
To appear in PLDI 2014

Resugaring:
Lifting Evaluation Sequences through Syntactic Sugar

Justin Pombrio
Brown University

justinpombrio@cs.brown.edu

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract
Syntactic sugar is pervasive in language technology. It is used to
shrink the size of a core language; to define domain-specific lan-
guages; and even to let programmers extend their language. Un-
fortunately, syntactic sugar is eliminated by transformation, so the
resulting programs become unfamiliar to authors. Thus, it comes
at a price: it obscures the relationship between the user’s source
program and the program being evaluated.

We address this problem by showing how to compute reduction
steps in terms of the surface syntax. Each step in the surface lan-
guage emulates one or more steps in the core language. The com-
puted steps hide the transformation, thus maintaining the abstrac-
tion provided by the surface language. We make these statements
about emulation and abstraction precise, prove that they hold in our
formalism, and verify part of the system in Coq. We have imple-
mented this work and applied it to three very different languages.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Programming Languages, Syntactic Sugar, Macros,
Evaluation, Debugging, Resugaring

1. Introduction
Syntactic sugar is an essential component of programming lan-
guages and systems. It is central to the venerable linguistic tradition
of defining programming languages in two parts: a (small) core lan-
guage and a rich family of usable syntax atop that core. It is also
used to provide the special syntaxes that characterize some domain-
specific languages. Finally, some languages (notably members of
the Lisp family) provide macros so even individual programmers
can customize the language on a per-program or per-module basis.

In essence, desugaring is a compilation process. It begins with
a rich language with its own abstract syntax, and compiles it by
applying transformations to a smaller language with a correspond-
ingly smaller abstract syntax. Having a smaller core reduces the
cognitive burden of learning the essence of the language. It also re-
duces the effort needed to write tools for the language or do proofs
decomposed by program structure (such as type soundness proofs).

[Copyright notice will appear here once ’preprint’ option is removed.]

Thus, heaping sugar atop a core is a smart engineering trade-off
that ought to satisfy both creators and users of a language.

Unfortunately, syntactic sugar is a leaky abstraction. Many de-
bugging and comprehension tools—such as an algebraic stepper [4]
or reduction semantics explorer [9, 23]—present their output using
terms in the language; this is also true of proof-theoretic tools such
as theorem provers. Thus, when applied to core language terms re-
sulting from desugaring, their output is also in terms of the core,
thereby losing any correspondence with the surface language that
the user employs.

There are several partial solutions to this, all unsatisfactory. One
is to manually redefine the semantics in terms of the full surface
language, which destroys the benefits provided by a small core.
Another is to employ source tracking, but this is not actually a
solution: the user will still see only expanded terms. Furthermore,
any attempt to create a one-time solution for a given language does
not apply to those languages where users can create additional
syntactic sugar in the program itself (as in the Lisp tradition).

In this paper, we tackle the challenge of combining syntactic
sugar with semantics. Given a set of transformation rules written in
an expressive but restricted language, we show how to resugar pro-
gram execution: to automatically convert an evaluation sequence in
the core language into a representative evaluation sequence in the
surface syntax. The chief challenge is to remain faithful to the orig-
inal semantics—we can’t change the meaning of a program!—and
to ensure that the internals of the code introduced by the syntac-
tic sugar does not leak into the output. Our chief mechanisms for
achieving this are to (a) perform static checks on the desugaring
definitions to ensure they fall into the subset we can handle, and (b)
rewrite the reduction relation with instrumentation to track the ori-
gin of terms. We implement these ideas in a tool called CONFEC-
TION, and formally verify key properties of our approach, given
simplifying assumptions, in the Coq proof assistant.

2. Our Approach
We aim to compute sensible evaluation sequences in a surface lan-
guage, while remaining faithful to the core language’s semantics.
One approach would be to attempt to construct a lifted (to the sur-
face language) reduction-relation directly. It is unclear, however,
how to do this without making deep assumptions about the core
language evaluator (for instance, assuming that it is defined as a
term-rewriting system that can be composed with desugaring).

Our approach instead makes minimal assumptions about the
evaluator, treating it as a black-box (since it is often a complex
program that we may not be able to modify). We assume only that
we have access to a stepper that provides a sequence of evalua-
tion steps (augmented with some meta information) in the core lan-
guage. In section 7 we show how to obtain such a stepper from

preprint 1 2014/3/19

a generic, black-box evaluator with a strategy that can be imple-
mented by pre-processing the program before evaluation.

The main contribution of this paper is a technique for resug-
aring: lifting the core evaluation sequence into one for the surface.
Our high-level approach is to follow the evaluation steps in the core
language, find surface-level representations of some of the core
terms, and emit them. Not every core-level term will have a surface-
level representation; these steps will be skipped in the output. The
evaluation sequence shown, then, is the sequence of surface-level
representations of the core terms that were not skipped. We have
implemented a tool, CONFECTION, that performs this lifting.

Central to our approach are these three properties:

Emulation Each term in the generated surface evaluation sequence
desugars into the core term which it is meant to represent.

Abstraction Code introduced by desugaring is never revealed in
the surface evaluation sequence, and code originating from the
original input program is never hidden by resugaring.

Coverage Resugaring is attempted on every core step, and as few
core steps are skipped as possible.

The rest of the paper presents this both informally and formally.

3. Informal Solution Overview
We first present the techniques used by our solution, and some
subtleties, informally. We choose a familiar desugaring example:
the rewriting of Or, as used in languages like Lisp and Scheme. We
assume the surface language has Or as a construct, while the core
does not. We present our examples using a traditional infix concrete
syntax, and section 4 shows our work applied to such languages.

3.1 Finding Surface Representations Preserving Emulation
We start by defining a simple, binary version of Or (that let-binds
its first argument in case it has side-effects):

Or(x, y) -> Let([Binding("t", x)],
If(Id("t"), Id("t"), y)));

This is the actual transformation syntax processed by CONFEC-
TION, inspired by that of Stratego [3]. Nodes’ names are written
in title-case and their subnodes follow in parentheses, lists are sur-
rounded by square brackets, and variables are written in lowercase.
We call the whole production a transformation rule, or rule for
short; the part to the left of the arrow is its LHS (left-hand-side), and
the part after the arrow its RHS. When the LHS of a rule matches a
term, this induces bindings for the variables in the LHS, which are
then substituted in the RHS. The full definition of transformations
is given in section 5. In this section we focus on abstract syntax and
ignore the mapping to it from concrete syntax.

Consider the surface term not(true) OR not(false). After
desugaring, this would evaluate as follows in the core language
(assuming a typical call-by-value evaluator):

let t = not(true) in
if t then t else not(false)

−→ let t = false in
if t then t else not(false)

−→ if false then false else not(false)

−→ not(false)

−→ true

In the surface language, we would wish to see this as (using dashed
arrows to denote reconstructed steps):

not(true) OR not(false)

99K false OR not(false)

99K not(false)

99K true

The first two terms in the core evaluation sequence are precisely
the expansions of the first two steps in the (hypothetical) surface
evaluation sequence. This suggests we can unexpand core terms
into surface terms by running rules “in reverse”: matching against
the RHS and substituting into the corresponding LHS. (To preserve
emulation, unexpansion must be an inverse of expansion: we prove
that this is so in section 6.2.) We will now show how the last two
steps may come about.

3.2 Maintaining Abstraction
When unexpanding, we should only unexpand code that originated
from a transformation. If the surface program itself is

let t = not(true) in
if t then t else not(false)

it should not unexpand into not(true) OR not(false): this
would be confusing and break the second clause of the Abstrac-
tion property.

We therefore augment each subterm in a core term with a list
of tags, which indicate whether a term originated in the original
source or from the transformation.1 Unexpansion attempts to pro-
cess terms marked as originating from a transformation rule; this
unexpansion will fail if the tagged term no longer has the form of
the rule’s RHS. When that happens, we conclude that there is no
surface representation of the core term and skip the step.

To illustrate this, we revisit the same core evaluation sequence
as before. Compound terms that originated from the source are
underlined, and “Or: ” is a tag on the desugared expression that
indicate it originated from the Or sugar:

{Or: let t = not(true) in
if t then t else not(false)}

−→ {Or: let t = false in
if t then t else not(false)}

−→ {Or: if false then false else not(false)}

−→ not(false)

−→ true

The tags on the first three steps suggest that Or’s transformation
rule be applied in reverse. The first two steps can be unexpanded
because they match the RHS of Or, whereas the third does not match
the RHS and is therefore skipped, yielding no surface step. The last
two steps are not tagged and are therefore included in the surface
evaluation sequence as-is.

3.3 Striving for Coverage
Emulation and Abstraction guarantee an accurate surface evalua-
tion sequence, but they do not guarantee a useful one. For instance,
the following evaluation sequence is perfectly consistent with these
two properties:

not(true) OR not(false)

99K true

However, a stepper that only shows the final step is unhelpful. We
therefore propose a third property, Coverage, which states that steps
are not “unnecessarily” skipped. While Emulation and Abstraction
are formally proved in section 6.3, we have not found a formaliza-
tion of Coverage, so we can only strive to attain it in our systems
and evaluate it in practice. Our examples (section 4 and section 8)
show that we do indeed obtain detailed and useful surface evalua-
tion sequences.

1 Whereas the tags used in hygienic macro expansion [16] specify time
steps, the tags in resugaring specify which sugar the code originated from.

preprint 2 2014/3/19

3.4 Trading Abstraction for Coverage
Suppose the surface term A OR B OR C parses to Or(A, B, C).
We therefore want to extend Or to handle more than two sub-terms.
We can do this by adding another rule:

Or([x, y]) ->
Let([Binding("t", x)],

If(Id("t"), Id("t"), y)));
Or([x, y, ys ...] ->
Let([Binding("t", x)],

If(Id("t"), Id("t"), Or([y, ys ...])));

We assume a prioritized semantics in which rules are tried in order;
the first rule whose LHS matches the invocation is used. The ellipses
denote zero or more repetitions of the preceding pattern [17].

Consider the surface term (false OR false OR true). Given
the revised definition of Or, unexpansion would yield the following
lifted evaluation steps:

false OR false OR true

99K true

In particular, it correctly suppresses any presentation of the recur-
sive invocation of Or introduced by the transformation—precisely
what Abstraction demands! However, there are settings (such as
debugging or education) where the user might wish to see this in-
vocation, i.e., to obtain the surface evaluation sequence

false OR false OR true

99K false OR true

99K true

Thus, we let sugar authors make part of a rule’s RHS visible by
prefixing it with !. Here, writing the second Or rule as

Let([Binding("t", x)],
If(Id("t"), Id("t"), !Or([y, ys ...])))

yields the latter surface evaluation sequence.
This illustrates that there is a trade-off (which we make precise

with theorem 4) between Abstraction and Coverage. Because the
trade-off depends on goals, we entrust it to the sugar author. In the
limit, marking the entirety of each rule as transparent results in an
ordinary trace in the core, ignoring all sugar.

4. CONFECTION at Work
We demonstrate how the techniques just described come together
to show surface evaluation sequences in the presence of sugar.
Consider the following program, written in the language Pyret
(pyret.org), that computes the length of a list:

fun len(x):
cases(List) x:
| empty() => 0
| link(_, tail) => len(tail) + 1

end
end
len([1, 2])

This seemingly innocuous program contains a lot of sugar. The
cases expression desugars into an application of the matchee’s
_match method on an object containing code for each branch;
the function declaration desugars into a let binding to a lambda;
addition desugars into an application of a _plus method; and the
list [1, 2] desugars into a chain of list constructors. Here is the
full desugaring (i.e., the code that will actually be run):

len = fun(x):
temp17 :: List = x
temp17.["_match"](

{"empty" : fun(): 0 end,
"link" : fun(_, tail):

P := x (pattern variable)
| a (constant)
| l(P1, ..., Pn) (node labeled l)
| (P1 ... Pn) (list of length n)
| (P1 ... PnPe

∗) (list of length ≥ n)
| (Tag O P) (origin tag)

T := P (pattern w/o variables or ellipses)

O := (Head i T) (marks topmost rule production)
| (Body bool) (marks each rule production)

Figure 1. Patterns

len(tail).["_plus"](1) end},
fun(): raise("cases: no cases matched");)

end
len(list.["link"](1, list.["link"](2, list.["empty"])))

This degree and nature of expansion is not unique to Pyret. It is also
found in languages like Scheme, due to the small size of the core,
and in semantics like λJS [13], due to both the size of the core and
the enormous complexity of the surface language.

Nevertheless, here is the surface evaluation (pretty-)printed by
CONFECTION (where <func> denotes a resolved functional):

99K <func>([1, 2])

99K cases(List) [1, 2]:
| empty() => 0
| link(_, tail) => len(tail) + 1

end

99K <func>([2]) + 1

99K (cases(List) [2]:
| empty() => 0
| link(_, tail) => len(tail) + 1

end) + 1

99K <func>([]) + 1 + 1

99K (cases(List) []:
| empty() => 0
| link(_, tail) => len(tail) + 1

end) + 1 + 1

99K 0 + 1 + 1

99K 1 + 1

99K 2

This sequence hides all the complexity of the core language.

5. The Transformation System
We will present our system in three parts. First (section 5.1), we
will describe how our transformation system works, up to the level
of performing a single transformation. Next (section 5.2), we will
describe how to use tags to fully desugar and resugar terms, trans-
forming not just a term but its subterms as well. Finally (sec-
tion 5.3), we will show how to use the transformation system to
lift core evaluation sequences to surface evaluation sequences.

5.1 Performing a Single Transformation
We begin by describing the form and application of our transfor-
mation rules.

5.1.1 The Pattern Language
Since rules are applied both forward and in reverse, we represent
their LHSs and RHSs uniformly as patterns. Patterns P are defined

preprint 3 2014/3/19

b := P (pattern)
| [|b1 ... bn|] (list binding)
| [|b1 ... bnbe∗|] (ellipsis binding)

σ := {x→ b, ...}

Figure 2. Bindings

inductively in figure 1. Variables are denoted by a lowercase identi-
fier, labeled nodes are denoted by an uppercase identifier followed
by a parenthesized list of subpatterns, and lists are denoted by a
parenthesized list of subpatterns. Nodes must have fixed arity, so
lists are used when a node needs to contain an arbitrary number of
subterms. Ellipses (which we write formally as •∗ to distinguish
them from metasyntactic ellipses) in a list pattern denote zero or
more repetitions of the pattern they follow. A term T is simply a
pattern without variables or ellipses. Tags and origins (O) are de-
scribed in section 5.2.1. We do not address hygiene in our system.
We believe it is largely orthogonal to the problem at hand, and that
our transformation system could be made hygienic without signifi-
cant alterations.

Our definition of patterns determines both the expressiveness
of the resulting transformation system and the ability to formally
reason about it. There is a natural trade-off between the two. We
pick a definition similar to that of Scheme syntax-rules-style
macros, though without guard expressions.

Formally, our patterns are regular tree expressions [1]. Regular
tree expressions trx are the natural extension of regular expressions
to handle trees: they add a primitive (l trx1 ... trxn) for matching
a tree node labeled l with branches matching the regular tree ex-
pressions trx1 ... trxn. Whereas regular tree expressions conven-
tionally allow choice, we encode it using multiple rules, making
the pattern language simpler.

While we have found this definition of patterns suitably power-
ful for a wide variety of sugars—including all those discussed in
this paper—our approach is not dependent on the exact definition.
The precise requirements for the transformation language are given
in section 6.3.

5.1.2 Matching, Substitution, and Unification
Our transformations are implemented with simpler operations on
patterns: matching and substitution.

Matching a term against a pattern induces an environment that
binds the pattern’s variables. This environment may be substituted
into a pattern to produce another term. Formally, an environment
is a mapping from pattern variables x to bindings b, where each
binding is either a term T , a list binding [|b1...bn|], or an ellipsis
binding [|b1...bn be∗|]. A pattern variable within ellipses is bound
to a list binding [|b1...bn|] instead of a list term (b1...bn); they
behave slightly differently under substitution. Ellipsis bindings are
similar, but needed only during unification when a variable within
an ellipsis is itself bound to an ellipsis pattern.

We will write T/P to denote matching a term T against a
pattern P , and write σP to denote substituting the bindings of an
environment σ into a pattern P . We will write T ≥ P to mean that
T/P is defined, and σ1 · σ2 for the right-biased union of σ1 and
σ2. The matching and substitution algorithms are given in figure 3,
while bindings are defined in figure 2.

For an example of matching and substitution, consider one of
the rules of our running Or example:

Or([x, y, ys ...] ->
Let([Binding("t", x)],

If(Id("t"), Id("t"), Or([y, ys ...])));

Matching Or([true, Not(true), false, true]) against
Or([x, y, ys ...]) produces the environment

σ = {x→ true, y→ Not(true), ys→ [|false, true|]}

and substituting σ into the rule’s RHS produces

Let([Binding("t", true)],
If(Id("t"), Id("t"), Or([Not(true), false, true])))

Later, we will need to compute unifications as well. We omit
showing the algorithm; it is straightforward since we disallow du-
plicate variables (as seen in the next section).

5.1.3 Well-formedness of Transformations
The definitions we have given for matching and substitution are
not well-behaved for all patterns. Even the crucial property that
(T/P)P = T whenever T/P exists fails to hold in certain situa-
tions, such as when a pattern’s ellipsis contains no variables (e.g.,
(3∗)). For this reason and others, we require the following well-
formedness criteria for the LHS and RHS of each rule:

1. Each variable in the RHS also appears in the LHS. Otherwise
the variable would be unbound during expansion.

2. Each variable appears at most once in the LHS and at most once
in the RHS. Allowing duplicate variables complicates matching,
unification, and proofs of correctness. It also copies code and, in
the worst case, can exponentially blow up programs. We there-
fore disallow duplication, with the sole exception of variables
bound to atomic terms.

3. An ellipsis of depth n must contain at least one variable that
either appears at depth n or greater on the other side of the
rule, or does not appear on the other side of the rule. Otherwise
it is impossible to know how many times to repeat its pattern
during substitution. (The depth of an ellipsis measures how
deeply nested it is within other ellipses; a top-level ellipsis has
depth 1, an ellipsis within an ellipsis depth 2, and so forth.)

4. Each transformation’s LHS must have the form l(T1, ..., Tn).
We will rely on this fact when showing that unexpansion is an
inverse of expansion in section 6.2.

The first two restrictions are further justified by our formalization
of expansion and unexpansion in Coq (section 6.4), where they
occurred naturally as pre-conditions for proofs.

5.1.4 Applying Transformations
A rulelist rs is an ordered list of transformation rules Pi → P ′i ,
where each rule is well-formed according to the criteria just de-
scribed. A term T can then be expanded with respect to rs by
matching T against each Pi in turn, and substituting the resulting
bindings into P ′i if successful. In addition, the index i of the case
that was successful must also be returned. This index will be used
during unexpansion to know which rule to use, as multiple rules
may have similar or identical RHSs. Formally,

exprs T = (j, (T/Pj)P
′
j)

for j = min {i|T ≥ Pi}i
Unexpansion proceeds in reverse, matching against P ′i and then

substituting into Pi. Recall, however, that our well-formedness
criteria insisted that the variables in a rule’s RHS pattern be a subset
of those in its LHS pattern, but not vice versa. This allows a rule to
“forget” information when applied forward. Allowing information
to be lost substantially increases the set of desugarings expressible
in our system in exchange for breaking the symmetry between
expansion and unexpansion. Because variables may be dropped
in the RHS, the unexpansion of a term T ′ takes an additional

preprint 4 2014/3/19

a/a = {}
T/x = {x→ T}
(T1...Tn)/(P1...Pn) =

⋃
i=1..n(Ti/Pi)

(T1...Tn...Tn+k)/(P1...PnPe
∗) =

⋃
i=1..n(Ti/Pi) ∪merge([Tn+i/Pe]i=1..k)

l(T1, ..., Tn)/l(P1, ..., Pn) =
⋃

i=1..n(Ti/Pi)

σ a = a
σ (P1...Pn) = (σP1...σPn)
σ (P1...PnPe

∗) = (σP1...σPn ++ split(σ, Pe)) (where ++ is concatenation)
{..., x→ b, ...} x = toTerm(b)
σ l(P1, ..., Pn) = l(σP1, ..., σPn)

merge([{x1 → b1, ...}, ... , {xn → bn, ...}]) = {x1 → [|b1, ... , bn|], ...}

split({x1 → [|b11...b1k|], ..., xn → [|bn1...bnk|]}, P) = ({x1 → b11, ..., xn → bn1}P ... {x1 → b1k, ..., xn → bnk}P)

toTerm(P) = P
toTerm([|b1 ... bn|]) = (toTerm(b1) ... toTerm(bn))

Figure 3. Matching and substitution

argument—the original input term T—with which to bind variables
in Pi that do not appear in P ′i . Formally,

unexprs (j, T
′) T = ((T/Pj) · (T ′/P ′j))Pj

Notice that T contains a good deal of redundant information. Since
Pj and P ′j are statically known, it suffices to store only the environ-
ment σ = T/Pj restricted to the variables not free in P ′j . We will
say that σ stands in for T , and overload unexprs by writing:

unexprs (j, T
′) σ = (σ · (T ′/P ′j))Pj

Because unexpansion usually occurs after reduction steps have
been taken, in general the term being unexpanded is different from
the output of expansion.

5.1.5 Overlapping Rules
When multiple rules overlap, the Emulation property may be vio-
lated. For illustration, suppose a core language contains a MaxAcc
primitive that takes a list of numbers and a starting maximum, and
in each reduction step pops the list and updates the starting maxi-
mum. Furthermore, say we want to extend this language with sim-
ple sugar for finding the maximum of a list of numbers, that fails
with a runtime exception on empty lists. This could be achieved
with the following transformation rules:

Max([]) -> Raise("empty list");
Max(xs) -> MaxAcc(xs, -infinity);

These rules are problematic, however, as demonstrated by the
evaluation of the surface term Max([-infinity]). It expands
to the core term MaxAcc([-infinity], -infinity), which re-
duces (in the core) to MaxAcc([], -infinity), which unexpands
by the second rule above to Max([]). Thus, the core sequence is:

MaxAcc([-infinity], -infinity)

−→ MaxAcc([], -infinity)

and the derived surface evaluation sequence is:

Max([-infinity])

99K Max([])

But the Max([]) surface step flagrantly violates the Emulation
property! It expands into Raise("empty list"), which is very
different from the core term MaxAcc([], -infinity) it purports
to represent.

Fortunately, the Max sugar becomes safe with the following
minor rewrite to make apparent the fact that the second rule only
applies to non-empty argument lists:

Max([]) -> Raise("Max: given empty list");
Max([x, xs ...]) -> MaxAcc([x, xs ...], -infinity);

The scenario just described now plays out differently. The initial
expansion and core reduction step remain the same, but when
MaxAcc([], -infinity) is unexpanded, that unexpansion fails
because the term does not match the RHS pattern MaxAcc([x, xs
...], -infinity); thus this step is safely skipped.

CONFECTION implements a static check that admits the second
definition but not the first. It checks that the LHSs of the rules are
pairwise disjoint.2 This ensures that after unexpansion, only the
same rule that was unexpanded applies. We formally state the rule
and what it gains us in section 6.1.2.

5.2 Performing Transformations Recursively
We have described how to perform a single transformation. We will
now describe how to use tags to keep track of which rule each
core term came from, and how to use this information to perform
recursive expansion and unexpansion of terms, which we will dub
desugaring and resugaring respectively.

5.2.1 Tagging
We define two kinds of tags: Head tags mark the outermost term
constructed by a rule application, and Body tags mark each non-
atomic term constructed by a rule application. Body tags serve
to distinguish rule-generated code from user-written code, thereby
maintaining Abstraction. They are automatically inserted into each
rule’s RHS during parsing. Crucially, these tags can be considered
simply part of the RHS pattern, so they do not interfere with the
definitions of rule expansion and unexpansion.

As noted in section 3.4, it is sometimes desirable to make sugar-
produced terms visible to the user. CONFECTION allows sugar
authors to do so by prefixing a term with ‘!’. Each Body tag
contains a boolean indicating whether it was made visible in this
way; we will call these tags transparent or opaque, as appropriate.

2 Bohannon, et al. [2] use the same disjointness precondition in their union
operator for lenses.

preprint 5 2014/3/19

Head tags serve a dual role. First, they store the index of the
rule which was applied, thus ensuring that only that rule may be
applied in reverse during resugaring; this is necessary to maintain
Emulation. Second, when the RHS of a rule contains fewer variables
than the LHS, Head tags store the bindings σ for those variables
present in the LHS but not in the RHS.

While Head tags mark which rule they originated from, Body
tags do not. In principle, this simplification would allow one rule to
successfully unexpand using chunks of code produced by another
rule. In practice, it is hard to construct scenarios in which this actu-
ally occurs and, in any case, it does not affect our goal properties.

5.2.2 Recursive Expansion and Unexpansion
We have defined how to non-recursively expand and unexpand
a term with respect to a rulelist, and will now define recursive
expansion and unexpansion, a.k.a. desugaring and resugaring. To
desugar a complete core term, recursively traverse it in-order,3

applying exprs at each node:

desugarrs a = a
desugarrs l(T1, ..., Tn) = desugarrs (Tag (Head i σ) T ′)

where σ stands in for l(T1, ..., Tn)/Pi

when exprs l(T1, ..., Tn) = (i, T ′)
desugarrs l(T1, ..., Tn) = l(desugarrs T1, ..., desugarrs Tn)

otherwise
desugarrs (T1 ... Tn) = (desugarrs T1 ... desugarrs Tn)
desugarrs (Tag O T) = (Tag O desugarrs T)

Resugaring can be performed by traversing a term, this time per-
forming unexprs (i, T) σ for any term T tagged with (Head i σ).
Thus resugarrs identifies the specific sugars that need to be un-
expanded by finding Head tags, and delegates the sugar-specific
unexpansions—which include eliminating Body tags—to unexprs.

If the unexpansion of any particular term fails, then resugaring
as a whole fails, since the tagged term in question can neither be
accurately represented as the result of an expansion nor shown as-
is. Furthermore, resugaring should fail if any opaque Body tags
remain. This ensures that code originating in sugar (and therefore
wrapped in Body tags) is never exposed, guaranteeing Abstraction.

resugarrs T = R′rs T when R′rs T has no opaque tags
resugarrs T = ⊥ otherwise

R′rs a = a
R′rs (Tag (Body b) T) = (Tag (Body b) R′rs T)
R′rs (Tag (Head i σ) T ′) = unexprs (i, R

′
rs T

′) σ
R′rs l(T1, ..., Tn) = l(R′rs T1, ..., R

′
rs Tn)

R′rs (T1 ... T1) = (R′rs T1 ... R
′
rs Tn)

5.3 Lifting Evaluation
We can now put the pieces together to see how CONFECTION works
as a whole.

We have defined desugaring and resugaring with respect to
terms expressed in our pattern language. Real languages’ source
terms do not start in this form, so we will require functions for
converting between syntax in the surface and core languages and
terms in our pattern language. We will call these s->t , t->s , c->t
, and t->c , using s, c, and t as abbreviations for surface, core, and
term respectively. With these functions, we can define functions to
fully desugar and resugar terms in the language’s syntax:

desugar∗rs = s->t ; desugarrs ; t->c
resugar∗rs = c->t ; resugarrs ; t->s

A surface reduction sequence for a deterministic language can
now be computed as follows:

3 Other orders, e.g., bottom-up instead of top-down, are possible; we follow
the precedent set by Scheme macros.

def showSurfaceSequence(s):
let c = desugar*(s)
while c can take a reduction step:

let s’ = resugar*(c)
if s’: emit(s’)
c := step(c)

Implementing this requires a step relation; though most languages
don’t provide one natively, section 7 describes how to obtain one.

For a nondeterministic language, the aim is to lift an evaluation
tree instead of an evaluation sequence. The set of nodes in the
surface tree can be found by keeping a queue of as-yet-unexplored
core terms, initialized to contain just desugar(s), and repeatedly
dequeing a core term and checking whether it can be resugared. If
it can, add its resugaring to the node set, and either way add the
core terms it can step to to the end of the queue. The tree structure
can be reconstructed with additional bookkeeping.

We have a complete implementation of CONFECTION, in which
all examples from this paper were run. It uses a user-written gram-
mar file that specifies grammars for both the core and surface syn-
tax, and a set of rewrite rules. Though the grammars and rewrite
rules mimic the syntax used by Stratego [3], the rules obey the se-
mantics described in this paper. The rules are also checked against
the well-formedness criteria of section 5.1.3, thus ensuring that our
results hold.

6. Formal Justification
We will now justify many of our design decisions in terms of the
formal properties they yield, and ultimately prove the Emulation
and Abstraction properties relative to some reasonable assumptions
about the underlying language.

6.1 Transformations as Lenses
We have found it helpful to view our transformation rules from the
perspective of lenses [12]. In particular, the disjointness condition
that prevents the Max problem of section 5.1.5 can be seen as a
precondition for the lens laws, and the proof that our system obeys
the Emulation property rests upon the fact that its transformations
form lenses.

A lens has two sets C and A, together with partial functions
get : C →̇ A and put : A× C →̇C that obey the laws,

put (get c, c) = ⊥ or c ∀c ∈ C GetPut
get (put (a, c)) = ⊥ or a ∀a ∈ A, c ∈ C PutGet

Taking C = T and A = (N, T) gives exprs and unexprs the sig-
natures of get and put, respectively. Thus if they additionally obey
the two laws, they will form a lens. We will give a necessary and
sufficient condition for the laws to hold, and later show that when
they do hold, the Emulation property is preserved by resugaring.

6.1.1 The GetPut Law
The GetPut law applied to our transformations states that whenever
it is well-defined,

unexprs (exprs T) T = T

Expanding the definitions produces:

((T/Pi) · ((T/Pi)P
′
i/P

′
i))Pi = T

This law can be shown to hold without further preconditions.

Lemma 1. The GetPut law holds whenever it is well-defined.

Proof. Clearly (T/Pi)P
′
i/P

′
i ⊆ T/Pi. Thus (T/Pi) ·((T/Pi)P

′
i/

P ′i) = T/Pi, and ((T/Pi)·((T/Pi)P
′
i/P

′
i))Pi = (T/Pi)Pi. And

since T is closed, (T/Pi)Pi = T .

preprint 6 2014/3/19

6.1.2 The PutGet Law
The PutGet law states that whenever it is well-defined,

exprs (unexprs (j, T
′) T) = (j, T ′)

Expanding the definitions gives that,

(i, (((T/Pj) · (T ′/P ′j))Pj/Pi)P
′
i) = (j, T ′)

for i = min{i|((T/Pj) · (T ′/P ′j))Pj ≥ Pi}i
This law, however, does not hold for all possible rulelists. In
fact, we saw a situation in which it fails—the Max sugar in sec-
tion 5.1.5—as well as the alarming consequences of the failure.
In that section we introduced the disjointness condition. Forcing
the LHSs of rules to be disjoint ensures that the surface representa-
tion of a core term, which was obtained by unexpanding that term
through some rule, could only expand via the same rule, thereby
obtaining the core term it is supposed to represent.

We can now say precisely what the disjointness check gains us:
it is both necessary and sufficient for the PutGet law to hold. We
will see later that the PutGet law ensures Emulation. The reverse
is not true, however, so the disjointness check is sufficient but
not necessary to achieve Emulation, and a tighter test could be
found (although it would almost certainly have to make stronger
assumptions about evaluation in the core language than we do).

Definition 1. The disjointness condition for a rulelist rs = P1 →
P ′1, ..., Pn → P ′n states that Pi∨Pj = ⊥ for all i 6= j.

Theorem 1. For any rulelist rs, the PutGet law holds iff the dis-
jointness condition holds.

Proof Sketch. The law states that:

(i, (((T/Pj) · (T ′/P ′j))Pj/Pi)P
′
i) = (j, T ′)

for i = min{i|((T/Pj) · (T ′/P ′j))Pj ≥ Pi}i
First, note that the law always holds when i = j, so it is sufficient
to consider i < j. Let σ1 = (T/Pj) · (T ′/P ′j). If the PutGet law
does not hold, then σ1Pj/Pi exists, so Pi∨Pj exists. On the other
hand, if Pi∨Pj exists for some i < j, then T and T ′ can be chosen
such that σ1Pj/Pi is guaranteed to be well-defined, forcing the law
to not hold.

CONFECTION statically checks that the rulelist obeys the well-
formedness criterion from section 5.1.3 and the disjointness crite-
rion, thereby ensuring that the lens laws will hold. We will next
show that these lens laws imply that desugaring and resugaring are
inverses of each other, which is the crux of the Emulation property.

6.2 Desugar and Resugar are Inverses
We show that desugar and resugar are inverses of each other,
after noting that surface and core terms have slightly different
shapes.

Definition 2. A surface term is a term without any tags (TagO T).

Definition 3. A core term is a term that contains no label l that
appears in the outermost position of any LHS of the rulelist.

As expected, desugaring produces core terms, and resugaring
produces surface terms.

Lemma 2. If desugarrs T = T ′, then T ′ is a core term. And if
resugarrs T

′ = T , then T is a surface term.

Proof. By induction over the term.

Further, desugar and resugar are idempotent over core and
surface terms, respectively.

Lemma 3. Whenever T is a surface term, resugarrs T = T . And
whenever T ′ is a core term, desugarrs T

′ = T ′.

Proof. By induction over the term.

Theorem 2. Assume that the lens laws hold for all transforma-
tions. Then for all surface terms T , desugarrs T = T ′ implies
resugarrs T

′ = T . And for all core terms T ′, resugarrs T
′ = T

implies desugarrs T = T ′.

Proof. For both cases, proceed by induction over the term. The
two nontrivial cases are resugarrs (desugarrs l(T1, ..., Tn))
and desugarrs (resugarrs (Tag (Head i T) T ′)). For brevity, call
desugarrs Des, call exprs E, call resugarrs Res, and call unexprs
U.

In the first case,

Res (Des l(T1, ..., Tn))
= Res (Des (Tag (Head i σ) T ′))

when E l(T1, ..., Tn) = (i, T ′)
and where σ stands in for l(T1, ..., Tn)

= Res (Tag (Head i σ) (Des T ′))
= U (i, Res Des T ′) l(T1, ..., Tn)
= U (i, T ′) l(T1, ..., Tn) (by I.H.)
= l(T1, ..., Tn) (by GetPut)

In the second case,

Des (Res (Tag (Head i σ) T ′))
= Des (U (i, Res T ′) σ)
= Des l(T1, ..., Tn) (using w.f.)

when U (i, Res T ′) σ = l(T1, ..., Tn)
= Des (Tag (Head i σ) (Res T ′)) (by PutGet)
= (Tag (Head i σ) (Des (Res T ′)))
= (Tag (Head i σ) T ′) (by I.H.)

6.3 Ensuring Emulation and Abstraction
We now precisely state and prove the Emulation and Abstraction
properties, making use of the results of the last section.

Theorem 3 (Emulation). Given a well-formed rulelist rs, each sur-
face term in the generated surface evaluation sequence desugars
into the core term which it represents, so long as:

• t->c (c->t c) = c for all c
• s->t (t->s t) = t for all t
• (c->t c) is a core term for all c
• The disjointness condition holds for rs

Proof. In the stepping algorithm, s′ represents c in each iteration,
so we would like to show that if s′ occurs in the surface evaluation
sequence then desugar∗rss

′ = c. If s′ occurs in the surface se-
quence, then resugaring must have succeeded with resugar∗rsc =
s′. Thus we simply need to show that desugar∗rs(resugar

∗
rsc) = c

for all terms c in the core language, i.e., that

t->c (desugarrs (s->t (t->s (resugarrs (c->t c))))) = c

The preconditions of theorem 2 are satisfied. This expression then
consists of three pairs of functions and their inverses, so the equa-
tion holds.

To state Abstraction precisely, we must first define the origin
of a term. Since it is possible for two different surface evaluation
sequences to contain terms which are identical up to tagging but
have different origins, the origin of a term must be defined with
respect to a surface evaluation sequence (and the corresponding
core evaluation sequence).

Definition 4. The origin of an occurrence of a term within a given
evaluation sequence is defined by:

preprint 7 2014/3/19

• Atomic terms have no origin.
• All subterms of the original input term have user origin.
• When a transformation rule is applied to a term (either forward

or in reverse), terms bound to pattern variables retain their
origins, but all other terms on the RHS have sugar origin, and
all other terms on the LHS have user origin.

• Terms maintain their origin through evaluation.

Our use of Body tags purposefully mimics this definition, so that
Abstraction is nearly true by construction.

Theorem 4 (Abstraction 1). The surface-level representation of a
term t contains only subterms of user origin, except as explicitly
allowed by transparency marks (!).

Proof Sketch. Check that the application of transformation rules
both forward and in reverse preserves the invariant that a term
has sugar origin iff it is tagged with at least one Body tag, and
user origin otherwise. Now see that resugarrs always fails if any
opaque Body tags remain.

Theorem 5 (Abstraction 2). Terms of user origin are never hidden
by unexpansion.

Proof Sketch. Each subterm in the RHS of a rule is wrapped in a
Body tag; thus only terms tagged with a Body tag can match against
it to be unexpanded. As argued above, only terms of sugar origin
may be tagged with a Body tag.

Notice that theorems 2 and 3, which together prove Emula-
tion, work for any definition of rule expansion and unexpansion
that obeys the lens laws. Consequently, our expansion/unexpansion
mechanism does not need to be defined solely through the pattern-
matching rules we have presented; it can be replaced by a different
one that (i) obeys the lens laws, and (ii) retains a tagging mecha-
nism for guaranteeing Abstraction.

6.4 Machine-Checking Proofs
We have made substantial progress formalizing our transformation
system in the Coq proof assistant [25]. We have formalized a subset
of our pattern language, as well as matching, substitution, unifica-
tion, expansion, and unexpansion, and the disjointness condition.
Atop these definitions we have constructed formal proofs that:

1. Matching is correct with respect to substitution.

2. Unification is correct with respect to substitution and matching.

3. Expansion and unexpansion of well-formed rules (as defined in
Section 5.1.3) that pass the first static check obey the lens laws.

This formalization helped us pin down the (sometimes subtle) well-
formedness criteria of section 5.1.3.

Our formalization does not, however, address tags or ellipsis
patterns. It would be straightforward to add tags. Handling ellipses,
though, would require significantly more work: when patterns may
contain ellipses, substitution becomes non-compositional. For in-
stance, σ[P1, ..., Pn] is not a function of σP1, ..., σPn when
P1, ..., Pn contain ellipses.

7. Obtaining Core-Language Steppers
CONFECTION assumes it has access to the sequence of core-
language terms produced by evaluation, each ornamented with
the tags produced by the initial desugaring—but typical evaluators
provide neither! Fortunately this information can be reconstructed
with little or no modifications to the evaluator, even if it compiles
to native code. We now describe in general terms how this can be
accomplished. In what follows, we will use the term stepper [5] for

an evaluator that, instead of just producing an answer, produces the
sequence of core terms generated by evaluation.

The essence of reconstructing each term is simple: it is the cur-
rent continuation at that point of evaluation. Therefore, we need to
be able to capture, and present, the continuation as source. (The
tags are introduced statically, so the process of reconstructing the
code can reconstitute these tags alongside.) Either the evaluator
can be modified to reconstruct the source as it runs, or a pre-
compilation step may be introduced that does so in the host lan-
guage itself. We have used both approaches.

To construct the source term at an evaluation step, we have mul-
tiple options. For instance, we can convert the code to continuation-
passing style, with each continuation parameter represented as a
pair: the closure that runs, combined with a function to produce a
core language representation of the closure.

Instead, our steppers use a more efficient transformation [22]—
based on A-normalization [11]—to obtain a representation of each
stack frame. To traverse the stack and accumulate these represen-
tations, we have two choices. In languages with generalized stack
inspection features like continuation marks [4], or ways of emu-
lating them (as discussed by Pettyjohn, et al. [22]), we can exploit
these existing run-time system features. In other cases, our steppers
simply instrument the code to maintain a global stateful stack onto
which they push and pop frames.

In addition, our core steppers instrument the code so that it
pauses at every evaluation step to emit the representation of the cur-
rent continuation. This can be done by using resumable exceptions,
native continuations, and so forth, but even in languages without
such features, it is easy to achieve: simply pause execution to print
the continuation, before resuming computation.

Using this combination of techniques, we have created steppers
for Racket (racket-lang.org), Pyret (pyret.org), and PLT Re-
dex [9] (a tool for studying language semantics). In the process we
have used both the continuation mark and “shadow stack” strate-
gies. The Racket stepper is notable because although Racket al-
ready has a stepper [5], it is much weaker than ours (e.g., it does
not handle state, continuations, or any user-defined macros). Ob-
taining a core stepper from PLT Redex is trivial because the tool
already provides a function that performs a single evaluation step.

Performance Our prototype core steppers for Racket and Pyret
induce a 5-40% overhead, depending on how large the stack grows
and the relative mix of instrumented and uninstrumented calls.
In addition, we must pay for serialization and context-switching
because the CONFECTION implementation is an external process.
This additional cost can obviously be eliminated by implementing
CONFECTION inside the host language runtime.

8. Evaluation
In this section we describe sugars we implemented to test the ex-
pressiveness of our system. (Section 4 shows a non-trivial out-
come.) In what follows, we manually verified that each of the im-
plemented sugars showed the expected surface steps.

8.1 Building on the Lambda Calculus
To see how far we could push building a useful surface language
atop a small core, we constructed a simple stateful language in
PLT Redex. It contains only single-argument functions, applica-
tion, if statements, mutation, sequencing, and amb (which non-
deterministically chooses among its arguments), and some primi-
tive values and operations. Atop this we defined sugar for multi-
argument functions, Thunk, Force, Let, Letrec, multi-arm And
and Or, Cond; and atop these, a complex Automaton macro [18].
All of these behave exactly as one might expect other than Letrec
and Automaton, discussed below.

preprint 8 2014/3/19

#t

(apply end "")

(apply more "r")

(apply more "dr")

(apply more "adr")

(apply init "cadr")

(apply M "cadr")

(Let M

 (Automaton

 init

 (init : ("c" -> more))

 (more :

 ("a" -> more)

 ("d" -> more)

 ("r" -> end))

 (end : "accept"))

 (apply M "cadr"))

Figure 4. Automaton macro execution example

The Letrec sugar does not show any intermediate steps in
which some but not all branches have been evaluated; thus the
surface evaluation shows the branches all evaluating in one step.
For instance, (letrec ((x y) (y 2)) (+ x y)) steps directly
to (+ 2 2). Though this initially surprised us, it is actually the cor-
rect representation of the semantics of letrec; from our perspec-
tive, showing intermediate steps would necessarily be inaccurate
and violate Emulation.

The Automaton macro had the same problem until we made
some small, semantics-preserving refactorings: lifting some identi-
fiers into Let bindings, and adding ! on recursive annotations. Fig-
ure 4 shows a run in Redex’s evaluation visualizer; the underlying
core evaluation took 264 steps.

8.2 Return
Having first-class access to the current continuation is a powerful
mechanism for defining new control flow constructs. Racket does
so with the built-in function call/cc, that takes a function of
one argument and calls it with the program’s current continuation.
Using it, we can define a return sugar that returns early from a
function:

Return(x) ->
Let([Bind("%RES", x)],

[Apply(Id("%RET"), [Id("%RES")])]);

Function(args, body) ->
Lambda(args, Apply(Id("call/cc"),

[Lambda(["%RET"], body)]));

AST Node Description Implemented?
fun function declaration yes
when one-arm conditional yes
if multi-arm conditional yes
cases multi-arm conditional yes
cases-else multi-arm conditional yes
for generalized looping construct yes
op binary operators yes
not negation yes
paren grouping construct yes
left-app infix notation yes
list list expressions yes
dot indirect field lookup yes
colon direct field lookup yes
(currying syntax) allowed in fun and op yes
graph create cyclic data no
datatype datatype declarations no

Figure 5. Syntactic sugar in normal-mode Pyret

(The definition of function is necessary to mark the point that
return should return to.) With this definition in place, we can see
evaluation sequences such as:

(+ 1 ((function (x) (+ 1 (return (+ x 2)))) (+ 3 4)))

99K (+ 1 ((function (x) (+ 1 (return (+ x 2)))) 7))

99K (+ 1 (+ 1 (return (+ 7 2))))

99K (+ 1 (+ 1 (return 9)))

99K (+ 1 9)

99K 10

This example illustrates that our approach is robust enough to work
even in the presence of dynamic control flow.

8.3 Pyret: A Case Study
Pyret, shown in section 4, is a new language. It makes heavy use
of syntactic sugar to emulate the syntax of other programming
languages like Python. This sugar was implemented by people
other than this paper’s authors, and written as a manual compiler,
not as a set of rules; it was also implemented without any attention
paid to the limitations of this work. Thus, the language makes for a
good case study for the expressiveness of our work.

We restricted our attention to sugar relevant to evaluation. Pyret
has builtin syntactic forms for writing tests, and can run code both
in a “check” mode that only runs these tests, or in “normal” mode
that runs code. We focused on “normal” mode since it is most
relevant to evaluation. There were two pieces of sugar we were
unable to express and one that required modification to show ideal
surface steps; we describe these in more detail below. As figure 5
shows, we were able to handle almost all of Pyret’s sugar. An
example of the result in action was shown in section 4.

We were unable to fully handle algebraic datatype declara-
tions because they splice one block of code into another in a non-
compositional manner; we believe these could be expressed by
adding a block construct that does not introduce a new scope (akin
to Scheme’s begin).

We were also unable to handle graph, which constructs cyclic
data. It has a complex desugaring that involves creating and updat-
ing placeholder values and compile-time substitution. This could
be solved either by expanding the expressiveness of our system or
by adding a new core construct to the language. There is always
a trade-off between the complexity of the core language and the
complexity of the desugaring; when a feature can only be imple-
mented through a highly non-compositional sugar like this, it may
make sense to instead add the feature to the core language.

preprint 9 2014/3/19

Op(s, "+", x, y) ->
Block(s,
[Let(s, Bind(s, "temp", ABlank),

Obj(s, [Field(s, Str(s, "left"), x),
Field(s, Str(s, "right"), y)]))

, App(s, Bracket(s, Bracket(s, Id(s, "temp"),
Str(s, "left")),

Str(s, "_plus")),
[Bracket(s, Id(s, "temp"),

Str(s, "right"))])]);

Figure 6. Alternate desugaring of addition

Finally, the desugaring for binary operators needed to be modi-
fied to show helpful surface evaluation sequences. The desugaring
follows a strategy similar to that of Python, by applying the _plus
method of the left subexpression to the right subexpression (the s
terms are source locations, used for error-reporting):

Op(s, "+", x, y) ->
App(s, Bracket(s, x, Str(s, "_plus")), [y]);

Given the term 1 + (2 + 3), we would expect evaluation to step
first to 1 + 5 and then to 6. Unfortunately, CONFECTION shows
only this surface evaluation sequence:

1 + (2 + 3) 99K 6

The core evaluation sequence reveals why:

1.["_plus"](2.["_plus"](3))

−→ <func>(2.["_plus"](3))

−→ <func>(<func>(3))

−→ <func>(5)

−→ 6

(<func> denotes a resolved functional). To show the term 1 + 5,
Emulation requires that it desugar precisely into one of the terms in
the core sequence; but it desugars to 1.["_plus"](5), which has
a different shape than any of the core terms.

The fundamental problem is the order of evaluation induced by
this desugaring: first the left subexpression is evaluated, then the
_plus field is resolved, then the right subexpression is evaluated,
then the “addition” is performed. We can obtain a more helpful
surface sequence by instead choosing a desugaring that forces the
left and right subexpressions to be evaluated fully before resolving
the operation, as shown in figure 6.

This desugaring constructs a temporary object {left: x,
right: y}, and then computes temp.left._plus(temp.right).
Notice that this desugaring slightly changes the semantics of binary
operators; the difference may be seen when the right subexpression
mutates the _plus field of the left subexpression. In exchange, we
obtain the expected surface evaluation sequence:

1 + (2 + 3) 99K 1 + 5 99K 6

9. Related Work
There is a long history of trying relate compiled code back to its
source. This problem is especially pronounced in debuggers for
optimizing compilers, where the structure of the source can be al-
tered significantly [14]. Most of this literature is based on black-box
transformations, unlike ours, which we assume we have full control
over. As a result, this work tends to be very different in flavor from
ours: some of it is focused on providing high-level representations
of data on the heap, which is a strict subproblem of ours, or of cor-
relating back to source expression locations, which again is weaker
than reconstructing a source term. For this reason, this work is usu-

ally also not accompanied by strong semantic guarantees or proofs
of them.

One line of work in this direction is SELF’s debugging sys-
tem [15]. Its compiler provides its debugger with debugging infor-
mation at selected breakpoints by (in part) limiting the optimiza-
tions that are performed around them. This is a sensible approach
when the code transformation in question is optimization and can
be turned off, but does not make sense when the transformation is
a desugaring which is necessary to give the program meaning.

Another line of work in this direction is the compile-time macro
error reporting developed by Culpepper, et al. [6]. Constructing
useful error messages is a difficult task that we have not yet ad-
dressed. It has a different flavor than the problem we address,
though: akin to previous work in debugging, any source terms men-
tioned in an error appear directly in the source, rather than having
to be reconstructed.

Deursen, et al. [7] formalize the concept of tracking the origins
of terms within term rewriting systems (which in their case rep-
resent the evaluator, not the syntactic sugar as in our case). They
go on to show various applications, including visualizing program
execution, implementing debugger breakpoints, and locating the
sources of errors. Their work does not involve the use of syntac-
tic sugar, however, while our work hinges on the interplay between
syntactic sugar and evaluation. Nevertheless, we have adopted their
notion of origin tracking for our transformations.

Krishnamurthi, et al. [19] develop a macro system meant to sup-
port a variety of tools, such as type-checkers and debuggers. Tools
can provide feedback to users in terms of the programmer’s source
using source locations recorded during transformation. The system
does not, however, reconstruct source terms; it merely point out rel-
evant parts of the original source. The source tracking mechanisms
are based on Dybvig, et al.’s macro system [8].

Clements [4, page 53] implements an algebraic stepper (sim-
ilar to ours) for Racket—a language that has macros—and thus
faces precisely the same problem we address in this paper. That
work, however, side-steps these issues by handling a certain fixed
set of macros specially (those in the “Beginner Student” language)
and otherwise showing only expanded code. On the other hand, it
proves that its method of instrumenting a program to show evalua-
tion steps is correct (i.e., the instrumented program shows the same
evaluation steps that the original program produces), while we only
show that the lifted evaluation sequence is correct with respect to
the core stepper. Thus its approach could be usefully composed
with ours to achieve stronger guarantees.

Fisher and Shivers [10] develop a framework for defining static
semantics that connect the surface and core languages. They show
how to effectively lower a static semantics from a surface language
to its core language. This is complementary to our work, which
shows how to lift a dynamic semantics from core to surface. This
exposes a fundamental difference in starting assumptions: they as-
sume the surface language has a static semantics, while we assume
its semantics is defined by desugaring.

In a similiar vein, Lorenzen and Erdweg [20] give a method for
ensuring the type soundness of syntactic extensions by lowering
author-provided typing rules for the surface language onto the core
language’s type system (and automatically verifying that soundness
is entailed). Thus their work does for type checking what ours does
for evaluation: it provides a surface type checker guaranteed to be
sound with respect to the core language, while ours produces a
surface evaluator guaranteed to emulate the core language.

Model-driven software engineering also draws heavily on bidi-
rectional transformation, because systems are expected to be writ-
ten in a collection of domain-specific languages that are trans-
formed into implementations. These uses tend to be static, rather
than addressing the inverse-mapping problem in the context of sys-

preprint 10 2014/3/19

tem execution (see the survey by Stevens [24]). When the problem
we address does arise in this area, it is typically the case that ei-
ther (i) both the source and target models have implementations,
so that surface-level execution traces can be obtained by evaluating
in the surface language directly [21], or (ii) the surface informa-
tion sought is more limited than the reduction sequence we provide
(in the same ways as for debuggers for optimizing compilers, as
described earlier). Applying our results to this area is future work.

Artifact Evaluation
The artifact for this paper was not submitted for evaluation because
the second author was a co-chair of the evaluation process. The
artifact is available from

http://cs.brown.edu/research/plt/dl/resugaring/v1/

Acknowledgments
We thank Daniel J. Dougherty and Matthias Felleisen for their
feedback, Joe Politz for a language that offered an excellent proving
ground for this work, and the anonymous reviewers who provided
helpful feedback on the paper. This work was partially supported
by support from the US National Science Foundation and Google.

References
[1] A. Aiken and B. R. Murphy. Implementing regular tree expressions.

In Conference on Functional Programming Languages and Computer
Architecture, 1991.

[2] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: Resourceful lenses for string data. In Principles of Pro-
gramming Languages, 2008.

[3] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strat-
ego/XT 0.17. A language and toolset for program transformation. Sci-
ence of Computer Programming, 72(1–2), 2008.

[4] J. Clements. Portable and high-level access to the stack with Contin-
uation Marks. PhD thesis, Northeastern University, 2006.

[5] J. Clements, M. Flatt, and M. Felleisen. Modeling an algebraic stepper.
In European Symposium on Programming Languages and Systems,
2001.

[6] R. Culpepper and M. Felleisen. Fortifying macros. In International
Conference on Functional Programming, 2010.

[7] A. V. Deursen, P. Klint, and F. Tip. Origin tracking. Journal of
Symbolic Computation, 15(5–6), 1993.

[8] R. K. Dybvig, D. P. Friedman, and C. T. Haynes. Expansion-passing
style: A general macro mechanism. In Lisp and Symbolic Computa-
tion, 1988.

[9] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[10] D. Fisher and O. Shivers. Static analysis for syntax objects. In
International Conference on Functional Programming, 2006.

[11] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In Programming Languages Design
and Implementation, 1993.

[12] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transformations: a lin-
guistic approach to the view update problem. In Principles of Pro-
gramming Languages, 2005.

[13] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.
In European Conference on Object-oriented Programming, 2010.

[14] J. Hennessy. Symbolic debugging of optimized code. Transactions on
Programming Languages and Systems, 4(3), 1982.

[15] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code
with dynamic deoptimization. In Programming Languages Design
and Implementation, 1992.

[16] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic
macro expansion. In ACM Conference on LISP and Functional Pro-
gramming, 1986.

[17] E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving syn-
tactic transformations from their specifications. In Principles of Pro-
gramming Languages, 1987.

[18] S. Krishnamurthi. Automata via macros. Journal of Functional
Programming, 16(3), 2006.

[19] S. Krishnamurthi, M. Felleisen, and B. F. Duba. From macros to
reusable generative programming. In Generative and Component-
Based Software Engineering, 1999.

[20] F. Lorenzen and S. Erdweg. Modular and automated type-soundness
for language extensions. In International Conference on Functional
Programming, 2013.

[21] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs
that explain their work. In International Conference on Functional
Programming, 2012.

[22] G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamurthi, and
M. Felleisen. Continuations from generalized stack inspection. In
International Conference on Functional Programming, 2005.

[23] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic frame-
work. Journal of Logic and Algebraic Programming, 79(6), 2010.

[24] P. Stevens. A landscape of bidirectional model transformations. In
Generative and Transformational Techniques in Software Engineering
II. Springer-Verlag, 2008.

[25] The Coq Development Team. The Coq Proof Assistant Reference
Manual, version 8.4 edition, 2012.

preprint 11 2014/3/19

