
High-Availability Algorithms for Distributed Stream Proc essing∗

Jeong-Hyon Hwang†, Magdalena Balazinska‡, Alexander Rasin†,
Uğur Çetintemel†, Michael Stonebraker‡, and Stan Zdonik†

†Brown University ‡MIT
{jhhwang, alexr, ugur, sbz}@cs.brown.edu {mbalazin, stonebraker}@lcs.mit.edu

Abstract
Stream-processing systems are designed to support an

emerging class of applications that require sophisticatedand
timely processing of high-volume data streams, often origi-
nating in distributed environments. Unlike traditional data-
processing applications that require precise recovery forcor-
rectness, many stream-processing applications can tolerate
and benefit from weaker recovery guarantees. In this paper,
we study various recovery guarantees and pertinent recovery
techniques that can meet the correctness and performance re-
quirements of stream-processing applications.

We discuss the design and algorithmic challenges asso-
ciated with the proposed recovery techniques and describe
how each can provide different guarantees with proper com-
binations of redundant processing, checkpointing, and remote
logging. Using analysis and simulations, we quantify the cost
of our recovery guarantees and examine the performance and
applicability of the recovery techniques. We also analyze how
the knowledge of query network properties can help decrease
the cost of high availability.

1 Introduction

Stream-processing engines (SPEs) [1, 3, 5, 6, 16, 18] are
designed to support a new class of data processing applica-
tions, calledstream-based applications, where data ispushed
to the system in the form of streams of tuples and queries are
continuouslyexecuted over these streams. These applications
include sensor-based monitoring (car traffic, air quality,battle
field), financial applications (stock-price monitoring, ticker
failure detection), and asset tracking. Because data sources
are commonly located at remote sites, stream-based applica-
tions can gain in both scalability and efficiency if the servers
collectively process and aggregate data streams while routing
them from their origins to the target applications. As a re-
sult, recent attention has been focused on extending stream
processing to distributed environments, resulting in so-called
distributed stream-processing systems (DSPSs) [6, 7, 22].

In a DSPS, the failure of a single server can significantly
disrupt or even halt overall stream processing. Indeed, such

∗This material is based upon work supported by the National Science
Foundation under Grants No. IIS-0205445, IIS-0325838, IIS-0325525, IIS-
0325703, and IIS-0086057. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

a failure causes the loss of a potentially large amount of tran-
sient information and, perhaps more importantly, prevents
downstream servers from making progress. A DSPS there-
fore must incorporate a high-availability mechanism that al-
lows processing to continue in spite of server failures. This
aspect of stream processing, however, has received little at-
tention until now [23]. In this paper, we focus on approaches
where once a server fails, a backup server takes over the oper-
ation of the failed one. Tightly synchronizing a primary anda
secondary so that they always have the same state incurs high
run-time overhead. Hence, we explore approaches that relax
this requirement, allowing the backup torebuild the missing
state instead.

Because different stream processing applications have dif-
ferent high-availability requirements, we define three types of
recovery guarantees that address these different needs.

Precise recoveryhides the effects of a failure perfectly, ex-
cept for some transient increase in processing latency, andis
well-suited for applications that require the post-failure out-
put be identical to the output without failure. Many finan-
cial services applications have such strict correctness require-
ments.

Rollback recoveryavoids information loss without guaran-
teeing precise recovery. The output produced after a failure
is “equivalent” to that of an execution without failure, butnot
necessarily to the output of the execution that failed. The out-
put may also contain duplicate tuples. To avoid information
loss, the system must preserve all the necessary input data
for the backup server to rebuild (from its current state) the
primary’s state at the moment of failure. Rollback recovery
is thus appropriate for applications that cannot tolerate infor-
mation loss but may tolerate imprecise output caused by the
backup server reprocessing the input somewhat differently
than the primary did. Example applications include those that
alert when specific conditions occur (e.g., fire alarms, theft
prevention through asset tracking). We show in Section 6
that this recovery guarantee can be provided more efficiently
than precise recovery both in terms of runtime overhead and
recovery speed.

Gap recovery, our weakest recovery guarantee, addresses
the needs of applications that operate solely on the most re-
cent information (e.g., sensor-based environment monitor-
ing), where dropping some old data is tolerable for reduced
recovery time and runtime overhead.

We define these recovery semantics more precisely in Sec-

tion 3. To the best of our knowledge, commercial DBMSs
typically offer precise or gap recovery capabilities [8, 19, 20,
21] and no existing solution addresses rollback recovery ora
similar weak recovery model.

We also investigate four recovery approaches that can pro-
vide one or more of the above recovery guarantees. Since
each approach employs a different combination of redundant
computation, checkpointing, and remote logging, they offer
different tradeoffs between runtime overhead and recovery
performance.

We first introduceamnesia, a lightweight scheme that pro-
vides gap recovery without any runtime overhead (Section 4).
We then presentpassive standbyand active standby, two
process-pairs [4, 10] approaches tailored to stream process-
ing. In passive standby, each primary server (a.k.a. node) pe-
riodically reflects its state updates to its secondary node.In
active standby, the secondary nodes process all tuples in par-
allel with their primaries. We also proposeupstream backup,
an approach that significantly reduces runtime overhead com-
pared to the standby approaches while trading off a small
fraction of recovery speed. In this approach, upstream nodes
act as backups for their downstream neighbors by preserving
tuples in their output queues while their downstream neigh-
bors process them. If a server fails, its upstream nodes replay
the logged tuples on a recovery node. In Section 5, we de-
scribe the details of these approaches with an emphasis on
the unique design challenges that arise in stream processing.
Upstream backup and the standby approaches provide roll-
back recovery in their simplest forms and can be extended
to provide precise recovery at a higher runtime cost, as we
discuss in Section 6.

Interestingly, for a given high-availability approach, the
overhead to achieve precise recovery can noticeably change
with the properties of the operators constituting the querynet-
work. We thus develop in Section 3 a taxonomy of stream-
processing operators, classifying them according to theirim-
pact on recovery semantics. Section 6 shows how such
knowledge helps reduce high-availability costs and affects the
choice of most appropriate high-availability technique.

Finally, by comparing the runtime overhead and recovery
performance for each combination of recovery approach and
guarantee (Section 7), we characterize the tradeoffs among
the approaches and describe the scenarios when each is most
appropriate. We find that upstream backup requires only a
small fraction of the runtime cost of others, while keeping re-
covery time relatively short for queries with moderate state
size. The size of query state and the frequency of high-
availability tasks significantly influence the recovery perfor-
mance of upstream backup and the runtime performance of
passive standby. We also find that there is a fundamental
tradeoff between recovery time and runtime overhead and
that each approach covers a complementary portion of the
solution space.

2 The System Model

A data streamis a sequence of tuples that are continuously
generated in real time and need to be processed on arrival.

Figure 1. An example DSPS

This model of processing data before (or instead of) storing
it contrasts with the traditional “process-after-store” model
employed by all conventional DBMSs. In stream-processing
systems [1, 3, 6], eachoperatoris a processing unit (map, fil-
ter, join, aggregate, etc.) that receives input tuples through its
input queues(one for each input stream) and produces output
tuples based on its execution semantics. A loop-free, directed
graph of operators is called aquery network.

A DSPS partitions its query network across multiple
nodes. Each node runs a stream-processing engine (SPE).
Figure 1 illustrates a query network distributed across three
nodes,Nu, N , andNd. In the figure, streams are represented
by solid line arrows while operators are represented as boxes
labeled with symbols denoting their functions. Since mes-
sages flow on streamsI1 andI2 from Nu to N , Nu is said
to beupstreamof N , andN is said to bedownstreamof Nu.
We assume that the communication network ensures order-
preserving, reliable message transport (e.g., TCP).

Since we focus onsingle-node fail-stop failures(i.e., han-
dling network failures, partitions, or multiple simultaneous
failures including those during recovery is beyond the scope
of this paper), we associate each nodeN with a recovery node
N ′ that is in charge of detecting as well as handling the fail-
ure of N . N in this case is called aprimary node. For N ′

we use the termsrecovery node, secondary node, andbackup
nodeinterchangeably. Each recovery node runs its own SPE,
and has the same query-network fragment as its primary, but
its state is not necessarily the same as that of the primary.

To detect failures, each recovery node periodically sends
keep-alive requests to its primary and assumes that the latter
failed if a few consecutive responses do not return within a
timeout period (for example, our prototype uses three mes-
sages with 100 ms transmission interval, for an average fail-
ure detection delay of 250 ms). When a recovery node detects
the failure of its primary, if it was not already receiving the in-
put streams, it asks the upstream nodes to start sending it the
data (in Figure 1,I1 andI2 switch toI ′1 andI ′2 respectively).
The recovery node also starts forwarding its output streams
to downstream nodes (in Figure 1,O switches toO′).

Because the secondary may need to reprocess some earlier
input tuples to bring its state up-to-date with the pre-failure
state of the primary, each redirected input stream must be able
to replay earlier tuples. For this purpose, each output stream
has anoutput queueas a temporary storage for tuples sent.

Finally, once a failed node comes back to life, it assumes
the role of the secondary. As we discuss in Section 5, each ap-
proach requires a different amount of time for recovery and,
thus, for the system to tolerate a new failure.

3 High-Availability Semantics

In this section, we define three recovery types, based on
their effects as perceived by the nodes downstream from the
failure. Since some operator properties facilitate stronger re-
covery guarantees, we also devise an operator classification
based on their effects on recovery semantics.

3.1 Recovery Types

We assume that a query-network fragment,Q, is given
to a primary/secondary pair.Q has a set ofn input streams
(I1, I2, ..., In) and produces one output streamO. The defi-
nitions below can easily be extended to query-network frag-
ments with multiple output streams.

Because the processing may be non-deterministic, as we
discuss in Section 3.2, executingQ over the same input
streams may each time produce a different sequence of tu-
ples on the output stream. We define anexecutionto be the
sequence of events (such as the arrival, processing or produc-
tion of a tuple) that occur while a node runsQ. Given an
executione, we denote withOe the output stream produced
by e. We express the overall output stream after failure and
recovery asOf + O′, where isf the pre-failure execution
of the primary andO′ is the output stream produced by the
secondary after it took over.
Precise Recovery: The strongest failure recovery guaran-
tee, calledprecise recovery, completely masks a failure and
ensures that the output produced by an execution with fail-
ure (and recovery) is identical to the output produced by an
executione without failure: i.e., Of + O′ = Oe.
Rollback Recovery: A weaker recovery guarantee, called
rollback recovery, ensures that failures do not cause informa-
tion loss. More specifically, it guarantees that the effectsof
all input tuples are always forwarded to downstream nodes in
spite of failures. Achieving this guarantee requires:

1. Input preservation- The upstream nodes must store in
their output queues all tuples that the secondary needs to
rebuild, from its current state, the primary’s state. We re-
fer to such tuples asduplicate input tuplesbecause they
have already entered the primary node.

2. Output preservation- If a secondary is running ahead of
its primary, the secondary must store tuples in its output
queues until all the downstream nodes receive the cor-
responding tuples from the primary node. The tuples at
the secondary are then consideredduplicate.

Because the secondary may follow a different execution
than its primary, duplicate output tuples are not necessarily
identical to those produced by the primary. We consider an
output tuplet at the secondary to beduplicate if the pri-
mary has already processedall input tuples that “affected”
the value oft and forwarded the resulting output tuples down-
stream. We formally define rollback recovery and duplicate
output tuples in [11].

Recovery type Before failure After failure
-Precise t1 t2 t3 t4 t5 t6 ...
-Gap t1 t2 t3 t5 t6 ...
-Rollback
-Repeating t1 t2 t3 t2 t3 t4 ...
-Convergent t1 t2 t3 t

′

2 t
′

3 t4 ...
-Divergent t1 t2 t3 t

′

2 t
′

3 t
′

4 ...

Figure 2. Outputs produced by each type of recovery

We use the configuration in Figure 1 to illustrate these con-
cepts. We cannot discard tuples in the output queues ofI1 and
I2 if N ′ requires them to rebuildN ’s state. Similarly, ifN ′ is
running ahead ofN , it must preserve all tuples inO′’s output
queue until they become duplicate (i.e., Nd receives fromN
tuples resulting from processing the same input tuples).

Rollback recovery allows the secondary to forwarddu-
plicate output tuplesdownstream. The characteristics ofQ
determine the characteristics of such duplicate output tuples
as well as the properties ofOf + O′. We distinguish three
types of rollback recovery. In the first type,repeating recov-
ery, duplicate output tuples areidentical to those produced
previously by the primary. With the second type,convergent
recovery, duplicate output tuples are different from those pro-
duced by the primary. The details on such situations are dis-
cussed in Section 3.2 underconvergent-capableoperators. In
both recovery types, however, the concatenation ofOf andO′

after removing duplicate tuplesis identical to an output with-
out failure,Oe. Finally, the third type of recovery,divergent
recovery, has the same properties as convergent recovery re-
garding duplicate output tuples. Eliminating these duplicates,
however, does not produce an output that is achievable with-
out failure, because of the non-determinism in processing.
Gap Recovery: Any recovery technique that does not ensure
both input and output preservation may result in information
loss. This recovery type is calledgap recovery.
Example: Figure 2 shows examples of outputs produced by
each recovery type. With precise recovery, the output corre-
sponds to an output without failure: tuplest1 throught6 are
produced in sequence. With gap recovery, the failure causes
the loss of tuplet4. Repeating recovery produces tuplest2
andt3 twice. Convergent recovery generates different tuples
t′2 and t′3 after failure (but corresponding tot2 and t3) but
then produces tuplest4 and following as would an execution
without failure. Finally, divergent recovery keeps producing
equivalent rather than identical tuples after the failure.
Propagation of Recovery Effects: The semantics above de-
fine the effects of failure and recovery on the output stream of
the failed query-network fragment. These effects then prop-
agate through the rest of the query network until they reach
client applications. Because precise recovery masks failures,
no side effects propagate. Gap recovery may lose tuples. Af-
ter a failure, client applications may thus miss a burst of tu-
ples. Because the query network may aggregate many tuples
into a single output tuple, missing tuples may also result in
incorrect output values:e.g., a sum operator may produce a
lower sum. Rollback recovery does not lose tuples but may
generate duplicate tuples. The final output stream may thus

Convergent−capable

Deterministic

Repeatable

BSort, Resample,

Aggregate (no timeout)

Filter, Map, Join (no timeout)

Arbitrary Union, operators with timeout

Figure 3. Taxonomy of Aurora operators

contain a burst of either redundant or incorrect tuples:e.g., a
sum operator downstream may produce a higher sum value.
It is also possible, however, that duplicate-insensitive opera-
tors (e.g., max) downstream can always guarantee correct re-
sults. In general, the recovery type for a node must be chosen
based on the applications’ correctness criteria and the charac-
teristics of the operators on the node and downstream.

3.2 Operator Classification

We distinguish four types of operators based on their
effects on recovery semantics:arbitrary (including non-
deterministic), deterministic, convergent-capable, and re-
peatable. Figure 3 depicts the containment relationship
among these operator types and the classification of Aurora
operators [1, 2]. The type of a query network is determined
by the type of its most general operator.

An operator isdeterministicif it produces the same out-
put stream every time it starts from the same initial state and
receives the same sequence of tuples on each input stream.
There are three possible causes of non-determinism in op-
erators: dependence on time (either execution time or input
tuple arrival times), dependence on the arrival order of tuples
on different input streams (e.g., union, which interleaves tu-
ples from multiple streams), and use of non-determinism in
processing such as randomization.

A deterministic operator is calledconvergent-capableif it
yields a convergent recovery when it restarts from an empty
internal state and re-processes the same input streams, start-
ing from an arbitrary earlier point in time. To be convergent-
capable, an operator must thus rebuild its internal state from
scratch and update it on subsequent inputs in a manner that
eventually converges to the execution that would have existed
without failure. Window alignment is the only possible cause
that prevents a deterministic operator from being convergent-
capable. This is because window boundaries define the se-
quences of tuples over which operators perform computa-
tions. Therefore, a deterministic operator is convergent-
capable if and only if its window alignments always converge
to the same alignment when restarted from an arbitrary one.

A convergent-capable operator isrepeatableif it yields a
repeating recovery when it restarts from an empty internal
state and re-processes the same input streams, starting from
an arbitrary earlier point in time (the operator must produce
identical duplicate tuples). A necessary condition for an oper-
ator to be repeatable is for the operator to use at most one tu-
ple from each input stream to produce an output tuple. If a se-
quence of multiple tuples contributes to an output tuple, then

p per-input-tuple processing time
d network transmission delay between any nodes
λ input tuple arrival rate
C size of checkpoint message
c size of queue-trimming message
M checkpoint or queue-trimming interval
D failure detection delay
r time to redirect input streams
nb ops number of operators in the query network
nb paths number of paths from input to output streams
∆ number of lost or redundant tuples
K delay before processing first duplicate input tuple
Q average number of input tuples to re-process
rec time time spent recreating the failed state (after failure

detection)
bw overhead

bandwidth consumed for high availability
bandwidth consumed for tuple transmission

proc overhead
processing required for high availability

processing required for ordinary tuple processing

Table 1. Summary of notation

restarting the operator from the middle of that sequence may
yield at least one different output tuple. Aggregates are thus
not repeatable in general, whereas filter (which simply drops
tuples that do not match a given predicate) and map (which
transforms tuples by applying functions to their attributes) are
repeatable as they have one input stream and process each tu-
ple independently of others. Join (without timeout) is alsore-
peatable because its windows defined on input streams have
alignments relative to the latest input tuple being processed.

In the following sections, we present approaches for gap
recovery, rollback recovery, and precise recovery, respec-
tively. For each approach, we discuss the impact of the query-
network type on recovery and analyze the tradeoffs between
recovery time and runtime overhead. Table 1 summarizes the
notation that we use.

4 Gap Recovery
The simplest approach to high availability is for the sec-

ondary node to restart the failed query network from an empty
state and continue processing input tuples as they arrive. This
approach, calledamnesia, produces a gap recovery for all
types of query networks. In amnesia, the failure detection
delay, the rates of tuples on streams, and the size of the state
of the query network determine the number,∆, of lost tuples.
This approach imposes no overhead at runtime (c.f. Table 3).

We definerecovery timeas the interval between the time
when the secondary discovers that its primary failed and the
time it reaches the primary’s pre-failure state (or an equiva-
lent state for a non-deterministic query network). Recovery
time thus measures the time spent recreating the failed state.

Since amnesia does not recreate the lost state and drops
tuples until the secondary is ready to accept them, the recov-
ery time is zero. It takes timer to redirect the inputs to the
secondary, but when processing restarts, the first tuples pro-
cessed are those that would have been processed at the same
time if the failure did not happen.I.e., there is no extra delay
due to the failure or recovery.

5 Rollback Recovery Protocols
We present three approaches to achieve rollback recovery,

each one using a different combination of redundant compu-
tation, checkpointing, and logging at other nodes. We first

Query-network type
Approach Repeatable Convergent-capable Deterministic Arbitrary

Passive standby Repeating Repeating Repeating Divergent
Upstream backup Repeating Convergent Divergent Divergent

Active standby Repeating Repeating Repeating Divergent

Table 2. Type of rollback recovery achieved by each high-availability approach for each query-network type

rec time bw overhead proc overhead
Amnesia 0 0 0
Passive standby K + Qp, whereK = r + d; Q = Mλ

2
f1(

1
M

, C) f2(
1
M

, C)
Upstream backup K +Qp, whereK = r+d; Q = |state|+Mλ+2dλ f3(

1
M

, c) f4(
1
M

, nb ops, nb paths)
Active standby ε (negligible) 100%+ f3(

1
M

, c) 100% + 2 ∗ f4(
1

M
, nb ops, nb paths)

Table 3. Recovery time and runtime overhead for each approach

presentpassive standby, an adaptation of the process-pairs
model with passive backup. Passive standby relies on check-
pointing to achieve high availability. Then, we introduce
upstream backup, where upstream nodes in the processing
flow serve as backup for their downstream neighbors by log-
ging their output tuples. Finally, we describeactive standby,
another adaptation of the process-pairs model where each
standby performs processing in parallel with its primary. We
discuss active standby last, because it relies on concepts in-
troduced in upstream backup.

For each approach, we examine the recovery guarantees
it provides, the average recovery time, and the runtime over-
head. We divide the runtime overhead into processing and
communication (or bandwidth) overhead. Table 2 summa-
rizes the recovery types achieved by each approach while Ta-
ble 3 summarizes their performance metrics.
5.1 Passive Standby

In passive standby, each primary periodically sends the
delta of its state to the secondary, which takes over from
the latest checkpoint when the primary fails. Since real-time
response is crucial for many stream-processing applications,
the main challenge in passive standby is to enable the primary
to continue processing even during a checkpoint.

The state of a query network consists of the states of in-
put queues of operators, operators themselves, and the node
output queues (one for each output stream). Each check-
point message (a.k.a. state update message) thus captures the
changes to the states of those queues and operators on the pri-
mary node since the last checkpoint message was composed.
For each queue, the checkpoint message contains the newly
enqueued tuples as well as the last dequeue position. For an
operator, however, the content of the message depends on the
operator type. For example, the message is empty for state-
less operators while it stores, for an aggregate operator, either
some summary values (e.g., count, sum, etc.) or the actual tu-
ples that newly entered the operator’s state.

To avoid the suspension of processing, the composition of
a checkpoint message is conducted along a virtual “sweep
line” that moves from left (upstream) to right (downstream).
At every step, an operator closest to the right of the sweep line
is chosen and once its state difference is saved in the check-
point message, the sweep line moves to the right of the oper-
ator. The primary is free to execute operators away from the

sweep line both upstream and downstream because these con-
current tasks do not violate the consistency of the checkpoint
message. Indeed, executing operators to the left of the sweep
line is equivalent to executing them after checkpointing. Ex-
ecuting operators to the right of the sweep line corresponds
to executing them before the message composition.

Passive standby guarantees rollback recovery as follows:
(1) input preservation- each upstream primary node pre-
serves output tuples in its output queues until they are safely
stored at the downstream secondaries. In Figure 1, whenever
standby nodeN ′ receives a checkpoint fromN , it informs
upstream nodeNu about the new tuples that it received on its
input streams,I ′1 andI ′2. Nu discards only those acknowl-
edged tuples from its output queues. (2)output preservation
- the secondary is always “behind” the primary because its
state corresponds to the last checkpointed sate.

If a primary fails, the secondary takes over and sends all
tuples from its output queues to the downstream nodes. The
secondary also asks upstream nodes to start sending it their
output streams, including tuples stored in their output queues.
When the failed node rejoins the system, it assumes the role
of the secondary. Because the new secondary has an empty
state, the primary sends its complete state in the first check-
point message.

Recovery Type: Because the secondary node restarts from
a past state of its primary, passive standby provides repeat-
ing recovery for deterministic query networks and divergent
recovery for others.

Recovery Time: Passive standby has a short recovery time
because the backup holds a complete and recent snapshot of
the primary’s state. Recovery time is equal toK +Qp, where
K is the delay before the recovery node receives its first input
tuple,Q is the number of duplicate input tuples it reprocesses,
andp is the average processing time per input tuple.K is the
sum ofr (the time to redirect input streams) andd (the time
for the first tuple to propagate from the upstream nodes).Q
is on average half a checkpoint interval worth of input tu-
ples. The average number,∆, of duplicate tuples is close to
Mλout, whereM is the checkpoint interval andλout is the
rate of tuples on output streams.

Overhead: Passive standby imposes high runtime over-
head. The bandwidth overhead is inversely proportional to

NNu App

tuples

Level-0 ACK

Level-1 ACK
Trim

output

queues

Produce tuples

and store in

output queues
tuples

Map output

tuples onto

input tuples

Consume

tuples

Process tuples,

produce new

tuples and

store in output
queues

Level-0 ACK

Map output
tuples to

input tuples

“Tuples

received”
“Effect of tuples

saved at App”

“Tuples

received”

Figure 4. Inter-node communication in upstream backup

the checkpoint interval and proportional to the size of check-
point messages. The processing overhead consists of gen-
erating and processing checkpoint messages (proportionalto
the bandwidth overhead). The checkpoint interval (M) de-
termines the tradeoff between runtime overhead and recovery
time. Table 3 summarizes these results.

5.2 Upstream Backup

In upstream backup,upstream nodes act as backups for
their downstream neighborsby logging tuples in their out-
put queues until all downstream neighbors completely pro-
cess these tuples. For instance, in Figure 1, nodeNu serves
as backup for nodeN : if N fails, N ′ restores the lost state
by re-processing the tuples logged atNu. When a failed node
rejoins the system, it assumes the role of the recovery node
starting from an empty state. The system is then able to tol-
erate a new failure without further delay.

The main difficulty of this approach is to determine the
maximum set of logged tuples that can safely be discarded
given operator non-determinism and the many-to-many rela-
tionship between input and output tuples.

Figure 4 shows a typical communication sequence be-
tween three nodesNu, N , andApp. Each node produces
and sends tuples downstream while storing them in its out-
put queues. Each node also periodically acknowledges re-
ception of input tuples by sending level-0 acks to its direct
upstream neighbors. When a node (e.g., N) receives level-
0 acks from downstream neighbors (e.g., App), it notifies its
own upstream neighbors (e.g., Nu) about the earliest logged
tuples (one perNu’s output) that contributed to producing the
acknowledged tuples and are thus the oldest tuples necessary
to re-build the current state (ofN). Discarding only earlier
tuples allows the system to survive single failures. The noti-
fications are thus called level-1 acks (denotedACK(1, S, u),
whereS identifies a stream andu identifies a tuple on that
stream). Leaf nodes in the DSPS use level-0 acks to trim
their output queues.

Since upstream nodes log all tuples necessary for the sec-
ondary to re-build the primary’s state from an empty state (in-
put preservation) and the secondary restarts from an empty
state (output preservation), upstream backup provides roll-
back recovery.

5.2.1 Queue Trimming Protocol

To avoid spurious transmissions, nodes produce both level-
0 and level-1 acks everyM seconds. A lower ack frequency

Union 123... 50... ...

500
Filter

901

257

I1

I2

Na

Nb

Nc

S

O
O's output queue

cause((O,123),I1) = (I1,200)

cause((O,123),I
2
) = (I

2
,100)

ACK(0,O,125)
ACK(1,O,50)

ACK(0,O,123)

ACK(1,O,55)

(a) Na receives acks from downstream and new tuples
from upstream. The filter processesI1[900] and produces
S[500]

Union ...188 ...123 50

Filter
187

I1

I2

Na

Nb

Nc

S

O
O's output queue

cause((O,188),I
1
) = (I

1
,900)

cause((O,188),I2) = (I2,257)

ACK(0,I1,901)
ACK(1,I1,200)

ACK(0,I2,257)
ACK(1,I

2
,100)

188

187
188

cause((O,187),I
1
) = (I

1
,900)

cause((O,187),I
2
) = (I

2
,...)

(b) Na trims its output queue at(O, 50) while pushing
new tuplesO[187] and O[188] downstream. Na also
maps the lowest level-0 ack received,(O, 123), onto level-
1 acks

Figure 5. One iteration of upstream backup

reduces bandwidth utilization, but increases the size of output
queues and the recovery time.

To compose level-1 acks, each node finds, for each out-
put streamO, the latest output tupleO[v] acknowledged at
level-0 by all downstream neighbors. For each input stream
I, the node mapsO[v] back onto the earliest input tupleI[u]
that causedO[v]. This backward mapping is conducted by
a functioncause((O, v), I) → (I, u), where(I, u) denotes
the identifier of tupleI[u] and marks the beginning of the se-
quence of tuples onI necessary to regenerateO[v]. We dis-
cuss the cause function next. The node performs these map-
pings for each output stream and identifies the earliest tuple
on each input stream that can now be trimmed. The node pro-
duces level-1 acks for these tuples. Each upstream neighbor
trims its output queues up to the position that corresponds to
the oldest tuple acknowledged at level-1 by all downstream
neighbors. We present this algorithm in more detail in [11].

Figure 5 illustrates one iteration of the upstream-backup
algorithms on one node. In the example, nodeNa receives
level-0 and level-1 acks from two downstream neighborsNb

and Nc. First, since both neighbors have now sent level-
1 acks for tuples up toO[50], Na removes from its output
queue all tuples precedingO[50]. Second, since bothNb and
Nc have sent level-0 acks for tuples up toO[123], Na maps
O[123] back onto the first input tuples that caused it.Na

sends level-1 acks for these tuples, identified with(I1, 200)
and(I2, 100). In the example,Na also receives tuplesI1[901]
andI2[257] from its upstream neighbors and acknowledges
their reception with level-0 acks.

5.2.2 Mapping Output Tuples onto Input Tuples

We now discuss how nodes compute the cause function,
cause((O, v), I) → (I, u). This function maps an arbitrary

output tupleO[v] on streamO onto the earliest input tuple
I[u] on input streamI that has contributed to the production
of O[v] (i.e. affected the value ofO[v]). To facilitate this
mapping, we propose to keep track of the oldest input tuples
that affect any computation, by appendinginput-tuple indica-
tors to tuples as they travel through operators on a node. For a
tupleO[v], these indicators, denoted withindicators(O, v),
contain the identifiers of the oldest tuples on input streams
necessary to generateO[v]. We also call these indicatorslow
watermarks. On any stream, indicator values are monotoni-
cally non-decreasing.

When a tuple enters a node, its indicators are initialized
to its identifier:e.g.,indicators(I, u) = {(I, u)}. Each op-
erator uses the indicators of its input tuples to compute the
indicators for its output tuples. When it is first set up, each
operatoro initializes a watermark variableω for each node-
wide input streamI that contributes to each input streamS of
o: ω[I, S] = 0. As it processes tuples, the operator updates
eachω[I, S] to hold the indicator of the oldest tuple currently
in the state or, for stateless operators, the indicators of the
last tuples processed. When it produces a tuplet, the oper-
ator iterates through allω values and appends(I, ωmin) to
indicators(t), whereωmin is the minimum of allω[I, ∗].

Some operators, such as union, have many input streams
but only a few of them actually contribute to any single out-
put tuple. These operators can reduce the number of indica-
tors on output tuples by appending only indicators for input
streams that actually affected the output tuple value. Thus,
cause((O, v), I) refers to the indicator ofO[v] that corre-
sponds to streamI, or to the indicator of the last preceding
tuple affected byI, if O[v] was not affected byI. Note that
indicators are not sent to downstream nodes. More details
about the use of indicators can be found in [11].

Figure 5 shows an example of managing input-tuple indi-
cators. In Figure 5(a), the filter processesI1[900] and pro-
ducesS[500]. Hence,indicators(S, 500)={(I1, 900)}. In
Figure 5(b), the union operator processes tuplesS[500] and
I2[257] to produceO[187] andO[188] respectively. Hence,
indicators(O, 187) = {(I1, 900)} and indicators(O, 188)
= {(I2, 257)}. Therefore,cause((O, 188), I1) = (I1, 900),
cause((O, 188), I2) = (I2, 257), andcause((O, 187), I1) =
(I1, 900). cause((O, 187), I2) depends on the indicators of
the tuples precedingO.
Recovery Type: Upstream backup restarts from an empty
state producing a repeating recovery for repeatable query net-
works, a convergent recovery for convergent-capable query
networks and a divergent recovery for all others. These guar-
antees are weaker than those of the standby approaches.
Recovery Time:The time,K, to receive the first tuple is the
same as for passive standby but the recovery node may re-
process significantly more tuples. It must re-process (1) all
tuples that contributed to the lost state, (2) a complete queue-
trimming interval worth of tuples on average (due to the pe-
riodic transmission of both level-0 and level-1 acks), and (3)
some extra tuples that account for the propagation delays of
level-0 acks. The number,∆, of redundant tuples is the prod-
uct of the number of tuples to reprocess (Q) and the query-

network selectivity minus the number of tuples that remain as
part of the query-network state.
Overhead: Upstream backup has the lowest bandwidth over-
head because queue-trimming messages, which contain only
the tuple identifiers for streams crossing node boundaries,are
significantly smaller than checkpoint messages used by the
other approaches. The processing overhead is also small: op-
erators keeps track of the oldest tuple (and its indicators)on
each of their input streams that contributes to their current
states. Furthermore, we can reduce the spatial and compu-
tational overhead of managing indicators by processing them
and appending them to tuples occasionally. In general, the to-
tal overhead, as summarized in Table 3, is proportional to the
number of operators and the number of paths, where a path is
a data flow connecting an input stream to an output stream.

5.3 Active Standby
Active standbyis another variation on the process-pairs

model. In contrast to passive standby, with active standby,
each secondary node receives tuples from upstream and pro-
cesses them in parallel with the primary. The secondary, how-
ever, does not send any output tuples downstream. It logs
these tuples in its output queues instead.

The challenge of active standby lies in bounding the out-
put queues on each secondary, while ensuring output preser-
vation. Because the primary and secondary may have non-
deterministic operators, they may have different tuples in
their output queues. To identify duplicate output tuples, we
add a second set of input-tuple indicators to each tuple. Fora
tuple,O[v], this second set contains for each input streamI,
the identifier(I, u) of themost recenttuple that contributed to
the production ofO[v]. We call these identifiershigh water-
marks. A tuple at the secondary is duplicate if it has a lower-
valued high watermark than a tuple at the primary. Indeed,
this tuple results from processing the same or even older in-
put tuples. Each secondary thus trims all logged output tuples
that have a high watermark lower than the high watermarks
of the tuples already received by downstream nodes. For high
watermarks to be correct, we need to distinguish input-tuple
indicators that travel on different paths through a node. We
discuss these details further in [11].

Watermarks are never sent between upstream and down-
stream nodes but they are sent between primary and sec-
ondary nodes, as illustrated in the following example. We
use Figure 5 to illustrate active standby but we assume in-
dicators are high watermarks. WhenACK(0, O, 125) and
ACK(0, O, 123) arrive, nodeNa determines thatO[123] is
now acknowledged at level-0 by both downstream neigh-
bors. Since tupleO[123] maps onto input tuples iden-
tified with (I1, 200) and (I2, 100), the set of identifiers
{(I1, 200), (I2, 100)} is added to the queue-trimming mes-
sage as the entry value forO. When the secondary re-
ceives the queue-trimming message, it discards tuplesu
(from the output queue corresponding toO) for which
cause((O, u), I1) returns a tuple older thanI1[200] and
cause((O, u), I2) returns a tuple older thanI2[100].

If the primary fails, the secondary takes over by sending
the logged tuples to all downstream neighbors, and then con-

Passive standby
Q. network bw overhead procoverhead rectime
Deterministic none negligible none
Arbitrary none negligible none

Active standby
Q. network bw overhead procoverhead rectime
Deterministic none negligible r
Arbitrary determinants determinants r + f5(log. freq.)

Upstream backup
Q. network bw overhead procoverhead rectime

Repeatable f(k)∗size(tuple id)
size(tuple)

negligible none

Convergent f(k)∗size(tuple id)
size(tuple)

double negligible
Arbitrary determinants determinants negligible

Table 4. Added overhead for precise recovery

tinuing its processing. When the failed node rejoins the sys-
tem as the new secondary, it starts with an empty state and
becomes up-to-date with respect to the new primary only af-
ter processing sufficiently many input tuples. Active standby
guarantees rollback recovery since each secondary always re-
ceives what its primary receives (input preservation) and each
secondary discards logged output tuples only when they be-
come duplicate (output preservation).
Recovery Type: Because the secondary processes tuples in
parallel with the primary, active standby provides repeating
recovery for all deterministic query networks and divergent
recovery for others.
Recovery Time: Because the standby continues processing
during failure, it only needs to transmit all duplicate tuples
in its output queue to reach a state equivalent to that of the
primary. Recovery time is therefore negligible. The number,
∆, of redundant tuples is on averageMλout

2 + 2dλout for
each output stream.M determines the trimming interval for
the secondary’s output queues.
Overhead: Because all processing is replicated by the
standby node, bothproc overhead andbw overhead are ap-
proximately 100%. The overheads are actually somewhat
higher due to the processing of input-tuple indicators and
transmitting queue-trimming messages. Table 3 summarizes
these results.

6 Precise-Recovery Extensions
All recovery approaches can achieve precise recovery for

convergent-capable query networks, by eliminating duplicate
tuples during convergence. It is also possible, though much
more costly, to provide precise recovery for arbitrary net-
works. Table 4 summarizes the extra runtime overhead and
recovery time required for precise recovery.
Passive Standby:Passive standby provides repeating recov-
ery for deterministic query networks. To make recovery pre-
cise, before sending any output tuples, the failover node must
ask downstream neighbors for the identifiers of the last tu-
ples they received and then discard all tuples preceding the
ones identified. These requests can be made while the re-
covery node regenerates the failed state, achieving precise re-
covery without additional overhead. For a non-deterministic
query network, because the secondary may produce differ-
ent duplicate output tuples when it takes over, the primary

can only forward checkpointed tuples downstream. This con-
straint causes bursty output while also increasing the end-to-
end latency.
Active Standby: For a deterministic query network, active
standby also makes recovery precise by asking downstream
nodes for the identifiers of the latest tuples they received.The
delay imposed by this request cannot be masked and thus ex-
tends the recovery time byr. For other query networks, we
must ensure that both the primary and secondary follow the
same execution. To do so, whenever a non-deterministic op-
erator executes, the primary must collect all information nec-
essary to replay the execution of the operator. The primary
accumulates such information, called determinants [9]1, in a
log message. Determinants affect both bandwidth and pro-
cessing overhead. The logging frequency affects (1) the re-
covery time, because non-deterministic operators on the sec-
ondary cannot execute until they obtain appropriate determi-
nants, and (2) the end-to-end delay, because the primary can-
not send tuples downstream until the secondary receives all
determinants involved in generating these tuples.
Upstream Backup: In repeatable query networks, operators
produce output tuples by combining at most one tuple from
each input stream. Input-tuple indicators therefore uniquely
identify tuples and can serve for duplicate elimination, offer-
ing precise recovery with negligible extra processing over-
head. For a convergent query network, the secondary must
be able to remove duplicate output tuples during recovery.
It achieves this by using the additional high watermarks as
discussed in Section 5.3. This approach thus doubles the
processing overhead. For repeatable query networks, nodes
forward low watermarks downstream while for convergent-
capable query networks, nodes forward high watermarks in-
stead. In both cases, the extra bandwidth overhead is approx-
imately f(k)∗size(tuple id)

size(tuple) , wheref(k) is a function of the av-
erage number of input streams (at a node) that contribute to
an output stream. As in active standby, upstream backup can
provide precise recovery for more complex query networks
by logging determinants from primary to secondary. Unlike
active standby, these determinants are processed only when
the secondary takes over. The details of the protocol are pre-
sented in [11].

7 Evaluation

We evaluate and compare the performance of each ap-
proach through simulations. Using CSIM [17], we built a
detailed simulator of a DSPS. Table 5 summarizes the main
simulation parameters. The parameter values were obtained
from our prototype implementation, which currently supports
all our recovery types for simple repeatable query networks.
Each point shown in the figures is the average of 25 simula-
tion runs, at least one simulated minute each. Because am-
nesia has no overhead and a zero recovery time, but provides

1The representation of a determinant depends on the operatortype. For
example, the determinant for a random filter could be represented as a bit
vector where each bit shows whether the corresponding tuplepassed or was
dropped. For a union operator, the determinant must includethe exact inter-
leaving of tuples.

Parameter Meaning Default

λ input tuple arrival rate (tuples/s) 1000
D delay to detect the failure of a node (ms) 250
M queue-trimming/checkpoint interval (ms) 50
r time to redirect input streams (ms) 40
Tuple size of a tuple and size of a tuple id (bytes) 50, 8
Network bandwidth(Mbps) and delay(ms) 16, 5
Proc. Cost avg. processing time per input tuple (µs)

Filter — 10
Aggregate (Proc. Cost of Filter) ∗ Window ∗ 1

Advance
100

Selectivity expected value of# of output tuples emitted
of input tuples consumed 0.1

Table 5. Simulation parameters and their default values

0 25 50 75 100
0

20

40

60

80

100

Bandwidth Overhead for High Availability (%)

R
ec

ov
er

y
T

im
e

(m
s)

Passive Standby
Active Standby (rollback)
Active Standby (precise)
Upstream Backup (rollback)
Upstream Backup (precise)

Figure 6. Recovery time and runtime overhead for rollback
and precise recovery as the communication interval varies
from 25 ms to 200 ms (indicated by the arrows)

only gap recovery, we focus our evaluation on the other three
approaches.

We first examine the overhead and recovery performance
of each approach for rollback recovery and a convergent-
capable query network (Section 7.1). We then evaluate the
added overhead of achieving precise recovery (Section 7.2)
and examine the effect of query-network types and other
query-network properties on the performance of each ap-
proach (Section 7.3). We finally examine how performance
changes as a function of query network size (Section 7.4).

For the overhead measurements, we only present band-
width overhead because processing overhead poses similar
tradeoffs while being more difficult to reproduce and evaluate
accurately in simulations. We refer the reader to Sections 4
through 6 for a detailed discussion of processing overheads.

7.1 Runtime Overhead vs Recovery Time

To examine the runtime overhead and recovery time trade-
offs for rollback recovery and a convergent-capable query
network, we simulate an aggregate with 100 ms window,
10 ms advance (this aggregate consumes 10% of a node’s
processing capacity) and default values for other parameters.

The only tunable parameter for each approach is the com-
munication interval, which is the queue-trimming intervalfor
upstream backup and active standby and the checkpointing
interval for passive standby. Figure 6 shows the relation be-
tween recovery time and bandwidth overhead as the commu-
nication interval varies from 25, to 50, 100, 150, and 200 ms.

Looking at the overhead, upstream backup is the clear
winner with an overhead close to zero. Even with a 25 ms
communication interval, the node transmits only one 8-byte
tuple identifier for every 25 tuples it receives, yielding an
overhead of 0.64%. Upstream backup, however, has the slow-
est recovery as it must recreate the complete state of the failed
query network. Upstream backup’s recovery time is also most
sensitive to the duration of the communication interval. Fre-
quent trimming reduces recovery time for a negligible added
overhead until the size of the query network and the time to
redirect the input streams (r is 40 ms in our prototype) even-
tually limits the recovery speed. Recovery time is still rela-
tively short compared with the 250 ms failure detection delay.

Active standby has an overhead of at least 100% because
the secondary receives all input tuples in parallel with the
primary. Queue-trimming messages used to discard output
tuples from the secondary make the overhead slightly exceed
100%. Active standby has a negligible recovery time, though.
The secondary only needs to resend half a queue-trimming
interval worth of duplicate tuples stored in its output queues.

Passive standby’s recovery time is between that of the
other approaches because the secondary already has a snap-
shot of the last checkpoint but must ask upstream nodes to
redirect their output streams and must re-process on average
half a checkpoint worth of tuples. Passive standby’s overhead
varies significantly with the communication interval as each
checkpoint message contains an update of the query-network
state. When operators have a selectivity of less than 1.0,
increasing the interval between checkpoints also increases
the number of tuples processed and dropped without being
checkpointed. The knee at 100 ms corresponds to the 100 ms
window size. The curve would be smoother for a larger query
network.

7.2 Cost of Precise Recovery

Figure 6 also presents the recovery time and runtime
overhead of precise recovery. For passive standby and ac-
tive standby, precise recovery of convergent-capable query
networks adds no runtime overhead compared with roll-
back recovery. Precise recovery increases the runtime over-
head of upstream backup by a little over 16% (equal to:
k∗size(tuple id)

size(tuple) , with k = 1, and size(tuple id)
size(tuple) = 8

50 = 0.16)
because watermarks are now sent downstream. The overhead
thus remains much lower than that of the process-pair based
approaches.

For upstream backup and passive standby, the precise re-
covery time is almost the same as the rollback recovery time.
Upstream backup must now process additional offset indica-
tors but this adds negligible delay. For all approaches, re-
covery nodes must now ask downstream neighbors for the
latest tuples they received. For upstream backup and passive
standby this communication proceeds in parallel with tuple
re-processing (or input stream redirection). Active standby
cannot mask this delay and recovery extends by the constant
valuer (40 ms in our prototype). Overall, all approaches can
offer precise recovery for convergent-capablequery networks
at a negligible incremental cost.

Query Net-
work Type

Result Upstream
Backup

Active
Standby

Passive
Standby

Repeatable Bw overhead (%) 0.64 100.96 101.27
Rec. time (ms) 47.62 1.80 45.88

Convergent- Bw overhead 0.64 100.96 111.55
capable Rec. time 69.86 0.07 48.88
Non- Bw overhead 1.28 101.91 101.90
deterministic Rec. time 50.92 1.82 47.24

Table 6. Effects of query-network type

7.3 Effects of Query-Network Type

We now examine the effects of query-network types on the
basic performance of rollback recovery. Table 6 summarizes
the recovery time and bandwidth overhead of each approach
when the query network consists of a repeatable filter with
selectivity 1.0, our default convergent-capable aggregate, and
a non-deterministic union operator that merges two streams
(500 tuples/s each) into one. Interestingly, the results show
that neither the overheads nor the recovery times of the ap-
proaches are affected by the query networktype.

Upstream backup and active standby use queue-trimming
messages. Their overheads thus depend on the relative rates
of these messages and tuples on input streams rather than any
other property of the query network. In Table 6, the union
has a slightly higher overhead with these approaches because
it has two input streams at half the rate each. The overhead of
passive standby is proportional to the size of the checkpoint
messages, which does not depend on the type of the query
network but on the magnitude of changes in query-network
state between two checkpoints. Because the aggregate has
the greatest differences in state between checkpoints, itsover-
head is highest with passive standby.

Active standby recovers by retransmitting output tuples.
In Table 6, the output rate is ten times lower for the aggre-
gate because of the 10 ms advance, resulting in a faster re-
covery for that operator. The other two approaches recover
by re-processing tuples. Passive standby re-processes half a
checkpoint worth of tuples on average. Its recovery perfor-
mance is thus independent of the type of the query network
but rather depends on processing complexity (during recov-
ery tuples are re-processed at the maximum rate). Upstream
backup’s recovery also depends on processing complexity.
There is, however, a second parameter. The number of tuples
that upstream backup must re-process depends on the size of
the query-network state. For these reasons, the aggregate has
the longest recovery time with these approaches, especially
with upstream backup. For passive standby the increase is
negligible compared with the stream redirection delay.

Hence, for rollback recovery, the query network type does
not affect recovery time or runtime overhead. Rather, the size
of the query-network state and the rate and magnitude of the
state changes affect recovery time of upstream backup and
overhead and somewhat recovery time of passive standby.

7.3.1 Size of Query-Network State

We examine the effects of increasing the size of the query-
network state by simulating the failure and recovery of an

Window size (tuples) 100 200 300 400 500
PS overhead (%) 111.55 111.55 111.54 111.54 111.54
PS rec. time (ms) 48.9 51.7 54.6 60.0 63.9
UB rec. time (ms) 69.9 98.9 138.7 188.5 248.3

Table 7. Effects of query-network state size

Advance (tuples) 100 50 25 10 5
PS overhead (%) 102.6 103.6 105.6 111.6 121.5
PS rec. time (ms) 47.5 47.5 47.6 48.8 51.6
UB rec. time (ms) 62.6 61.4 61.3 69.9 83.8

Table 8. Effects of rate of query-network state change

aggregate operator with increasing window size (100 to 500
tuples), but a constant 10-tuple advance. Table 7 shows the
resulting passive standby (PS) overhead and both passive
standby and upstream backup (UB) recovery times.

Increasing the size of the query-network state does not
necessarily increase the rate at which that state changes. In
this experiment, the overhead of passive standby remains
constant at 112%. The recovery time of passive standby due
to reprocessing tuples (the part in excess of 40 ms) increases
by about a factor of three when the size of the state quintu-
ples. This increase is due to the heavier per-tuple processing
cost, due to computing aggregate values over larger numbers
of tuples. The increase in recovery time is more pronounced
for upstream backup. The time spent reprocessing tuples in-
creases roughly linearly with the size of the state. Upstream
backup must indeed reprocess a number of tuples directly
proportional to the size of the query-network state.

7.3.2 Rate of Query-Network State Change

We examine the impact of increasing the rate at which the
state of a query network changes using an aggregate operator
with decreasing window advance from 100 ms to 5 ms and
thus increasing selectivity from 0.01 to 0.2. Table 8 shows
the impact of this increase in query-network state-update rate
on the overhead of passive standby and the recovery times of
both passive standby and upstream backup.

As expected, the overhead of passive standby increases
with the magnitude of changes in query-network state. The
advance determines the number of tuples that the operator
produces during a checkpoint interval. This number increases
from 1 to 20 as the advance decreases from 100 to 5 ms.

The increased per-input-tuple processing cost due to
a smaller advance, slightly prolongs recovery for passive
standby (visible for an advance of 10 tuples of less). We
might expect the same effect to cause a slight increase in the
recovery time of upstream backup. We measure a decrease
instead. Upstream backup periodically updates the identi-
fiers of the oldest tuples on each input stream that contribute
to the current query-network state. When the state changes
more rapidly, the older tuples are discarded faster and recov-
ery restarts from a later point. This in turn results in a faster
recovery. For a small enough advance, however, the added
processing cost dominates recovery time. As the advance
reaches 10 ms, the recovery time starts increasing.

In summary, for rollback recovery, the size of the query-

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

Bandwidth Overhead for High Availability (%)

R
ec

ov
er

y
T

im
e

(m
s)

Passive Standby
Active Standby (rollback)
Active Standby (precise)
Upstream Backup (rollback)
Upstream Backup (precise)

Figure 7. Effects of the number of operators. The arrows
indicate the directions of the trends

network state increases upstream backup’s recovery time
while the rate and magnitude at which that state changes im-
pacts the runtime overhead of passive standby.

7.4 Effect of Network Size

Increasing the size and complexity of the query network
translates into increasing the size of the query-network state,
the rate at which this state changes, and the processing com-
plexity. As an example, Figure 7 shows the performance of
each approach for a chain of 1 to 5 aggregate operators (with
the parameter values from Table 5). Other configurations
yield similar results.

As expected, increasing the number of operators increases
the overhead of passive standby because the number of tuples
that are produced inside or at the output of the query network
increases. Larger query networks also slightly increase re-
covery time for passive standby because the processing com-
plexity of each tuple increases. The recovery time of up-
stream backup increases rapidly as the state of the query net-
work increases with each extra aggregate. It reaches 170 ms
for 5 operators, which is still relatively short compared with
the 250 ms failure detection delay. Interestingly, even with a
larger query network, upstream backup still provides precise
recovery at a fraction of the cost of the other approaches.

7.5 Discussion

The results show that each approach poses a clear trade-
off between recovery time and processing overhead. Active
standby, with its high overhead and negligible recovery time,
appears particularly well suited for systems where quick re-
covery justifies high runtime costs (e.g., financial services,
military applications).

Passive standby does not seem well suited to stream-
processing systems as its performance is worse than that of
active standby for both recovery time and runtime overhead.
Passive standby, however, is the only approach that easily
provides precise recovery for arbitrary query networks. It
is thus best suited for applications, such as patient monitor-
ing and other medical applications, that impose a somewhat
lower load on the system but necessitate precise recovery.

Additionally, both in our prototype and simulator, we make
the first nodes in the system adopt the passive-standby model
since other approaches impose extra requirements on stream
sources. Active standby requires that each source sends the
stream to two different locations and upstream backup re-
quires that each source loggs the tuples it produces.

Upstream backup provides precise recovery for most
query networks with the lowest runtime overhead but at the
cost of a longer recovery. The recovery time of this approach,
however, can be significantly reduced by distributing the re-
covery load over multiple nodes. In general, upstream backup
is appropriate when short recovery delays are tolerable andis
thus particularly suitable for sensor-based environment and
infrastructure monitoring applications. In contrast to process-
pair approaches, recovery nodes can be chosen among live
nodes allowing all servers to process data streams at runtime.

8 Related Work

Reliability through redundant processing, checkpoint-
ing, and logging has been widely studied in the context
of traditional applications [9]. Recently, there has been
much work on data-stream processing (e.g., Aurora [1, 5],
STREAM [18], TelegraphCQ [6]), including proposals for
distributed engines [7, 22]. In this paper, we investigate how
to achieve high availability in these new systems.

The process-pairs model is adopted by many existing
DBMSs [8, 19, 21, 20]. Oracle10g/DataGuard [19] is one
such facility built on top of Oracle Streams [20]. The lat-
ter enables cross-database event propagation and trigger-rule-
based processing of event streams. DataGuard supports three
recovery modes: maximum protection (MPR), availability
(MAV), and performance (MPE). MPR synchronously ap-
plies the same update to multiple machines as part of the
same transaction, providing precise recovery. MPE asyn-
chronously transmits redo logs to the standby, providing gap
recovery only. MAV switches between MPR and MPE based
on the accessibility of the standby. Our approaches provide
precise recovery at a lower overhead because checkpoints are
asynchronous and they also offer rollback recovery.

Commercial workflow systems [13] also rely on redun-
dant components to achieve high availability. A variation
of the process-pairs approach is used in the Exotica work-
flow system [14]. Instead of backing up process states, Ex-
otica logs changes to the workflow components, which store
inter-process messages. This approach is similar to upstream
backup in that the system state can be recovered by repro-
cessing the component backups. Unlike upstream backup,
however, this approach does not take advantage of the data-
flow nature of processing, and therefore has to explicitly back
up the components at remote servers.

The DR scheme [15], which efficiently resumes failed
warehouse loads, is also similar to upstream backup. Instead
of offset-indicators, DR uses output tuples and propertiesof
operators to compute, during recovery, the trimming bounds
on input streams. In contrast to DR, our scheme supports in-
finite inputs by trimming output queues at runtime. We also
support failure recovery at the granularity of nodes instead of

the whole system. We do not require that input streams have
any property such as order on some attribute.

In parallel processing systems, router nodes distribute in-
coming messages across a set of parallel servers [12, 22].
If a server fails, the router re-directs incoming messages to
other nodes. These approaches address how to select failover
nodes and re-route messages to them, whereas we focus on
replicating and recovering state. In MQSeries [12], messages
that are being processed by a server when the failure happens
are trapped until the server recovers. Flux [23] introduces
a technique similar to our active-standby method. It tries to
accomplish loss-free and duplication-free failure/recovery se-
mantics by exploiting sequence numbers assigned to tuples.
It currently only considers order-preserving or set-preserving
operators though and thus cannot support convergent-capable
and divergent queries discussed in this paper.

9 Conclusion

In this paper, we argue that the distributed and data-flow
nature of stream processing applications raises novel chal-
lenges and opportunities for high availability. We define three
recovery types that provide increasingly stronger guarantees.
We also define four classes of operators and query networks
based on their impact on the cost of providing various recov-
ery guarantees. Within this framework, we introduce three re-
covery approaches that provide the proposed guarantees with
different combinations of redundant processing, checkpoint-
ing, and logging.

Using analysis and simulations, we quantitatively char-
acterize the runtime overhead and recovery time tradeoffs
among the approaches. We find that each approach cov-
ers a complementary portion of the solution space. Process-
pair based approaches, especially active standby, providethe
fastest recovery but at a high cost. Active standby is thus
best suited for environments where fast failure recovery (i.e.,
minimal disruptions) justifies higher runtime costs. Passive
standby is best suited to provide precise recovery for arbitrary
query networks. In contrast, upstream backup has a signifi-
cantly lower runtime overhead but a longer recovery time that
depends mostly on the size of the query-network state. This
approach is thus best suited for an environment where failures
are infrequent and short recovery delays are tolerable.

We currently have a basic prototype implementation that
can provide the proposed recovery types for repeatable query
networks. We will extend our prototype to support arbi-
trary query networks and perform experiments on real de-
ployments. We also plan to investigate how to simultane-
ously use different recovery approaches at nodes in a DSPS,
and, thus leverage the benefits of all schemes. We also plan
to study network partitions, multiple failures, and the interac-
tion between high availability and load balancing.

References

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:
A new model and architecture for data stream management.
The VLDB Journal, Sep 2003.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: Semantic foundations and query execution. Techni-
cal Report 2003-67, Stanford University, 2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InProc. of 2002
ACM PODS, June 2002.

[4] J. Barlett, J. Gray, and B. Horst. Fault tolerance in Tandem
computer sytems. Technical Report 86.2, Tandem Computers,
Mar. 1986.

[5] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Moni-
toring streams: A new class of data management applications.
In Proc. of the 28th VLDB, Aug. 2002.

[6] S. Chandrasekaran, A. Deshpande, M. Franklin, and J. Heller-
stein. TelegraphCQ: Continuous dataflow processing for an
uncertain world. InProc. of the 1st CIDR, Jan. 2003.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed
stream processing. InProc. of the 1st CIDR, 2003.

[8] E. Cialini and J. Macdonald. Creating hot snapshots and
standby databases with IBM DB2 Universal Database(TM)

V7.2 and EMC TimeFinder(TM). DB2 Information Manage-
ment White Papers, Sept. 2001.

[9] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems.ACM Comput. Surv., 34(3):375–408, 2002.

[10] J. Gray. Why do computers stop and what can be done about
it? Technical Report 85.7, Tandem Computers, 1985.

[11] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms
for distributed stream processing. Technical Report CS-04-05,
Department of Computer Science, Brown University, 2004.

[12] IBM Corporation. Getting the most out of MQSeries.
White paper. http://www.bmc.com/resourcecenter/
partners/mqseries/gettingthemostoutof%
mqseries.html, 2003.

[13] IBM Corporation. IBM WebSphere V5.0: Performance, scal-
ability, and high availability: WebSphere Handbook Series.
IBM Redbook, July 2003.

[14] M. Kamath, G. Alonso, R. Guenthor, and C. Mohan. Providing
high availability in very large workflow management systems.
In Proc. of 5th Int. Conf. on Extending Database Technology,
1996.

[15] W. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik. Ef-
ficient resumption of interrupted warehouse loads. InProc. of
the 2000 ACM SIGMOD, May 2000.

[16] S. Madden and M. J. Franklin. Fjording the stream: An archi-
tecture for queries over streaming sensor data. InProc. of the
18th ICDE, 2002.

[17] Mesquite Software, Inc. CSIM 18 user guide.http://www.
mesquite.com.

[18] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management
in a data stream management system. InProc. of the 1st CIDR,
Jan. 2003.

[19] Oracle Inc. Oracle 10g high availability solutions.http://
otn.oracle.com/deploy/availability.

[20] Oracle Inc. Oracle 9i streams - online documentation.http:
//www.oracle.com.

[21] A. Ray. Oracle data guard: Ensuring disaster recovery for the
enterprise. An Oracle white paper, Mar. 2002.

[22] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin.
An adaptive partitioning operator for continuous query sys-
tems. Technical Report CS-02-1205, UC. Berkeley, 2002.

[23] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly-
available, fault-tolerant, parallel dataflows. InProc. of the
2004 ACM SIGMOD, June 2004.

