
Typing Local Control and State

Using Flow Analysis

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi

Brown University

Abstract. Programs written in scripting languages employ idioms that
confound conventional type systems. In this paper, we highlight one im-
portant set of related idioms: the use of local control and state to reason
informally about types. To address these idioms, we formalize run-time
tags and their relationship to types, and use these to present a novel
strategy to integrate typing with flow analysis in a modular way. We
demonstrate that in our separation of typing and flow analysis, each
component remains conventional, their composition is simple, but the
result can handle these idioms better than either one alone.

1 Introduction

“Scripting” languages are widely used in software development. Their lack of
static types is touted as a positive feature that enables rapid prototyping. As
programs grow large and complex, programmers need tools to reason about
their code. A retrofitted type system, which would provide additional static
guarantees, would help programmers manage evolution. However, care must be
taken so that common idioms aren’t deemed untypable; otherwise, either many
programs or the languages themselves would have to change.

In section 2, we present examples from the aforementioned scripting lan-
guages that make heavy use of control and state to reason about “types”. In
section 3, we introduce a core calculus that can express the essence of these
examples and a simple type system for this core calculus; but this type system
alone cannot type-check our examples. In section 5, we present a program anal-
ysis that can reason about the idioms in our examples. One of our contributions
is to clarify the relationship between static types and runtime tags (section 4),
which scripting languages often confuse; we exploit this relationship to integrate
type-checking with flow analysis in a tractable manner. In section 6, we present
a simple proof of soundness for the combination of typing and flow analysis.

We have built an experimental type checker for JavaScript that uses these
ideas. The implementation, discussion, and elided proofs, are available from
http://www.cs.brown.edu/research/plt/dl/flowtyping/v1/.

1 // adapted from the Prototype library, v. 1.6.1

2 function serialize(val) {

3 switch (typeof val) {

4 case "undefined":

5 case "function":

6 return false;

7 case "boolean":

8 return val ? "true" : "false";

9 case "number":

10 return "" + val;

11 case "string":

12 return val;

13 }

14

15 if (val === null) { return "null"; }

16

17 var fields = [];

18 for (var p in val) {

19 var v = serialize(val[p]);

20 if (typeof v === "string") {

21 fields.push(p + ": " + v);

22 }

23 }

24 return "{ " + fields.join(", ") + " }";

25 }

Fig. 1. Non-local control in JavaScript

2 Control and State in Scripting Languages

We consider examples from canonical scripting languages. Our first example is
the JavaScript function in figure 1, which serializes arbitrary values to strings.
Functions and the special value undefined cannot be serialized, so for these it
returns false. Since val may be any value, in a typed dialect of JavaScript,
serialize should have a type equivalent to ⊤ → Str ∪ Bool.

Let us informally reason about the type-safety of serialize. On line 3, the
function branches on the result of typeof val. In JavaScript, the typeof operator1

returns a string representing the “runtime type” of its argument. Thereafter:

– For case "undefined", control falls through to line 5.
– On line 5, for case "function", the function returns false.
– On line 7, for case "boolean", the function branches on val and returns

either "true" or "false". val is a boolean because none of the preceding
cases fall through to line 7.

1 To be precise, typeof does not return a (static) type but a (runtime) tag. This
distinction becomes significant in section 4.

2

1 # From the Python 2.5.2 standard libraries

2 def insort_right(a, x, lo=0, hi=None):

3 if hi is None:

4 hi = len(a)

5 while lo < hi:

6 mid = (lo+hi)//2

7 if x < a[mid]: hi = mid

8 else: lo = mid+1

9 a.insert(lo, x)

Fig. 2. Heap-sensitive reasoning in Python

– On line 9, for case "number", the function uses string concatenation to coerce
the number val to a string. Thus, val is a number because none of the
preceding cases fall through to line 9.

– On line 11, for case "string", the function returns val. Thus, val is a string
because none of the preceding cases fall through to here.

This switch is missing a case! If typeof val === "object", none of the earlier
cases match and control will fall through. However, since all the explicitly han-
dled cases return, we know that typeof val === "object" holds on lines 15–24.

JavaScript has a value null and typeof null === "object". Therefore, line
15 tests for null and if the test is true, the program returns "null". However,
if the test is false, because the conditional does not have a false-branch, con-
trol proceeds to line 17. Since the true-branch returns, val !== null holds on
lines 17–24. We can safely use val as an object on these lines. Lines 20 and 21
also employ flow-directed reasoning, but are relatively trivial. Therefore, we can
conclude that serialize is safe.

Heap-Sensitive Reasoning Let us consider a Python example. The function
insort_right (figure 2) inserts the argument x into the sorted array a, preserv-
ing sortedness. The additional optional arguments, lo and hi, are expected to
be integers that specify the portion of array a to be returned.

The intended defaults are lo=0 and hi=len(a). However, the values of other
arguments are not in scope when these expressions are evaluated. Therefore,
hi=len(a) would signal an unbound identifier error. Instead, the program uses
the default hi=None (which better guards against premature use than would a
numeric default like 0). The test on line 3 and the side-effect on line 4 ensure
that hi is an integer in the continuation of the if-statement (lines 5–9). This
function relies not only on control-flow, but on the interaction of control and
state to reason about types.

Dynamic Dispatch and Type Tests We reasoned about the use of serialize and
insort_right by following their convoluted control-flow and side-effects, instead
of merely following their syntactic structure. A reader may argue that these

3

Checks For JS Gadgets Python stdlib Ruby stdlib Django Rails

undefined/null a 3,298 1,686 538 868 712

instanceof b 17 613 1,730 647 764
typeof c 474 381 4

field-presence d 504 171 348 719

Total Checks 3,789 3,184 2,439 1,867 2,195

LOC 617,766 313,938 190,002 91,999 294,807

a None in Python, and nil in Ruby
b isinstance in Python, and .is_a? and .instance_of? in Ruby
c type in Python
d hasattr in Python, and .respond_to? in Ruby

Fig. 3. Tag Checks and Related Checks

functions are “bad style”, so a type system can legitimately reject them. For
example, an easily typable alternative to serialize is to extend the builtin pro-
totypes (Object, String, etc.) with a serialize method and rely on dynamic
dispatch, instead of reflection. Unfortunately, extending builtin classes runs into
the fragile base class problem [17] and is thus considered bad practice (e.g., [6]).

Irrespective of these options, the code above reflects what programmers do
in practice. Figure 3 offers a conservative estimate of the prevalence of type
tests and related checks across a broad corpus of code, by counting occurrences
of type testing operators. We believe these numbers undercount, since they do
not account for heap-sensitive reasoning and other type testing patterns. For
example, we do not try to estimate how often JavaScript programs test for the
presence of a field, because this operation is syntactically indistinguishable from
field lookup.

Perspective The examples above make heavy use of local control and state to
reason informally about “types”. A static type system that admits these pro-
grams will need to support this style of reasoning and various other features
(e.g., objects). The book-keeping needed to account for control and state can
pervade the entire type system and occlude its typing of other features. Our
novel flow typing system therefore separates typing from the account of flows
and state. We present flow typing for an explicitly typed core calculus. We view
type inference as a programmer convenience [9] that we leave for future work.

3 Semantics and Types

To present formal type and flow analysis systems, we have to settle on a run-
time semantics. The languages under consideration have a kernel of higher-order
functions and state that is essentially the same. This kernel is almost sufficient
for our presentation, but we need to pick control operators and primitive oper-
ators, which do vary between languages. For now we will pick operators based
on JavaScript, and return to this issue in section 5.

4

identifiers x
locations l
constants c = num | str | bool | undefined
values v = x | c | func(x · · ·):T { e } | l
expressions e = v | let x = e1 in e2 | ef(e1 · · · en) | opn(e1 · · · en)

| if (e1) { e2 } else { e3 } | break label e | label:T { e }

| ref e | deref e | setref e1 e2
evaluation contexts E = • | let x = E in e | E(e1 · · · en) | vf(v · · ·Ee · · ·)

| opn(v · · ·Ee · · ·) | break label E | if (E) { e2 } else { e3 }

| label:T { E } | ref E | deref E | setref E e | setref v E
stores σ = · | (l, v)σ
types T = Str | Bool | Undef | T1 ∪ T2 | T1 · · · → T | Ref T | ⊥ | ⊤

(E-Let) σE〈let x = v in e〉 → σE〈e[x/v]〉

(E-Prim) σE〈opn(v · · ·)〉 → σE〈δn(opn, v · · ·)〉

(βv) σE〈func(x · · ·) { e }(v · · ·)〉 → σE〈e[x/v · · ·]〉

(E-Break) σE1〈label:{ E2〈break label v〉 }〉 → σE1〈v〉, when label /∈ E2

(E-Label-Pop) σE〈label:{ v }〉 → σE〈v〉

(E-Ref) σE〈ref v〉 → (l, v), σE〈l〉 l fresh

(E-Deref) σE〈deref l〉 → σE〈σ(l)〉

(E-SetRef) σE〈setref l v〉 → σ[l/v]E〈l〉

δ1(tagof, num) = "number" δ2(===, v, v) = true

δ1(tagof, undefined) = "undefined" δ2(===, v1, v2) = false, when v1 6= v2
δ1(tagof, str) = "string" δ2(-, num1, num2) = num1 − num2

δ1(tagof, bool) = "boolean"

δ1(tagof, l) = "location"

δ1(tagof, func(x · · ·) { e }) = "function"

Fig. 4. Syntax and Semantics of λS

5

(S-Refl) T <: T (S-Trans)
S <: U U <: T

S <: T
(S-Bot) ⊥<: T

(S-Top) T <: ⊤ (S-Arr)
S′ <: S · · · T <: T ′

S · · · → T <: S′ · · · → T ′

(S-Ref)
T <: S S <: T
Ref S <: Ref T

(S-UnionE)
S1 <: T S2 <: T

S1 ∪ S2 <: T

(S-UnionL) S <: S ∪ T (S-UnionR) T <: S ∪ T

Fig. 5. Subtyping in λS

Figure 4 specifies the syntax and semantics of λS , which is a core calculus that
is sufficient for our exposition of flow typing. λS includes higher-order functions,
mutable references, conditionals, a control operator (break), and JavaScript-
inspired primitives. Type annotations (discussed below) are ignored during eval-
uation. Although λS has first-class references, note that JavaScript, Python, and
Ruby do not. However, first-class references allow us to model mutable variables
and stateful objects [8, Section 2.1].

In this paper, the static types of λS are much richer than its runtime tags.
Therefore, we use a more technically precise name, tagof, to model the typeof

operator of real scripting languages. The break operator can model both break

and return statements of JavaScript. break aborts the current continuation up
to a matching label, and returns a value. We specify the semantics of three
primitives, of which physical equality (===) and tagof appear extensively in flow-
directed reasoning (figure 1). Other expressions, such as tagof x !== "string",
are a simple extension of our theory.

Figure 4 also specifies the syntax of types, T . Types include untagged unions
and a top type ⊤, which were motivated in section 2. We also include the type of
locations, Ref T , and a bottom type ⊥ for control operators that do not return
a value. Given these types, subtyping (figure 5) is conventional.

Our typing relation is also mostly conventional. We present select typing
judgments in figure 6. Note that the typing environment binds identifiers and
labels. By T-SetRef, we can write subtypes to locations.2 Finally, like JavaScript,
λS programs cannot break across function boundaries, so we statically disallow
it by dropping labels when typing functions (T-Abs).

4 Relating Static Types and Runtime Tags

Consider the following JavaScript program:

function f(x) {

if (typeof x === "string") { return 0; }

2 This is a simple restriction of source and sink types [20, Chapter 15.5].

6

ty1(tagof) = ⊤ → Str ty2(===) = ⊤×⊤ → Bool ty2(-) = Num× Num → Num

(T-Loc)
Σ(l) = T

Σ;Γ ⊢ l : T
(T-Sub)

Σ;Γ ⊢ e : S S <: T

Σ;Γ ⊢ e : T

(T-Abs)
Σ;Γ ′, x : S, · · · ⊢ e : T Γ ′ = Γ with labels removed

Σ;Γ ⊢ func(x · · ·):S · · · → T{ e } : S · · · → T

(T-SetRef)
Σ;Γ ⊢ e1 : Ref S Σ;Γ ⊢ e2 : T T <: S

Σ;Γ ⊢ setref e1 e2 : Ref T

(T-If)
Σ;Γ ⊢ e1 : Bool Σ;Γ ⊢ e2 : T Σ;Γ ⊢ e3 : T

Σ;Γ ⊢ if (e1) { e2 } else { e3 } : T

(T-Label)
Σ;Γ, label : T ⊢ e : T

Σ;Γ ⊢ label:T { e } : T
(T-Break)

Γ (label) = T Σ, Γ ⊢ e : T

Σ;Γ ⊢ break label e : ⊥

Fig. 6. Typing λS (Essential Rules)

else { return (x-1); } }

f(200)

We can model this in λS as follows, with x as a local variable and the breaks
representing return statements and the intended type annotation inserted:3

let f = ref func(y) : Num ∪ Str → Num {

return:Num {

let x = ref y in

if (tagof (deref x) === "string") { break return 0 }

else { break return ((deref x) - 1) } } }

in (deref f)(200)

Both the λS and original JavaScript programs run without error, returning 199.

This λS program fails to type in the type checker of the previous section
because - expects its operands to be numbers, but deref x has type Num ∪ Str.
However, the tag-test informs us, the reader, that x has the static type Str

in the true branch; the type annotation on y bounds its range of values, and
thus enables us to conclude that x has type Num in the false branch. Thus,
the dynamic test and static type annotation collude to demonstrate that this
program is statically safe. Our goal is to enable the static type checker to arrive
at the same conclusion.

To support such reasoning, a retrofitted type system must relate static types
and runtime tags. We show this in figure 7. runtime maps types to tag sets

(due to the presence of unions), but since types are much richer than tags, we
cannot distinguish all static types at runtime, e.g., all arrow types are mapped

3 In earlier work, we desugared JavaScript to λJS in this form [8].

7

r = {"string", "boolean", "number", "undefined", "function", "location"}
R = P(r)

runtime : T → R
runtime(Str) = {"string"}
runtime(Bool) = {"boolean"}
runtime(Num) = {"number"}
runtime(Undef) = {"undefined"}
runtime(S ∪ T) = runtime(S) ∪ runtime(T)
runtime(S · · · → T) = {"function"}
runtime(⊥) = ∅
runtime(⊤) = r
runtime(Ref T) = {"location"}

static : R× T → T
static(R, Str) = Str, if "string" ∈ R
static(R,Bool) = Bool, if "boolean" ∈ R
static(R,Num) = Num, if "number" ∈ R
static(R,Undef) = Undef, if "undefined" ∈ R
static(R,S · · · → T) = S · · · → T, if "function" ∈ R
static(R,S ∪ T) = static(R,S) ∪ static(R, T)
static(R,S ∪ T) = static(R,S), if static(R, T) is undefined
static(R,S ∪ T) = static(R, T), if static(R,S) is undefined
static(R,⊤) = ⊤
static(R,Ref T) = Ref ⊤

Fig. 7. Relationship Between Types and Tags

to the tag "function" (objects would be modeled similarly). static lets us narrow
a type based on a known tag. For example, if a value has type Str ∪ Num and
its tag set is {"number"}, then static produces the type Num. Note that static is
partial: for example, static({"number"}, Str) is undefined.

Since static relates types and tags, our type system can use it to account for
runtime tag-tests. We use static by extending λS with an auxiliary construct,
tagcheck R e (figure 8), which narrows the type of e based on the tag set R.
By judiciously inserting tagchecks, we can make our example typable.4 We thus
offer tagcheck as an appropriate cast-like operator for scripting languages.

A tagcheck expression can fail in three ways. Two are static: when the tag set
R is incompatible with the type of e, static is undefined; even if it is compatible,
the resulting type may not be what the context expects. However, the third
failure is dynamic: if e reduces to v and tagof(v) /∈ R, then evaluation gets stuck
with a tagerr (E-TagCheck-Err). This error condition manifests itself when we
try to prove a type soundness theorem.

The preservation lemma is conventional:

4 Section 5 presents an efficient technique to insert tagchecks automatically, so they
are hidden from the programmer.

8

e = · · · | tagcheck R e | tagerr
E = · · · | tagcheck R E

(E-TagCheck)
δ1(tagof, v) ∈ R

σE〈tagcheck R v〉 → σE〈v〉

(E-TagCheck-Err)
δ1(tagof, v) /∈ R

σE〈tagcheck R v〉 → σE〈tagerr〉

(T-Check)
Σ;Γ ⊢ e : S static(R,S) = T

Σ;Γ ⊢ tagcheck R e : T
(T-TagErr) Σ;Γ ⊢ tagerr : ⊥

Fig. 8. Typing and Evaluation of Checked Tags

Lemma 1 (Preservation) If Σ, · ⊢ e : T , Σ ⊢ σ, and σe → σ′e′, then there

exists a Σ′, such that:

i. Σ′, · ⊢ σ′e′ : T , and
ii. Σ ⊆ Σ′.

However, programs can get stuck on tagerrs:

Lemma 2 (Progress) If Σ, · ⊢ e : T and Σ ⊢ σ, then either:

i. e ∈ v, or
ii. there exist σ′ and e′, such that σe → σ′e′, or
iii. e = E〈tagerr〉, for some E.

Thus, the type soundness theorem is unsatisfying because of (iii.) of the lemma
above. We could try to “repair” the type system; indeed, a sufficiently compli-
cated type system might not need tagchecks and tagerrs at all. Our key idea is
to admit tagerrs to keep the type system simple, and then discharge them by
other means.

5 Automatically Inserting Safe tagchecks

We need a way to automatically insert tagchecks that fail neither statically nor
at runtime. The tagcheck-insertion technique needs to be sound and handle uses
of local control and state that we presented in section 2. Unlike conventional type
systems, flow analyses are well-suited to such reasoning styles, so we consider flow
analysis here. Unfortunately, whole-program analysis of functional and object-
oriented languages is non-modular and expensive (section 7). Moreover, we need
to relate abstract heaps produced by flow analysis to types produced by type-
checking. We address these problems broadly, before formally presenting one
particular analysis (section 6).

9

The goal of the flow analysis is to compute the tag-sets necessary for tagcheck
expressions. Therefore, the domain of the analysis will be tag-sets augmented by
some book-keeping information. Returning to the example from section 4, the
comments illustrate the kind of information we need from flow analysis:

1 let f = ref func(y) : Num ∪ Str → Num {

2 return:Num { /* tagof(y) ∈ {"number", "string"} */

3 let x = ref y in /* x = ref y, tagof(y) ∈ {"number", "string"} */

4 if (tagof (deref x) === "string") { /* same as line 3 */

5 break return 0 /* x = ref y, tagof(y) ∈ {"string"} */

6 }

7 else {

8 break return ((deref x) - 1) /* x = ref y, tagof(y) ∈ {"number"} */

9 } } }

10 in (deref f)(200)

The flow analysis should compute that x = ref y at all program points, and that
on lines 4 and 8, tagof(y) ∈ {"number", "string"} and tagof(y) ∈ {"number"},
respectively. This information is enough to mechanically transform the program,
replacing the (deref x) expressions with tagcheck {"number", "string"} (deref x)

on line 4 and tagcheck {"string"} (deref x) on line 8. Section 6 details a control-
sensitive, heap-sensitive analysis that produces results such as this.

This analysis, like our type system, is mostly conventional. It is peculiar in
populating the initial abstract heap with tagof(y) ∈ {"number", "string"}. A
whole-program analysis might have used the application on line 10 to populate
the heap with the argument value of 200. In contrast, our analysis remains lo-
cal but exploits the type annotation on y, thus determining that tagof(y) is in
runtime(Num ∪ Str) = {"number", "string"}.

We thus use types to modularize our flow analysis, so the analysis can re-
main strictly intraprocedural. The time complexity of flow analysis is therefore
a function of the size of individual functions in the program, which does not
tend to grow as programs get larger. (Of course, the choice of function calls as
modularity boundaries is not essential.) However, this does reduce precision, as
we see below.

Assignment and Aliasing Our analysis is locally heap-sensitive and can type-
check the following imperative variant of the example function:

let f = ref func(y) : Num ∪ Str → Num {

let x = ref y in

let = if (tagof (deref x) == "string") { setref x 1 }

else { false } in

(deref x) - 1 /* x = ref y, tagof(y) ∈ {"number"} */ }

in (deref f)(200)

However, since we restart the analysis at function applications, we do not track
non-local effects. In the following example, since foo(x) may assign either a num-
ber or a string to x, the analysis we present in section 6 simply restarts on all
function applications. Thus we cannot insert a useful tagcheck around the sub-
sequent deref x, so the example is untypable:

10

JavaScript Python Ruby

Loops X X X

Exceptions X X X

Generators X X

Labelled Statements X

Switch fall-through X

Continuations X

Fig. 9. Control Features of Scripting Languages

let g = ref func(y) : Num ∪ Str → Num {

let x = ref y in

let = setref x 10 in

let = foo(x) in

(deref x) /* x = ref y, tagof(y) ∈ {"number", "string"} */}

in (deref g)("test")

More sophisticated analyses that tracked ownership or aliasing could make such
examples typeable.

Soundness Given that our flow analysis ignores actual arguments, is it sound?
To show that a flow analysis is sound, we must define an acceptability rela-
tion and prove that statically computed abstract heaps remain acceptable under
evaluation. However, here is a trivial variation of our example that violates ac-
ceptability:

let f = ref func(y) : Num ∪ Str → Num { /* ... as before ... */ }

in (deref f)(true)

The flow analysis ignores the actual argument true (tagged "boolean") and in-
stead assumes that the type annotation is correct. That is, it assumes that at
runtime, y is tagged either "number" or "string". Thus, we obtain only a weak
soundness lemma (lemma 4).

Although flow analysis admits such mis-applied functions, the type system
ensures that function applications are well-typed. Conversely, although the type
system admits tagerrs at runtime, the flow analysis only inserts tagchecks that
provably do not produce tagerrs. Hence, each component resolves the other’s
weakness and in concert they combine to statically check programs that they
cannot verify alone.

6 Flow Analysis via CPS

A glaring issue with λS is that it has a single control operator, while real scripting
languages support a plethora of control operators (figure 9). To avoid presenting
an overly break-specific program analysis, we convert λS to CPS. CPS has the
added advantage of naming intermediate terms, thereby simplifying our analysis.
CPS is, however, not a requirement; we only use it for convenience.

11

values V = x | c | l | func(x · · ·):T { M } | func(x · · ·) { M }

binding expressions B = V | ref V | deref V | setref V1 V2 | opn(V1 · · ·Vn)

| tagcheck R V | tagerr
unlabeled expressions N = let x = B in M | Vf(V · · ·)

| if (V) { M1 } else { M2 }

labelled expressions M = N l̂

stores S = · | (l, V)S

Fig. 10. Syntax of λS in CPS

6.1 CPS Transformation

Figure 10 specifies the syntax of CPS-λS , which, with the exception of V , is a syn-
tactic restriction of λS . V includes administrative functions (explained shortly).
We specify the CPS transformation using a technique developed by Sabry and
Felleisen [21]. The transformation is defined by four mutually-recursive functions
that respectively map programs, expressions, values, and evaluation contexts
from direct-style to CPS:

Pk : σe → SM Φ : v → V Ck : e → M Kk : E → V

For illustration, consider representative cases of these functions:

PkJ(l, v) · · · eK = (l, Φ(v)) · · · CkJeK
ΦJfunc(x · · ·):S · · · → T { e }K = func(k,x · · ·):(T → ⊥)× S · · · → ⊥ { CkJeK }

CkJE〈vf(varg · · ·)〉K = ΦJvf K(KkJEK,ΦJvargK · · ·)

KkJE〈let x = • in e〉K = func(x) { CkJE〈e〉K }

In the last case above, the transformation introduces functions not found in the
source program to receive the bound value. Since all evaluation contexts are
transformed into such “administrative” functions, all control structures are thus
transformed into applications of administrative functions.

For succinctness, we do not introduce continuation-passing operators, and
instead let-bind operators’ results. We elide the semantics of CPS-λS , since it is
essentially the same as the semantics in figure 4. This style of definition makes
it easy to prove that direct-evaluation corresponds to CPS-evaluation, which is
necessary to relate typing and flow analysis.

Lemma 3 (Soundness of CPS Transformation) If σe → σ′e′ using reduc-

tion rule R, then PkJσeK։ PkJσ
′e′K using reduction rules R, E-Let, and β̂v.

In the lemma above, β̂v denotes the reduction rule for administrative functions
(defined exactly as βv). The lemma roughly states that intermediate redexes in
CPS are applications of administrative functions and let-expressions.

12

Ŝ : l̂ → R abstract store

Γ̂ : x → V̂ abstract environments

V̂ = R | Ref l̂ | Deref l̂ R | LocTagof l̂ | LocType l̂ R

R1 ⊆ R2

R1 ⊑ R2

LocTagof l̂ ⊑ {"string"} LocType l̂ R ⊑ {"boolean"}

Deref l̂ R ⊑ R Ref l̂ ⊑ {"location"}

Fig. 11. Analysis Domains

1 let f = func(k, y):(Num → ⊥)× Num ∪ Str → ⊥ {

2 // By V-Restart, k = {"function"}, y = {"number", "string"}

3 let x = ref y in // By F-Alloc, x = Ref l̂; l̂ = {"number", "string"}

4 let t1' = deref x in // By F-Deref, t’ = Deref x Ŝ(l̂)
5 let t1 = tagcheck {"number","string"} t1' in // By F-TagCheck, t1 = t1’

6 let t2 = typeof t1' in // By F-Typeof, t2 = LocTypeof l̂

7 let t3 = (t2 === "string") in // By F-TypeIs-Str, t3 = LocType l̂ {"string"}

8 if (t3) { // By F-If-Split applied to l̂

9 k(0) } // By F-App, with l̂ = {"number"}
10 else {

11 let t4' = deref x in // By F-Deref, t4’ = Deref x Ŝ(l̂); l̂ = {"number"}
12 let t4 = tagcheck {"number"} t4' in // By F-TagCheck, t4 = t4’
13 let t5 = t4' - 1 in

14 k(t5) } }

15 in let f' = deref f
16 in f'(kinit,200)

Fig. 12. tagcheck Insertion

6.2 Modular Flow Analysis

Figure 11 specifies our abstract values and the lattice that relates them. Ab-
stract stores (Ŝ) map abstract locations (l̂) to tag sets (R). (Abstract locations
are labels on expressions, introduced by CPS.) On the other hand, abstract

environments (Γ̂) map identifiers to abstract values (V̂) that will account for
tag-tests.

For example, figure 12 presents our example from the previous section in
CPS. The comment on line 2 specifies the initial abstract environment, com-
puted by applying runtime to the arguments. The remaining comments specify
how the abstract heap and environment are transformed by each statement.
These transformation are acceptable, as specified by our acceptability relation
(figure 13).

13

del : l̂, Γ̂ → Γ̂

del(l̂, ·) = ·

del(l̂, x : Deref l̂ R, Γ̂) = x : R, del(l̂, Γ̂)

del(l̂, x : LocTagof l̂, Γ̂) = x : {"string"}, del(l̂, Γ̂)

del(l̂, x : LocType l̂ R, Γ̂) = x : {"boolean"}, del(l̂, Γ̂)

del(l̂, x : Ref l̂, Γ̂) = x : r, del(l̂, Γ̂)

del(l̂, x : V̂ , Γ̂) = x : V̂ , del(l̂, Γ̂)

reset(Γ̂) = del(l̂1, del(l̂2, ..., del(l̂n, Γ̂))), ∀l̂i ∈ Γ̂

Γ̂ ⊲ V V̂

(V-Restart)
·;x : runtime(T) · · · , reset(Γ̂) �M

Γ̂ ⊲ func(x · · ·):T · · · → ⊥ { M } "function"

(V-Const) Γ̂ ⊲ c δ1(, c) (V-Id) Γ̂ ⊲ x Γ̂ (x)

(V-Sub)
Γ̂ ⊲ V V̂ V̂ ⊑ V̂ ′

Γ̂ ⊲ V V̂ ′

Ŝ; Γ̂ �M

(F-LetVal)

Γ̂ ⊲ V V̂
Ŝ;x : V̂ , Γ̂ �M

Ŝ; Γ̂ � let x = V in M
(F-Alloc)

Γ̂ ⊲ V R
l̂ : R, Ŝ;x : Ref l̂, Γ̂ �M

Ŝ; Γ̂ � letl̂x = ref V in M

(F-Deref)
Γ̂ ⊲ V Ref l̂ Ŝ(l̂) = R Ŝ;x : Deref l̂ R, Γ̂ �M

Ŝ; Γ̂ � let x = deref V in M

(F-Tagof)
Γ̂ ⊲ V Deref l̂ R Ŝ;x : LocTagof l̂, Γ̂ �M

Ŝ; Γ̂ � let x = tagof V in M

(F-TypeIs-Str)a
Γ̂ ⊲ V LocTagof l̂ Ŝ;x : LocType l̂ {"string"}, Γ̂ �M

Ŝ; Γ̂ � let x = V === "string"in M

(F-TagCheck)
Γ̂ ⊲ V R Ŝ;x : R, Γ̂ �M

Ŝ; Γ̂ � let x = tagcheck R V in M

(F-If-Split)
Γ̂ ⊲ V LocType l̂ R Ŝ[l̂ := R]; Γ̂ �M1 Ŝ[l̂ := Ŝ(l̂)\R]; Γ̂ �M2

Ŝ; Γ̂ � if (V) { M1 } else { M2 }

(F-App)
Γ̂ ⊲ Vf V̂f Γ̂ ⊲ V R · · ·

Ŝ; Γ̂ � Vf(V · · ·)

a F-TypeIsStr is easily generalized to arbitrary tags; we specialize it to strings for
presentation only.

Fig. 13. Acceptability of Flow Analysis (Essential Rules)

14

(F-SetRef)
Γ̂ ⊲ V1 Ref l̂ Γ̂ ⊲ V2 R Ŝ[l̂ := R];x : Ref l̂, del(l̂, Γ̂) �M

Ŝ; Γ̂ � let x = setref V1 V2 in M

(F-Ref-Alias)
Γ̂ ⊲ V Ref l̂ Ŝ;x : r, del(l̂, Γ̂) �M

Ŝ; Γ̂ � let x = ref V in M

Fig. 14. Assignment and Aliasing

Note that the user-written identifier x is bound to a heap-location. However,
the CPS-introduced identifiers, which name the subexpressions that reason about
x, are not heap-allocated. We exploit this stratification in our analysis domains
to simplify the proof of soundness. The abstract heap and environment contain
values that locally reason about the heap. For soundness, V-Restart therefore
discards the abstract heap and uses reset and del to widen heap-dependent
abstract values to simple tag sets.

Assignment and Aliasing In figure 14, we account for the effects of assignments
to tag sets. If a program sets an abstract location l̂, then F-SetRef simply updates
l̂ in the abstract store of its continuation. However, the environment may bind
identifiers to abstract values that reason about l̂. Therefore, we use del to widen
l̂-dependent values to simple tag sets.

Local variables cannot reference each other. However, we use references to
model mutable objects as well. A local variable bound to a mutable object is a
reference to a reference, and these objects can be aliased. In these cases, we stop
tracking the potentially-aliased abstract location, once again using del. F-Ref-
Alias in figure 14 tackles aliasing in ref expressions. Similar rules apply to other
syntactic forms.

Monotone Framework Our algorithm for computing tagchecks is a simple mono-
tone framework [15] directly derived from the rules in figure 13. The monotone
framework computes the abstract store and environment at each labelled expres-
sion. We use this information to insert tagchecks into our programs.

Consider each expression of the form:

letl̂ r = deref x in M

Let Γ̂ and Ŝ be the computed abstract environment and store at l̂. If Γ̂ (l̂) =

Ref l̂′, then we transform the expression to:

let r′l̂ = deref x in

let r = tagcheck Ŝ(l̂′) r′ in

M

For type-checking, this inserted tagcheck is mapped back to the original, direct-
style program.

15

The administrative functions, if applied, can exponentially increase the size
of programs. Therefore, we leave certain administrative redexes unapplied (e.g.,
continuations of if-expressions). The CPS transformation is therefore linear time
and our flow analysis computes meets through administrative functions.

Complexity Our flow analysis is a monotonic ascent of a lattice of finite height.
For a program of N terms our analysis computes an abstract store and environ-
ment at each term. The domain of abstract stores and environments are both
of size O(N). The range of the abstract store is R, and |R| is a constant. The

range of the abstract environment is V̂ , where V̂ contains the elements of R.
The additional elements of V̂ are incomparable with each other and are all less
than the elements of R. Hence, the height of V̂ is just 1 greater than the height
of R. Thus, the analysis needs time quadratic in the program size. In practice,
our prototype implementation type-checks real-world JavaScript programs in
seconds on modest machines.

Soundness In addition to figure 13 and figure 14, we require trivial rules for cases
where our flow analysis cannot determine useful information. These additional
rules admit all other expressions, except tagerrs and possibly-faulty tagchecks.
Soundness also requires auxiliary rules that reason about the concrete values in
the store that are introduced by evaluation. We elided the concrete store from
figures 13 and 14 for clarity; in the following lemmas, we introduce it.

Lemma 4 (Soundness) If Ŝ, · � SM and SM → S′M ′ then either:

i. Ŝ′, · � S′M ′, or

ii. M is a βv-redex, func(x · · ·) : T · · · → ⊥ { N }(V · · ·), where for some V ,

δ1(tagof, V) /∈ runtime(T).

6.3 Combining Typing and Flow Analysis

We can now prove a stronger progress result that eliminates tagerrs.

Theorem 1 (Strengthened Progress) If:

i. Σ; · ⊢ e : T ,
ii. Σ ⊢ σ, and
iii. Ŝ; · � PkJσeK,

then either:

i. e ∈ v, or
ii. There exist σ′ and e′, such that σe → σ′e′.

Proof: This follows from lemma 2, with the possibility of tagerrs eliminated by
inspection of figure 13—flow analysis does not admit expressions with tagerrs. �

Theorem 1 requires a corresponding, combined preservation theorem.

16

Theorem 2 (Combined Preservation) If:

i. Σ; · ⊢ e : T ,
ii. Σ ⊢ σ,
iii. Ŝ; · � PkJσeK, and
iv. σe → σ′e′,

then there exist Σ′ and Ŝ′, such that:

i. Σ′; · ⊢ e′ : T ,
ii. Σ′ ⊢ σ′,
iii. Σ ⊆ Σ′, and
iv. Ŝ′; · � PkJσ

′e′K.

Proof: Conclusions (i.), (ii.), and (iii.) follow immediately from lemma 1. For
conclusion (iv.), apply lemma 3 to hypothesis (iv.) to get a reduction sequence,
PkJσeK ։ PkJσ

′e′K. Apply lemma 4 at each step, eliminating case (ii.) of the
lemma as follows. By lemma 3, intermediate expressions are not βv-redexes, so
case (ii.) does not apply. Suppose e itself has an active βv-redex:

e = E〈func(x · · ·) : U · · · → S { ef }(v · · ·)〉

Once transformed to CPS, e has the form

func(k,x · · ·) : (S →⊥)× U · · · →⊥ { Mp }(V · · ·)

where V · · · are v · · · in CPS. Since e is typed, there exists a Γ such that:

Σ;Γ ⊢ func(x · · ·) : U · · · → S { ef }(v · · ·) : S

For all v, Σ;Γ ⊢ v : U by inversion. Hence δ1(tagof, v) ∈ runtime(U). Since
conversion to CPS does not change tags, δ1(tagof, v) = δ1(tagof, V), case (ii.) of
lemma 4 does not apply. �

7 Related Work

Typed Scheme Typed Scheme [23, 24] is a type system designed to admit Scheme
idioms. Typed Scheme uses occurrence typing to account for type tests and type
predicates. However, occurrence typing is unsound in the presence of imperative
features; thus, it is “turned off” when imperative features are used. Unlike the
Scheme programs that Typed Scheme types, programs in mainstream scripting
languages make heavy use of imperative features, which we handle.

Technically, we develop a type system and flow analysis that are comple-
mentary by design (Lemmas 2 and 4), which combine soundly (Theorems 1 and
2), and which can be enriched independently within the framework of these two
lemmas. We conjecture that a similar structure could be extracted from Typed
Scheme, as the type system is augmented with meta-functions that update the
environment (see Typed Scheme’s use of Γ+ and Γ− to affect the environment,
and combpred to prop type tests to the context in if (figure 15)). We believe
these are similar to transfer functions for dataflow analyses. However, Typed
Scheme is not organized in this manner.

17

Γ ⊢ e1 : τ1;φ1 Γ + φ1 ⊢ e2 : τ2;φ2 Γ − φ1 ⊢ e3 : τ3;φ3

⊢ τ2 <: τ ⊢ τ3 <: τ φ = combpred(φ1, φ2, φ3)

Γ ⊢ (if e1 e2 e3) : τ ;φ

Fig. 15. If-splitting in Typed Scheme [23]

Intensional Polymorphism Intensional polymorphism [2] provides a typecase

construct that allows programs to inspect and dispatch on the type of values at
runtime. This requires a term-level representation of types at runtime, which is
only possible when the static and dynamic semantics of a programming language
are co-designed. The present work, Typed Scheme, and other retrofitted type
systems (discussed below) do not have access to their types at runtime. Type
dispatch in a retrofitted type system happens indirectly. For example, Typed
Scheme uses predicates [23], while our work relies on the relationship between
static types and runtime tags (section 4).

Other Retrofitted Type Systems Soft Scheme [25] performs type inference for
Scheme programs. It handles the full language of the time, and has a limited
form of if-splitting. It does not pay any additional attention to the interaction
of types and control flow. This is reasonable because it, like Typed Scheme, is
focused on Scheme programs that are mostly functional. However, this means
that it too cannot handle the kinds of examples shown in this paper and found
in many scripting languages.

Anderson et al. [1] tackle type inference for JavaScript. However, their lan-
guage is extremely limited, and their type system cannot tackle the idioms dis-
cussed in this paper (section 2).

Heidegger and Thiemann’s [10] recency types account for ad hoc object ini-
tialization patterns that are pervasive in JavaScript, but does not address the
problems that this paper does. Our work does not account for objects. Our pre-
liminary investigation suggests that the two approaches are complementary and
can fruitfully be combined.

Henglein and Rehof [12] present a translation of Scheme to ML that uses type
inference to minimize runtime projections. However, their “type system does not
model control flow information” [12, Section 6.5], which is the goal of our work.

Diamondback Ruby [5] is a type system and type inference for Ruby. Al-
though its type language includes union types, it does not account for type-tests
to discriminate members of unions, which is the focus of our work. The authors
state that “support for occurrence types would be useful future work”.

Types and Flow Analysis Shivers shows how control-flow can be extended to
account for type-tests [22, Chapter 9]. However, whole-program analysis for
functional and object-oriented languages is non-modular and expensive [4] or
difficult to make effective [3]. Meunier et al. [16] develops a modular analysis
for an untyped language by using contracts as sources and sinks for abstract

18

values. We exploit type annotations in the same manner. However, unlike con-
tracts, which are assumed to be correct, typing ensures that type annotations
are correct. Since all functions have type annotations, our flow analysis prob-
lem is significantly more tractable than in an untyped language with optional
contracts.

Jensen et al. [13, 14] and MrSpidey [4] use flow analysis to recover precise
type-like information for arbitrary JavaScript and Scheme programs, respec-
tively. A significant advantage of flow analysis is that it does not require type
annotations. Our work requires and exploits type annotations to achieve mod-
ularity, which leads to quadratic time complexity in theory that appears to
translate into practice (section 6.2).

There are known equivalences between various type systems and control-
flow analyses, e.g., Heintze [11], Nielson and Nielson [18], and Palsberg and
O’Keefe [19]. The aforementioned works extend type systems to calculate infor-
mation that is conventionally calculated by flow analyses. In contrast, our type
system is oblivious to control flow information (figure 6). We use a separate flow
analysis to account for control-sensitive and heap-sensitive reasoning (section 5).
We independently prove typing and flow analysis sound, then show that they
combine in a simple way (section 6.3).

Definite assignment analysis is a commonly used flow analysis that augments
typing (e.g., see the Java Language Specification [7, Chapter 16]). Definite as-
signment analysis conservatively ensures that variables are assigned before they
are used. Hence, the analysis rejects programs as untypable when all variables
are not definitely assigned. In contrast, our analysis augments the type system
to accept programs that would otherwise be untypable.

Acknowledgements

We thank Nicholas Cameron, Matthias Felleisen, and the anonymous reviewers
for their careful comments on earlier drafts. We also thank Gilad Bracha, Cormac
Flanagan, Jasvir Nagra, Steven Reiss, Ankur Taly, and Jan Vitek for enlightening
discussions. This work is partially supported by the NSF and by Google.

References

1. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for
JavaScript. In European Conference on Object-Oriented Programming, 2005.

2. K. Crary, S. Weirich, and G. Morrisett. Intentional polymorphism in type-erasure
semantics. In ACM SIGPLAN International Conference on Functional Program-

ming, 1998.
3. C. Flanagan and M. Felleisen. Componential set-based analysis. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation, 1997.
4. C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catch-

ing bugs in the web of program invariants. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, 1996.

19

5. M. Furr, J. D. An, J. S. Foster, and M. Hicks. Static type inference for Ruby. In
ACM Symposium on Applied Computing, 2009.

6. Google JavaScript style guide. http://google-styleguide.googlecode.com/svn/
trunk/javascriptguide.xml.

7. J. Gosling, B. Joy, J. G. L. Steele, and G. Bracha. The Java Language Specification.
Addison Wesley, 3 edition, 2005.

8. A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In European

Conference on Object-Oriented Programming, 2010.
9. R. Harper and J. C. Mitchell. On the type structure of Standard ML. ACM

Transactions on Programming Languages and Systems, 15(2), 1993.
10. P. Heidegger and P. Thiemann. Recency types for dynamically-typed, object-

based languages: Strong updates for JavaScript. In ACM SIGPLAN International

Workshop on Foundations of Object-Oriented Languages, 2009.
11. N. Heintze. Control-flow analysis and type systems. In International Static Anal-

ysis Symposium, 1995.
12. F. Henglein and J. Rehof. Safe polymorphic type inference for a dynamically typed

language: Translating Scheme to ML. In ACM SIGPLAN International Conference

on Functional Programming, 1995.
13. S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In

International Static Analysis Symposium, 2009.
14. S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural analysis with lazy

propagation. In International Static Analysis Symposium, 2010.
15. G. A. Kildall. A unified approach to global program optimization. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1973.
16. P. Meunier, R. B. Findler, and M. Felleisen. Modular set-based analysis from

contracts. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 2006.
17. L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem. In

European Conference on Object-Oriented Programming, 1998.
18. F. Nielson and H. R. Nielson. Type and effect systems. In Correct System Design.

Springer, 1999.
19. J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1995.
20. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
21. A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing

style. LISP and Symbolic Computation, 6(3), 1993.
22. O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,

Carnegie Mellon University, 1991.
23. S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed

Scheme. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 2008.
24. S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages. In

ACM SIGPLAN International Conference on Functional Programming, 2010.
25. A. K. Wright and R. Cartwright. A practical soft type system for Scheme. ACM

Transactions on Programming Languages and Systems, 19(1), 1997.

20

