Definition[Active expressions]: An active expression \(ae \) is defined by
\[
ae := v_1 v_2 \mid c(v).
\]

Lemma[AE]: For all closed expressions \(e \), either

i. \(e \in v \), or

ii. there exists \(E \) and \(ae \) such that \(e = E[ae] \), or

iii. \(e = E[err-\omega] \).

Proof. By definition of \(e \), \(v \), and \(E \).

Lemma[Substitution]: If

1. \(\Omega'; \Gamma, x : \tau' \vdash e : \tau \),
2. \(\langle \rangle ; \bullet \vdash v : \tau' \), and
3. \(\Omega' \subseteq \Omega \),

then \(\Omega; \Gamma \vdash e[x/v] : \tau \).

Proof. By induction on \(e \), followed by induction on the typing derivation in each case.

Lemma[Canonical Forms]: For \(\Omega; \Gamma \vdash v : \tau \), if

- \(\tau = \mathbb{Z} \), then \(v = 0 \).
- \(\tau = \mathbb{N} \), then \(v = n \), as defined in Fig. 1.
- \(\tau = \tau_1 \Omega' \rightarrow \tau_2 \), then \(v = \lambda x : (\tau_1; \Omega').e \).

Proof. By induction on the typing derivation.

- Only T-Zero and T-Sub apply. T-Zero is immediate and T-Sub follows by induction.
- Only T-Num and T-Sub apply. T-Num is immediate and T-Sub follows by induction.
- Only T-Fun and T-Sub apply. T-Fun is immediate and T-Sub follows by induction.

Lemma[Transitivity of Subtyping]: If \(\tau_1 \leq \tau_2 \) and \(\tau_2 \leq \tau_3 \) then \(\tau_1 \leq \tau_3 \).

Proof. Suppose that \(\tau_1 \leq \tau_2 \) by S-12 and \(\tau_2 \leq \tau_3 \) by S-23.

We proceed by cases over S-12 and S-23 and by induction over the size of terms.

- Let S-12 = S-Bottom.
 Then \(\tau_1 = \perp \) and \(\tau_1 \leq \tau_3 \) by S-Bottom.

- Let S-12 = S-Refl.
 Then \(\tau_1 = \tau_2 \), and so \(\tau_1 \leq \tau_3 \) by S-23.

- Let S-23 = S-Refl.
 Then \(\tau_2 = \tau_3 \), and so \(\tau_1 \leq \tau_3 \) by S-12.

- Let S-12 = S-Union-L
 Then \(\tau_2 = \sigma_1 \cup \sigma_2 \) and \(\tau_1 \leq \sigma_1 \).
• Let $S-23 = S$-Bottom
 This case is not possible, as it requires $\tau_2 = \bot$, which is contradictory to the above assertion that $\tau_2 = \sigma_1 \cup \sigma_2$.

• Let $S-23 = S$-Union-L
 Then $\tau_3 = \sigma_3 \cup \sigma_4$ and $\tau_2 \leq \sigma_3$.
 Then $\tau_1 \leq \tau_2$ and $\tau_2 \leq \sigma_3$. By the induction hypothesis $\tau_1 \leq \sigma_3$. So $\tau_1 \leq \tau_3$ by S-Union-L.

• Let $S-23 = S$-Union-R
 This is similar to the case above.

• Let $S-23 = S$-Union-Join
 Then $\tau_1 \leq \sigma_1$ and $\sigma_1 \leq \tau_2$. By induction $\tau_1 \leq \tau_3$.

• Let $S-23 = S$-Arrow
 This case is not possible, as it requires $\tau_2 = \sigma_3 \xrightarrow{\Omega} \sigma_4$, which is contradictory to the above assertion that $\tau_2 = \sigma_1 \cup \sigma_2$.

• Let $S-12 = S$-Union-R
 This is symmetric to the above case.

• Let $S-12 = S$-Union-Join
 Then $\tau_1 = \sigma_1 \cup \sigma_2$ and $\sigma_1 \leq \tau_2$ and $\sigma_2 \leq \tau_2$.

• Let $S-23 = S$-Bottom
 Then $\tau_1 \leq \bot$. By inspection of the subtyping rules we can see that $\tau_1 = \rho_1 \cup \rho_2$, defined by
 $$\rho = \bot \mid \rho \cup \rho.$$
 We proceed by induction over the number n of n’s in τ_1.
 - $n = 1$
 Then $\tau_1 = \bot \cup \bot$, and so $\tau_1 \leq \tau_3$ by S-Union-Join.
 - $n > 1$
 Then $\tau_1 = \rho_1 \cup \rho_2$. Clearly ρ_1 and ρ_2 contain fewer than $n \cup$’s. By our induction hypothesis, $\rho_1 \leq \tau_3$ and $\rho_2 \leq \tau_3$. Then $\tau_1 \leq \tau_3$ by S-Union-Join.

• Let $S-23 = S$-Union-L
 Then $\tau_3 = \sigma_3 \cup \sigma_4$ and $\tau_2 \leq \sigma_3$.
 Then $\tau_1 \leq \tau_2$ and $\tau_2 \leq \sigma_3$. By the induction hypothesis $\tau_1 \leq \sigma_3$. So $\tau_1 \leq \tau_3$ by S-Union-L.

• Let $S-23 = S$-Union-R
 This is similar to the case above.

• Let $S-23 = S$-Union-Join
 In this case $\tau_2 = \sigma_3 \cup \sigma_4$, with $\sigma_3 \leq \tau_3$ and $\sigma_4 \leq \tau_3$.
 We know that $\sigma_1 \leq \tau_2$ by some rule, call it S-Sig1, and that $\sigma_2 \leq \tau_2$ by S-Sig2. We will proceed by induction over the height h of the derivation for $\sigma_1 \leq \tau_2$ and $\sigma_2 \leq \tau_2$. Without loss of generality, we examine the derivation for $\sigma_1 \leq \tau_2$.

Case: $h = 1$
 In this case either S-Sig1 = S-Bottom or S-Sig1 = S-Refl.
 - If S-Sig1 is S-Bottom, then $\sigma_1 = \bot$ and $\sigma_1 \leq \tau_3$ by S-Bottom.
 - In the case of S-Refl, then $\sigma_1 = \tau_2$, and so $\sigma_1 \in \tau_3$ by S-Union-Join.

Case: $h > 1$
 In this case S-Sig1 can be S-Union-L, S-Union-R, S-Union-Join, or S-Arrow.
 - If S-Sig1 = S-Union-L, then $\sigma_1 \leq \sigma_3$ and $\sigma_3 \leq \tau_3$. We know that the height of the derivation to show $\sigma_1 \leq \sigma_3$ is $h - 1$. By the induction hypothesis we conclude that $\sigma_1 \leq \tau_3$.
 - The case for S-Union-R is symmetric to the above case.
Consider the case where Σ is S-Union-Join. Then $\sigma_1 = \sigma' \cup \sigma''$ with $\sigma' \leq \tau_2$ and $\sigma'' \leq \tau_2$. The derivations to show that $\sigma' \leq \tau_2$ and $\sigma'' \leq \tau_2$ have height $\leq h - 1$. So by the induction hypothesis $\sigma' \leq \tau_3$ and $\sigma'' \leq \tau_3$. Then by $\text{S-Union-Join} \sigma_1 \leq \tau_3$.

The case where Σ is S-Arrow is impossible, because it would require $\tau_2 = \sigma' \xrightarrow{\Omega'} \sigma''$, which is contradictory to the above statement that $\tau_2 = \sigma_3 \cup \sigma_4$.

It is symmetric to show that $\sigma_2 \leq \tau_3$. Thus we conclude that by $\text{S-Union-Join} \tau_1 \leq \tau_3$.

- **Let $\text{S-23} = \text{S-Arrow}$**

 In this case, $\tau_2 = \sigma_3 \xrightarrow{\Omega} \sigma_4$ and $\tau_3 = \sigma_5 \xrightarrow{\Omega'} \sigma_6$ with $\sigma_5 \leq \sigma_3$, $\Omega \subseteq \Omega'$, and $\sigma_4 \leq \sigma_6$.

 Recall that $\tau_1 = \sigma_1 \cup \sigma_2$. Because we know that $\sigma_1 \leq \tau_2$ and $\sigma_2 \leq \tau_2$, we can see by inspection of the subtyping rules that $\sigma_1, \sigma_2 = \rho$ with ρ defined by

 $$
 \rho = \bot \mid \sigma' \xrightarrow{\Omega} \sigma'' \mid \rho \cup \rho.
 $$

 We proceed by induction over the number n of \cup's in τ_1.

 - $n = 1$

 There are three possible cases for the shape of σ_1 and σ_2. We address each case for σ_1 and show that $\tau_1 \leq \tau_3$:

 - $\sigma_1 = \bot$. By $\text{S-Bottom} \sigma_1 \leq \tau_3$.
 - $\sigma_1 = \tau_2$ (so $\sigma_1 \leq \tau_2$ by S-Ref1). Then because $\tau_2 \leq \tau_3$ clearly $\sigma_1 \leq \tau_3$.
 - $\sigma_1 = \sigma_1' \xrightarrow{\Omega} \sigma_1''$, and $\sigma_1 \leq \tau_2$ by S-Arrow. This is similar to the case below where S-12 and S-23 are S-Arrow. So we conclude that $\sigma_1 \leq \tau_3$.

 The cases to show that $\sigma_2 \leq \tau_3$ are similar. Having shown that $\sigma_1 \leq \tau_3$ and $\sigma_2 \leq \tau_3$ we conclude that $\tau_1 \leq \tau_3$.

 - $n > 1$.

 Then $\tau_1 = \rho_1 \cup \rho_2$ and ρ_1 and ρ_2 contain fewer than n \cup's. By our induction hypothesis, $\rho_1 \leq \tau_3$ and $\rho_2 \leq \tau_3$. Then $\tau_1 \leq \tau_3$ by S-Union-Join.

- **Let $\text{S-12} = \text{S-Arrow}$**

 Then $\tau_1 = \sigma_1 \xrightarrow{\Omega} \sigma_2$ and $\tau_2 = \sigma_3 \xrightarrow{\Omega'} \sigma_4$ with $\sigma_3 \leq \sigma_1$, $\Omega \subseteq \Omega'$, and $\sigma_2 \leq \sigma_4$.

 - **Let $\text{S-23} = \text{S-Bottom}$**

 This case is not possible, as it requires $\tau_2 = \bot$, which is contradictory to the above assertion that $\tau_2 = \sigma_3 \xrightarrow{\Omega} \sigma_4$.

 - **Let $\text{S-23} = \text{S-Union-L}$**

 Then $\tau_1 = \sigma_3 \cup \sigma_4$ and $\tau_2 \leq \sigma_3$.

 Then $\tau_1 \leq \tau_2$ and $\tau_1 \leq \sigma_3$. By the induction hypothesis $\tau_1 \leq \sigma_3$. So $\tau_1 \leq \tau_3$ by S-Union-L.

 - **Let $\text{S-23} = \text{S-Union-R}$**

 This is similar to the case above.

 - **Let $\text{S-23} = \text{S-Union-Join}$**

 This case is not possible, as it requires $\tau_2 = \sigma_3 \cup \sigma_6$, which is contradictory to the above assertion that $\tau_2 = \sigma_3 \xrightarrow{\Omega} \sigma_4$.

 - **Let $\text{S-23} = \text{S-Arrow}$**

 Then $\tau_1 = \sigma_5 \xrightarrow{\Omega''} \sigma_6$, with $\sigma_5 \leq \sigma_3$, $\Omega' \subseteq \Omega''$, and $\sigma_4 \leq \sigma_6$.

 So $\sigma_5 \leq \sigma_3$ and $\sigma_3 \leq \sigma_1$ so by the induction hypothesis, $\sigma_5 \leq \sigma_1$. Similarly $\sigma_2 \leq \sigma_4$ and $\sigma_4 \leq \sigma_6$ implies $\sigma_2 \leq \sigma_6$. By transitivity of the subset relation $\Omega \subseteq \Omega''$. Thus $\tau_1 \leq \tau_3$ by S-Arrow.

\[\square\]
Lemma[Application]: If $\tau_1 \xrightarrow{\sigma} \tau_2 \leq \sigma$, apply($\sigma, \tau', \Omega'$) = τ'', and $\tau' \not\in \perp$, then $\tau_2 \leq \tau''$, $\tau' \leq \tau_1$ and $\Omega \subseteq \Omega'$.

Proof. By inspection of the subtyping rules, we can see that subtype relationship between $\tau_1 \xrightarrow{\sigma} \tau_2$ and σ must take one of the following forms:

- $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_1 \xrightarrow{\Omega} \tau_2$, by S-Refl.
- $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3 \cup \tau_4$ and $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3$ by S-Union-L.
- $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3 \cup \tau_4$ and $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_4$ by S-Union-R.
- $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau'_1 \xrightarrow{\Omega'} \tau'_2$, and $\tau'_1 \leq \tau_1$, $\Omega \leq \Omega'$, $\tau_2 \leq \tau'_2$ by S-Arrow.

We proceed by case analysis over these relationships.

- We can see that $\sigma = \tau_1 \xrightarrow{\Omega} \tau_2$. By inspection of the apply function we can see that because apply(σ, τ', Ω') = apply(σ, τ', Ω') = τ'', it must be the case that $\tau' = \tau_1$, that $\Omega \subseteq \Omega'$ and that $\tau_2 = \tau''$. Then by S-Refl, $\tau' \leq \tau_1$ and $\tau_2 \leq \tau''$.
- Here $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3 \cup \tau_4$ and $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3$. We know apply($\tau_3 \cup \tau_4, \tau', \Omega'$) = τ'', so $\tau'' = \text{apply}(\tau_3, \tau', \Omega') \cup \text{apply}(\tau_4, \tau', \Omega')$. Let $\tau_{a3} = \text{apply}(\tau_3, \tau', \Omega')$ and $\tau_{a4} = \text{apply}(\tau_4, \tau', \Omega')$. By structural induction over σ, $\tau_2 \leq \tau_{a3}$, $\tau' \leq \tau_1$, and $\Omega \subseteq \Omega'$. Then, $\tau_2 \leq \tau''$ by S-Union-Left and $\tau_2 \leq \tau_{a3}$.
- The case where $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3 \cup \tau_4$ and $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_4$ is similar to the previous case.
- Consider the case where $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_1 \xrightarrow{\Omega'} \tau'_2$, and $\tau'_1 \leq \tau_1$, $\Omega \leq \Omega'$, $\tau_2 \leq \tau'_2$. Then apply(σ, τ', Ω') = apply($\tau'_1 \xrightarrow{\Omega'} \tau'_2, \tau', \Omega'$), so by the conditions on apply we know that $\tau'_1 = \tau'$, that $\Omega'' \subseteq \Omega'$, and that $\tau_2 = \tau''$. Then $\tau'_1 = \tau' \leq \tau_1$, and $\tau_2 \leq \tau'' = \tau'_2$, and $\Omega \subseteq \Omega'' \subseteq \Omega'$ so $\Omega \subseteq \Omega'$.

Lemma[Delta]: If $\tau_1 \leq \tau_2$ and $\delta_\tau(c, \tau_1, \Omega) = \tau'$ and $\delta_\tau(c, \tau_2, \Omega) = \tau''$ then $\tau' \leq \tau''$.

Proof. We can see by observation of the subtyping rules that the subtype relationship between τ_1 and τ_2 must take one of the following forms:

- $\perp \leq \tau_2$
- $\tau_1 \leq \tau_1$
- $\tau_1 \leq \tau_3 \cup \tau_4$ and $\tau_1 \leq \tau_3$
- $\tau_1 \leq \tau_3 \cup \tau_4$ and $\tau_1 \leq \tau_4$
- $\tau_3 \cup \tau_4 \leq \tau_2$ with $\tau_3 \leq \tau_2$ and $\tau_4 \leq \tau_2$
- $\tau_1 \xrightarrow{\Omega} \tau_2 \leq \tau_3 \xrightarrow{\Omega'} \tau_4 = \tau_2$ and $\sigma_3 \leq \sigma_1, \Omega' \subseteq \Omega''$, and $\sigma_2 \leq \sigma_4$.

We proceed by case analysis over these relationships.

- Here, $\delta_\tau(c, \perp, \Omega) = \perp$, so by S-Bot, $\perp \leq \tau''$.
- In this case, $\delta_\tau(c, \tau_1, \Omega) = \tau' = \tau'' = \delta_\tau(c, \tau_2, \Omega)$. By S-Refl, $\tau' \leq \tau''$.
- Here, $\tau_1 \leq \tau_3 \cup \tau_4$ and $\tau_1 \leq \tau_3$. By observation of δ_τ, we see that $\delta_\tau(c, \tau_3 \cup \tau_4, \Omega) = \delta_\tau(c, \tau_3, \Omega) \cup \delta_\tau(c, \tau_4, \Omega)$. Let $\tau'_3 = \delta_\tau(c, \tau_3, \Omega)$. Then we have $\tau_1 \leq \tau_3$, $\delta_\tau(c, \tau_1, \Omega) = \tau'$ and $\tau'_3 = \delta_\tau(c, \tau_3, \Omega)$. So by structural induction over τ_2, $\tau' \leq \tau'_3$ and by S-Union-Left, $\tau' \leq \tau''$.

- This is similar to the case above.
• Here, \(\tau_3 \cup \tau_4 \leq \tau_2 \) with \(\tau_3 \leq \tau_2 \) and \(\tau_4 \leq \tau_2 \). By observation of \(\delta_* \), we can see that \(\delta_* (c, \tau_3 \cup \tau_4, \Omega) = \delta_* (c, \tau_3, \Omega) \cup \delta_* (c, \tau_4, \Omega) \). Let \(\tau'_3 = \delta_* (c, \tau_3, \Omega) \) and \(\tau'_4 = \delta_* (c, \tau_4, \Omega) \). Then \(\tau_3 \leq \tau'_2 \), \(\delta_* (c, \tau_3, \Omega) = \tau'_3 \) and \(\tau'_4 = \delta_* (c, \tau_4, \Omega) \), and \(\tau'' = \delta_* (c, \tau_2, \Omega) \). By structural induction of \(\tau_1 \), \(\tau'_3 \leq \tau'' \) and \(\tau'_4 \leq \tau'' \). Then by S-Union-Join \(\tau' \leq \tau'' \).

Lemma[Inversion]: If

• \(\Omega; \Gamma \vdash v_1 (v_2) : \tau \), then
 • \(\Omega; \Gamma \vdash v_1 : \tau_1 \),
 • \(\Omega; \Gamma \vdash v_2 : \tau_2 \), and
 • \(\text{apply}(\tau_1, \tau_2, \Omega) : \tau_3 \)
 • \(\tau_3 \leq \tau \)

And one of the following holds by case analysis on values:

• \(v_1 = \lambda x : (\tau'; \Omega').c' \) and
 1. \(\Omega; \Gamma \vdash v_1 : \tau' \Omega' \rightarrow \tau'' \),
 2. \(\tau' \Omega' \rightarrow \tau'' \leq \tau' \)
 3. \(\Omega'; \Gamma[x : \tau'] \vdash c' : \tau'' \)

• \(v_1 = 0, \Omega; \Gamma \vdash v_1 : \tau_1 \) with \(Z \leq \tau_1 \), and \(\text{app-0} \in \Omega \).

• \(v_1 = n, \Omega; \Gamma \vdash v_1 : \tau_1 \) with \(N \leq \tau_1 \), and \(\text{app-n} \in \Omega \).

• \(\Omega; \Gamma \vdash \div (v) : \tau \) then either
 • \(\Omega; \Gamma \vdash v : N \) and \(N \leq \tau \), or
 • \(\Omega; \Gamma \vdash v : \tau_1 \) with \(Z \leq \tau_1 \) and \(\text{div-0} \in \Omega \).

• \(\Omega; \Gamma \vdash v : \tau_1 \) with \(\tau' \Omega' \rightarrow \tau'' \leq \tau_1 \) and \(\text{div-} \lambda \in \Omega \).

• \(\Omega; \Gamma \vdash \text{div}1 (v) : \tau \) then either
 • \(\Omega; \Gamma \vdash v : \tau_1 \) with \(N \cup Z \leq \tau \) and \(N \leq \tau \), or
 • \(\Omega; \Gamma \vdash v : \tau_1 \) with \(\tau' \Omega' \rightarrow \tau'' \leq \tau_1 \) and \(\text{div}1- \lambda \in \Omega \).

• \(\Omega; \Gamma \vdash \text{err-} \omega : \tau \) then \(\omega \in \Omega \).

Proof. We proceed by analysis over these cases.

If \(\Omega; \Gamma \vdash v_1 : \tau_2 \), two rules apply, T-App and T-Sub.

If T-App was used, by inspection of the \textit{apply} function, it is immediate that \(\Omega; \Gamma \vdash v_1 : \tau_1 \), \(\Omega; \Gamma \vdash v_2 : \tau_2 \), and \(\text{apply}(\tau_1, \tau_2, \Omega) = \tau \).

It T-Sub was applied, then by induction on the typing derivation T-App applies to give us \(\Omega; \Gamma \vdash v_1 : \tau_1 \), \(\Omega; \Gamma \vdash v_2 : \tau_2 \), and \(\Omega; \Gamma \vdash v_2 (v_2) : \tau' \) with \(\text{apply}(\tau_1, \tau_2, \Omega') = \tau_3 \). By induction of the subtyping derivation and transitivity of subtyping, \(\tau_3 \leq \tau \).

Now we know that \(\Omega; \Gamma \vdash v_1 (v_2) : \tau \), \(\Omega; \Gamma \vdash v_1 : \tau_1 \), \(\Omega; \Gamma \vdash v_2 : \tau_2 \), and \(\text{apply}(\tau_1, \tau_2, \Omega) = \tau_3 \leq \tau \). By inspection of the values presented in the semantics, we know that either \(v_1 = \lambda x : (\tau'; \Omega').c, v_1 = 0 \), or \(v_1 = n \). We address each of the cases.
Now we consider $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau_1$. This could have been show either by T-Fun or T-Sub.

If T-Fun is used to show that $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau_1$, it is immediate that $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau' \xrightarrow{\Omega} \tau'' = \tau_1$, and that $\Omega'; \Gamma[x : \tau'] \vdash e : \tau''$. By S-Refl $\tau' \xrightarrow{\Omega} \tau'' \leq \tau_1$.

In the case where $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau_1$ is shown by T-Sub, then we can see by induction on the typing derivation that T-Fun was applied at some point in the derivation. This shows that $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau' \xrightarrow{\Omega} \tau''$ and also that $\Omega'; \Gamma[x : \tau'] \vdash e : \tau''$. Also by induction over the typing derivation and by transitivity of subtyping, $\tau' \xrightarrow{\Omega} \tau'' \leq \tau_1$.

If $v_1 = 0$ then T-Zero or T-Sub could apply for $\Omega; \Gamma \vdash v_1 : \tau_1$. If T-Zero applies, then $\Omega; \Gamma \vdash v_1 : Z = \tau_1$, so by S-Refl, $Z \leq \tau_1$. Furthermore, because $\text{apply}(Z, \tau_2, \Omega) = \tau$, by inspection of apply it must be the case the app-0 $\in \Omega$.

If T-Sub is used then by induction T-Zero is used at some point in the typing derivation. So $\Omega; \Gamma \vdash v_1 : Z$ with $Z \leq \tau_1$. By induction over the subtyping derivation $\tau_1 = \sigma_1 \cup \cdots \cup Z \cup \cdots \cup \sigma_n$. Then by inspection of apply,

\[
\text{apply}(\tau_1, \tau_2, \Omega) = \text{apply}(\sigma_1, \tau_2, \Omega) \cup \cdots \cup \text{apply}(Z, \tau_2, \Omega) \cup \cdots \cup \text{apply}(\sigma_n, \tau_2, \Omega).
\]

Because $\text{apply}(Z, \tau_2, \Omega)$ must be defined we conclude that app-0 $\in \Omega$.

- The case where $v_1 = n$ is similar to the case where $v_1 = 0$.

Now we consider $\Omega; \Gamma \vdash \vdash (v) : \tau$. Two rules may apply to $\Omega; \Gamma \vdash \vdash (v) : \tau$, T-Sub and T-Op. In the case of T-Op, we see that $\Omega; \Gamma \vdash v : \tau_1$, and that $\tau = \delta_\tau(\vdash, \tau_1, \Omega)$.

In the case where T-Sub is used to type $\Omega; \Gamma \vdash \vdash (v) : \tau$, by induction on the typing derivation T-Op was used to produce $\Omega; \Gamma \vdash \vdash (v) : \tau_2$, which gives us that $\Omega; \Gamma \vdash v : \tau_1$ and $\tau_2 = \delta_\tau(\vdash, \tau_1, \Omega)$. Further by induction on the typing derivation, $\tau_2 \leq \tau$.

By observation of the values in the semantics either

- $v = n$
- $v = 0$
- $v = \lambda x : (\tau'; \Omega'). e$

We address each case. If

- $v = n$, there are two rules that could have been used to type v. In the case where T-Num is used it is immediate that $\Omega; \Gamma \vdash v : N = \tau_1$, so by S-Refl, $N \leq \tau_1$. Further $\tau = \delta_\tau(\vdash, \tau_1, \Omega) = \delta_\tau(\vdash, N, \Omega) = N$ so by S-Refl, $N \leq \tau$.

If T-Sub is used to type v, then $\Omega; \Gamma \vdash v : \tau_1$. By induction on the typing derivation, T-Num must have been applied to v, so $\Omega; \Gamma \vdash v : N$ and by induction on the subtyping derivation, $N \leq \tau_1$. By inspection of δ_τ, we see that $\delta_\tau(\vdash, N, \Omega) = N$, so by Lemma[Delta], $N \leq \tau_2$ and by induction on subtyping $N \leq \tau$.

- $v = 0$ then either T-Zero or T-Sub was used as the final step of the typing derivation. In the case of T-Zero it is immediate that $Z \leq \tau_1$. Additionally because $\tau_2 = \delta_\tau(\vdash, Z, \Omega)$, we conclude that $\delta_\tau(\vdash, Z, \Omega)$ is defined, and therefore by inspection of δ_τ, div-0 $\in \Omega$.

If T-Sub was used to show that $\Omega; \Gamma \vdash v : \tau_1$ then by induction over the typing derivation, T-Zero must have been used to show $\Omega; \Gamma \vdash v : Z$ and $Z \leq \tau_1$. Also by induction over that derivation, we can see that

$\tau_1 = \sigma_1 \cup \cdots \cup Z \cup \cdots \cup \sigma_n$.

So then

$\tau_2 = \delta_\tau(\vdash, \tau_1, \Omega) = \delta_\tau(\vdash, \sigma_1, \Omega) \cup \cdots \cup \delta_\tau(\vdash, Z, \Omega) \cup \cdots \cup \delta_\tau(\vdash, \sigma_n, \Omega)$.

From this we conclude that $\delta_\tau(\vdash, Z, \Omega)$ is defined, and therefore div-0 $\in \Omega$.

- $v = \lambda x : (\tau'; \Omega'). e$ then either T-Fun or T-Sub was used to show $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau_1$. If T-Fun was used, then $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega'). e : \tau' \xrightarrow{\Omega} \tau''$. By S-Refl $\tau' \xrightarrow{\Omega} \tau'' \leq \tau_1$. Further, because $\tau_2 = \delta_\tau(\vdash, \tau' \xrightarrow{\Omega} \tau'', \Omega)$ is defined, div-\lambda $\in \Omega$.
If $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega').e : \tau_1$ was shown through use of T-Sub then by induction on the typing derivation T-Fun must be used to show that $\Omega; \Gamma \vdash \lambda x : (\tau'; \Omega').e : \tau'$ and $\tau' \Omega' \rightarrow \tau'' \leq \tau_1$. By observation of the subtyping rules, either

$$\tau_1 = \sigma_1 \cup \cdots \cup (\tau' \Omega' \rightarrow \tau'') \cup \cdots \cup \sigma_n$$

or

$$\tau_1 = \tau_3 \Omega' \rightarrow \tau_4$$

with $\tau_3 \leq \tau'$, $\Omega' \subseteq \Omega''$, and $\tau'' \leq \tau_4$.

In the first case because $\delta_\tau(\div, \tau_1, \Omega)$ is defined, $\delta_\tau(\div, \tau' \Omega' \rightarrow \tau'', \Omega)$ must be defined. Therefore $\text{div-}\lambda \in \Omega$.

In the second case $\delta_\tau(\div, \tau_1, \Omega) = \delta_\tau(\div, \tau_3 \Omega' \rightarrow \tau_4, \Omega)$ and so $\text{div-}\lambda \in \Omega$.

- The proof for $\Omega; \Gamma \vdash \text{add1}(v) : \tau$ is similar to the above case.

- Consider $\Omega; \Gamma \vdash \text{err-}\omega : \tau$. Either T-Err or T-Sub was used to make this judgment. It follows immediately from T-Err that $\omega \in \Omega$.

If T-Sub was used to show $\Omega; \Gamma \vdash \text{err-}\omega : \tau$ we can induce over the typing derivation to show that T-Err must have been applied to show that $\Omega; \Gamma \vdash \text{err-}\omega : \tau'$. It then follows that $\omega \in \Omega$.

□
Lemma[Progress]: If $\Omega; \Gamma \vdash e : \tau$ then

1. $e \in v$, or
2. $e \neq \text{err-}\omega$, and there exists e' such that $e \rightarrow e'$, or
3. $e = \text{err-}\omega$ where $\omega \in \Omega$.

Proof: By case analysis on e. By Lemma[AE] we know that e can take a finite number of forms, as follows:

i. $e \in v$, or

ii. there exists E and ae such that $e = E[ae]$, or

iii. $e = E[\text{err-}\omega]$.

We consider these possibilities by cases.

Case: $e \in v$

Clearly, we are in 1.

Case: $e = E[e']$ for some $E, e' \in \{ae, \text{err-}\omega\}$.

We proceed again by case analysis, this time on e'.

Case: $e' = n(v)$ for $n \neq 0$.

We can see by E-Apply-Num in Fig. 3 that $n(v) \Rightarrow \text{err-app-n}$. Then, again by Fig. 3, we see that $E[n(v)] \rightarrow E[\text{err-app-n}]$. Thus we are in 2.

Case: $e' = 0(v)$.

Similar to the case above.

Case: $e' = (\lambda x : (\tau; \Omega).e')(v)$

Then again by Fig. 3 we can see that $(\lambda x : (\tau; \Omega).e')(v) \Rightarrow e[x/v]$. So then $E[(\lambda x : (\tau; \Omega).e')(v)] \rightarrow E[e[x/v]]$, and we are in 2.

Case: $e' = \text{div}(v)$.

In this case, by Fig. 3, $\text{div}(v) \Rightarrow \delta(\text{div}, v)$. We can see by inspection of the δ function that $\delta(\text{div}, v)$ is defined for every value v. So then $E[\text{div}(v)] \rightarrow E[\delta(\text{div}, v)]$. So we are in 2.

Case: $e' = \text{err-}\omega$.

This case is similar to the case above.

Case: $e' = \text{add1}(v)$.

By Fig. 3 $E[\text{err-}\omega] \rightarrow \text{err-}\omega$. So we are in 2.

Case: $e = \text{err-}\omega$.

Because we know that $\Omega; \Gamma \vdash e : \tau$ we know that we must be able to construct a typing derivation to show this. We prove this case by induction on the height h of that typing derivation.

Case: $h = 2$

In this case, the only rule that can apply is T-Err, which gives us the following derivation:

$$
\frac{
\omega \in \Omega
}{
\Omega; \Gamma \vdash \text{err-}\omega : \bot
} \quad \odot
$$

In order to achieve this derivation, it must be the case that $\text{err-}\omega \in \Omega$, so we are in 3.

Case: $h > 2$

In this case, the rule that must apply is T-Sub. Then we have as the antecedent that $\Omega; \Gamma \vdash \text{err-}\omega : \tau_1$ and $\tau_1 \leq \tau$. We know that the typing derivation for $\Omega; \Gamma \vdash \text{err-}\omega : \tau_1$ has height $h - 1$, so by our induction hypothesis we conclude that $\text{err-}\omega \in \Omega$, so we are in 3.

Having covered the possible cases for e, we conclude that the statement is true.
Lemma[Preservation]: If $\Omega; \Gamma \vdash e_1 : \tau$ and $e_1 \rightarrow e_2$, then $\Omega; \Gamma \vdash e_2 : \tau$, and if $e_2 = E[err-\omega]$ then $\omega \in \Omega$.

Proof. By Lemma[AE] we can see that either $e_1 = v$, $e_1 = E[ae]$ for some E, ae, or $e_1 = E[err-\omega]$ for some E, ω. By inspection of the rules, we know that $e_1 \neq v$. So either $e_1 = E[e_1']$ for $e_1' = ae$ and $e_2 = E[e_2']$ for some e_2', or $e_1' = err-\omega$. Note that by induction over the derivation for e_1, it must be the case the $\Omega; \Gamma \vdash e_1' : \tau_1'$.

We proceed by cases over e_1'.

Case: $e_1' = (\lambda x : (\tau' : \Omega'). e)(v)$

By inversion, we can see that $\Omega; \Gamma \vdash \lambda x : (\tau' : \Omega'). e : \tau''$, with $\tau' \xrightarrow{\Omega'} \tau'' \leq \tau''$, that $\Omega'; \Gamma[x : \tau'] \vdash e : \tau''$, and that $\Omega; \Gamma \vdash v : \sigma$. We can also see by inversion that $apply(\tau'', \sigma, \Omega) = \tau_1''$, with $\tau_1'' \leq \tau_1'$.

Because we know that $\tau' \xrightarrow{\Omega'} \tau'' \leq \tau''$ and $apply(\tau'', \sigma, \Omega) = \tau_1''$, we can use the application lemma to show that $\tau'' \leq \tau_1''$, that $\sigma \leq \tau'$ and that $\Omega' \subseteq \Omega$.

By subsumption we can show that $\Omega; \Gamma \vdash \tau'$.

By inspection of the reduction rules, $e_2' = e[x/v]$.

Then because $\Omega'; \Gamma[x : \tau'] \vdash e : \tau'', \Omega; \Gamma \vdash v : \tau'$, and $\Omega' \subseteq \Omega$ we can show by substitution that $\Omega; \Gamma \vdash e[x/v] : \tau''$. Then by subsumption we can see that $\Omega; \Gamma \vdash e[x/v] : \tau_1'$.

Case: $e_1' = 0(v)$

By inversion we know that $\Omega; \Gamma \vdash 0 : \tau_1$ such that $Z \leq \tau_1$, that $\Omega; \Gamma \vdash v : \tau_2$, and that $app-0 \in \Omega$.

By inspection of the reduction rules $e_2' = err-app-0$. We have shown that $app-0 \in \Omega$ and so T-Err $\Omega; \Gamma \vdash e_2' : \bot$. Because $\bot \leq \tau$ we can show by T-Sub that $\Omega; \Gamma \vdash e_2 : \tau$.

Case: $e_1' = n(v)$

This is similar to $e_1' = 0(v)$

Case: $e_1' = \div(n)$

By inversion we can see that $\Omega; \Gamma \vdash e_1' : \tau_1'$ and that $N \leq \tau_1'$.

By inspection of the reduction rules $e_2' = 1/n$. By T-Num, $\Omega, \Gamma \vdash 1/n : N$.

Because $N \leq \tau_1'$ by T-Sub $\Omega; \Gamma \vdash 1/n : \tau_1'$.

Case: $e_1' = \div(0)$

By inversion we know that $\Omega; \Gamma \vdash 0 : \tau_1$ such that $Z \leq \tau_1$ and that div-0 $\in \Omega$.

By inspection of the reduction rules $e_2' = err-div-0$. We have shown that div-0 $\in \Omega$ and so T-Err $\Omega; \Gamma \vdash e_2' : \bot$. Because $\bot \leq \tau$ we can show by T-Sub that $\Omega; \Gamma \vdash e_2 : \tau$.

Case: $e_1' = \div(\lambda x : (\tau' : \Omega'). e)$

This is similar to $e_1' = \div(0)$

Case: $e_1' = add1(n)$

By inversion we can see that $\Omega; \Gamma \vdash e_1' : \tau_1'$ and that $N \leq \tau_1'$.

By inspection of the reduction rules $e_2' = n + 1$. By T-Num, $\Omega, \Gamma \vdash n + 1 : N$.

Because $N \leq \tau_1'$ by T-Sub $\Omega; \Gamma \vdash n + 1 : \tau_1'$.

Case: $e_1' = add1(\lambda x : (\tau' : \Omega'). e)$

This is similar to $e_1' = \div(0)$

Case: $e_1' = err-\omega$

Because $\Omega; \Gamma \vdash err-\omega : \tau_1'$, the derivation must have used T-Err, and so we conclude that $\omega \in \Omega$.

Then by inspection of the reduction rules $e_2 = err-\omega$. By T-Err, $\Omega; \Gamma \vdash e_2 : \bot$. Because $\bot \leq \tau$ we can show by T-Sub that $\Omega; \Gamma \vdash e_2 : \tau$.

\qed