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Noisy Correlation Clustering Model

• Unknown base clustering 
B of n objects

• Noise: each edge is 
controlled by an 
adversary with 
probability p and “tells 
the truth” otherwise

• Problem: reconstruct B
from the edge labels B
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One of our results

• Theorem: assume p≤ 1/3. If all clusters 
have size at least             then the natural 
semi-definite program (SDP) recovers B
exactly with high probability.

• Previous best:                       [Bansal, Blum, Chawla ‘04, 
Shamir and Tsur ‘07], combinatorial.

• See paper for other results (including approximation 
algorithms)
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Plan

• The semi-definite program

• Its dual

• Using the dual



Clusterings

• Clusterings are represented
by 0/1 matrices:
Xij=1: i and j in same cluster 

• In general a clustering satisfies:

• E.g. 
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Relaxation of clusterings

• Clustering

–

– Xii =1 for all i

– Xij ≥ 0 for all i,j

• The following are equivalent (X symmetric):

–

– X is positive semi-definite (p.s.d.)
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Objective

• Maximize number of agreements:

• I.e.                         

where  
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Summary of SDP
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This SDP was previously used by:
• [Charikar, Guruswami, Wirth ‘05]
• [Swamy ‘04]



Discussion
• Algorithm:

– Solve SDP

– If integral, output it. 
Otherwise fail.

• Thm: assume p≤ 1/3. If 
all clusters have size at 
least             then the 
SDP recovers B exactly 
with high probability.

An example X matrix from solver in 
[Elsner and Schudy ‘09]. That solver 

scales to a few thousand objects.
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Plan

• The semi-definite program

• Its dual

• Using the dual



Translate SDP into LP

The following are equivalent (X symmetric):

– X positive semi-definite

–

SDP again: LP form:
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SDP Dual

Primal: Dual:
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Translate dual LP into SDP
The following are equivalent (X symmetric):

–

– X positive semi-definite

Dual again: Matrix form:
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The Dual SDP
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Plan

• The semi-definite program

• Its dual

• Using the dual

This proof is inspired by a similar result for the planted 
clique problem [Feige and Krauthgamer ‘00].



Using the dual - overview
• Prove optimality of the base clustering by 

presenting dual solution (D,H) whose value 
matches value of base clustering B (see paper)

• Difficult part: proving that                     is p.s.d.

• The following are equivalent (Y symmetric):
– Y positive semi-definite

– All eigenvalues of Y are ≥ 0

• We present b eigenvectors with eigenvalue 0 (see 
paper), where b is the number of clusters in B

• We prove that the b+1th smallest eigenvalue, 
denoted                           , is positive (sketched next)

• Hence all eigenvalues of                    are ≥ 0
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Eigenvalue analysis

We apply the following:
Theorem [Weyl]: If M and N are symmetric 
matrices then

Hence for sufficiently large min cluster size
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Random matrices

Theorem [Füredi and Komlós ‘81]: Let M be a 
random symmetric matrix with independent entries 
of mean zero. Then with high probability

Application: 

To analyze M3 we developed a generalization of this 
theorem that handles limited dependence between 
the entries.
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Recap
Theorem: assume p≤ 1/3. If all clusters have size at least             
then the SDP recovers B exactly with high probability.

Proof:

• We wrote a dual solution matrix as a sum of 4 random 
matrices, used Füredi-Komlós variants to bound their 
eigenvalues, used Weyl to infer bound on eigenvalues of 
the matrix, hence p.s.d., hence solution is feasible.

• That solution has value equal to the value of B, hence by 
duality B is primal optimal

• B is the unique primal optimum (see paper), hence SDP 
will exactly return B

• Hence algorithm reconstructs B exactly when all clusters 
have size at least           .
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Open Question 1
• Suppose some 

clusters are size
and others 

are size 1. Can the 
SDP be used to 
reconstruct the 
large clusters?

nc3

Software: [Elsner and Schudy ‘09].



Open Question 2

• Planted clique problem = correlation 
clustering with only one non-singleton and no 
corruption of within-cluster edges

• Exist polynomial-time algorithm when clique 
size = 

• Exists              -time algorithm when clique size 
=

• Can polynomial-time algorithms beat the
barrier? 
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