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Chapter 1

Introduction

Borealis is a second-generation distributed stream processing engine developed as part of a collaboration
among Brandeis University, Brown University, and MIT. In this document, we provide a guideline to those
who wish to write applications that use Borealis. We refer those interested in the internals of Borealis to
our “Borealis Developer’s Guide” [7].

Before you start, you need to install Borealis and compile the sample applications. The detailed instal-
lation procedure is presented in the “Borealis Installation Guide” [5].

Borealis builds on two earlier systems: Aurora and Medusa. Borealis inherits core stream processing
functionality from Aurora and distribution capabilities from Medusa. Borealis however does modify and
extend both systems with various features and mechanisms [1].

This document is organized as follows. In Chapter 2, we show how to run some simple demo applications.
In Chapters 3 and 4 we present the details of the Borealis operators and query diagrams. Chapter 5 discusses
how to build your own Borealis application. Chapter 6 briefly overviews how to make your applications fault-
tolerant.
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Chapter 2

Running a Simple Application

In this chapter, we show how to run a Borealis application. In particular, we show how to run the mytest
and mytestdist applications distributed with Borealis and located under borealis/test/simple/.

2.1 Single-Node Deployment

mytest demonstrates a simple query deployed at a single Borealis node. Inside the file: mytest.xml, you
can find the description of the query diagram corresponding to this application. The description includes
the input streams, output streams, and the operators. We discuss how to build applications such as mytest
in Chapter 5. In this Chapter, we only show you how to run them.

To run the mytest application, invoke the following script:

> ./runtest mytest

The script first starts a Borealis node, and then launches the mytest application. You should see two
windows:

1. A Borealis nodes starts in a window called: Borealis

2. mytest starts in a window called: mytest

What happens under the covers is the following:

1. First, the Borealis node starts empty, and waits for requests.

2. Second, the client application starts. To deploy a query diagram, applications normally talk to the
global catalog, called BigGiantHead (or Head for short). No such catalog is running at this point. The
application launches the catalog and submits the query to the catalog.

3. The catalog deploys the query on the Borealis node and exits. As part of the deployment, the global
catalog also sets-up the subscription of mytest to the output stream.

4. Finally, mytest starts pushing data into the Borealis node and receiving data from the Borealis node.

To stop the application, invoke:

> ./runtest stop
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2.2 Distributed Deployment

mytestdist is a simple application, similar to mytest except that it deploys a query diagram over two
Borealis nodes. With this example, we also show how to launch and use the Global Catalog separately from
the application.

Inside the file mytestdist.xml, you can find the description of the query diagram corresponding to the
application. The query diagram is the same as for mytest, except for an extra operator that filters the output
produced by count, dropping every other result.

Because we want to run each operator on a separate processing node, we create a second file that
specifies our desired deployment. Examine the file mytestdist-deploy.xml to see how the deployment can
be specified. The deployment is specified in terms of ”queries”. A query is simply a group of one or more
operators.

Given these files, we could simply deploy the query diagram as above. However, to demonstrate dynamic
modifications of the query diagram, we will start the global catalog separately, as a third process. To see how
the application sends requests to the global catalog, examine the method: MytestdistMarshal::launchDiagram
and compare it with MytestMarshal::launchDiagram.

To run the application, simply invoke the following script:

> ./runtest mytestdist

You should see four windows:

1. First, the global catalog starts in a window called: HEAD

2. Second, a Borealis nodes starts in a window called: Borealis

3. Third, a *second* Borealis nodes starts in a window called: Borealis Note that the window will appear
on top of the previous one.

4. Finally, mytestdist starts in a window called: mytestdist

In this example, mytestdist submits requests to the global catalog process. These requests include the
description of the query diagram and the desired deployment. The global catalog performs the required
operations by communicating with the Borealis nodes. Because the global catalog runs continuously, it can
later accept and perform requests to modify the query diagram at runtime.

To stop the application, invoke:

> ./runtest stop

In both examples, the demo applications send their outputs to the terminal as well as to a text file
with extension ”.log”. For more information about running these applications and the output they produce,
please consult the README file provided in borealis/test/simple/README.
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Chapter 3

Background

3.1 Stream Data Model

The Borealis stream data model is based on the model introduced in Aurora, which defines a stream as an
append-only sequence of data items. Data items are composed of attribute values and are called tuples. All
tuples on the same stream have the same set of attributes. This set of attributes defines the type or schema of
the stream. As an example, in an application that monitors the environmental conditions inside a building,
suppose that sensors produce a stream of temperature measurements. A possible schema for the stream
is (t.time, t.location, t.temp), where t.time is a timestamp field indicating the time when the measurement
was taken, t.location is a string indicating the location of the sensor, and t.temp is an integer indicating the
temperature value.

3.2 Operators

The goal of a stream processing engine is to filter, correlate, aggregate, and otherwise transform input
streams to produce outputs of interest to applications, making the applications themselves easier to write.
For instance, a stream processing engine could produce an alert when the combination of temperature and
humidity inside a room goes outside a range of comfort. The application might then simply transform the
alert into an email and send it to the appropriate party.

Inside an SPE, input streams are transformed into output streams by traversing a series of operators
(a.k.a., boxes). We now describe the core Borealis operators. A detailed description of these operators
appears in Abadi et. al. [2].

3.2.1 Stateless Operators

Stateless operators perform their computation on one tuple at a time without holding any state between
tuples. There are three stateless operators in Borealis: Filter, Map, and Union.

Filter is the equivalent of a relational selection operator. Filter applies a predicate to every input tuple,
and forwards tuples that satisfy the predicate on its output stream. For example, a Filter applied to a stream
of temperature measurements may forward only tuples with a temperature value greater than some threshold
(e.g., “temperature > 101◦F”). Tuples that do not satisfy the predicate are either dropped or forwarded
on a second output stream. A Filter can have multiple predicates. In that case, the Filter acts as a case
statement and propagates each tuple on the output stream corresponding to the first matched predicate.

A Map operator extends the Projection operator. Map transforms input tuples into output tuples by
applying a set of functions on the tuple attributes. For example, Map could transform a stream of temper-
ature readings expressed in Fahrenheit into a stream of Celsius temperature readings. As a more complex
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Figure 3.1: Sample outputs from stateless operators. Tuples shown on the right of each operator are
the output tuples produced after processing the tuples shown on the left.

example, given an input tuple with two attributes, d and t, indicating a distance and a time period, Map
could produce an output tuple with a single attribute indicating a speed, v = d

t .
A Union operator simply merges a set of input streams (all with the same schema) into a single output

stream. Union merges tuples in arrival order without enforcing any order on output tuples. Output tuples
can later be approximately sorted with a BSort operator. The latter operator maintains a buffer of a
parameterizable size n + 1. Every time a new tuple arrives, BSort outputs the lowest-valued tuple from the
buffer.

Figure 3.1 shows examples of executing Filter, Map, and Union on a set of input tuples. In the example,
all input tuples have two attributes, a room number indicated with a letter and an integer temperature
reading. The Filter has two predicates and a third output stream for tuples that match neither predicate.
The Map converts Fahrenheit temperatures into Celsius. Union merges tuples in arrival order.

3.2.2 Stateful Operators

Rather than processing tuples in isolation, stateful operators perform computations over groups of input
tuples. Borealis has a few stateful operators but we present only Join and Aggregate, the most fundamental
and most frequently used stateful operators.

An aggregate operator computes an aggregate function such as average, maximum, or count. The func-
tion is computed over the values of one attribute of the input tuples (e.g., produce the average temperature
from a stream of temperature readings). Before applying the function, the aggregate operator can option-
ally partition the input stream using the values of one or more other attributes (e.g., produce the average
temperature for each room). The relational version of aggregate is typically blocking: the operator may have
to wait to read all its input data before producing a result. This approach is not suitable for unbounded
input streams. Instead, stream processing aggregates perform their computations over windows of data that
move with time (e.g., produce the average temperature every minute). These windows are defined over the
values of one attribute of the input tuples, such as the time when the temperature measurement was taken.
Both the window size and the amount by which the window slides are parameterizable. The operator does
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Figure 3.2: Sample output from an aggregate operator.

not keep any history from one window to the next, but windows can overlap. As an example, suppose an
aggregate operator computes the average temperature in a room, and receives the following input. Each
tuple has two attributes, the time of the measurement and the measured temperature.

Input: (1:16, 68), (1:21, 69), (1:25, 70), (1:29, 68), (1:35, 67), (1:41, 67), ...

The aggregate could perform this computation using many different window specifications. As a first
example, the aggregate could use a landmark window [?], keeping a running average of the temperature
starting from the landmark value, and producing an updated average for every input tuple. The following
is a possible sequence of outputs, assuming 1:00 is the landmark.

Output 1: (1:16, 68), (1:21, 68.5), (1:25, 69), (1:29, 68.75), (1:35, 68.4), (1:41, 68.17), ...

Alternatively, the aggregate could use a sliding window [2]. Assuming a 10-minute-long window advanc-
ing by 10 minutes, the aggregate could compute averages for windows [1:16,1:26), [1:26,1:36), etc. producing
the following output:

Output 2: (1:16, 69), (1:26, 67.5), ...

In this example, the aggregate used the value of the first input tuple (1:16) to set the window boundaries.
If the operator started from tuple (1:29, 68), the windows would have been [1:29,1:39), [1:39,1:49), etc. The
operator could also round down the initial window boundary to the closest multiple of 10 minutes (the
value of the advance), to make these boundaries independent of the tuple values. With this approach, the
aggregate would have computed averages for windows [1:10,1:20), [1:20,1:30), [1:30,1:40), etc., producing the
following output:

Output 3: (1:10, 68), (1:20, 69), (1:30, 67), ...

Borealis supports only sliding windows. In Borealis, windows can also be defined directly on a static
number of input tuples (e.g., produce an average temperature for every 60 measurements).

In general, window specifications render a stateful operator sensitive to the order of its input tuples.
Each operator assumes that tuples arrive ordered on the attribute used in its window specification. The
order then affects the state and output of the operator. For example, when an operator with a 10-minute
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Figure 3.3: Sample output from a join operator.

sliding window computes the average temperature for 1:10 pm and receives a tuple with a measurement time
of 1:21 pm, the operator closes the window, computes the average temperature for 1:10 pm, produces an
output tuple, and advances the window to the next ten-minute interval. If a tuple with a measurement time
of 1:09 pm arrives after the window closed, the tuple is dropped. Hence, applying an aggregate operator
to the output of a Union produces approximate results, since the Union does not sort tuples while merging
its input streams. Figure 3.2 illustrates a simple aggregate computation. In the example, tuples have three
attributes: a measurement time, a location (room identified with a letter), and a temperature value. The
aggregate produces separately for each room, the average temperature every hour.

Join is another stateful operator. Join has two input streams and, for every pair of input tuples (each
tuple from a different stream), Join applies a predicate over the tuple attributes. When the predicate
is satisfied, Join concatenates the two tuples and forwards the resulting tuple on its output stream. For
example, a Join operator could concatenate a tuple carrying a temperature reading with a tuple carrying
a humidity reading, every time the location of the two readings is the same. The relational Join operator
accumulates state that grows linearly with the size of its inputs, matching every input tuple from one relation
with every input tuple from the other relation. With unbounded streams, it is not possible to accumulate
state continuously and match all tuples. Instead, the stream-based Join operator matches only tuples that
fall within the same window. For two input streams, R and S, both with a time attribute, and a window size,
w, Join matches tuples that satisfy |r.time−s.time| ≤ w, although other window specifications are possible.
Figure 3.3 illustrates a simple Join operation. In the example, tuples on stream S have three attributes: a
measurement time, a measurement location (room identified with a letter), and a temperature value. Tuples
on stream R have a humidity attribute instead of a temperature attribute. The Join matches temperature
measurements with humidity measurements taken within one hour of each other in the same room.

In summary, stateful operators, in Borealis, perform their computations over windows of data. Because
operators do not keep any history between windows, at any point in time, the state of an operator consists
of the current window boundaries and the set of tuples in the current window. Operators can keep their
state in aggregate form. For instance, the state of an average operator can be summarized with a sum and
a number of tuples.

Stateful operators can have a slack parameter forcing them to wait for a few extra tuples before closing
a window. Slack enables operators to support bounded disorder on their input streams. Operators can
also have a timeout parameter. When set, a timeout forces an operator to produce a value and advance
its window even when no new tuples arrived. Timeouts use the local time at the processing node. When a
window of computation first opens, the operator starts a local timer. If the local timer expires before the
window closes, the operator produces a value.

11



3.3 Query Diagrams

In Borealis, the application logic takes the form of a dataflow. To express queries over streams, users
or applications compose operators together into a “boxes and arrows” diagram, called a query diagram.
Figure 3.4 shows an example of a query diagram.







 





















 



























Figure 3.4: Example of a query diagram from the network monitoring application domain.
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Chapter 4

Query Algebra

4.1 Network Definition

Networks are defined by Borealis Application XML files as summarized in Figure 4.1. The boralis.dtd
contains a formal definition with comments. A copy that corresponds to the current release is posted at:

http://www.cs.brown.edu/research/borealis/borealis.dtd

The reference copy that corresponds to the source code is in:

borealis/src/src/boralis.dtd

13



<?xml version="1.0"?> <!DOCTYPE borealis SYSTEM
"http://www.cs.brown.edu/research/borealis/borealis.dtd">

<borealis>
<input stream={stream name} schema={schema name} />
<output stream={stream name} [schema={schema name}] />

<box name={box name} type={transform} >
<in stream={input stream name} />
<out stream={output stream name} />
<parameter name={parameter name} value={parameter value} />
<access table={table name} />

</box>

<query name={query name} />
<box name={box name} type={transform} >

<in stream={input stream name} />
<out stream={output stream name} />
<parameter name={parameter name} value={parameter value} />

</box>
</query>

<connection_point_view name={view name} stream={stream name} >
<order field={field name} />?

( <size value={number of tuples} />
| <range start={start tuple} end={end tuple} />
)
</connection_point_view>

</borealis>

Figure 4.1: Summary of a Borealis Network Definition XML
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4.2 Query Deployment

A deployment file specifies how the Borealis network is distributed over Borealis components. Deployment
XML is summarized below and described in detail in Section 5.2.4.

When no deployment XML files are passed to the Head then a default deployment is created. The default
deployment uses default values for endpoints and deploys the network to a single node. A publish element
is a assigned to each input element and a subscribe is a assigned to each output. No regional or global
components are deployed. Only simple applications can get by without a deployment file.

When testing a system with multiple components it is often convenient to deploy them all on a single
computer. Running the Head with the -l option will override the ports specified in the deployment XML
with ports on the local host computer. After the application is debugged on a single computer then you can
distribute it over multiple computers.

Applications may also pass XML to the Head using dynamic deployment. When no XML files are given
to the Head via the command line it runs in persistent mode. The ”-p” option forces persistent operation
when XML files are given. Note that Global components require that the Head be run in persistent mode.

Applications pass XML to a persistent Head using the RPC calls deployXmlString and deployXmlFile in
the HeadServer class. Applications can include borealis/tool/head/HeadClient.h to access these methods.

<?xml version="1.0"?>
<!DOCTYPE borealis SYSTEM "http://www.cs.brown.edu/research/borealis/borealis.dtd">

<deploy>
<publish stream={input stream} [endpoint={node}] />
<subscribe stream={output stream} [endpoint={monitor}] [gap={gap size}] />

<node endpoint={node} [query={query name ...} ] />

<region node={node} [endpoint={regional component}] />
<global endpoint={global component} />

<replica_set name={set name} query={query name ...} >
<node ... /> ...

</replica_set>

<client [prefix={class prefix}] [endpoint={monitor}] >
<publish ... /> ...
<subscribe ... /> ...

</client>
</deploy>

Figure 4.2: Summary of a Borealis Deployment XML
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4.3 XML Attributes

4.3.1 Endpoint and Node Attributes

Data and control ports are specified by endpoint and node attributes. They designate a communications port
for a component that receives data or control information from another component. A port is designated by
the IP address of the computer running the receiving component and a port number. The IP address may
be designated by the name of the computer or a dotted IP address. The port number is a 16 bit unsigned
integer used to select a unique communications channel. They are encoded as:

[{host address}] [:{port number}]

The host address defaults to the computer running the Head. Similarly if ”localhost” or the IP address
”127.0.0.1” refers to the computer running the Head. Different default values are used for port numbers
depending on the type of component. Constants for the defaults are defined in:
borealis/src/modules/common/common.h

Host Type Default Port XML Elements
Borealis Node 15000 node endpoint, region node, publish endpoint
Output Monitor 25000 subscribe endpoint, client endpoint
Head 35000 Persistent Head; used for dynamic deployment.
Regional Component 45000 region endpoint
Global Component 55000 global endpoint

Table 4.1: Default ports for Programs and Elements.

4.3.2 XML Tags

XML is a case sensitive language. By convention the tags in Application XML are lowercase. They consist
of English keywords using an underscore between words (e.g. replica set).

The names of Borealis objects are case insensitive. They are converted to lowercase names by the Head
when they are deployed to Borealis nodes. Any name tag or a reference to one is also case insensitive. Note
that some parameter values can have references to names. Only for these parameters, the value elements are
lowercased and are consequently case insensitive:

expression.* key
output-expression.* sql
out-field.* group-by
out-field-name.* order-on-field
aggregate-function.*
aggregate-function-output-name.*

Figure 4.3: Parameter names whose values are case insensitive.

When using the marshal tool you might want to capitalize object names depending on how you want
the generated C++ code to correspond to your coding conventions. The case rules for the marshal tool are
described in section 3.
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4.4 Stream Definition

A Borealis network is a dataflow diagram. The network can be distributed over several processing nodes.
There are three types of dataflows: streams, inputs and outputs. Streams are dataflows that are inside a

node. They are implicitly declared from their name in stream attributes on boxes. Inputs and outputs are
dataflows connecting an application program to Borealis nodes.

<input stream={stream name} schema={schema name} />
<output stream={stream name} [schema={schema name}] />

An input passes data from an application to a node and an output sends data from a node to an
application. For now output streams must be connected to streams that are in turn connected to box
outputs. In other words an output can not be directly connected to an input.

The publish and subscribe elements in deployment XML connect application components to streams.
Multiple components may publish data to an input stream and several components may subscribe to an
output stream. Consequently there may be one or more publish or subscribe elements per stream.

Streams have one incoming (source) connections and may fan out to several outgoing (sink) connections.
The data passed over inputs and outputs are flat structures defined by a schema. Schemas for outputs

will eventually be declared implicitly. For now they must be defined.

<schema name={schema name} />
<field name={field name} type={field type} [size={string size}] /> ...

</schema>

Field types are in

Field Contents
int A 32 bit signed integer.
long A 64 bit signed integer.
single A 32 bit IEEE floating point value.
double A 64 bit IEEE floating point value.
string A fixed length, zero filled sequence of bytes.
timestamp A 32 bit time value.

Table 4.2: Field Types
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4.5 Query, Box and Table Definition

Processing in a Borealis node is performed by boxes. A query is a group of boxes. They are useful for
referencing the group as a whole. For clarity other related elements may be included within a query block,
but this does not effect the behavior of the network.

<query name={query name} />
<box name={box name} type={transform} >

<in stream={input stream name} />
<out stream={output stream name} />
<parameter name={parameter name} value={parameter value} />

</box> ...

<table name={table name} schema={schema name} >
<key field={field name} /> ...

[<index field={field name} /> ...]
[<parameter name={parameter name} value={parameter value} /> ...]

</table> ...
</query>

If a box or table is not wrapped in a query, a query will be defined containing just the one box or table.
The name of the query will be the same as the box or table name.

4.6 Connection Point View Definition

<connection_point_view name={view name} stream={stream name} >
<order field={field name} />?

( <size value={number of tuples} />
| <range start={start tuple} end={end tuple} />
)

</connection_point_view>

CPViews can be placed on any arc of the network at the time of the construction or modification of the
network. CPView accumulates tuples that flow on that arc according to specifications defined by the user.
CPView can be fixed or moving, and that is also defined by its specification. Fixed view stores the same set
of tuples that does not change over time. Moving view stores a window of tuples defined with respect to the
latest tuple seen on this arc, so as new tuples are flowing along the arc, the set of tuples stored by a moving
view changes. Several CPViews with different specifications can co-exist on the same arc.

The user can define size or range and optionally prediction function.
Size can be in terms of number of tuples or in terms of values of the order by field of the stream, on which

the CPView is defined. If specification defines the size, it means CPView is moving, and size determines how
many most recent tuples or values CPView stores. Range is defined by specifying start and end parameters
(also, either tuples or order by values). Range can be defined for either fixed or moving CPView. If start
and end are absolute, then the CPView is fixed as the tuples stored do not change. However, if the start and
end are relative (eg. now and ”now - 1 hour”), then the view is moving. Prediction function is an optional
parameter and should be defined only for CPViews that are used for time travel into future. For now this
parameter is not used.

CPViews can be used for attaching ad-hoc queries to them and for time travel. Time travel can be either
into past or into future and it can happen either on the main query network or on a copy of a branch of
the network downstream from the CPView. In order for a CPView to time travel into future, prediction
function F parameter has to be defined for this view. Time travel happens via issuing replay() command on
the CPView. The parameters of replay() determine in what part of past/future time travel happens.
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4.7 Update Queues

The default queue behavior in Borealis is based on an “append semantics”. In other words, every new tuple
that arrives on a stream gets appended to the end of a FIFO queue for that stream. Alternatively, Borealis
allows an application to selectively define some or all of its queues as “update queues”.

An update queue is essentially a lossy tuple storage model which allows a new tuple for a certain key field
value to overwrite an old tuple of the same key field value. For example, assume that we have a stock stream
of the schema (time, symbol, price) where the key field is the symbol field. If we receive (9:00, IBM,
20) followed by (9:01, IBM, 21), then the latter tuple replaces the former tuple in the update queue.

Borealis provides several types of update queues, each having a different preemption policy. An ap-
plication can specify update queues in the network description at different levels of the hierarchy. If no
specification for a queue, then it is append queue by default.

For example, the following indicates that all queues in the complete borealis query network are update
queues of type 0, where the update key is the “symbol” field.

<borealis update_queue="1" queue_type="0" key="symbol" >
...

</borealis>

Similarly, the following indicates that all queues *only* in the given query block, are update queues of
type 0, where the update key is the “symbol” field.

<borealis>
...
<query name="query1" update_queue="1" queue_type="0" key="symbol" >

...
</query>
...

</borealis>

Similar definitions can be made for a specific box element, or for a specific input stream of a given box
element. Please see borealis.dtd for the detailed syntax.

Please note that the queue specifications for child elements override those for the parent elements. For
example, one could define that all queues in the complete borealis network are update queues, and then
could further define a certain query element in that network to have append queues. As a result, all queues
except the ones contained in that specific query block would have update queues.

4.8 Expressions

An expression consists of one or more operands and a set of operations to be applied to them.
An operand is a field name or a constant literal. Constant literals include integer literal (e.g. 10, -20,

+35), float point literal (e.g. 4.39) or string literal. A string literal is a sequence of characters enclosed
within single quotes (e.g. ’abc’). Currently, Borealis does not support special characters such as ”
n”, or quotes.

Borealis supports the following basic operators:

• Arithmetic operator: +, -, *, /, % (mod)

• Comparison operator: >, <, >=, <= , = or ==, != (not equal to)

• Logical operator: and, or, not
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Note that in the query xml, operator “<” should be written as “&lt;”; operator “<=” should be written as
“&lt;=”.

Here are some example expressions:

A
A + B
A % 10 == 3
A = ’abc’
(A > 2.5) or (A &lt; B)
not((A - B > 10) and (A != 20))

where A and B are field names.

4.9 Operators

For details on the semantics of the operators and example, please consult [6].

<schema name="StockType_USD">
<field name="symbol" type="string" size="4" />
<field name="time" type="int" />
<field name="price_usd" type="double" />

</schema>
<schema name="StockType_CAD">

<field name="symbol" type="string" size="4" />
<field name="time" type="int" />
<field name="price_cad" type="double" />

</schema>
<schema name="StockType_ALL">

<field name="symbol" type="string" size="4" />
<field name="time" type="int" />
<field name="price" type="double" />

</schema>

Figure 4.4: Schemas that will be used in this section.

NB:
* Parameters in italics are optional parameters.
* < # > is a zero-based decimal index.

4.9.1 Map

Description: Map composes each output tuple by transforming each input tuple. The transform is specified
by pairs of parameters, one pair for each field in the Out stream. At least one pair of parameters is
required.

Input: 1 input stream.

Parameters: Table 4.3 shows the list of parameters that Map takes.

Output: 1 output stream whose schema is defined by the expressions in Map.
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Parameter Value
expression.< # > an expression over the input stream
output-field-name.< # > output field name receiving the expression result

Table 4.3: Map Parameters

Example: Suppose that one wanted to translate every quote price in the Stock USD stream from US dollars
to Canadian dollars, assuming 1 USD to be equal to 0.75 CAD.

<input stream="Stock_USD" schema="StockType_USD" />
<output stream="Stock_CAD" schema="StockType_CAD" />

<box name="USQuoteToCanadian" type="map">
<in name="Stock_USD" />
<out name="Stock_CAD" />
<parameter name="expression.0" value="symbol" />
<parameter name="output-field-name.0" value="symbol" />
<parameter name="expression.1" value="time" />
<parameter name="output-field-name.1" value="time" />
<parameter name="expression.2" value="price_usd/0.75" />
<parameter name="output-field-name.2" value="price_cad" />

</box>

Functions: The following functions can be used for expressions in Map:

• pad : pad a string to a certain length
• min : find lowest value
• max : find highest value
• sequence : sequence number starting at 0
• strlen : calculate the length of a string
• int : get integer value
• long : get long value
• abs : compute the absolute value of an integer
• now : current Unix timestamp
• cos : cosine function
• acos : arc cosine function
• cosh : hyperbolic cosine function
• tan : tangent function
• atan : arc tangent function
• tanh : hyperbolic tangent function
• sin : sine function
• asin : arc sine function
• sinh : hyperbolic sine function
• ln : natural logarithmic function
• log : base-10 logarithmic function
• sqrt : square root function
• exp : base-e exponential function
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• floor : floor function: largest integral value not greater than argument
• ceil : ceiling function: smallest integral value not less than argument
• pow : ppower function
• atan2 : arc tangent function of two variables

4.9.2 Filter

Description: Filter applies predicates to each input tuple and route tuples to the output stream of the first
predicate that evaluates to true. If none of the predicates evaluate to true, tuples can be routed to a
separate stream.

Input: 1 input stream.

Parameters: Table 4.4 shows the list of parameters that Filter takes.

Parameter Value
expression.< # > a predicate over the input stream
pass-on-false-port 1 to output false tuples, 0 otherwise

Table 4.4: Filter Parameters

Output: There is an output stream for each predicate plus an additional stream when pass-on-false-port
is 1. The schemas of the output streams are all the same as the schema of the input stream.

Example: Suppose that one wanted to separate quotes from Stock USD stream into two streams - Stock USD large
containing quote prices greater than 10 and Stock USD small containing quote prices less than or equal
to 10.

<input stream="Stock_USD" schema="StockType_USD" />
<output stream="Stock_USD_large" schema="StockType_USD" />
<output stream="Stock_USD_small" schema="StockType_USD" />

<box name="FilterQuotes" type="filter">
<in name="Stock_USD" />
<out name="Stock_USD_large" />
<out name="Stock_USD_small" />
<parameter name="expression.0" value="price>10" />
<parameter name="pass-on-false-port" value="1" />

</box>

4.9.3 Aggregate

Description: Aggregate applies one or more aggregate functions to sliding windows over its input stream.
At least one aggregate function is required.

Input: 1 input stream.

Parameters: Table 4.5 shows the list of parameters that Aggregate takes.

Output: 1 output stream whose schema depends on the order-by parameter as follows:
If order-by is FIELD, output schema: (group-by*, order-on-field, aggregate-function.< # >).
If order-by is FIELD, output schema: (<group-by>*,[order-on-field],aggregate-function.< # >).
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Parameter Value
order-by FIELD or TUPLENUM specifying whether the order is to be main-

tained
by values in the input tuples or the arrival order of input tuples

order-on-field integer field to order input tuples on
(mandatory if order-by is FIELD OR window-size-by is VALUES)

group-by fields separated by “ , ” if grouping is required
window-size integer specifying the size of the window
window-size-by VALUES or TUPLES specifying whether the number of tuples in a

window is given by the values of the order-on-field of the
input tuples or the arrival order of the input tuples

advance integer specifying how to advance/slide the window
independent-window-alignment boolean value (set to either “1” or “0”). When true (i.e.,

value=”1”), the window alignment will always be rounded-down
to the closest multiple of the advance. When false (i.e., value=”0”
or default setting), the window alignment is defined by the value
of the first input tuple processed by the operator.

slack integer specifying how much out-of-order tuples are tolerated
in the input tuples

timeout integer specifying how long to wait before windows
close automatically

aggregate-function.< # > aggregate function
aggregate-function-output-
name.< # >

output field name receiving the aggregate result

drop-empty-outputs boolean value (set to either “1” or “0”). False by default. When
true, the aggregate does not output any tuples for windows that
were empty.

Table 4.5: Aggregate Parameters

Example 1: Suppose that one wanted to calculate the 30 minutes moving average of every symbol every 15
minutes for quote prices from the Stock USD stream. Let us assume that the time field in Stock USD
denotes seconds since the start time. Also, let’s assume that we allow slack of 5 for out-of-order tuples
and that windows timeout after 10 minutes.

<input stream="Stock_USD" schema="StockType_USD" />
<output stream="Stock_average" schema="StockType_USD" />

<box name="MovingAverage" type="aggregate">
<in name="Stock_USD" />
<out name="Stock_average" />
<parameter name="aggregate-function.0" value="average(price)" />
<parameter name="aggregate-function-output-name" value="movingaverage" />
<parameter name="order-by" value="time" />
<parameter name="order-on-field" value="FIELD" />
<parameter name="group-by" value="symbol" />
<parameter name="window-size" value="1800" />
<parameter name="window-size-by" value="VALUES" />
<parameter name="advance" value="900" />
<parameter name="slack" value="5" />
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<parameter name="timeout" value="600" />
</box>

Example 2: Suppose that one wanted to calculate the moving average of the last 7 quote prices advancing
each window by 5 tuples from the Stock USD stream.

<input stream="Stock_USD" schema="StockType_USD" />
<output stream="Stock_average" schema="StockType_average" />

<schema name="StockType_tuple_average">
<field name="symbol" type="string" size="4" />
<field name="movingaverage" type="double" />

</schema>

<box name="MovingAverage" type="aggregate">
<in name="Stock_USD" />
<out name="Stock_tuple_average" />
<parameter name="aggregate-function.0" value="average(price)" />
<parameter name="aggregate-function-output-name" value="movingaverage" />
<parameter name="order-on-field" value="TUPLENUM" />
<parameter name="group-by" value="symbol" />
<parameter name="window-size" value="7" />
<parameter name="window-size-by" value="TUPLES" />
<parameter name="advance" value="5" />

</box>

4.9.4 AuroraJoin, Join

Description: Both join operators pair tuples from two input streams that are within a specified distance
on their order fields and that satisfy some input predicate.

The difference between the two joins is how the trimming of the window buffers is done. Join trims tu-
ples from the buffer of the same input stream as the tuple currently being processed whereas AuroraJoin
trims tuples from the buffer of the other stream.

Input: 2 input streams (schemas do not need to match).

Parameters: Table 4.6 shows the list of parameters that Filter takes.

Output: If out-field.< # > are specified, fields mentioned are included in the output schema. Otherwise,
fields from both the input streams are concatenated.

Example: Suppose that one wanted to join tuples from the Stock USD and Stock CAD streams with the
same symbol over a 1 minute window and we care only about the values from the Stock USD stream
in the output stream.

<input stream="Stock_USD" schema="StockType_USD" />
<input stream="Stock_CAD" schema="StockType_CAD" />
<output stream="Stock_joined" schema="StockType_USD" />

<box name="MovingJoin" type="aurorajoin">
<in name="Stock_USD" />
<in name="Stock_CAD" />
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Parameter Value
predicate predicate over the input streams
left-buffer-size size of the window for the first stream
right-buffer-size size of the window for the second stream
left-order-by VALUES or TUPLES (same specification as Aggregate)
right-order-by VALUES or TUPLES (same specification as Aggregate)
left-order-on-field integer field to order input tuples on the first stream
right-order-on-field integer field to order input tuples on the second stream
timeout integer specifying how long to wait before eliminating

tuples from the join window
out-field.< # > field to be included in the output
out-field-name.< # > field name for output field

Table 4.6: Join Parameters

<out name="Stock_joined" />
<parameter name="predicate" value="left.symbol==right.symbol" />
<parameter name="left-buffer-size" value="60" />
<parameter name="right-buffer-size" value="60" />
<parameter name="left-order-by" value="VALUES" />
<parameter name="right-order-by" value="VALUES" />
<parameter name="left-order-on-field" value="time" />
<parameter name="right-order-on-field" value="time" />
<parameter name="out-field.0" value="left.time" />
<parameter name="out-field-name.0" value="time" />
<parameter name="out-field.1" value="left.symbol" />
<parameter name="out-field-name.1" value="symbol" />
<parameter name="out-field.2" value="left.price" />
<parameter name="out-field-name.2" value="price" />

</box>

4.9.5 BSort

Description: BSort is an approximate sorting operator that accepts an integer order field, a pass count n
and an optional grouping fields to perform an approximate sort equivalent to n passes of bubble sort
over each group.

Input: 1 input stream

Parameters: Table 4.7 shows the list of parameters that BSort takes.

Parameter Value
order-on integer field to sort on
slack integer specifying the number of passes of bubble sort
group-by fields separated by “ , ” if the sort is to performed in groups

Table 4.7: BSort Parameters

Output: 1 output stream with the same schema as the input stream.
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Example: Suppose that one wanted to perform 5 passes of bubble sort on the time of each quote price on
the Stock USD stream for each symbol.

<input stream="Stock_USD" schema="StockType_USD" />
<output stream="Stock_USD_bsorted" schema="StockType_USD" />

<box name="BSortQuotes" type="bsort">
<in name="Stock_USD" />
<out name="Stock_USD_bsorted" />
<parameter name="order-on" value="time" />
<parameter name="slack" value="5" />
<parameter name="group-by" value="symbol" />

</box>

4.9.6 Union

Description: Union merges one or more streams of tuples with the same schema into a single stream that
has arbitrarily determined order.

Input: 1 or more input streams with the same schema.

Parameters: Union does not take any parameters. Streams to merge are defined in the in tag.

Output: 1 output stream with the same schema as the input streams.

Example: Suppose that one wanted to merge the quote prices Stock USD and Stock CAD streams to one
stream containing all the stock prices called Stock ALL.

<input stream="Stock_USD" schema="StockType_USD" />
<input stream="Stock_CAD" schema="StockType_CAD" />
<output stream="Stock_ALL" schema="StockType_ALL" />

<box name="UnionQuotes" type="union">
<in name="Stock_USD" />
<in name="Stock_CAD" />
<out name="Stock_ALL" />

</box>

4.9.7 Lock, Unlock

Description: Lock and Unlock are used to synchronize concurrent access to an integer key field of a given
stream.
When Lock receives input tuple with key field of a certain value, if that value has not already been
locked, then Lock puts a lock on the key value and passes the tuple to its output. Otherwise, the tuple
is stored in a list of pending tuples. Each time the box is scheduled, Lock attempts to acquire the lock
for any pending and newly arriving tuples, and releases the tuples for which it is able to acquire the
lock.
When Unlock receives input tuple with key field of a certain value, it unlocks the corresponding key
and passes the tuple to its output.
Lock and Unlock have the same input, output, and parameter properties, as described below.

Input: 1 input stream.

Parameters: Table 4.8 shows the list of parameters that Lock and Unlock take.

Output: There is 1 output stream of the same schema as the input stream.
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Parameter Value
lockset a string representing the name for the mutex lock managing access

to a set of integer key values
key a string representing the name of the integer field for the lock key

Table 4.8: Lock/Unlock Parameters

4.9.8 WaitFor

Description: WaitFor is another operator that is used to achieve synchronization in Borealis. It accepts
two input streams. The first stream is buffered until a tuple on the second stream is received that
satisfies a certain synchronization criteria. WaitFor essentially buffers each tuple t on one input stream
either until a tuple arrives on the second input stream that, with t, satisfies a given predicate, or until
the tuple times out, in which case t is discarded.

Input: 2 input streams (not necessarily of the same schema).

Parameters: Table 4.9 shows the list of parameters that WaitFor takes.

Parameter Value
timeout integer value specifying how long a tuple should be buffered

before it is discarded
predicate a predicate expression on both of the input streams that

defines the condition under which a tuple should be released

Table 4.9: WaitFor Parameters

Output: There is 1 output stream of the same schema as the first input stream.

4.9.9 Random Drop

Description: Random drop is a system-level operator used for load shedding. For each input tuple, it
probabilistically decides if the tuple should be dropped from the stream.

Input: 1 input stream.

Parameters: Table 4.10 shows the list of parameters that Random Drop takes.

Parameter Value
drop rate float specifying the tuple drop probability
max batch size integer specifying the maximum gap (i.e., an upper limit for the number of tuples

that can be dropped in a row). If not important, use a large value for this parameter.

Table 4.10: Random Drop Parameters

Output: There is 1 output stream of the same schema as the input stream.

Example:
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<input stream="Stock_USD1" schema="StockType_USD" />
<output stream="Stock_USD2" schema="StockType_USD" />

<box name="RandomDropBox1" type="random_drop">
<in name="Stock_USD1" />
<out name="Stock_USD2" />
<parameter name="drop_rate" value="0.5" />
<parameter name="max_batch_size" value="10" />

</box>

4.9.10 Window Drop

Description: Window drop is a system-level operator used for load shedding. For each input window,
it probabilistically decides if the window should be kept or dropped. Accordingly, it marks window
starting tuples with a tuple specification flag as part of the tuple’s header (0: drop, T: keep, -1:don’t
care). The positive T value indicates until which windowing field value the tuples should be retained
in the stream. Window drop also drops those tuples from the stream that can be early-dropped when
all the windows that those tuples belong to are decided to be dropped.

Input: 1 input stream.

Parameters: Window Drop takes parameters that are similar to those of an Aggregate. Table 4.11 shows
the list of parameters that Window Drop takes.

Parameter Value
order-by FIELD or TUPLENUM specifying whether the order is to be maintained

by values in the input tuples or the arrival order of input tuples
order-on-field integer field to order input tuples on

(mandatory if order-by is FIELD OR window-size-by is VALUES)
group-by fields separated by “ , ” if grouping is required
window-size integer specifying the size of the window
window-size-by VALUES or TUPLES specifying whether the number of tuples in a

window is given by the values of the order-on-field of the
input tuples or the arrival order of the input tuples.
(Note that the current code supports only the VALUES option).

window-slide integer specifying how to advance/slide the window
drop rate float specifying the window drop probability
max batch size integer specifying the maximum gap (i.e., an upper limit for the number of windows

that can be dropped in a row).

Table 4.11: Window Drop Parameters

Output: There is 1 output stream of the same schema as the input stream.

Example:

<input stream="Stock_USD1" schema="StockType_USD" />
<output stream="Stock_USD2" schema="StockType_USD" />

<box name="WindowDropBox1" type="window_drop">
<in name="Stock_USD1" />
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<out name="Stock_USD2" />
<parameter name="window-size-by" value="VALUES" />
<parameter name="window-size" value="10" />
<parameter name="window-slide" value="1" />
<parameter name="order-by" value="FIELD" />
<parameter name="order-on-field" value="time" />
<parameter name="group-by" value="symbol" />
<parameter name="drop_rate" value="0.5" />
<parameter name="max_batch_size" value="10" />

</box>

4.9.11 Table Operators

Borealis has a number of table operators that execute SQL queries on Berkeley DB tables for each tuple that
they receive on their input stream. The XML definition for these operators has an <access table="..."
/> element which specifies the associated table that needs to be queried. Below we briefly describe these
operators in terms of their parameters and functionality, what they expect as input stream, and what they
produce as output stream(s).

1. Select

Description: For each input tuple t, a SQL expression is executed on the table associated with this
operator. The resulting table tuples are delivered as an output stream. Additionally, the incoming
stream tuple as well as the number of resulting table tuples can be optionally delivered on two
output streams separately.

Input: 1 input stream.

Parameters: Table 4.12 shows the list of parameters that Select takes.

Parameter Value
sql SQL expression
pass-on-no-results 1 (to pass input on no results), 0 (otherwise)
pass-result-sizes 1 (to pass the result count), 0 (otherwise)

Table 4.12: Select Parameters

Output: Select has at least 1 and at most 3 output streams depending on the values of its parameters.
The schemas for these output streams are determined as follows. The first output stream is always
used to deliver the result tuples originating from the table and hence, is of the same schema as
the table. If the pass-on-no-results parameter is set, then the second output stream is used to
deliver tuples originating from the input stream, and hence, is of the same schema as the input
stream. If additionally the pass-result-sizes parameter is set, then the third output stream
is used to deliver tuples whose schema consists of the fields in the where clause + an additional
integer field indicating the count of the resulting table tuples. If only the pass-result-sizes
parameter is set, then the second output stream is used to deliver the count tuples, and the third
output stream is omitted. If neither pass-on-no-results nor pass-result-sizes is set, then
Select delivers only 1 output stream.

2. Insert

Description: This operator inserts each tuple it receives on its input stream into an associated table.
It also emits the same tuple as output if its pass-input parameter is set.
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Parameter Value
sql SQL expression
pass-input 1 (to pass input after insertion), 0 (otherwise)

Table 4.13: Insert Parameters

Input: 1 input stream.

Parameters: Table 4.13 shows the list of parameters that Insert takes.

Output: There is 1 output stream of the same schema as the input stream.

3. Delete

Description: For each input tuple, this operator deletes rows from an associated table. It can output
the input tuple and/or the deleted tuple based on its parameters.

Input: 1 input stream.

Parameters: Table 4.14 shows the list of parameters that Delete takes.

Parameter Value
sql SQL expression
pass-deletions 1 (to pass deleted tuples after deletion), 0 (otherwise)
pass-input 1 (to pass input after deletion), 0 (otherwise)

Table 4.14: Delete Parameters

Output: Delete has at most 2 output streams depending on the values of its parameters. The schemas
for these output streams are determined as follows. If the pass-deletions parameter is set, then
the first output stream is used to deliver the tuples deleted from the associated table, and hence,
is of the same schema as the table. If additionally the pass-input parameter is set, then the
second output stream is used to deliver the tuples arriving on the input stream, and hence, is of
the same schema as the input stream. If only the pass-input parameter is set, then the first
output stream is used to deliver the input tuples instead, in which case the second output is
omitted.

4. Update

Description: This operator performs an update operation on the associated table for each input tuple
received. It then optionally outputs the input tuple, or the values for the output fields specified
as its parameters.

Input: 1 input stream.

Parameters: Table 4.15 shows the list of parameters that Update takes.

Parameter Value
sql SQL expression
pass-input 1 (to pass input after insertion), 0 (otherwise)
output-expression.i expression
output-field-name.i output field name

Table 4.15: Update Parameters
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Output: There is 1 output stream. If pass-input parameter is set, then the output schema is
the same as the input schema. Otherwise, the output schema consists of the fields specified as
output-field-name.i.

4.9.12 User-Defined Operators

In addition to its pre-defined set of operators, Borealis also allows applications to define their custom op-
erators in the form of user-defined boxes. Such operators are placed under a udb directory, and can use or
extend existing operator and expression constructs available in Borealis. In this section, we give examples
for two of such boxes: Delay and CountDistinct.

1. Delay

Description: For each input tuple, Delay withholds the tuple for a specified amount of time and then
releases it as an output tuple.

Input: 1 input stream.

Parameters: Table 4.16 shows the list of parameters that Delay takes.

Parameter Value
delay-ms an integer representing the amount of delay in milliseconds
churn 1 (busywait the CPU), 0 (sleep)

Table 4.16: Delay Parameters

Output: There is 1 output stream of the same schema as the input stream.

Example:

<input stream="Stock_USD" schema="StockType_USD" />
<output stream="Stock_USD_delayed" schema="StockType_USD" />

<box name="DelayBox1" type="delay">
<in name="Stock_USD" />
<out name="Stock_USD_delayed" />
<parameter name="delay-ms" value="100"/>
<parameter name="churn" value="1"/>

</box>

Implementation: The implementation of Delay box extends the basic QBox class provided in Borealis.
It provides custom definitions for 2 basic methods of this class: setup impl() and run impl().
The setup impl() method is essentially used to set the values of the Delay parameters and the
description for the output stream. The run impl() method codes what Delay should do when
it receives a new input tuple. We refer the interested reader to examine the code for Delay to
get more insight on how to write his/her own custom box in Borealis. The “Borealis Developer’s
Guide” also explains the details of writing custom box code.

2. CountDistinct

CountDistinct is an example for a user-defined windowed aggregate in Borealis. It counts the number
of distinct values on a given field of a stream (as opposed to a standard aggregate provided in Borealis
which counts all the values in a window). It is actually not a user-defined operator as Delay, but rather
a user-defined aggregate function. We are including it here to illustrate how one can write such custom
functions to create user-defined windowed aggregate boxes.

31



The implementation of CountDistinct extends the basic Aggregate class provided in Borealis. The
setup method is defined to make sure that CountDistinct produces an output field of type integer.
Additionally, a new CountDistinctWindow class is created to extend AggregateWindow such that
init(), incr(), and final() functions reflect the semantics of the CountDistinct functionality. We
refer the interested reader to examine the code for CountDistinct to get more insight on how to write
his/her own custom windowed aggregate function in Borealis. Again the “Borealis Developer’s Guide”
would also be a good reference for details.

4.9.13 RevisionMap, RevisionFilter, RevisionAggregate

Description: These boxes process revision tuples. There are two modes of revision processing [8]: upstream
processing and downstream processing.

Upstream processing “replays” previously processed input tuples that were involved in the same com-
putations as the tuple being revised. Results are generated using both the old and the new values of
the tuple, and revisions are output if those results differ.

Downstream processing “retrieves” all previously produced output tuples to which the tuple being
revised originally contributed to, and modifies these tuples according to the revision to produce the
revised results. Again, revisions are output if the revised results differ from the original results.

Input: The input stream(s) are the same as the input stream(s) of the respective box that does not process
revisions. A field called revised value (of type string) is required for the boxes to be able to
process revisions. This field is used in conjunction with the rev field field in the header of the tuple.
rev field gives the index of the field (starting at 0) that being revised and revised value gives the
revised value of that field. The actual field that is being revised has the original value.

For example: Let’s say a tuple has the schema of StockType USD. If price usd is being revised from
25.00 to 22.00, then rev field=2, price usd=25.00, and revised value=“22.00”.

Parameters: The parameters for the boxes are the same as the parameters for the respective boxes with
the addition of the two parameters shown in Table 4.17, both of which are mandatory.

Parameter Value
processing-mode UPSTREAM or DOWNSTREAM for the mode of revision processing
anchor (stream name+“CP”) where the CP that provides historical tuples for

this box resides

Table 4.17: Mandatory Parameters for Revision Boxes in Addition to the Parameters of the Boxes

Output: The output schema is the same as the output schema of the respective box that does not process
revisions, with the addition of a final field revised value.

4.9.14 SControl, SUnion, SOutput, and SJoin

These operators are used with the DPC fault-tolerance protocol discussed in Chapter 6.
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Chapter 5

Building Borealis Applications

5.1 Program Build Process

Borealis runs on GNU/Linux i86 computers and is developed with open source packages. Before starting
you will need to install the packages as described in the Borealis Installation Guide. Even if the packages
are set up for you by an administrator, you will need to set up your programming environment as described
in the Installation Guide. See borealis/report/install guide/ or visit the web page posted at:

http://www.cs.brown.edu/research/borealis/public/install/install.borealis.html

A typical Borealis application consists of application C++ code (<program>.cc, ...), Application XML
files (<program>.xml, <program> deploy.xml, ...) and marshaling code (<Program>Marshal.h, <Program>Marshal.cc,
...). The marshal program parses your XML files using the borealis.dtd and generates the marshaling
code. For examples showing how to make and run a simple Borealis applications see the examples in the
borealis/test/simple/ directory.

<program>.cc
<program>.xml -> [ marshal ] -> <Program>Marshal.h -> [ c++ ] -> <program>
borealis.dtd <Program>Marshal.cc

Note that you should not put application code within the Borealis source tree. Otherwise it will be
difficult to upgrade the Borealis source tree when new versions or updates are released.

Run a copy of the borealis/src/src/borealis program for each Borealis node used in your application.
The nodes may be run on the same or different computers. To build the borealis/src/src/borealis
program read the comments in the following script, setup your environment, and then run the script:

> borealis/utility/unix/build.borealis.sh

To build a Borealis application you will need to build the borealis/tool/marshal/marshal tool and
place it in a directory listed on your PATH variable. To run the application you will also need the
borealis/tool/head/BigGiantHead tool. It too needs to be accessible via the PATH variable.

The build script can also be used to build the tools as well as tests and demo programs. At a minimum
you will want to build the client interface and marshal and head tools.

> build.borealis.sh -client -tool.head -tool.marshal

Run a copy of the borealis/src/src/borealis program for each Borealis node used in your application.
The nodes may be run on the same or different computers. Launch any borealis nodes before your application
program.
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There are several ways to construct and deploy a Borealis application; depending on the interplay of
components and level of control needed. The simplest way is to use the marshal tool to build your ap-
plication. In this case, the BigGiantHead program can be launched by the application. The Head will
then set up and start the network and then goes away. Reference documentation for the Head is in:
borealis/tool/head/BigGiantHead.cc

[ program ] <-----> [ borealis ]
<program>.xml --> [ BigGiantHead ] <-----> [ borealis ]

The Head can also continue to run instead of just quitting. A persistent Head can read additional XML
to modify the network on the fly. It will also validate the network (type checking) as it is changed. A
persistent Head is also required for updating the catalog in any global components (see section 4.2).
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5.2 Marshaling Tool

The program, borealis/tool/marshal/marshal, generates C++ code to simplify programming stream con-
nections for Borealis applications. It is not required as application programmers might want to write ap-
plications in other programming languages, directly manage low-level stream RPC calls or need to make
dynamic stream connections. It may not generate the exact code variation required by a given application
as it generates code used by typical applications.

The marshal tool reads the same Application XML files as the Head. However, only the elements related
to input and output streams are processed. The marshal tool can then generate useful output from partially
constructed XML files early in the development process.

<?xml version="1.0"?>
<!DOCTYPE borealis SYSTEM "http://www.cs.brown.edu/research/borealis/borealis.dtd">

<borealis>
<input stream={stream name} schema={schema name} />
<output stream={stream name} schema={schema name} />

<schema name={schema name} >
<field name={field name} type={field type} [size={string size}]/> ...

</schema>
</borealis>

<?xml version="1.0"?>
<!DOCTYPE borealis SYSTEM "http://www.cs.brown.edu/research/borealis/borealis.dtd">

<deploy>
<publish stream={stream name} [endpoint={node}] />
<subscribe stream={stream name} [endpoint={monitor}] />

<client [prefix="<class prefix>"] [endpoint={monitor}] >
<publish ... /> ...
<subscribe ... /> ...

</client>
</deploy>

Figure 5.1: Summary of marshaling XML.

5.2.1 Generated Network Diagram Code

An application may be written as a single program or as a collection of cooperating programs. C++
applications are written using the NMSTL event loop architecture. The code generated by the marshal
program hides the details of interfacing with NMSTL. Still, you need to keep in mind that application
programs are event driven.

You want to connect to applications that are not event driven or that use a different stream format or
processing model (e.g. push versus pull). In these cases the generated code can be used to quickly create a
front-end program for your application. Using a front-end program also allows your application to be written
in any programming language.
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Schemas In C++

<schema name={schema name} >
<field name={field name} type={field type} [size={string size}]/> ...

</schema>

A structure is generated for each schema within the header files generated by the marshal program.
A second structure is generated to permit access to the fields in the tuple header. The generated C++
types that correspond to the fields in a schema are listed in Table 5.1. They are declared in the header:
borealis/src/modules/common/common.h

Schema Field C++ Type Description
int int32 A 32 bit signed integer.
long int64 A 64 bit signed integer.
single single A 32 bit IEEE floating point value.
double double A 64 bit IEEE floating point value.
string char[size] A fixed length, zero filled array.
timestamp int32 A 32 bit time value.

Table 5.1: Default ports for Programs and Elements.

The field names are lowercased from the schema field name element. The structure name is the mixed
case name of the schema. A helper method, setStringField, is generated to copy text in a C++ STL String
variable into a field in a generated tuple.

<schema name="PacketTuple">
<field name="time" type="int" />
<field name="protocol" type="string" size="4" />

</schema>

struct PacketTuple
{

int32 time;
char protocol[ 4 ];

} __attribute__((__packed__));

Figure 5.2: A Structure generated from a schema.
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Inputs In C++

<input stream={stream name} schema={schema name} />

A structure is generated for each input stream containing the tuple data and header information used by
Borealis to process the tuple. The structure name is the proper cased name from the schema name.

<input stream="Packet" schema="PacketTuple />

struct Packet : public TupleHeader
{

PacketTuple _data;
} __attribute__((__packed__));

Figure 5.3: A structure generated from an input.

Several tuples can be transmitted together to improve network efficiency. Two methods are generated
to facilitate sending data to Borealis nodes. The batch method enqueues a tuple and the header to be
transmitted. The send method transmits any enqued tuples.

A header is also generated for a method to be written by the application programmer that equeues and
transmits tuples. It is called after a previous call to the send method and a delay. The delay is given in
milliseconds as the argument to the send method.

The generated names for these three methods is the function followed by the proper case name of the
input stream.

/// Enque a Packet for input.
///
void batchPacket(Packet *tuple);

/// Send enqued Packet inputs.
///
void sendPacket(uint32 sleep);

/// Return here after sending a packet and a delay.
///
sentPacket();

Figure 5.4: Method signatures for the input stream Packet.
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Outputs In C++

<output stream={stream name} schema={schema name} />

Note that output schemas can be inferred from a complete diagram, but not in the partial diagrams
allowed by the marshal tool. Consequently they are required by the marshal tool (even in a full diagram),
but are not required by the Head. The Head uses the output schema declaration as a type check so it is still
a good idea to supply it.

/// The receivedAggregate method must be defined by the application.
/// It is called after a(n) aggregateTUPLE is received.
///
static void receivedAggregate(aggregateTUPLE *tuple);

5.2.2 Generated Deployment Diagram Code

The deployment diagram determines how objects are distributed over multiple nodes and connect to multiple
application programs. Once objects are deployed optimizers, tools, and applications can relocate them or
remove them from the network. As objects are moved any input and output stream connections are managed
by the Borealis system.

Methods are generated to initiate deployment. Using these methods an application program can initiate
deployment in total or in separate phases. The open method is the simplest way for a monolithic application
to activate a Borealis system. It will launch the Head, deploy the Application XML files, and connect all
streams to the application. After the Head is finished deploying the network it terminates.

Not every application program will want to launch the Head. If the Head needs to be run persistently
instead of terminating it needs to be launched by exterior means (see the section about the Head). Appli-
cations consisting of multiple programs only need to launch the Head from one of the programs. It can use
the launchDiagram method to only launch the Head and deploy the Application XML files.

An application program that does not want to launch the Head can use the openInputOutput method
to connect it’s streams. If an application consists of multiple programs the client XML element can be used
to identify which streams are connected to each program. Note that the client element is only processed by
the marshal program and is ignored by the Head.

<client [prefix={class prefix}] [endpoint={monitor}] >
<publish ... /> ...
<subscribe ... /> ...

</client>

A separate header and program file will be generated for each client program. The common name of the
generated class is the proper cased root name of the first Borealis XML file plus the suffix ”Marshal”. For
example, the file name mytest.xml yields the class ”MytestMarshal” defined by the files ”MytestMarshal.h”
and ”MytestMarshal.cc”. The class produced for each client is the proper cased prefix attribute plus the
suffix ”Marshal”.

After the network is deployed and the streams are connected an application will typically call it’s sent
methods to activate publication of it’s input streams. Once the inputs are initiated the NMSTL event loop
can be started using the runClient method. If an application program should ever want to terminate itself
it can do so using the generated method, terminateClient.

5.2.3 Publishing and Subscribing to Streams

The publish element directs input to a particular node. For each publish element a connect method is
generated. They allow individual streams to be published by a node, should an application want fine-
grained control over publications. The name of each method is ”connect” plus the proper cased stream
name.
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<publish stream={input stream} [endpoint={node}] />

A subscribe element lets the node producing the output stream know to direct it to an application monitor
program. For each subscribe element a subscribe method is generated. They allows an individual stream
subscription, should an application want fine-grained control over subscriptions. The name of each method
is ”subscribe” plus the proper cased stream name.

<subscribe stream={output stream} [endpoint={monitor}] />

Subscriptions to outputs must occur after the outputs are deployed. The node producing the output
needs to know about the stream in order to permit and register the subscription. Input connections are
unrestricted and can be made before or after deployment.

5.2.4 Application Deployment

The Head uses deployment XML to set up the network on each node. The publish and subscribe elements
are described in the previous section 3.2.1.

Box and Table Deployment

A node element corresponds to each Borealis node in the network. The endpoint is the receiving channel
for a node and provides unique identification. The query attribute identifies a set of boxes and tables to be
deployed to the node. It is a list of query, box or table names (see section 2.3) separated by blanks. If no
query element is given then the node is free for use by optimizers and high availablility components.

<node endpoint={node} [query={query name ...} ] />

Regional and Global Component Deployment

Some components such as load optimizers and monitoring tools may need catalog information spanning
several Borealis nodes. A region contains an arbitrary set of distributed Borealis nodes. The region element
determines which nodes are included in a region. Regions may overlap and not all nodes need to be included
in any region. In general nodes are assigned to a region based on some criteria such as connectedness,
network latency or physical locality.

The node attribute designates a node to be included in a region and the endpoint attribute designates
the regional component. If the endpoint attribute is omitted the default endpoint for regional components
is used.

<region node={node} [endpoint={regional component}] />

Similar to Regional Components, a Global Component spans all Borealis nodes. However, a global
component is updated through a persistent Head. Consequently it is should run on the same machine as the
Head or one with a reliable low latency connection to the Head.

<global endpoint={global component} />

Replica Set Deployment

<replica_set name={set name} query={query name ...} >
<node ... /> ...

</replica_set>

See Chapter 6 for details about replica sets.
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Chapter 6

Fault-Tolerance

Borealis includes different fault-tolerance mechanisms. One of those mechanisms, called Delay, Process, and
Correct (DPC), is based on replication and enables a distributed SPE to handle both node failures and
network failures. DPC is described in detail in [3] and [4]. We only provide a brief overview here.

6.1 Replication

In DPC, every fragment of the query diagram runs on multiple processing nodes. With this approach, if a
node crashes or becomes disconnected, the system can continue processing by using the output of another
replica of that node.

To replicate a fragment of a query diagram, the easiest technique is to group boxes into queries and
assign each query to a replica set. A replica set is simply a group of Borealis nodes.

As an example, let’s assume that we have four boxes: box1, box2, box3, and box4. We would like to run
box1 and box2 on nodes 127.0.0.1:17100, 127.0.0.1:17200, and 127.0.0.1:17300. We would like to run box3

and box4 on nodes 127.0.0.1:18100, 127.0.0.1:18200, and 127.0.0.1:18300.
In the XML file that describes the query diagram, as we define the boxes, we can group them into queries:

...
<query name="my_query1_2">
<box name="box1" type="..." >
... [ here goes the regular definition for the box ]

</box>
<box name="box2" type="..." >
... [ here goes the regular definition for the box ]

</box>
</query>

<query name="my_query3_4">
<box name="box3" type="..." >
...

</box>
<box name="box4" type="..." >
...

</box>
</query>
...
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In the XML file that describes the deployment, we can assign queries to replica sets instead of assigning
them to individual nodes:

...
<replica_set name="my_set1" query="my_query1_2" >

<node endpoint="127.0.0.1:17100" />
<node endpoint="127.0.0.1:17200" />
<node endpoint="127.0.0.1:17300" />

</replica_set>
<replica_set name="my_set2" query="my_query3_4" >

<node endpoint="127.0.0.1:18100" />
<node endpoint="127.0.0.1:18200" />
<node endpoint="127.0.0.1:18300" />

</replica_set>
...

6.2 Keeping Replicas Consistent

To enable downstream nodes to switch between replicas of an upstream neighbor, and continue processing
inputs exactly where they left off, all replicas of the same processing node must be mutually consistent.
They must process the same input tuples in the same order and go through the same execution states. To
ensure such mutual replica consistency, the query diagram must be made deterministic:

• Timeout parameters are not allowed.

• All Union operators must be replaced with SUnion operators. The latter merge tuples deterministically
by interleaving them in increasing tuple stime values (tuple stime is an attribute in the tuple headers
used only by DPC.1 Because DPC uses the tuple stime values, applications must set these values before
pushing tuples into Borealis.

• All Join operators must be replaced with their deterministic counterpart, SJoin. Note that SJoin is
not very well tested.

• Aggregate operators must have their “independent-window-alignment” option set to true. This ensures
that all replicas of the same aggregate operator will perform their computations over the same sequence
of windows.

• The query diagram must be composed only of the following operators: SUnion, SJoin, Aggregate,
Filter, and Map. These are the operators that are modified to support all the features of DPC. The
modifications are very small, so adding DPC support to other operators is pretty straightforward.
See [3] for details.

In Borealis, tuples have unique identifiers, but these unique identifiers were under construction when
most of the DPC code was developed. For this reason, in this release, it is best if tuples on streams have
one attribute in their schema that serves as a unique identifier for the tuple on the stream.

6.3 Handling Network Partitions

The DPC fault-tolerance mechanism is actually quite fancy. For instance, if all replicas of a node are
unavailable, DPC allows Borealis to continue processing data but labels all results as tentative. These
results are later corrected when the failure heals. To appreciate and use these features, please consult the
detailed descriptions of the approach in [3] and [4].

1Note that SUnion performs additional tasks when failures occur and heal. See [3] for details.
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6.4 Sample Applications

We provide three demo applications for DPC. These applications are located in

borealis/test/composite/fault/
borealis/test/composiste/sunion/

A detailed README is included in each one of those directories. It describes what the applications do
exactly and how to run them. These applications demonstrate primarily what happens when a stream is
completely unavailable and the system must produce tentative tuples and later corrections. This is the main
feature of interest of DPC. However, the sunion-new application also demonstrates the use of a replica-set.
The fault/faulttest application shows a node running a query diagram composed of many different operators.
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Chapter 7

Conclusion
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