A Examples in Scripting Languages

This appendix presents translations of the examples in section 3 into real-world scripting languages.

Example 1

Prototype inheritance:

```javascript
let Rect = { "area": func(self) -> self["x"] * self["y"], "parent": null } in
let Cuboid = { "parent": Rect,
"vol": func(self). self["area"](self) * self["z"] } in
let shape = { "x": 2, "y": 5, "z": 10; "parent": Cuboid } in
let vol = shape["vol"](shape); // vol is 100
```

JavaScript Here is the equivalent program in JavaScript. Note that the this argument is implicit:

```javascript
var Rect = { area: function() { return this.x * this.y; },
__proto__: null }; var Cuboid = { __proto__: Rect,
vol: function() { return this.area() * this.z; } }; var shape = { x: 2, y: 5, z: 10, __proto__: Cuboid }; var vol = shape.vol(); // vol is 100 var f = vol; var vol = f(); // ERROR: this.area is undefined
```

Lua This program can be written in Lua using metatables, which allow assigning a parent-like field:

```lua
Rect = { area = function(self) return self.x * self.y end }
Cuboid = { vol = function(self) return self.area(self) * self.z end }
setmetatable(Cuboid, {__index = Rect})
shape = { x=2, y=5, z=10 }
setmetatable(shape, {__index = Cuboid})
vol = shape.vol(shape)
f = shape.vol
vol2 = f() // ERROR: attempt to index local self (a nil value)
```

Example 2

Extracting methods:

```javascript
let ArrParent = { "slice": func(self?, begin?, end?): ... } in
let arr1 = { "0": 3, "1": 20, "2": 59, "length": 3, "parent": ArrParent } let nodeList = { "0": htmlElementA, "1": htmlElementB, "2": htmlElementC,
"len": 3, "parent": HTMLNodeListParent } in
let eltArray = ArrParent["slice"](nodeList, 0, 1)
// returns an array containing htmlElementA and htmlElementB
```
JavaScript This version of slice is built-in. We use DOM-manipulation functions to fetch array-like objects.

```javascript
var ArrParent = Array.prototype;
var arr1 = [3, 20, 59]; // JavaScript desugars to an Array object
// Get all the links on a page:
var nodeList = document.getElementsByTagName("a");
// Using .call on a function allows us to provide the this arg
var eltArray = ArrParent.slice.call(nodeList, 0, 1)
// eltArray contains the first two elements in the list
```

Lua Lua objects allow trivial method extraction—Lua has similar array behavior to JavaScript as well, and any number-indexed dictionary can be used by library methods.

```lua
arr = {123, 45, 6}
table.sort(arr)
-- arr is now {1 = 6, 2 = 45, 3 = 123}
not_arr = {foo = "bar"}
not_arr[1] = 6
not_arr[2] = 5
not_arr[3] = 4
table.sort(not_arr)
-- not_arr is now {1 = 4, 2 = 5, 3 = 6, foo = "bar"}
```

Example 3

Bound methods:

```lua
let Rect = {
    "area": func(self:?) . self["x"] * self["y"],
    "parent": null
} in
let Cuboid = {
    "parent": Rect,
    "vol": func(self) . self["area"](self) * self["z"]
} in
let rec shape2 = {
    "x": 2, "y": 5, "z": 10,
    "_class": Cuboid,
    "parent": {
        "vol": func() . shape2["_class_"]["vol"](shape2)
    }
} in
let f = shape2["vol"]
let vol2 = f() // vol2 is still 100, f closes over shape2
```

Python In Python, we can see this effect with classes:

```python
class Rect(object):
    def area(self): return self.x * self.y

class Cuboid(Rect):
```
def vol(self): return self.area() * self.z
shape2 = Cuboid()
shape2.x = 2; shape2.y = 5; shape2.z = 10
f = shape2.vol
vol2 = f() # vol2 is 100

Ruby In Ruby, we use `obj.method(:methname)` to access the method, and `method.call` to invoke it:

class Rect
 def area; self.x * self.y; end
end
class Cuboid < Rect
 def vol; self.area() * self.z; end
end
shape2 = Cuboid.new
def shape2.x; 2; end
def shape2.y; 5; end
def shape2.z; 10; end
f = shape2.method(:vol)
vol2 = f.call() # vol2 is 100

Example 4

Ad hoc private fields:

```ruby
let safeGetField = Aα <= Λα => (?func(obj:?,fieldName:?,default:?).
  if (fieldName matches "_.*_") default
  else if (obj hasfield fieldName) obj[fieldName] else default in
  safeGetField(?)(?{ "_private_": 42, "pub": 23, "parent": null },
    "_private_", 0) // returns 0
```

JavaScript In JavaScript, this check could be performed with a regex. For a real-world example, see `reject_name` in ADsafe at https://github.com/douglascrockford/ADsafe/blob/master/adsafe.js#L254.

```javascript
function safeGetField(obj, field, default) {
  if(/\_\.*\_/i.test(field)) return default
  else {
    if(obj.hasOwnProperty(field)) return obj[field];
    else return default;
  }
}
```
Python A similar check works in Python. Note that variations on this pattern are found in production code inside Django, for example: https://github.com/django/django/blob/master/django/db/models/base.py#L157.

```python
def safeGetField(obj, field, default):
    rx = re.compile(r"_(.*)")
    if rx.match(field) is not None: return default
    else:
        if hasattr(obj, field): return getattr(obj, field)
        else: return default
```

Ruby Note that several variations on this pattern are found in production code inside Ruby on Rails, for example: https://github.com/rails/rails/blob/master/activerecord/lib/active_record/base.rb#L1725.

```ruby
def safeGetField(obj, field, default)
  return default unless /_(.*)/.match(field).nil?
  return default unless obj.respond_to?(field)
  return obj.send(field.intern)
end
```

Example 5

Safe dictionary lookup:

```javascript
let safeAssign = Lambda(dict, word, value).dict["w_" + word] = value
let safeLookup = Lambda(dict, word, default).dict[lookup]
if (dict hasfield lookup) dict[lookup]
else default
```

JavaScript While JavaScript does not have type abstraction, implementation of the core functionality is trivial:

```javascript
function safeAssign(dict, word, value) { dict["w_" + word] = value; }
function safeLookup(dict, word, default) {
    var lookup = "w_" + word;
    if(dict.hasOwnProperty(word)) return dict[lookup];
    return default;
}
```

Such an implementation is necessary in JavaScript when objects are used as dictionaries, because of the presence of the __proto__ field in major browsers.

Python Python and Ruby both support dictionary-like objects natively, and don’t need to use this pattern.
B Definitions

Notation In these proofs, we write \(\text{func}(x:T) \{ e \} \) instead of \(\text{func}(x:T).e \).

Definition 1 (Type Equivalence) We define a relation on types \(=_T \).

\[
M_A \subseteq L_A \quad L_A \subseteq M_A \quad \forall i, j. L_i \cap M_j \neq \emptyset \Rightarrow S_i =_T T_j \land p_i = q_j
\]

\[
\{ L_1^{p_1} : S_1, \ldots, L_n^{p_n} : S_n, L_A : \text{abs} \} =_T \{ M_1^{q_1} : T_1, \ldots, M_n^{q_n} : T_m, M_A : \text{abs} \}
\]

The other cases of \(=_T \) are trivial; to define them we lift Equiv-Obj in the natural way over the other types. \(=_T \) describes an equivalence class of types—we use \(T_1 =_T T_2 \) and \(T_1 = T_2 \) interchangeably in this document, and types represented by the same letter are assumed to be related by \(=_T \).

Definition 2 (Subtyping) The generating function,

\[
ST : \mathcal{P}(\Gamma \times T \times T + p \times p) \rightarrow \mathcal{P}(\Gamma \times T \times T + p \times p)
\]

is defined co-inductively by the subtyping judgments. We define subtyping as \(\Gamma \vdash S <: T \), iff \((\Gamma, S, T) \in \nu ST \) and \(p <: q \), iff \((p, q) \in \nu ST \).

Definition 3 (Transitivity) For \(R \subseteq \mathcal{P}(\Gamma \times T \times T + p \times p) \)

\[
TR(R) = \{(\Gamma, x, z) \mid \forall x, z \in T, \exists y \in T, (\Gamma, x, y), (\Gamma, y, z) \in R \}
\]

\[
\cup \{(z, z) \mid \forall x, z \in p, \exists y \in p, (x, y), (y, z) \in R \}
\]

Definition 4 (Top-down Subexpressions) \(S \) is a top-down subexpression of \(T \), written \(S \sqsubseteq T \), if \((S, T) \) is in \(\mu TD \), defined as follows:

\[
TD(R) = \{(T, T) \mid T \text{ is a finite type } \}
\]

\[
\cup \{(S, \{L^p : T, \text{rest} \ldots\}) \mid (S, T) \in R\}
\]

\[
\cup \{(S, \{L^p : T, \text{rest} \ldots\}) \mid (S, \{\text{rest}\}) \in R\}
\]

\[
\cup \{(S, \{L^p : T\}) \mid (S, T) \in R\}
\]

\[
\cup \{(S, \text{Ref } T) \mid (S, T) \in R\}
\]

\[
\cup \{(S, \mu x.T) \mid (S, T[x/\mu x.T]) \in R\}
\]

\[
\cup \{(S, T_1 \rightarrow T_2) \mid (S, T_1) \in R\}
\]

\[
\cup \{(S, T_1 \rightarrow T_2) \mid (S, T_2) \in R\}
\]

\[
\cup \{(S, \forall \alpha < U.T) \mid (S, U) \in R\}
\]

\[
\cup \{(S, \forall \alpha < U.T) \mid (S, T) \in R\}
\]

25
Definition 5 (Bottom-Up Subexpressions) S is a bottom-up subexpression of T, written $S \preceq T$, if (S,T) is in μBU, defined as follows:

$$\text{BU}(R) = \{ (T,T) \mid T \text{ is a finite type } \}$$

$$\cup \{ (S, \{ \text{lp} : T, \text{rest} \cdots \}) \mid (S,T) \in R \}$$

$$\cup \{ (S, \{ \text{lp} : T, \text{rest} \cdots \}) \mid (S,\{\text{rest}\}) \in R \}$$

$$\cup \{ (S, \{ \text{lp} : T \}) \mid (S,T) \in R \}$$

$$\cup \{ (S, \text{Ref } T) \mid (S,T) \in R \}$$

$$\cup \{ (S, T_1 \rightarrow T_2) \mid (S,T_1) \in R \}$$

$$\cup \{ (S, T_1 \rightarrow T_2) \mid (S,T_2) \in R \}$$

$$\cup \{ (S, \forall \alpha <: U.T) \mid (S,U) \in R \}$$

$$\cup \{ (S, \forall \alpha <: U.T) \mid (S,T) \in R \}$$

$$\cup \{ (S[x/\mu x.T], \mu x.T) \mid (S,T) \in R \}$$

Definition 6 (Active Expressions) Active expressions, ae, are defined as follows:

$$ae = v_1(v_2)$$

$$\text{fix (f:T), e}$$

$$v_1 + v_2$$

$$\text{ref } v$$

$$\text{deref } v$$

$$v_1 = v_2$$

$$v_1 [v_2]$$

$$v_1[v_2] = v_3$$

$$\text{delete } v_1[v_2]$$

$$\text{if } (v_1) \{ e_2 \} \text{ else } \{ e_3 \}$$

$$v_1 \text{ hasfield } v_2$$

$$v_1 \text{ matches } v_2$$

$$\text{fieldin } \{ s_1 : v_1, s_2 : v_2 \cdots \} \text{ init } v_{acc} \text{ do } v_f$$

C Auxilliary Lemmas

Lemma 2 For all T, $\mathcal{T}_T^\downarrow \subseteq \mathcal{T}_T^\uparrow$

Proof This is exactly the same argument as Pierce [19].

Lemma 3 The set of top-down subexpressions, $\mathcal{T}_T^\downarrow = \{ S \mid (S,T) \in \mu TD \}$, is finite for all T.

Proof By lemma 2, $\mathcal{T}_T^\downarrow \subseteq \mathcal{T}_T^\uparrow$ for all T, and by lemma 4, \mathcal{T}_T^\downarrow is finite for all T, so \mathcal{T}_T^\downarrow is finite for all T.

Lemma 4 The set of bottom-up subexpressions, $\mathcal{T}_T^\uparrow = \{ S \mid (S,T) \in \mu BU \}$ is finite for all T. 26
The second position in the each right-hand clause in BU is smaller than the left.

Lemma 5 If $(S, T[x/U]) \in T_{[x/U]t}$, then either $(S, U) \in T^+_U$ or $S = S'[x/U]$ for some $(S', T) \in T^+_T$.

Proof By case analysis on T.

D Subtyping

Lemma 6 If:

$$S : \mathcal{P}(\Gamma \times T \times T + p \times p) \rightarrow \mathcal{P}(\Gamma \times T \times T + p \times p)$$

is a monotone function, and for all R, $TR(S(R)) \subseteq S(TR(R))$, then νS is transitive.

Proof: This definition is from Gapayev, et al., and reproduced in Pierce’s text. Its relation to transitivity is discussed there—we use it as a goal and defer to their explanation to complete the proof [19, Lemma 21.3.6].

Lemma 7 (Subtyping is Transitive) $TR(\nu ST) \subseteq \nu ST$

Proof:

For arbitrary R, we consider both field annotations in (p, q), and subtyping judgments (Γ, S, T):

Let $(p, q) \in TR(ST(R))$. By definition of TR, there exists a p' such that $(p, p'), (p', q) \in ST(R)$. By case analysis of the $p <: p$ rules, it follows trivially that $(p, q) \in ST(TR(R))$.

Let $(\Gamma, S, T) \in TR(ST(R))$. By definition of TR, there exists a U such that $(\Gamma, S, U), (\Gamma, U, T) \in ST(R)$. We will show that $(\Gamma, S, T) \in ST(TR(R))$, so that by lemma 6, νST is transitive.

By case-analysis on the possible shapes of U (eliding the trivial cases where $T = \top$):

- $U = \{L^p_i : U_1, \ldots, L^p_n : U_n, L_A : \text{abs}\}$.

Since $(\Gamma, S, U), (\Gamma, U, T) \in ST(R)$, by cases of ST,

(1) $S = \{K^{p_1}_i : S_1, \ldots, K^{p_n}_i : S_n, K_A : \text{abs}\}$, and

(2) $T = \{M^q_i : T_1, \ldots, M^q_m : T_m, M_A : \text{abs}\}$.

By hypothesis, $(\Gamma, S, U) \in ST(R)$, which must be by S-Object. By hypothesis of S-Object:

(3) $\forall i, j.$ if $K_i \cap L_j \neq \emptyset$ then $(S_i, U_j) \in R$ and $(o_i, p_j) \in R$,

(4) $\bigcup_{i}^{1..n} L_i \subseteq \bigcup_{h=1}^{h-1} K_h \cup K_A$.

(4') $L_A \subseteq K_A$,

(5) $\forall i.$ if $L_i \cap K_A \neq \emptyset$ then $(p_j = o$ or $p_j = \uparrow)$,

(6) $\forall i.$ if $p_i = \uparrow$ then $(\Gamma, \text{inherit}(S, L_i), U_i) \in R$.

Similarly,
(7) \(\forall i, j. \) if \(L_i \cap M_j \neq \emptyset \) then \((U_i, T_j) \in R \) and \((p_i, q_j) \in R \).
(8) \(\bigcup_{j}^{1:m} M_j \subseteq \bigcup_{i}^{1:m} L_i \cup L_A \).
(8') \(M_A \subseteq L_A \).
(9) \(\forall j. \) if \(M_j \cap L_A \neq \emptyset \) then \((q_j = \circ \) or \(q_j = \uparrow \)).
(10) \(\forall j. \) if \(q_j = \uparrow \) then \((\Gamma, \text{inherit}(U, M_j), T_j) \in R \).

Our goal is to show that \((\Gamma, S, T) \in ST(TR(R))\), by constructing a proof of S-Object using the above hypotheses and the definition of \(ST \) and \(TR \).
Informally, we need to find support for the hypotheses of S-Object.

Proof:

a. \(\bigcup_{j}^{1:m} M_j \subseteq \bigcup_{h}^{1:m} K_h \cup K_A \).

Proof: By (4), (4'), (8), (8'), and transitivity of subset inclusion.

b. \(\forall h, j. \) if \(K_h \cap M_j \neq \emptyset \) then \((o_h, q_j) \in TR(R) \) and \((\Gamma, S, T) \in TR(R)\).

Proof: Let \(x \in K_h \cap M_j \), thus \(x \in K_h \) and \(x \in M_j \). By (8), there are two cases:

i. \(x \in L_A \) — In this case, \(M_j \cap L_A \neq \emptyset \). Since \(L_A \subseteq K_A \) by (8'), \(x \in K_A \). But by the well-formedness of object types, object types' fields are partitioned, and this is a contradiction, since \(x \in K_h \). This case cannot occur.

ii. \(x \in L_i \) for some \(i \) — In this case, we have that \(x \in L_i \) and \(x \in M_j \), so by (7), \((U_i, T_j) \in R \) and \((p_i, q_j) \in R \). We also have that \(x \in L_i \) and \(x \in K_h \), so by (3), \((S_h, U_i) \in R \) and \((o_h, p_i) \in R \). This completes item b., as by definition of TR, \((o_h, p_i) \in R \) and \((p_i, q_j) \in R \Rightarrow (o_h, q_j) \in TR(R) \), and \((S_h, U_i) \in R \). Thus \((U_i, T_j) \in R \Rightarrow (S_h, T_j) \in TR(R) \).

c. \(\forall j. M_j \cap K_A \neq \emptyset \Rightarrow (q_j = \circ \) or \(q_j = \uparrow \))

Proof: For each non-vacuous case of \(j \), there is some \(x \) with \(x \in M_j \) and \(x \in K_A \). By (8), there are two cases:

i. \(x \in M_j \cap L_i \) for some \(i \) — In this case, \(M_j \cap L_A \neq \emptyset \), so by (5) \(p_i = \circ \) or \(p_i = \uparrow \). Only \(p \)-Ref applies, so item c. is complete.

ii. \(x \in M_j \cap L_A \) — This case follows directly from (9).

d. \(\forall j. \) if \(q_j = \uparrow \) then \((\Gamma, \text{inherit}(S, M_j), T_j) \in TR(R)\).

Proof: By (10), \(\forall j. \) if \(q_j = \uparrow \) then \((\Gamma, \text{inherit}(U, M_j), T_j) \in R \). By assumption, we have that \((\Gamma, S, U) \in R \) (or, equivalently, \(\Gamma \vdash S <: U \)). Recall from (1) that \(S = \{ K_1^{\circ} : S_1, \cdots, K_i^{\circ} : S_i, K_A : \text{abs} \} \). By lemma 12, since \(\Gamma \vdash S <: U, M_j \subseteq M_j \), it must be that \(\Gamma \vdash \text{inherit}(S, M_j) <: \) inherit(U, M_j) for each \(j \). Now we have that \((\Gamma, \text{inherit}(S, M_j), \text{inherit}(U, M_j)) \in R \) and \((\Gamma, \text{inherit}(U, M_j), T_j) \in R \) for each \(j \), which is sufficient to show that \((\Gamma, \text{inherit}(S, M_j), T_j) \in TR(R) \) for each \(j \), which completes the proof.

- **Case U = L_u:** Only case S-Str applies for \(S <: U \) and \(U <: T \). Thus, \(S = L_u \) and \(T = L_T \), with \(L_u \subseteq L_u \subseteq L_T \). Thus \(S <: T \) follows by transitivity of the subset relation.

- **Case U = Ref U’:** Only case S-Ref applies, thus \(S = \text{Ref} S’ \) and \(T = \text{Ref} T’ \), with \((S’, U’), (U’, S’), (U’, T’), (T’, U’) \in R \). By definition of TR, \((S’, T’), (T’, S’)) \in TR(R) \). Thus, \((\text{Ref} S’, \text{Ref} T’) \in ST(TR(R)) \).
- Case $U = \alpha$. There are three possibilities, depending on uses of S-VR and S-VTR:
 - $S = \alpha$ and $T = \alpha$, so $(\Gamma, S, T) \in TR(R)$ by S-VR.
 - $S = \beta$, $\beta \neq \alpha$, $(\beta < \alpha) \in \Gamma$, and $(\alpha < T) \in \Gamma$. In this case, $(\Gamma, S, T) \in TR(R)$ by S-VTR.
 - $S = \alpha$ and $(\alpha < T) \in \Gamma$. In this case, $(\Gamma, S, T) \in TR(R)$ by S-VTR.
- Case $U = \forall \alpha <: U_1, U_2$. The only rule that applies is S-Kern, so it must be that:
 - $S = \forall \alpha <: U_1, S_2$,
 - $(\Gamma, S_2, U_2) \in ST(R)$,
 - $(\Gamma, \alpha <: U_1, U_2) \in ST(R)$.
 - $U = \mu \alpha.T$ This case is addressed in [19, chapter 21].
- $U = U_1 \rightarrow U_2$ See [19, page 288]

Lemma 8 (Subtyping is Reflexive) For all $T \in T$, $(T, T) \in \nu ST$, and for all $F \in F$, $(F, F) \in \nu ST$.

Proof: By case analysis on the subtyping rules.

Lemma 9 ST is Invertible

Proof: The corresponding support function is well-defined. By inspection of the subtyping rules, for a given pair of expressions, only one typing rule applies.

Theorem 3 For all types S and T, $S <: T$ is decidable.

Proof: Since S and T are finite μ-types, the set $reachables_{ST}(S, T)$ is finite [19, Proposition 21.9.11]. Thus, the algorithm gfp_{ST} [19, Definition 21.5.5] terminates [19, Theorem 21.5.12].

Lemma 10 For all Γ, T, L, M, $\text{inherit}_\Gamma(T, L) \cup \text{inherit}_\Gamma(T, M) = \text{inherit}_\Gamma(T, L \cup M)$.

Proof: By induction on the syntactic size of T and by definition of the join operator.

Note that in the definition of inherit, the condition in both cases requires that for some L_C, $L_Q \subseteq L_C$, $L \subseteq L_C$ and $M \subseteq L_C$ hold if the left-hand side of the equality are defined. However, $L \cup M \subseteq L_C$ holds only because $L \cup M = L \cup M$.

Lemma 11 If $L_Q \subseteq M_Q \subseteq \bigcup_{j=1}^{m} M_j$ and $\forall i, j. L_i \cap M_j \neq \emptyset \Rightarrow \Gamma \vdash S_i' <: T_j'$ then

\[
\Gamma \vdash \bigcup_{i} \{S_i' | \Gamma \vdash L_Q \cap L_i \neq \emptyset\} <: \bigcup_{j} \{T_j' | \Gamma \vdash M_Q \cap M_j \neq \emptyset\}
\]
Proof: It is sufficient to show that for all S'_i on the left-hand side, there exists a T'_j such that $\Gamma \vdash S'_i <: T'_j$.

For any S'_i, since $L_i \cap L_Q \neq \emptyset$, $\exists \text{str} \in L_i \cap L_Q$. Since $L_Q \subseteq \bigcup M_j$, intersecting on the left-hand side we have $L_i \cap L_Q \subseteq \bigcup M_j$. Thus $\text{str} \in \bigcup \{M_j | q_j \neq \circ\}$. Therefore, $\exists M_j, \text{str} \in M_j$, hence $L_i \cap M_j \neq \emptyset$ and so $\Gamma \vdash S'_i <: T'_j$.

Lemma 12 For all Γ, S, T, L_Q, M_Q, if:

H1. $\Gamma \vdash S <: T$,
H2. $\Gamma \vdash L_Q \subseteq M_Q$,
H3. $\text{inherit}_P(S, L_Q) = S'$, and
H4. $\text{inherit}_P(T, M_Q) = T'$,

then $\Gamma \vdash S' <: T'$.

Proof: By double induction on syntactic size of S' and T', followed by case analysis of inherit in H3 and H4. We thus have four cases. In all cases, by inversion of (H1) and the definition of inherit, we have:

$$S = \{L^1_p : S'_1, \ldots, L^n_p : S'_n, L_A : \text{abs}\}$$
$$T = \{M^1_p : T'_1, \ldots, M^m_p : T'_m, M_A : \text{abs}\}$$

We thus have available the hypotheses of S-Object:

I1. $\forall i, j, L_i \cap M_j \neq \emptyset \Rightarrow p_i <: q_j \land \Gamma \vdash S'_i <: T'_j$,
I2. $\bigcup_{i}^{1..m} M_i \subseteq \bigcup_{j}^{1..n} L_j \cup L_A$,
I3. $M_A \subseteq L_A$,
I4. $\forall j \text{if } q_j = \uparrow \text{ then } q_j = \uparrow \land \Gamma \vdash \text{inherit}(S, M_j) <: T'_j$, and
I5. $\forall j \text{if } M_j \cap L_A \neq \emptyset \text{ then } q_j = \circ \text{ or } q_j = \uparrow$

Case 1. Base case, where "parent" of both S and T are elided.

By definition of inherit, the goal is:

$$\Gamma \vdash \bigcup_{i}^{1..n} \{S'_i | \Gamma \vdash L_Q \cap L_i \neq \emptyset\} <: \bigcup_{j}^{1..m} \{T'_j | \Gamma \vdash M_Q \cap M_j \neq \emptyset\}$$

The condition on both applications of inherit are $L_Q \subseteq \bigcup \{L_i | p_i \neq \circ\}$ and $M_Q \subseteq \bigcup \{M_j | q_j \neq \circ\}$. Therefore, $M_Q \subseteq \bigcup M_j$ and lemma 11 applies.

Case 2. Inductive case, where "parent" of both S and T are references to objects.

H5. $\exists L_i, "\text{parent}\" \in L_i \land S'_i = \text{Ref } S_P$,
H5'. $L_Q \subseteq \bigcup_{i}^{1..n} L_i \cup L_A$,
H6. $\exists M_i, "\text{parent}\" \in M_i \land T'_i = \text{Ref } T_P$, and
H6'. $M_Q \subseteq \bigcup_{j}^{1..m} M_j \cup M_A$.

Hind. $\forall L_Q, M_Q, S_P, T_P, |S_P| < |T| \land \Gamma \vdash L'_Q \subseteq M_Q \land \Gamma \vdash S_P <: T_P \Rightarrow (\text{inherit}_P(S_P, L'_Q) = S'_P \land \text{inherit}_P(T_P, M'_Q) = T'_P \Rightarrow \Gamma \vdash S'_P <: T'_P)$.
The goal thus reduces to:

\[\Gamma \vdash \bigcup \{ S'_i \mid \Gamma \vdash L_Q \cap L_i \neq \emptyset \} \cup \text{inherit}(S_p, \mathcal{L}) <:\bigcup \{ T'_i \mid \Gamma \vdash M_Q \cap M_i \neq \emptyset \} \cup \text{inherit}(T_p, \mathcal{M}) \]

where \(\mathcal{L} = L_Q \cap (L_A \cup \bigcup \{ L_i | p_i = \circ \}) \) and \(\mathcal{M} = M_Q \cap (M_A \cup \bigcup \{ M_j | q_j = \circ \}) \)

We define the set of inherited fields of \(T \) that are looked up by \(M_Q \) and are absent on \(S \):

\[\mathcal{N} = \{ M_j \mid M_Q \cap M_j \cap L_A \neq \emptyset \land q_j = \uparrow \} \]

\[\mathcal{L}^+ = \mathcal{L} \cap \bigcup \mathcal{N} \]

\[\mathcal{L}^- = \mathcal{L} \cap \bigcup \overline{\mathcal{N}} \]

Using lemma 10, we rewrite the goal to:

\[\Gamma \vdash \bigcup \{ S'_i \mid \Gamma \vdash L_Q \cap L_i \neq \emptyset \} \cup \text{inherit}(S_p, \mathcal{L} \cap \bigcup \mathcal{N}) \cup \text{inherit}(S_p, \mathcal{L} \cap \bigcup \overline{\mathcal{N}}) <:\bigcup \{ T'_i \mid \Gamma \vdash M_Q \cap M_i \neq \emptyset \} \cup \text{inherit}(T_p, \mathcal{M}) \]

We prove the goal by breaking it into the following subcases:

a. \(\Gamma \vdash \bigcup \{ S'_i \mid \Gamma \vdash L_Q \cap L_i \neq \emptyset \} <:\bigcup \{ T'_i \mid \Gamma \vdash M_Q \cap M_i \neq \emptyset \} \)

We cannot apply lemma 11 directly because \(M_Q \subseteq \bigcup M_j \cup M_A \), whereas the hypothesis of the lemma requires \(M_Q \subseteq \bigcup M_j \).

However, note that since \(L_A \cap L_i = \emptyset \) (by well-formedness of types), we have \(L_Q \cap L_i \neq \emptyset \) iff \(L_Q \cap L_A \cap L_i \). Similarly, \(M_Q \cap M_j \neq \emptyset \) iff \(M_Q \cap M_A \cap M_j \). We can therefore rewrite the subgoal to \(\Gamma \vdash \bigcup \{ S'_i \mid \Gamma \vdash L_Q \cap L_i \neq \emptyset \} <:\bigcup \{ T'_i \mid \Gamma \vdash M_Q \cap M_j \neq \emptyset \} \).

Lemma 11 now applies.

b. \(\Gamma \vdash \text{inherit}(S_p, \mathcal{L} \cap \bigcup \mathcal{N}) <: \text{inherit}(T_p, \mathcal{M}) \)

By induction (HInd). The following cases allow us to apply HInd.

- \(|S_p| < |S| \) and \(|T_p| < |T| \) are trivial.
- We show that \(\Gamma \vdash S_p <: T_p \). By H5 and H6, "\text{parent}" \(\in L_P \cup M_P \) thus \(L_P \cap M_P \neq \emptyset \). Therefore, \(\Gamma \vdash \text{Ref} S_p <: \text{Ref} T_P \) by 11. By (S-Ref), it follows that \(\Gamma \vdash S_P <: T_P \).
- We show that \(\Gamma \vdash \mathcal{L} \cap \bigcup \mathcal{N} \subseteq \mathcal{M} \). It is sufficient to show that \(\forall x. \Gamma \vdash x \in \mathcal{L} \cap \bigcup \mathcal{N} \Rightarrow \Gamma \vdash x \in \mathcal{M} \).

By definition of \(\mathcal{L} \), \(x \in L_Q \), thus by (H2), \(x \in M_Q \).

By definition of \(\mathcal{L} \), either \(x \in L_A \) or \(x \in \bigcup \{ L_i | p_i = \circ \} \). If \(x \in L_A \), then by I5 \(q_j = \circ \). If \(x \in \bigcup \{ L_i | p_i = \circ \} \), since \(x \in L_i \cup M_j \), \(p_i <: q_j \), and by p-Ref, \(q_j = \circ \).

Therefore, \(x \in \mathcal{M} \) since it is in both sets.

c. \(\Gamma \vdash \text{inherit}(S_p, \mathcal{L} \cap \bigcup \overline{\mathcal{N}}) <:\bigcup \{ T'_i \mid \Gamma \vdash M_Q \cap M_j \neq \emptyset \} \)

Rewrite the left-hand side by expanding the definition of \(\mathcal{N} \), distributing the intersection over the union, and applying lemma 10:

\[\Gamma \vdash \bigcup \{ \text{inherit}(S_p, \mathcal{L} \cap M_j) \mid M_Q \cap M_j \cap L_A \neq \emptyset \land q_j = \uparrow \} <:\bigcup \{ T'_i \mid \Gamma \vdash M_Q \cap M_j \neq \emptyset \} \]
It is sufficient to show that for all elements of the left-hand side, there exists a supertype on the right-hand side. For each \(\text{inherit}(S_p, L \cap M_j) \) on the left-hand side, the associated \(T'_j \) is on the right-hand side by definition of \(N \). We now show that

\[\Gamma \vdash \text{inherit}(S_p, L \cap M_j) <: T'_j \]

Since \(M_j \cap L_A \neq \emptyset \) and \(q_j = \top \), 14 applies and \(\Gamma \vdash \text{inherit}(S, M_j) <: T'_j \).

By lemma 10 \(\text{inherit}(S, M_j) = \text{inherit}(S, L \cap M_j) \sqcup \text{inherit}(S, L \cap M_j) \), so \(\Gamma \vdash \text{inherit}(S, L \cap M_j) <: T'_j \) by the definition of joins. Further, by the definition of \(\text{inherit} \),

\[\Gamma \vdash \text{inherit}(S, L \cap M_j) = \text{inherit}(S_p, L \cap M_j \cap L_A \bigcup \{L_i | p_i = \circ\}) \sqcup \ldots \]

and by the definition of \(L \), \(L \cap M_j \cap L_A \bigcup \{L_i | p_i = \circ\} \) is the same as \(L \cap M_j \).

By the definition of joins:

\[\Gamma \vdash \text{inherit}(S_p, L \cap M_j) <: T'_j \]

which, when applied for each \(j \), completes Case 2.

Case 3. Impossible case, where the "parent" field is on the right-hand side type, but is elided on the left-hand side.

By well-formedness of types, if \(\exists i. \text{"parent"} \in M_i \) then \(q_i = \top \). But by I2, "parent" \(\in \bigcup_{i=1}^{m} L_i \cup L_A \), which is a contradiction.

Case 4. Inductive case, where the "parent" field is on the left-hand side type, but is elided on the right-hand side type.

HLP. \(\exists L_P. \text{"parent"} \in L_P \land S'_i = \text{Ref } S_P \),

H6. \(L_Q \subseteq \bigcup_{i=1}^{m} L_i \cup L_A \),

HRP. If \(\neg \exists M_P. \text{"parent"} \in M_P \), and

H8. \(M_Q \subseteq \bigcup_{i=1}^{m} M_i \{q_i \neq \circ\} \).

By HRP, since \(\neg \exists M_P. \text{"parent"} \in M_P \). The goal is therefore:

\[\Gamma \vdash \bigcup_{i=1}^{m} \{S'_i | \Gamma \vdash L_Q \cap L_i \neq \emptyset \} \sqcup \text{inherit}(S_P, L_Q \cap (L_A \bigcup \{L_i | p_i = \circ\})) <: \bigcup_{j=1}^{m} \{T'_j | \Gamma \vdash M_Q \cap M_j \neq \emptyset\} \]

The first part of the join is satisfied by lemma 11. For part 2, using lemma 10 rewrite:

\[\Gamma \vdash \text{inherit}(S_P, L_Q \cap (L_A \bigcup \{L_i | p_i = \circ\})) <: \bigcup_{j=1}^{m} \{T'_j | \Gamma \vdash M_Q \cap M_j \neq \emptyset\} \]

to:

\[\Gamma \vdash \text{inherit}(S_P, L_Q \cap L_A) \sqcup \text{inherit}(S_P, L_Q \cap \{L_i | p_i = \circ\}) <: \bigcup_{j=1}^{m} \{T'_j | \Gamma \vdash M_Q \cap M_j \neq \emptyset\} \]

There are two cases.
Lemma 13 If \(\{ L_1 : F_1 \cdots L_n : F_n \} \prec : \{ M_1 : G_1 \cdots M_m : G_m \} \), then \(\bigcup_{j=1}^{m} \{ M_j \mid G_j = T^j \} \subseteq \bigcup_{i=1}^{n} \{ L_i \mid F_i = T^i \} \).

Proof: By contradiction.

Assume there exists some string \(x \) with \(x \in \bigcup_{j=1}^{m} \{ M_j \mid G_j = T^j \} \) and \(x \notin \bigcup_{i=1}^{n} \{ L_i \mid F_i = T^i \} \). By assumption of S-Object, \(\bigcup_{j=1}^{m} M_j \subseteq \bigcup_{i=1}^{n} L_i \), so it must be that there is some \(L_i \) that contains \(x \), but either has type \(T^o \) or \(\text{abs} \). That is, there must be an \(M_j \) with \(x \in M_j \) and an \(L_i \) with \(x \in L_i \) with \(G_j = T^j \) and either \(F_i = \text{abs} \) or \(F_i = T^\alpha \). This violates S-Object, which asserts that since \(L_i \cap M_j \neq \emptyset \), it must be that \(F_i \prec G_j \), which cannot happen since possibly absent and definitely absent fields cannot subtype definitely present fields.

E Typing

\[
\begin{align*}
\text{IfHasField1} & \quad \Gamma \vdash v : S \cdots \Gamma(f) = L \quad \Sigma; \Gamma, \alpha <: L, f : \alpha \vdash e_2 : T \quad L' = L \cap \pi \quad \Gamma \vdash e_3 : T \\
\quad & \quad \Sigma; \Gamma \vdash \text{if } (\{ \text{str} : v \cdots \} \text{ hasfield } f) e_2 \text{ else } e_3 : T \\
\text{IfHasField2} & \quad \Gamma(o) = \{ \cdots L^o : S \cdots \} \quad \Sigma; \Gamma, o : \{ \cdots \text{str}^k : S, L^o : S \cdots \} \vdash e_2 : T \\
\quad & \quad L' = L \cap \{ \text{str} \} \quad \Gamma \vdash e_3 : T \\
\quad & \quad \Sigma; \Gamma \vdash \text{if } (o \text{ hasfield } \text{str}) e_2 \text{ else } e_3 : T \\
\text{IfHasFieldFalse} & \quad \Gamma \vdash v : S \cdots \Sigma; \Gamma \vdash e_3 : T \quad \text{str}_2 \notin \text{str} \cdots \\
\quad & \quad \Sigma; \Gamma \vdash \text{if } (\{ \text{str} : v \cdots \} \text{ hasfield } \text{str}_2) e_2 \text{ else } e_3 : T \\
\text{IfFalse} & \quad \Sigma; \Gamma \vdash e_3 : T \\
\quad & \quad \Sigma; \Gamma \vdash \text{if } (\text{false}) e_2 \text{ else } e_3 : T
\end{align*}
\]

Fig. 6. Auxiliary Typing Rules for If-Splitting

Lemma 14 (Canonical Forms) If \(\Sigma; \Gamma \vdash v : T \) and if \(T \) is:

33
Lemma 15 (Inversion) If:

- \{L^1_1 : S_1 \cdots L^m_m : S_m\} then v = \{str_1 : v_1 \cdots \}, \Sigma; \Gamma \vdash v_1 \cdots v_n : U_1 \cdots U_n,
- \Sigma; \Gamma \vdash v : \{str_1 : U_1 \cdots str_n : U_n, \{str_1 \cdots str_n\} : \text{abs}\} and \{str_1 : U_1 \cdots str_n : U_n, \{str_1 \cdots str_n\} : \text{abs}\} \ll \{L^1_1 : S_1 \cdots L^m_m : S_m\},
- \text{Ref } S, \text{ then } v = \text{loc and } \Sigma(\text{loc}) \ll S,
- S \rightarrow T, \text{ then } v = \text{func}(x) \ {f} \ {e} \ {j},
- L \text{ then } v = \text{str and } \Gamma \vdash \text{str} < L

Proof: By induction on the typing derivation.

Lemma 15 (Inversion) If:

- \Sigma; \Gamma \vdash \{\text{str} : v_1 \cdots \} : T then \Sigma; \Gamma \vdash v : S \cdots \text{ and } \Gamma \vdash \{\text{str} : S \cdots\} \ll T
- \Sigma; \Gamma \vdash e_1 + e_2 : T then \Sigma; \Gamma \vdash e_1, e_2 < \text{Str and } \Gamma \vdash T \ll \text{Str}
- \Sigma; \Gamma \vdash \text{fix } (f : S). e : T then \Sigma; \Gamma, f : S \vdash e < S \text{ and } \Gamma \vdash S \ll T
- \Sigma; \Gamma \vdash \text{ref } e : T then \Sigma; \Gamma \vdash e : S \text{ and } \text{Ref } S = T
- \Sigma; \Gamma \vdash ! : T \text{ then } \Sigma(!) = T
- \Sigma; \Gamma \vdash \text{deref } e : T, \text{ then } \Sigma; \Gamma \vdash e : \text{Ref } S \text{ with } S \ll T,
- \Sigma; \Gamma \vdash e_1 = e_2 : T, \text{ then } \Sigma; \Gamma \vdash e_1 : \text{Ref } S, \Sigma; \Gamma \vdash e_2 : U, U < S, \text{ and } \text{Ref } S < T,
- \Sigma; \Gamma \vdash e f (e \cdots) : T, \text{ then } \Sigma; \Gamma \vdash e f : S \cdots \rightarrow T', \Sigma; \Gamma \vdash e : S \cdots, \text{ and } T' < T.
- \Sigma; \Gamma \vdash e_o e f_j : T, \text{ then } \Sigma; \Gamma \vdash e_o : \{L^1_1 : S_1 \cdots\}, \Sigma; \Gamma \vdash e f : L, \text{ inherit}(\{L^1_1 : S_1 \cdots\}, L) = T', \text{ and } T' < T.
- \Sigma; \Gamma \vdash e_o e f_j = e o : T, \text{ then } \Sigma; \Gamma \vdash e_o : \{L^1 : S \cdots, L_A : \text{abs}\}, \Sigma; \Gamma \vdash e f : L', \Sigma; \Gamma \vdash e o : U, \forall L.\lfloor L \cap L' \neq \emptyset \rfloor \text{ then } U < S, \text{ and } \Gamma \vdash \{L^1 : S \cdots, L_A : \text{abs}\} \ll T.
- \Sigma; \Gamma \vdash \text{delete } e_o e f_j : T, \text{ then } \Sigma; \Gamma \vdash e_o : \{L^1_1 : S_1 \cdots\}, \Sigma; \Gamma \vdash e f : L, \forall L \cap L_1 \neq \emptyset. F_1 \neq T', \Gamma \vdash \{L^1_1 : S_1 \cdots\} < T
- \Sigma; \Gamma \vdash e_1 \text{ hasfield } e_2 : \text{Bool}, \text{ then } \Sigma; \Gamma \vdash e_1 : \{L_1 : F_1 \cdots L_n : F_n\}, \Sigma; \Gamma \vdash e_2 : L.
- \Sigma; \Gamma \vdash e \text{ matches } P : \text{Bool}, \text{ then } \Sigma; \Gamma \vdash e : L.
- \Sigma; \Gamma \vdash \text{if } (\forall x) \ {e_2} \ {\text{else}} \ {e_3} : T, \text{ then } \Sigma; \Gamma \vdash v_1 : \text{Bool}, \Sigma; \Gamma \vdash e_2 : T, \text{ and } \Sigma; \Gamma \vdash e_3 : T.
Lemma 16 (Type Substitution) If $\Sigma; \alpha <: S, \Gamma \vdash e : T$ and $\Gamma \vdash u <: S$ then $\Sigma; \Gamma[\alpha/U] \vdash e[\alpha/U] : T[\alpha/U]$.

Proof: By induction on the typing derivation. □

Lemma 17 (Substitution) If $\Sigma; x : S, \Gamma \vdash e : T$ and $\Sigma; \Gamma \vdash v : S$, then $\Sigma; \Gamma \vdash e[x/v] : T$.

Proof: By induction on the typing derivation. The only interesting case is substituting the identifiers in if (e hasfield f) e2 else e3 when it is typed by T-IfHasField. The resulting expressions require the auxiliary typing rules in figure 6.

The expression is typed by T-HasField and $x = o$. The resulting expression is typable by T-IfHasField1 as follows. By canonical forms, $v = \{\text{str}; v \ldots\}$ and $\Sigma; \Gamma \vdash v : T'$. By induction, $\Sigma; \Gamma; \alpha <: L, f : \alpha e_2[x/v]$ and $\Sigma; \Gamma \vdash e_3[x/v]$.

The remaining antecedents of T-IfHasField1 are those of T-HasField.

The expression is typed by T-HasField and $x = f$. The resulting expression is typable by T-IfHasField2 as follows. By canonical forms, $v = \text{str}$, $\Sigma; \Gamma \vdash v : \text{str}$, and $\Gamma \vdash \text{str} <: L$. By type substitution followed by induction, $\Sigma; \Gamma, o : \{\text{str}^1 : S, L^o : S \ldots\} \vdash e_2 : T$. The remaining antecedents of T-IfHasField2 are those of T-HasField.

The expression is typed by T-IfHasField1 and $x = f$. The resulting expression has the form:

\[
\text{if } (\text{str}; v' \ldots \text{hasfield } str') e_2 \text{ else } e_3
\]

There are two cases.

1. If $\text{str}' \in \text{str} \ldots$ then by type substitution and induction, $\Sigma; \Gamma, \alpha <: L, f : \alpha e_2 : T[\alpha/\text{str}][f/v] = \Sigma; \Gamma \vdash e_2[f/v] : T$. By induction, $\Sigma; \Gamma \vdash e_3[f/v] : T$. Finally, the conditional has type Bool. Thus the expression is typable by T-If.

2. If $\text{str}' \notin \text{str} \ldots$ then the term is trivially typable by T-IfHasFieldFalse.

There are two cases.

1. If $\text{str}' \in \text{str} \ldots$ then the result is trivially typable by T-If.

2. If $\text{str}' \notin \text{str} \ldots$ then the term is trivially typable by T-IfHasFieldFalse. □

Lemma 18 (Main Preservation) If $\Sigma_1 \vdash ae : T$, $\Sigma_1 \vdash \sigma_1$, and $\sigma_1 E(\langle ae\rangle) \rightarrow \sigma_2 E(\langle e_2\rangle)$ then there exists a Σ_2, such that:

1. $\Sigma_2 \supseteq \Sigma_1$,
2. $\Sigma_2 \vdash \sigma_2$, and
3. $\Sigma_2 \vdash e_2 : T$.

35
Proof: By case-analysis on \(ae \), using inversion (lemma 15) where specified:

\[-\sigma_1 E((\text{func } (x:S') \ {e} \ y)(v)) \rightarrow \sigma_1 E(e[x/v]).\]

By inversion, \(\Sigma_1; \vdash v : S, \vdash S < : S', \Sigma_1; x : S \vdash e : T', \) and \(\vdash T' < : T.\)

By substitution (lemma 17), \(\Sigma_1; \vdash e[x/v] : T.\)

\[-\sigma_1 E(\text{fix } (x : S, e)) \rightarrow \sigma_1 E(e[fix (x:S). e]).\]

By inversion, \(\Sigma_1; \vdash e : S, \Sigma_1; x : S \vdash e : S, \) and \(\vdash S < : T.\) By substitution (lemma 17), \(\Sigma_1; \vdash e[x/fixed (x:S). e] : T.\)

\[-\sigma_1 E((\lambda a < : S.e)(U)) \rightarrow \sigma_1 E(e[a/U]).\]

By type substitution (lemma 16).

\[-\sigma_1 E(\text{ref } v) \rightarrow \sigma, (l,v) E(l)\] where \(l \notin \text{dom}(\sigma).\) By inversion, \(\Sigma_1; \vdash v : S \) and \(\text{Ref } S < : T.\) Let \(\Sigma_2 = l : S, \Sigma_1.\) By T-Loc, \(\Sigma_2; \vdash l : \text{Ref } S.\)

\[-\sigma_1 E(\text{deref } l) \rightarrow \sigma E(\text{e}(l))\]

By inversion (T-SetRef), \(\Sigma, \Gamma \vdash l : \text{Ref } S, \Sigma, \Gamma \vdash v : S, \) and \(\text{Ref } S = T.\) By inversion (T-Loc), \(\Sigma(l) = T \) thus \(\Sigma \vdash \sigma[l := v].\) By T-Loc, \(\Sigma, \Gamma \vdash l : T.\)

\[-\sigma_1 E(\{ \cdot \cdot \cdot :: v \cdot \cdot \cdot \} \rightarrow \sigma E(v)).\] By inversion, \(\Sigma_1; \vdash str : L, \Sigma_1; \vdash \{ \cdot \cdot \cdot :: v \cdot \cdot \cdot \} : S, \Sigma_1; \vdash v : T', T' < : \text{inherit.}(S, L), \) and \(\text{inherit.}(S, L) < : T.\) By inversion, \(\{ \cdot \cdot \cdot :: T' \cdot \cdot \cdot \} < : S.\) Thus \(\vdash T' < : T.\)

By lemma 12, \(\text{inherit.}(\{ \cdot \cdot \cdot :: T' \cdot \cdot \cdot \}, str) < : \text{inherit.}(S, L).\) By [REF], \(\text{inherit.}(\{ \cdot \cdot \cdot :: T' \cdot \cdot \cdot \}, str) = T'.\)

\[-\sigma_1 E(\{ \cdot \cdot \cdot :: \text{"parent" : } l \cdot \cdot \cdot \} \rightarrow \sigma E(\text{deref } l [\text{str}]),\] where \(\text{str} \notin \cdot \cdot \cdot \).

By inversion of the left-hand side, \(\Sigma_1; \vdash str : L, \Sigma_1; \vdash \{ \cdot \cdot \cdot :: \text{"parent" : } T_p \} : S, \) and \(\text{inherit.}(S, L) < : T.\) By lemma 12, \(\text{inherit.}(\{ \cdot \cdot \cdot :: \text{"parent" : } T_p \}, str) < : \text{inherit.}(S, L).\) By inversion, \(\Sigma_1; \vdash l : \text{Ref } S_p = T_p.\) Since \(\text{str} \notin \cdot \cdot \cdot \) and by definition of \(\text{inherit.},\) \(\text{inherit.}(\{ \cdot \cdot \cdot :: \text{"parent" : } \text{Ref } S_p \}, str) = \text{inherit.}(S_p, str),\) which is a subtype of \(T.\)

Type right-hand side with T-Sub and T-GetField, using \(\Sigma_1; \vdash str : str, \text{inherit.}(S_p, str) < : T,\) and \(\Sigma_1; \vdash \text{ deref } l : S_p.\) This holds since \(\Sigma_1; \vdash l : \text{Ref } S_p\) above.

\[-\sigma_1 E(\{ \cdot \cdot \cdot :: v \cdot \cdot \cdot \} \rightarrow \sigma E(\{ \cdot \cdot \cdot :: \text{v' \cdot \cdot \cdot} \})\]

By inversion (T-Update), \(\Sigma, \Gamma \vdash \{ \cdot \cdot \cdot :: v \cdot \cdot \cdot \} : \{ L : S \cdot \cdot \cdot \}, \Gamma \vdash \{ L : S \cdot \cdot \cdot \} < : T, \) and \(\Sigma; \Gamma \vdash \text{str } : U'.\) By inversion (T-Object), \(\Sigma; \Gamma \vdash \{ \cdot \cdot \cdot :: v \cdot \cdot \cdot \} : \{ S \cdot \cdot \cdot \} \land \Gamma \vdash \{ \cdot \cdot \cdot :: str : U \cdot \cdot \cdot \} < : \{ L : S \cdot \cdot \cdot \}.\) Thus by inversion (T-Update), \(\Gamma \vdash \text{str } : U < : U.\) The resulting expression is typable by S-Object, thus by S-Sub, \(\Gamma \vdash \{ \cdot \cdot \cdot :: str : U \cdot \cdot \cdot \} < : \{ \cdot \cdot \cdot :: str : U \cdot \cdot \cdot \} < : T.\)

\[-\sigma_1 E(\{ \cdot \cdot \cdot :: \text{str } = \text{v'} \}) \rightarrow \sigma E(\{ \cdot \cdot \cdot \})\] where \(\text{str} \notin \cdot \cdot \cdot \).

By inversion of T-Update, \(\Sigma; \Gamma \vdash \{ \cdot \cdot \cdot :: str : v \cdot \cdot \cdot \} : S \land \Gamma \vdash S < : T.\)

\[-\sigma_1 E(\text{delete } \{ \cdot \cdot \cdot :: \text{str } \cdot \cdot \cdot \}) \rightarrow \sigma E(\{ \cdot \cdot \cdot \})\] Similar to to E-UpdateField case above.

\[-\sigma_1 E(\text{delete } \{ \cdot \cdot \cdot :: \text{str } \cdot \cdot \cdot \}) \rightarrow \sigma E(\text{delete } \{ \cdot \cdot \cdot \})\] Similar to to E-UpdateField case above.

\[-\sigma_1 E(\text{fieldin } \{ s : v, \text{rest} \cdot \cdot \cdot \} \rightarrow \text{init } v_{acc} \text{ do } v_{j}) \rightarrow \sigma E(\text{fieldin } \{ s : v, \text{rest} \cdot \cdot \cdot \} \rightarrow \text{init } v_{f}(\text{str}[\text{i}]) (v_{acc}) \text{ do } v_{j}\}

By inversion, \(\Sigma; \Gamma \vdash v_{acc} : T \land \Sigma; \Gamma \vdash v_{f} : (\text{Str } \rightarrow T) \rightarrow T.\) The double application can be typed by T-App, and the resulting expression will by typable by T-FieldIn.
Proof: there exists a ε

Theorem 4 (Typed Progress)

Lemma 19 (Preservation) If Σ₁ ⊨ e₁ : T, Σ₁ ⊨ σ₁, and σ₁ e₁ → σ₁ e₂, then there exists a Σ₂, such that:

i. Σ₂; ⊨ e₂ : T,
ii. Σ₂ ⊨ σ₂, and
iii. Σ₁ ⊆ Σ₂.

Proof: By case-analysis of the reduction rules, there exists an evaluation context, E, an active expression, ae, and an expression, e', such that e₁ = E(ae) and e₂ = E(e'). There thus exists a subderivation Σ₁; ⊨ ae : S of the original typing derivation. Lemma 18 now applies, so we have Σ₂ ⊆ Σ₁, Σ₂ ⊨ σ₂, and Σ₂; ⊨ e' : S. Replacing the original subderivation, we have Σ₂; ⊨ E(e') : T.

Theorem 4 (Typed Progress) If Σ ⊨ σ and Σ; ⊨ e : T then either e ∈ v or there exist σ' and e' such that σ e → σ' e'.

Proof: By case-analysis of the reduction rules, either e ∈ v, e = E(ae), or e = E(err). By inspection of the typing relation, err is untypable. We therefore consider the case where e = E(ae) by case-analysis on the definition of active expressions.

The cases where ae is of the form v₁(ε₂), ref v, deref v, v₁ = v₂, and if (v₁) { ε₂ } else { ε₃ } are routine.

Consider ae = v₁[ε₂]. By inversion, Σ; ⊨ v₁ : {L₁^p₁ : T₁, ..., Lⁿ^p : Tⁿ} and Σ; ⊨ v₂ : L. By canonical forms, v₁ = {str⁻¹ : w₁, ..., str⁻m : w⁻m} and {str₁ : S₁, ..., str⁻m : S⁻m}. Also by canonical forms, v₂ = str₁ and str⁻m < L.

If str⁻m ∈ {strₙ}, then E-GetField applies.

If str⁻m ∉ {strₙ}, then we show that "parent" ∈ {str₁, ..., str⁻m} so that E-Inherit applies. This holds by the 2nd case of inherit, which requires that "parent" exist if str⁻m ∉ {str₁, ..., str⁻m}.
Consider $ae = v_1[v_2 = v_3]$. By inversion, $\Sigma;\vdash v_1 : \{L^p : S \cdots\}$ and $\Sigma;\vdash v_2 : LQ$. By canonical forms, $v_1 = \{str : w \cdots\}$ and $v_2 = strQ$. Thus either E-Create or E-Update apply.

Consider $ae = delete v_1[v_2]$. By inversion, $\Sigma;\vdash v_1 : \{L^p : S \cdots\}$ and $\Sigma;\vdash v_2 : LQ$. By canonical forms, $v_1 = \{str : w \cdots\}$ and $v_2 = strQ$. Thus either E-Delete or E-Delete-None apply.

Consider $ae = v_1 hasfield v_2$. By inversion, $\Sigma;\vdash v_1 : \{L^p : S \cdots\}$ and $\Sigma;\vdash v_2 : LQ$. By canonical forms, $v_1 = \{str : w \cdots\}$ and $v_2 = strQ$. Thus either E-HasField or E-HasNotField apply.

Consider $ae = v matches P$. By inversion and canonical forms, $v = str$. Thus either E-Matches or E-NoMatch apply.

Consider $ae = fieldin \{ s_1 : v_1, \ s_2 : v_2 \cdots\} init v_{acc} do v_f$. By inversion, $\Sigma;\vdash v_1 : \{L^p : S \cdots\}$. By canonical forms, $v_1 = \{str : w \cdots\}$. Thus either E-FieldIn or E-FieldIn-End apply.

Consider $ae = v_1 + v_2$. By inversion and canonical forms, $v_1 = str_1$ and $v_2 = str_2$. Thus E-Str+ applies.

Consider $ae = fix (f:S)$. E-Fix applies trivially.