (transaction-version-set) + transaction-version-set

succeeding-transaction (transaction-version-set) + transaction-version-set

latest-transaction (transaction-version-set) + transaction-version-set

The complete-transaction operation terminates the current transaction and
begins a new one. It is analogous to commit in conventional transaction processing
systems. It does this by making new versions for any objects that were modified
by the transaction and adding a new database object to the database version set.
Transactions are atomic units of work. The results of a transaction T are not
made available to other concurrent transactions until T is explicitly ended.

The delete-transaction operation allows the user to delete the current trans-
action. ISIS automatically closes the transaction and then deletes it. Of course,
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

Visual Interface for a Version Management Database l 235

(b)

Fig. 3. Three ISIS transactions: (a)
Transation 1; (b) transaction #2; (c)
transaction #3.

I

(c)

it is possible to be in a new transaction that has made no modifications. In this
case, ISIS deletes the most recently completed transaction. In the process of
transaction deletion, all operations that comprise the transaction are “undone”
(i.e., the effect of the command on the database is removed).

The preceding-transaction operation traverses the database version set back-
ward to obtain the database state that precedes the current one. If the current
transaction is the first one completed (the “oldest”), then an error message
occurs. Otherwise, the operations in the current transaction are simply undone,
leaving the database in the same state that it was in when the new current
transaction was originally completed. Once again, if the user is in the middle of
creating a new transaction, then this transaction is automatically, but tempo-
rarily, closed and all its member operations are undone. When the user is

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

236 - J. W. Davison and S. B. Zdonik

finished traversing the transaction versions, and uses the succeeding-transaction
or latest-transaction commands (described next) to get back to the most up-to-
date version of the database, then this temporary closing of the current transac-
tion will be undone, leaving the user in precisely the same state as before the
traversal began.

The succeeding-transaction command provides an inverse operation to
preceding-transaction. ISIS is placed in the state that it was in after the current
transaction completed. The transaction that was in force at that time is made
current. If the current transaction is the most recent, then an error message is
given. Otherwise, the operations that comprise this transaction are redone to
make the database consistent with its state when that transaction was first
completed. If the use of this operation yields the most recent database version,
then ISIS checks if the current transaction was temporarily closed. If this is true,
then it is reopened for additional database changes.

The latest-transaction command produces the most recent version of the
database by successively calling succeeding-transaction until no more transac-
tions can be “redone.” This command is used by ISIS when toggling back to the
standard menu, since the standard menu must always be accompanied by an up-
to-date database (database altering operations cannot be performed on objects if
the database is not current).

3.2.2 Transaction Representation. An ISIS transaction must store information
regarding each of its operations so that each can properly be un/redone when
performing version traversal. When a new transaction is completed, we cannot
afford to create a new instance of the entire database to reflect the changes made
in the most recently completed transaction. Instead, we need to store only the
pertinent operations, or the database deltas, for each transaction.

As an ISIS session progresses, operations that affect the state of database
objects are placed on a system undo stack. When the user wishes to complete the
transaction, the undo stack is examined. If the stack is not empty, then a new
transaction entity is added to the TRANSACTION class. The information in
the undo stack is popped off and placed into the entity, preserving the order so
that transaction traversal will affect objects in the proper order.

Each transaction, then, is represented as a uniquely identified entity in the
TRANSACTION class. This entity has a series of attribute values that describe
any information necessary to un/redo transaction operations. For example, there
is an attribute that contains a list of the operation codes for the commands in
the transaction and an attribute that contains a list of object ids of the objects
affected by the operations.

3.3 Object Versions

ISIS supplies version control mechanisms for three types of database objects:
class type, class content, and individual entities.

The ISIS user can save versions of class types as they are altered during
creation time. It is then possible to view the evolution of the class type from its
initial conception to its present state. It should be noted that, since attributes
merely provide descriptive information about the class, they have no version sets.

ACM Transactions on Office Information Systems, Vol. 4, NO. 3, July 1986.

Visual Interface for a Version Management Database l 237

However, changes performed on the definition of a class’s attributes make the
creation of a new class version possible.

A class content version for the current class may be created while in the class
content level of ISIS, with the version menu toggled. This is useful as the
database data content changes and evolves. For example, the user may wish to
create a new instance of the class employees to represent the addition of several
new workers to the current set of company employees. The presence of at least
one create-entity or delete-entity operation that affects the current class is
sufficient to enable the user to create a new version of the current class contents.

A new entity version is created each time the ISIS user reassigns the entity’s
attribute values. (For the sake of simplicity in the interface, users need not be
aware of version control of entities. It happens automatically as changes are
made.)

3.3.1 Version Operations. ISIS is capable of recording a version history for all
objects in the system including class definitions and the database itself. New
versions are created automatically for instances whenever an attribute value is
changed and for classes at the end of a transaction. ISIS allows the following
operations on version sets:

preceding-version (object-id, version-id, trans-id) + version-set

succeeding-version (object-id, version-id, trans-id) --, version-set

latest-version (object-id, version-id, trans-id) + version-set

view-versions (object-id) -9 version-set

The preceding-version operation returns the database to the state that it was
in after the transaction that created the previous version. ISIS considers the
database user always to be in the middle of a version creation for each object.
Thus, if the database is in its most recent state when this operation occurs, ISIS
checks to see whether it is possible to create a new version of the current object.
If the creation can be performed, then the new version is temporarily created.
The preceding version can then be obtained by finding the version that precedes
the newly created one. If the database is not in its most recent state, or if it is
not possible to create a new object version, then ISIS simply finds the version
that precedes the current object version. If the current version is the first one,
then an error message is given. Operations are undone in previous transactions
(even those that do not affect the current object-to keep the database consistent)
until ISIS finds the previous version for the current object. Upon returning to
the database’s most current state, ISIS undoes the temporary version creation,
leaving the database in exactly the state that it was in before the traversal began.

As in transaction handling, the succeeding-version command provides an
inverse operation to preceding-version. The object’s version set is traversed until
the version that succeeds the current version is obtained. An error message is
given if the current version is the most recent one. Otherwise, transaction
operations are redone until the succeeding version creation is reached. This

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

238 . J. W. Davison and S. 6. Zdonik

places the database in a state that is consistent with the state of the database
when that version creation was first done. If the result of the operation yields
the most recent object version (which is always the most recent database version),
then ISIS checks if the current object had a version temporarily created. If this
happened, then it is untreated, and the database is once again consistent.

The latest-version command calls the succeeding-uersion command until the
database reaches its most recent state. ISIS uses this operation to obtain an up-
to-date version of the database before toggling back to the standard menu to
perform new database operations. For the user, this command provides a fast
way to obtain a representation of the most recent version of a database object.

The version card screen is accessed from the inheritance forest, class content,
and entity network screens through the view-versions command. This screen
makes use of the preceding-version and succeeding-version operations to traverse
the database to find and draw various versions of the current object.

4. EXAMPLE: AN OFFICE APPLICATION

The following two-part example illustrates the primary features of the ISIS visual
interface to version management. The first part of the session demonstrates the
use of transactions and object versions in the initial schema design and data
entry. The second part of the example shows the use of object versions as
database objects evolve over a period of time.

4.1 The Application Environment

The database designer for a typical office has decided that the office environment
can be described using five base classes, one grouping class, and one subclass.
The people base class has four attributes: last-name, which identifies the person
entity; jobs, a multivalued attribute mapping into the jobs class, which lists the
jobs performed by the person; department, which maps into the departments class
and gives the person’s department; and supervisor, which maps back into the
people class and gives the supervisor’s name. The grouping by-supervisor groups
company employees according to their supervisors.

The jobs base class has two attributes: job-name, which identifies a job by title,
and classific, which classifies the job as clerical, technical, or managerial. The
subclass secure-jobs of the base class jobs is a user-defined subclass which has
members that require the job performer to first obtain special security clearance.
The clear-leuel attribute maps into the INTEGER base class and gives the level
of security clearance necessary for the job.

The reports base class has three attributes: report-name, which identifies the
report by title, and producers and receiuers, two multivalued attributes mapping
into the people base class, which list the people who produce and receive the
report, respectively.

The chapters base class consists of three attributes: chapter-name, which
identifies the chapter by name; chapter-num, which maps into the INTEGER
base class and gives the chapter number; and report, which maps into the reports
base class and indicates to which report the chapter belongs.

The departments base class consists of two attributes: dept-name, which
identifies the department by name, and interactions, a multivalued attribute that
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

Visual Interface for a Version Management Database l 239

maps back to the departments base class and lists those departments that directly
interact with a particular department.

4.2 Sample Database Setup

The database designer begins with an empty database which has been titled
office.db. In the first database transaction, the designer creates the base classes
that are explained above. Each base class also received a new object version after
the class and identifying attribute were properly named. As the user modifies the
base classes set up in the first transaction, he creates a new version of each.
Figure 4 shows the user as he is about to create a new object version of the class
type chapters. Other base classes in the database already have a boxed outline
representing the fact that they have at least one previous version; after the user
finishes this operation, the currently selected class will also have the version
outline. Figure 5 depicts the user completing the final transaction for the
schema design.

As an added measure of caution, the designer decides to review his creation
process, in case something was overlooked. He selects the reports base class, and
enters the semantic network screen in Figure 6. Examining the screen, he can
see that the base classes reports, people, and chapters all have past versions,
which he realizes is correct, since he created several object versions of the classes
as he built the schema. For comparison purposes, he decides to traverse the
version set for the reports class, to get its preceding type version. The result is
shown in Figure 7. Here he notices that the reports and people classes now each
have preceding and succeeding versions, and that the reports attribute in the
chapters class no longer maps into the current class. He realizes that this is
because value class selection for that attribute was made after the creation of
this particular instance of the reports base class.

Wishing to further examine the changes made between the various version
creations for the reports class, he proceeds to the version card screen of ISIS
(Figure 8), since this screen allows for many of the linear version set members
to be viewed at once. There he sees four stacked version cards for the class type,
each card representing a created version instance. Figure 9 shows how he has
popped one of the version cards to the top of the stack and moved the most
recent version card out to the right side of the screen, so that the two class type
instances can be compared more easily. Noticing the arrow which signifies that
there are more preceding versions than those represented on the screen, he
decides to pan to those preceding versions in Figure 10. Since the currently
selected card was still sitting in the unpopped stack of version cards (see Fig-
ure 9), ISIS automatically moves the card to a designated spot on the right
side of the screen, and then draws the only other preceding version for the
reports class type.

Satisfied with the present schema setup, the designer proceeds to the data level
and enters the company’s pertinent data (as entities) for its current operating
environment.

4.3 Using ISIS as the Office Evolves

In this portion of the scenario, we rejoin our user at a later point in time. The
company has expanded somewhat, and wishes to add a new marketing department

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

240 * J. W. Davison and S. B. Zdonik

to the existing research/development, production, and sales departments. This
new marketing department will consist of two new employees, Walter, as depart-
ment head, and Preston, as his marketing staff. The marketing department will
not produce its own report, but instead Preston will produce a chapter in the
research report (based on his infinite marketing wisdom).

Our database user enters the data level with the class content screen and adds
the two new employees to the people class. Figure 11 shows the two new workers
highlighted in the entity list for the class. The user has just created a new version
of the people class content, to represent the change in the number of employees
for the company. The boxed outline appears around the class to indicate the
presence of a past version for the people class.

Figure 12 shows the user in the process of assigning the new employees to the
marketing department. In this figure, the user has just added the marketing
department to the departments class and has just created a new version of the
class content. Again the boxed outline appears to indicate the presence of a past
instance of the class content for departments. Out of curiosity, the user wishes
to see how the class content for the departments class looked before this new
addition, so he views the preceding class content. Figure 13 shows the result of
this operation. The departments class shows the existence of only three depart-
ments now and no longer has a past class content version, but it does have a
succeeding version, which is the one created in Figure 12. The user also notes
that the people class no longer has the two new marketing department employees
highlighted in the entity list, because they were not yet added to the company
when this version of the departments class content was created.

The user now turns his attention to altering the research report to reflect the
addition of new marketing information from the marketing staff. After making
the desired changes to the res-report (research report) entity, he travels to the
entity network screen, where he sees the most recent version of the research
report and its attribute values (Figure 14). The presence of the boxed outline
indicates past versions of the entity. The user also notes that the report now has
three chapters to it, which map into the res-report entity from the chapters class.

The user wishes to see who has received copies of the research report at past
times, and so he goes to the version card screen for the res-report entity in
Figure 15. Once there, he pulls out the two versions that directly precede the
current version. After picking the receivers attribute on the current version card,
he sees who has received the report in past versions. He notices that Walter only
receives a copy in the most recent version, and this makes sense to him, since
Walter just recently joined the company.

Now our user turns his attention to updating the chapters of the research
report. The report previously had three chapters, res-intro, res-content, and
res-summary. The report should now contain four chapters, res-intro,
res-market, res-develop, and res-concl. Res-market and res-develop were origi-
nally the single chapter res-content, and res-summary has been renamed to
res-concl. After performing all these changes, the user wishes to compare the
current chapter content of the research report to previous versions of the report.
The user reenters the class content screen with the chapters class as the currently
selected object. He picks the res-conclus entity and moves to the version card
screen in Figure 16. After moving out a preceding version card, he sees right
ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

Visual Interface for a Version Management Database l 241

away that both the res-conclus chapter and the res-summary chapter were
chapters in the research report, the res-conclus chapter was at one time called
res-summary. He recalls that this is correct, since the chapter was renamed
during the updates made when the marketing information was added.

In a final browsing, the user stays in the version card screen, and traverses to
the entity res-report, to see who receives it, and then follows again to the
res-report receiver, McGuire, to see what his job is. Satisfied with the current
state of the database, the user exits the version card level, and returns to the
class content screen, where he originally was before the entity traversal began
(Figure 17). He notices that, although he left the screen originally with only the
class content for chapters appearing, the screen now shows two additional class
content pages, with entities highlighted. He realizes that this is an indirect result
of his entity traversal in the version card level, and that ISIS automatically added
the proper pages to reflect the database entity browsing.

5. FUTURE EXTENSIONS

The first area of exploration involves the definition of version-related predicates
for subclass and attribute derivation. This would entail a facility which allows
the user to form a query that could gather information based on a previous state
or several previous states of the database. For example, if the predicate work
sheet is used to define the membership set for subclass X at the most recent
state of the database, it might be interesting to see what X’s membership set
would look like if the predicate were evaluated at some previous, noncurrent
state of the database. It would also be desirable to design a set of version-related
operators, which included a notion of time when being evaluated. For instance,
it would be useful to know which versions of the class contents for class C include
entity E as a member. At its present state, ISIS provides no version control at
the predicate level, other than the fact that committing a predicate is an operation
in a transaction.

The second direction explores the use of a more powerful and complicated
version set than the linear version set. A branching version set [19] provides for
alternatives in the version representation of objects. Such a version set allows
more than one version be the successor of a given version. Each alternative may
evolve as a chain of versions. These chains may branch as well, to form new
alternatives. The splitting of a version set at some point into two or more
branches represents a situation in which several competing instances of an object
must be simultaneously maintained.

REFERENCES

Note: References (lj-(41, [8], [ll], 1121, [14]-[16], [18], and [20] are not cited in text.
1. BILLER, H., AND NEUHOLD, E. J. Semantics of databases: The semantics of data models. Znf.

Syst. 3 (1978), 11-30.
2. BROWN UNIVERSITY. Brown workstation environment: Programmer’s manual, preliminary

version 2.0. Dept. of Computer Science, Brown Univ., Providence, R.I.
3. CATELI,, R. G. G. An entity-based database user interface. In Proceedings of the International

Conference on Management of Data (Boston, Mass., May 30-June 1). ACM, New York, 1980.
4. CHEN, P. P. S. The entity-relationship model: Toward a unified view of data. ACM Trans.

Database Syst. 1, 1 (Mar. 1976), 9-36.

ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986.

242 - J. W. Davison and S. 6. Zdonik

5. ECKLUND, E. F., AND PRICE, D. M. Multiple version management of hypothetical databases.
Tech. Rep. 84-40-1, Tektronix Laboratories, July 1984.

6. GOLDMAN, K. J., GOLDMAN, S. A., KANELLAKIS, P. C., AND ZDONIK, S. B. ISIS: Interface for
a semantic information system. In Proceedings of the International Conference on Management
of Data (Austin, Tex., May 28-30). ACM, New York, 1985.

7. HAMMER, M., AND MCLEOD, D. Database description with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (Sept. 1981), 351-386.

8. HEROT, C. F. Spatial management of data. ACM Trans. Database Syst. 5, 4 (Dec. 1980),
493-514.

9. KATZ, R. H., AND LEHMAN, T. J. Storage structures for versions and alternatives. Tech. Rep.,
Computer Sciences Dept., Univ. of Wisconsin-Madison.

10. KATZ, R. H., AND LEHMAN, T. J. Database support for versions and alternatives of large design
files. Tech. Rep., Computer Sciences Dept., Univ. of Wisconsin-Madison, 1983.

11. KING, R. Sembase: A semantic DBMS. In Proceedings of the Zst International Workshop on
Expert Database Systems (Kiawah Island, S.C., Oct. 1984).

12. KLAHOLD, P., SCHLAGETER, G., UNLAND, R., AND WILKES, W. A transaction model supporting
complex applications in integrated information systems. In Proceedings of the International
Conference on the Management of Data (Austin, Tex., May 28-30). ACM, New York, 1985.

13. LUM, V., DADAM, P., ERBE, R., GUENAUER, J., PISTOR, P., WALCH, G., WERNER, H., AND
WOODFILL, J. Designing DBMS support for the temporal dimension. In Proceedings of the
International Conference on the Management of Data (Boston, Mass., June 18-24). ACM, New
York, 1984.

14. MYLOPOULOS, J., BERNSTEIN, P. A., AND WONG, H. K. T. A language facility for designing
database-intensive applications. ACM Trans. Database Syst. 5, 2 (June 1980), 185-207.

15. REINER, D., BRODIE, M., BROWN, G., CHILENSKAS, M., FRIEDELL, M., KRAMLICH, D.,
LEHMAN, J., AND ROSENTHAL, A. A database design and evaluation workbench: Preliminary
report. In Proceedings of the International Conference on Systems Development and Requirements
Specification (Gothenburg, Sweden, Aug. 1984).

16. SMITH, J. M., AND SMITH, D. C. P. Database abstractions: Aggregation. Commun. ACM 20, 6
(June 1977), 405-413.

17. THOMAS, I., AND LOERSCHER, J. MOSAIX-A version control and history management system.
In Proceedings of the GTE Workshop on Software Engineering Environments for Programming
in the Large (Harwichport, Mass., June 1985).

18. WONG, H. K. T., AND MYLOPOULOS, J. Two views of data semantics: A survey of data models
in artificial intelligence and database management. INFOR 15, 3 (1977), 344-382.

19. ZDONIK, S. B. An object management system for office applications. Tech. Rep., Dept. of
Computer Science, Brown Univ., Providence, R.I.

20. ZDONIK, S. B. Object management system concepts. In Proceedings of the 2nd ACM SIGOA
Conference on Office Information Systems (Toronto, Ontario, Canada, June 25-27). ACM, New
York, 1984.

21. ZDONIK, S. B. Version management in an object-oriented database. In IFIP 4.2, Workshop on
Advanced Programming Environments (Trondheim, Norway, June). IFIPS Press, Reston, Va.,
1986.

Received February 1986; revised June 1986; accepted July 1986

ACM Transactions on Office Information Systems, Vol. 4, NO. 3, July 1986.

r---------

CY r------------

Qi

r---------

\

\

\\

\

1

.:

:
5

t
8

e
8

T

.:.

”

-

e
::

.:.

-

-

-

-

2
=
P

-

