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Noisy Correlation Clustering Model

* Unknown base clustering | ! .
B of n objects nooEE =

* Noise: each edge is E B ><:
controlled by an t 3
adversary with

probability p and “tells
the truth” otherwise

* Problem: reconstruct B
from the edge labels




One of our results

* Theorem: assume p< 1/3. If all clusters
have size at least ¢,+/n then the natural
semi-definite program (SDP) recovers B
exactly with high probability.

* Previous best: «,+/nlogn [Bansal, Blum, Chawla ‘04,
Shamir and Tsur ‘07], combinatorial.

e See paper for other results (including approximation
algorithms)



Plan

* The semi-definite program
* |ts dual
* Using the dual



Clusterings

* Clusterings are represented
by 0/1 matrices:
X;=1:iand jin same cluster
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* |n general a clustering satisfies:

X = kavl for some O/1orthogonal vectorsv,,v,,...,v

‘ one per cluster
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Relaxation of clusterings

Relaxation
* ClUsterng
— X =Y v,v; forsome 0K vectorsv,,v,,...,v
k
— X; =1 forall i
— X;20forall i

* The following are equivalent (X symmetric):

— X =) v,v, forsome vectorsv,,v,,...,v,
k

— X is positive semi-definite (p.s.d.)



Objective
* Maximize number of agreements:
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Summary of SDP

max Z X Ej s.t. This SDP was previously used by:
i<] * [Charikar, Guruswami, Wirth ‘05]

X p.s.d. * [Swamy ‘04]
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Discussion

* Algorithm: :
— Solve SDP 20
— If integral, output it. w0

Otherwise fail.

* Thm: assume p< 1/3. If m
all clusters have size at ~
least Ollx/ﬁ then the
SDP recovers B exactly .|
with high probability.
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An example X matrix from solver in
[Elsner and Schudy ‘09]. That solver
scales to a few thousand objects.



Plan

¥ The semi-definite program
* |ts dual
* Using the dual



Translate SDP into LP

The following are equivalent (X symmetric):

— X positive semi-definite

— u' Xu > Oforall vectorsu T s
SDP again: LP form:
maxz XijEij S.1. max inj Ejs.t.
i<]j <]
X. =1 X. =1
X 20 X =0

X p.s.d. u' Xu =0 for all vectorsu



SDP Dual

Primal: Dual:
max Y X; Ej s.t. min > d, s.t.
i<j I

X, =1foralli  (d,)
—X;; <0foralli, | (hij) a h >0

—u"Xu<Oforallu (a,) oY

~>auu; +dAi=j)-h =E; foralli<]




Translate dual LP into SDP

The following are equivalent (X symmetric):

_ X =) auu, witha, >0

¢
— X positive semi-definite

Dual again:
min > d; s.t.

->auu; +dl(i=j)-h, =E;

a,,h, =0

Matrix form: Arbitrary

positive semi-

min Trace (D) gt definite matrix

D diagonal

H >0




The Dual SDP

min Traceg(D) s.t.
—E+D-H positive semi - definite
D diagonal
H >0



Plan

¥ The semi-definite program
¥ Its dual
* Using the dual

This proof is inspired by a similar result for the planted
cligue problem [Feige and Krauthgamer ‘00].



Using the dual - overview

Prove optimality of the base clustering by
presenting dual solution (D,H) whose value
matches value of base clustering B (see paper)

Difficult part: proving that —~-E+D-H is p.s.d.
The following are equivalent (Y symmetric):
— Y positive semi-definite
— All eigenvaluesof Yare >0

We present b eigenvectors with eigenvalue 0 (see
paper), where b is the number of clusters in B

We prove that the b+1% smallest eigenvalue,
denoted ;4 (-E+D-H), is positive (sketched next)

Hence all eigenvalues of —-E+D—-H are >0



Eigenvalue analysis

—E+D-H = M, + M, .+ M,
/ \/
Ay, = @(min cluster size) A > —6(+/n)
(see paper) (next)

We apply the following:
Theorem [Weyl]: If M and N are symmetric
matrices then

Ay (M +N) 2 A4 (M) +4,,,(N)

Hence for sufficiently large min cluster size
Ay FE+D—H)>0.



Random matrices

Theorem [Flredi and Komlds ‘81]: Let M be a
random symmetric matrix with independent entries
of mean zero. Then with high probability

A(M)=0(n) foralli
Application:

A (M,)= ﬂl(—E —Expe ctaticn[—EDZ _e(ﬁ)

To analyze M, we developed a generalization of this
theorem that handles limited dependence between
the entries.



Recap

Theorem: assume p< 1/3. If all clusters have size at least Ollx/ﬁ
then the SDP recovers B exactly with high probability.

Proof:

 We wrote a dual solution matrix as a sum of 4 random
matrices, used Furedi-Komlds variants to bound their
eigenvalues, used Weyl to infer bound on eigenvalues of
the matrix, hence p.s.d., hence solution is feasible.

* That solution has value equal to the value of B, hence by
duality B is primal optimal

e Bis the unigue primal optimum (see paper), hence SDP
will exactly return B

* Hence algorithm reconstructs B exactly when all clusters
have size at least alx/ﬁ :



Open Question 1

* Suppose some 0
clusters are size
C,vN and others
are size 1. Can the
SDP be used to o0
reconstruct the 0
large clusters?

20

100

0 20 20 60 80 100 120

Software: [Elsner and Schudy ‘09].



Open Question 2

Planted cliqgue problem = correlation
clustering with only one non-singleton and no
corruption of within-cluster edges

Exist polynomial-time algorithm when clique
size = Clx/ﬁ

Exists N°"®" _time algorithm when clique size
=¢,logn

Can polynomial-time algorithms beat the
cl\/ﬁ barrier?



Clustering References

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating
inconsistent information: ranking and clustering. In STOC 05, pages
684—-693, 2005.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation
clustering. Mach. Learn., 56(1-3):89-113, 2004.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth.
Clustering with qualitative information. J. Comput. Syst. Sci.,
71(3):360-383, 2005.

M. Elsner and W. Schudy. Bounding and Comparing Methods for
Correlation Clustering Beyond ILP. In ILP-NLP ‘09: Proc. NAACL/HLT
2009 Workshop on Integer Linear Programming for Natural
Language Processing, pages 19-27, 20009.

Ron Shamir and Dekel Tsur. Improved algorithms for the random
cluster graph model. Random Structures and Algorithms, 31(4):418—
449, 2007.



Other References

* F. Alizadeh. Interior point methods in
semidefinite programming with applications to
combinatorial optimization. SIAM Journal on
Optimization, 5(1):13-51, 1995

* Uriel Feige and Robert Krauthgamer. Finding and
certifying a large hidden clique in a semirandom
graph. Random Struct. Algorithms, 16(2):195—-
208, 2000

e Zoltan Furedi and Janos Komlés. The eigenvalues
of random symmetric matrices. Combinatorica,

1(3):233-241, 1981



