
Finding Strongly Connected Components in Parallel using
O(log2

n) Reachability Queries

Warren Schudy
∗

Brown University
115 Waterman Street

Providence, RI
ws@cs.brown.edu

ABSTRACT
We give a randomized (Las-Vegas) parallel algorithm for
computing strongly connected components of a graph with n
vertices and m edges. The runtime is dominated by O(log2 n)
multi-source parallel reachability queries; i.e. O(log2 n) calls
to a subroutine that computes the union of the descendants
of a given set of vertices in a given digraph. Our algorithm
also topologically sorts the strongly connected components.

Using Ullman and Yannakakis’s [23] techniques for the

reachability subroutine gives our algorithm runtime Õ(t) us-

ing mn/t2 processors for any (n2/m)1/3 ≤ t ≤ n. On sparse
graphs, this improves the number of processors needed to
compute strongly connected components and topological sort
within time n1/3 ≤ t ≤ n from the previously best known
(n/t)3 [21] to (n/t)2.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Algorithms, Theory

Keywords
Graph algorithms, Parallel algorithms, Strongly connected
components, Topological sort, Transitive closure bottleneck

1. INTRODUCTION
A core component of scheduling is ordering tasks to re-

spect precedence constraints. For example, the foundation
of a house must be completed before the walls can be built.
Precedence constraints can be expressed as a directed graph

∗Work done at Google Inc., Mountain View CA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
(Corrected June 25, ’08) SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

where the vertices are tasks and there is an edge from u to v
if u must occur before v. If this graph is acyclic, a topolog-
ical sort (TS) gives one possible order that the tasks can be
completed in. If this graph has cycles, one reasonable thing
to do is to compute strongly connected components (SCC),
compute a topological sort of those components, and deal
with the SCCs containing two or more vertices in a problem-
dependant manner. Both strongly connected components
and topological sort can be computed in linear time using
depth-first-search [22].

Some scheduling problems, e.g. those occurring in some
physical simulations [16, 15, 18], are too big to process on
a single machine and hence require parallel algorithms. In
this work we give a parallel algorithm that computes the
strongly connected components of a directed graph and a
topological sort. On sparse graphs, it requires only (n/t)2

processors for runtime Õ(t) as long as n1/3 ≤ t ≤ n, where

Õ hides log n factors. For this parameter range on sparse
graphs, the best existing algorithm is Spencer’s [21], which

requires (n/t)3 processors to achieve a runtime of Õ(t). Our
algorithm works by reducing strongly connected components
and topological sort to O(log2 n) multi-source reachability
queries.

Definition 1. A (multi-source) reachability query has in-
put a directed graph and a set of source vertices. Its output
is the set of vertices reachable from any of the sources, i.e.
the union of their descendants.

Our main result:

Theorem 1. There is a randomized (Las-Vegas) paral-
lel algorithm for the topological sort and strongly connected
components problems using p ≥ 1 processors with runtime
O(τ log2 n), where τ is the runtime for a multi-source reach-
ability query executed in parallel on p processors. We assume
τ ≥ Θ((m + n)/p + log n) (the reachability algorithm must
read its input).

We use Ullman and Yannakakis’s [23] reachability algo-
rithm, but give a slightly tighter analysis, yielding:

Lemma 2. [23] With high probability, reachability can be

computed in time Õ(t) using mn/t2 processors as long as

(n2/m)1/3 ≤ t ≤ n.

(Practical aside: (m + n)/t processors suffices for any 1 ≤
t ≤ m if the longest finite shortest path is at most t.) The-
orem 1 and Lemma 2 imply we can find strongly connected

Table 1: Summary of results and prior work. Table shows the number of processors needed to handle an
instance with m edges, n vertices in time Õ(t) where t is an input parameter.

Problems Sparse (m = Θ(n)) Dense (m = Θ(n2)) General Restrictions
Coppersmith and Winograd [7] All n2.38/t n2.38/t n2.38/t 1 ≤ t ≤ n2.38

Coppersmith et al. [8, 6] SCC 1 1 1 t = m
Spencer [21] All (n/t)3 (n/t)3 + n2/t (n/t)3 + m/t 1 ≤ t ≤ m

Kao et al. [13] Reach n2/t n4/t m2/t t ≥ 1

Ullman et al. [23] Reach (n/t)2 n3/t2 nm/t2 (n2/m)1/3 ≤ t ≤ n

This work SCC, TS (n/t)2 n3/t2 nm/t2 (n2/m)1/3 ≤ t ≤ n

components and topologically sort using (n/t)2 processors

in runtime Õ(t). Our result is a black-box reduction, so bet-
ter algorithms for the reachability problem would result in
better results for SCC and TS as well.

In the remaining sections, we (2) give additional related
work, (3) state our algorithm formally, (4) prove correctness,
(5) analyze runtime and (6) conclude. Lemma 2 is proven
in Appendix A.

2. RELATED WORK
See Table 1 for a summary of this section.
Breadth-first and depth-first search have many applica-

tions in the analysis of directed graphs. Breadth-first search
can be used to compute the vertices that are reachable from
a given vertex and directed spanning trees. Depth-first search
can: solve these problems, determine if a graph is acyclic,
topologically sort an acyclic graph and compute strongly
connected components (SCCs) [22]. Efforts to parallelize
these algorithms have met with mixed success.

Reif [20] shows that if you insist on a particular ordering
of the neighboring edges, finding the depth-first-search tree
is P -complete and hence unlikely to be in NC. If the search
is allowed to explore the children of a vertex in any order,
a DFS tree can be found in polylog time with O(n · n2.38)
processors [1].

Applications of DFS seem easier to solve in parallel than
DFS itself. Let transitive-closure bottleneck problems [14] re-
fer to breadth-first search and the above applications of BFS
and DFS, but not DFS itself. All these transitive-closure
bottleneck problems can be solved in polylog time with n2.38

processors using matrix-exponentiation techniques to com-
pute the transitive closure of the graph [9, 7]. Spencer [21]
gives algorithms for these transitive-closure bottleneck prob-
lems that trade-off time and work, with runtime Õ(t) on
O((n/t)3 + m/t) processors for any 1 ≤ t ≤ m.

Breadth-first search and its applications seem easier to
parallelize than applications of DFS such as cycle detec-
tion. Ullman and Yannakakis [23] give a clever technique
for computing reachability and breadth-first search in par-
allel, with runtime Õ(t) using O(mn/t2) processors as long

as (n2/m)1/3 ≤ t ≤ √
n. As noted in the introduction,

we show in Appendix A that (at least for reachability) the
upper-bound on t can be relaxed to t ≤ n. If t = n, the
number of processors mn/t2 equals m/t, so the total work

done is Õ(m), which is within logarithmic factors of serial
algorithms. We remark that for 1 ≤ t ≤ n, if t ≤ n2/m, Ull-
man and Yannakakis’s algorithm requires fewer processors
than Spencer’s, but if t ≥ n2/m, Spencer’s is more efficient.
It follows that Ullman and Yannakakis’s algorithm is better
for sparse graphs, and Spencer’s is better for dense graphs.

If one could compute strongly connected components and
topological sort using BFS instead of DFS, one could use Ull-
man and Yannakakis’s better result for that problem on the
sparse graphs frequently encountered in applications. Like
the present work, Coppersmith, Fleischer, Hendrickson and
Pinar [8, 6] give a simple parallel divide and conquer algo-
rithm for computing SCCs using reachability queries. They
prove O(m log n) serial runtime, but their algorithm does
not parallelize well in general; for example it has runtime
Θ(n) on the graph without edges. McLendon, Hendrickson,
Plimpton and Rauchwerger [16, 15, 18] successfully apply
Coppersmith et al’s [8, 6] algorithm to an application in sci-
entific computing (discrete ordinates method for radiation
transport).

Many special cases of the transitive closure bottleneck
problems admit efficient parallel algorithms. There are linear-
processor, polylog-time algorithms for finding connected com-
ponents of undirected graphs (see [11] for a survey) and
strongly connected components and topological sort of pla-
nar directed graphs [12, 3, 13]. Kao and Klein [13] also
reduce planar reachability to planar topological sort and pla-
nar SCC.

Cohen [5] gives a parallel algorithm for estimating the size
of the transitive closure of a graph. Like the present work,
they use reachability from a prefix of a random permutation
of the vertices as part of a divide and conquer step.

Akio, Masahiro and Ryozo [2] claim linear-processor, poly-
log time algorithms for TS and SCC in a Japanese-language
journal.

3. ALGORITHMS
The rest of this paper is devoted to our topological sort of

strongly connected components (TS/SCC) algorithm. The
SCC problem is sufficient for motivating our algorithm and
analysis, so we henceforth only occasionally mention that
our algorithm returns the SCCs in topologically sorted order.

Notation: let (V,E) be a directed graph with n vertices
and m edges. V , n and m refer either to the entire graph
or to a subgraph resulting from a recursive step of our algo-
rithm; the meaning should be clear from context.

Definition 2. Vertex u reaches vertex v, denoted u v,
if there is a directed path from u to v. If u reaches v we say
u is an ancestor of v. If in addition u 6= v, we say u is a
strict ancestor of v. For a vertex set S and vertices u, v ∈ S,

let u
S
 v denote that there is a path from u to v in the

subgraph induced by S.

For exposition, we first present the SinglePivot Algorithm
algorithm, which is an simple quicksort-like TS/SCC algo-

Algorithm 1 A quicksort-like TS/SCC algorithm similar
to previous work (see text).

SingleP ivot(V):

• Choose a random pivot vertex v

• Use reachability queries to compute:

– B = vertices reached from vertex v

– C = vertices that reach and are reached from
v. /* C ⊆ B is an SCC. */

• In parallel, compute SingleP ivot(V \ B) and
SingleP ivot(B \ C).

• Return the SCCs from the recursive calls in the fol-
lowing topological order: SingleP ivot(V \B), then C,
and finally SingleP ivot(B \ C).

A

B
(A ∩ B) \ C

B \ (A ∪ C)
C

A \ B

V \ (A ∪ B)

Figure 1: Venn Diagram for MultiPivot Algorithm.

rithm based on the techniques of [21, 8, 6, 4, 10]. All ver-
tices in an SCC have identical ancestor and descendant sets.
Therefore given any pivot vertex v, one can divide and con-
quer, recursing on the vertices reachable from v and the ver-
tices not reachable from v. The SCC containing v is precisely
those vertices that are both reachable from v and reach v, so
this SCC can be output and removed (this is the base case).
See Algorithm 1. Unfortunately the SinglePivot Algorithm
and the algorithms of [21, 8, 6, 4, 10] have recursion depth
Θ(n) on a graph with no edges.

To solve this problem, we sample several vertices instead
of just one and compute which vertices are reachable from
any of the sampled vertices using a multi-source reachability
query. We do not know how to choose the sample size a
priori, so we simply do a binary search for a sample size
that divides the problem evenly. See Algorithm 2 for the
definition of the MultiPivot Algorithm and Figure 2 for an
illustration. Figure 1 shows the relationship between the
sets of the MultiPivot Algorithm. The subtle part of the
analysis is showing that the set B \ (A ∪ C) (as defined in
the MultiPivot Algorithm) is not too big.

We prove Theorem 1 via two lemmas. The straightforward
proof of the following lemma is in Section 4.

Lemma 3 (Correctness). The MultiPivot Algorithm
correctly computes the SCCs and a topological sort thereof.

The interesting proof of the following lemma is in Sec-
tion 5.

Lemma 4 (Runtime). For any γ > 1, with probabil-
ity at least 1 − n1−γ , the MultiPivot Algorithm takes time
O(γτ (log n)2) on a CRCW PRAM with p processors, where
τ ≥ Θ((m + n)/p + log n) is the time required for a reacha-
bility query.

Algorithm 2 MultiPivot Algorithm.

MultiPivot(V):

• Permute the vertices in V randomly and assign corre-
sponding indices 1, 2, . . . n.

• Do a binary search for the smallest index s such that
the first s vertices together reach vertices that in-
duce a subgraph with at least (m + n)/2 vertices plus
edges. /* Uses O(log n) reachability queries. */

• Use reachability queries to compute:

– A = vertices reached from vertex set {1, . . . s−1}
– B = vertices reached from vertex s

– C = vertices that reach and are reached from s.
/* C ⊆ B is an SCC. */

• In parallel, recursively compute the strongly connected
components of V \ (A ∪ B), A \ B, B \ (A ∪ C), and
(A ∩ B) \ C.

• Return the SCCs in the following topological order:
the SCCs from the recursive call MultiP ivot(V \ (A∪
B)), then MultiP ivot(A \ B), then the SCC C, then
MultiP ivot(B \(A∪C)), and finally MultiP ivot((A∩
B) \ C).

4. ANALYSIS: CORRECTNESS
Note: this section is straightforward.
Since C ⊆ B by definition of C, we have the following

claim (see also Figure 1):

Claim 5. The sets {V \(A∪B), A\B, C, B\(A∪C), (A∩
B) \ C} form a partition of V .

Lemma 6. Every set the algorithm outputs (claimed to
be an SCC) satisfies the property that every vertex in it is
reachable from every other.

Proof. Every vertex in C can reach and be reached from
s by definition, so therefore any vertex in C can reach any
other vertex, via s.

Lemma 7. The topological sort has no edges going from
a set to another set before it in the order.

Proof. Recall that the sets are output in the order V \
(A ∪ B), A \ B, C, B \ (A ∪ C), (A ∩ B) \ C. We show in
turn that each of these sets has no edges to it from sets to
the right of it in the order.

• There are no edges into V \(A∪B) from the other sets
because A and B have no edges leaving them.

• There are no edges into A\B from C, B\(A∪C), (A∩
B) \ C ⊆ B because B has no edges leaving it.

• There are no edges into C from B \ (A∪C), (A∩B) \
C ⊆ B \ C because any vertex in B that can reach a
vertex in C can also reach s and is therefore in C.

• There are no edges into B \ (A ∪ C) from (A ∩ B) \ C
because there are no edges leaving A.

1

4=s
A

B
3

2

C

Figure 2: Illustration of MultiPivot Algorithm (right) on a sample graph with SCCs shown (left). The first
3 vertices reach only 6 edges out of 18, but the first four vertices reach 13 out of 18 edges and hence s = 4.

Proof of Lemma 3. Claim 5 implies that our output
includes every vertex exactly once.

Since vertex s is always in C, each recursive call has at
least 1 fewer vertices than its parent so the algorithm ter-
minates.

Lemma 6 shows that we never output an SCC that is too
big. Lemma 7 implies that we never output an SCC that is
too small and that our topological sort is correct.

5. ANALYSIS: RUNTIME
Each SCC call uses at most O(1)+lg n reachability queries

for the binary search and then computing the sets A, B
and C, which takes time O(τ log n). The random permuta-
tions can be computed in time o((1 + n

p
) log n) ≤ Θ((1 +

m+n
p

) log n) using [19]. Each time the reachability subrou-
tine is called, the number of reached edges must be counted
and the source set for the reachability query adjusted. This
can be done in time O(m+n

p
+ log n) using standard tech-

niques such as parallel prefix computations, for a total time
of O((m+n

p
+log n) log n) = O(τ log n) by the assumed lower-

bound τ = Ω((m + n)/p + log n). Therefore, each recursive
call takes time O(τ log n).

All of the required tasks only get easier as the problem is
subdivided so the total runtime is bounded by the runtime of
the root call multiplied by the depth of the recursion tree.1

Therefore it remains to show that the depth of the recursion
tree is O(log n) with high probability.

Definition 3. Let µ(S) denote the number of edges plus
vertices in the subgraph induced by vertex set S. Note that
µ(V) = m + n.

1If this hand-waving bothers you, consider a iterative vari-
ant which keeps a list of subgraphs to process. Initially the
only subgraph is the whole graph, which is then replaced by
several subgraphs as the algorithm progresses. Reachabil-
ity queries for all the subgraphs can be performed simulta-
neously using one reachability query: simply remove edges
between the subgraphs, and let the overall source set be the
union of the source sets of each subgraph.

As in the analysis of quicksort, we show that the problem
is divided more or less evenly. Some progress is easy to show:

Lemma 8. All vertex sets S in {V \ (A∪B), A \B, (A∩
B) \ C} satisfy µ(S) ≤ µ(V)/2.

Proof. By the choice of s we know µ(A) < (m+n)/2 and
µ(A∪B) ≥ (m + n)/2, which implies µ((A∩B) \C), µ(A \
B) ≤ µ(A) < (m+n)/2 and µ(V \(A∪B)) ≤ (m+n)/2.

Definition 4. Define T (S) for vertex set S as follows:

T (S) ≡ { (u, v) ∈ S × S | u 6= v and u
S
 v }

The following Lemma, inspired by Spencer’s Lemma 5.4 [21],
is the core of our analysis:

Lemma 9. With probability at least 1/3, |T (B\(A∪C))| ≤
3

4
|T (V)|.
We first prove Lemma 9. Then we use Lemmas 8 and 9

and the potential function max(|T (V)|, 3/4) · µ(V) to prove
Lemma 4.

5.1 Proof of Lemma 9

Definition 5. The groundbreaker of a vertex v, denoted
g(v), is the ancestor of v with minimum index in the random
permutation.

The groundbreaker g(v) of a fixed vertex v is a random vari-
able because the permutation of the vertices is picked ran-
domly.

Definition 6. Let Xv be the set of strict ancestors of v
that have the same groundbreaker as v but are not in the
same SCC as g(v). Precisely:

Xv =
˘

w 6= v : w v and g(w) = g(v)

and w, g(v) are in different SCCs
¯

Let the number of strict ancestors of v be αv.

Lemma 10. For any v ∈ V , we have E [|Xv |] ≤ αv/2 and
0 ≤ |Xv | ≤ αv.

v

Topological sort of strongly connected components

that reach v. All ancestor vertices are equally likely to

be the groundbreaker of v

. . .

g(v)
X

Figure 3: Illustration of Lemma 10.

Proof. See Figure 3. Consider a topological sort of the
ancestors of v (with vertices in same SCC adjacent in the
sort). The groundbreaker of v is the first ancestor chosen,
so all the αv + 1 ancestors (including v itself) have equal
probability of groundbreaking. If an ancestor u of v has
the same groundbreaker as v but is in a different SCC from
g(v), then u must be after g(v) in the topological sort. The
expected number of vertices other than v strictly after g(v)
in the topological sort is:

1

αv + 1

0 +

αv
X

i=1

(i − 1)

!

=
1

αv + 1
· (αv − 1)(αv − 1 + 1)

2

≤ αv/2.

Definition 7.

Y = { (u, v) ∈ V × V | u ∈ Xv }.

Corollary 11. We have Pr
`

|Y | ≤ 3

4
|T (V)|

´

≥ 1/3.

Proof. Since
P

v∈V αv = |T (V)|, E [|Y |] = E
ˆ
P

v |Xv |
˜

≤
|T (V)|/2 and 0 ≤ |Y | ≤ |T (V)|. We use a Markovian argu-
ment: the probability of Y being less than 3

4
|T (V)| subject

to these constraints is minimized when |Y | = 3

4
|T (V)| + 1

with probability 2/3 and |Y | = 0 with probability 1/3.

To finish the proof of Lemma 9 we argue that T (B \ (A∪
C)) ⊆ Y , and hence |T (B \ (A∪C))| ≤ 3

4
|T (V)| with proba-

bility at least 1/3 by Corollary 11. To see this, consider some
(w, v) ∈ T (B \ (A∪C). Clearly both w and v are reachable
from s but not from 1, . . . s − 1, so g(v) = g(w) = s. The
SCC of s is C, so u and v are not in the groundbreaker’s
SCC by definition. Therefore w ∈ Xv so (w, v) ∈ Y .

5.2 Putting the pieces together
In this section we use Lemmas 8 and 9 to prove that the

recursion tree has depth O(log n) with high probability, fin-
ishing the proof of Lemma 4. It is easy to see that the ex-
pected work is small, but for a parallel algorithm we need to
show that the maximum depth, not just the average depth,
is small. We show every vertex has probability at most n−γ

of exceeding O(γ log n) depth for any γ > 0, implying by a
union bound that all vertices finish within that depth with
probability at least 1 − n1−γ .

We use max(T (V), 3/4) · µ(V) as our potential function.
Declare a call to SCC(V) to be successful if all of the non-
empty sets V ′ it recurses on satisfy max(T (V ′), 3/4)·µ(V ′) ≤

3

4
max(T (V), 3/4) ·µ(V). If T (V) ≥ 1, we have the probabil-

ity of success is at least 1/3 by Lemmas 8 and 9. If T (V) = 0,
each vertex is isolated so B\(A∪C) = {}, hence by Lemma 8
the probability of success in this case is 1. Clearly we have
min(3/4, T (V)) · m ≤ n(n − 1)n(n + 1) ≤ n4 (assuming
|V | ≥ 2). By definition µ(V ′) ≥ |V ′| so 3/4 ·µ(V ′) ≥ 3/4 for
any non-empty V ′. It therefore suffices to show that with
probability 1−n−γ we have at least 4 log(4n/3)/ log(4/3) ≤
14 log n successes (for n sufficiently large) before the depth of
a fixed vertex exceeds 63γ log n, where log denotes the nat-
ural, base-e logarithm. This probability is bounded by the
probability that 63γ log n independent coin flips, each with
probability of success 1/3, has less than 14 log n successes.

Chernoff bound for any 0 < δ < 1 [17]:

Pr (Z < (1 − δ)µ) ≤ e−µδ2/2

Letting Z be the number of successes, µ = 21γ log(n), and
δ = 1/3, yields

Pr (Z < 14γ log(n)) ≤ n−
21

18
γ ≤ n−γ

Clearly for γ > 1 we have 14γ log(n) > 14 log n, so this is
sufficient.

6. FUTURE WORK
The most important related open problem is how to an-

swer reachability queries efficiently. For example, consider
a constant-degree (sparse) directed graph with longest finite
shortest path Θ(n) and one processor per edge (m = p =
Θ(n)). Is it possible to answer a reachability query on this
graph in õ(

√
n) time?

7. ACKNOWLEDGEMENTS
I would like to thank D. Sivakumar for suggesting the

parallel strongly connected components problem, Glencora
Borradaile, Maurice Herlihy and Claire Mathieu for advice
that dramatically improved the presentation, and Google
Inc. for free food.

8. REFERENCES
[1] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel

depth-first search in general directed graphs. SIAM J.
Comput., 19(2):397–409, 1990.

[2] T. Akio, M. Masahiro, and N. Ryozo. Parallel
topological sorting algorithm. Transactions of
Information Processing Society of Japan,
45(4):1102–1111, 2004. SCC algorithm in TIPSJ ’99.

[3] D. Bader. A practical parallel algorithm for cycle
detection in partitioned digraphs. Technical Report
AHPCC-TR-99-013, Electrical & Computer Eng.
Dept., Univ. New Mexico, Albuquerque, NM, 1999.

[4] R. Bloem, H. N. Gabow, and F. Somenzi. An
algorithm for strongly connected component analysis
in n log n symbolic steps. Form. Methods Syst. Des.,
28(1):37–56, 2006.

[5] E. Cohen. Size-estimation framework with
applications to transitive closure and reachability. J.
Comput. Syst. Sci., 55(3):441–453, 1997.

[6] D. Coppersmith, L. Fleischer, B. Hendrickson, and
A. Pinar. A divide-and-conquer algorithm for
identifying strongly connected components. Technical
Report RC23744, IBM Research, 2005.

[7] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. In STOC
’87: Proceedings of the nineteenth annual ACM
Symposium on Theory of Computing, pages 1–6, New
York, NY, USA, 1987. ACM Press.

[8] L. Fleischer, B. Hendrickson, and A. Pinar. On
identifying strongly connected components in parallel.
In IPDPS ’00: Proceedings of the 15 IPDPS 2000
Workshops on Parallel and Distributed Processing,
pages 505–511, London, UK, 2000. Springer-Verlag.

[9] H. Gazit and G. L. Miller. An improved parallel
algorithm that computes the bfs numbering of a
directed graph. Inf. Process. Lett., 28(2):61–65, 1988.

[10] R. Gentilini, C. Piazza, and A. Policriti. Computing
strongly connected components in a linear number of
symbolic steps. In SODA ’03: Proceedings of the
fourteenth annual ACM-SIAM Symposium on Discrete
Algorithms, pages 573–582, Philadelphia, PA, USA,
2003. Society for Industrial and Applied Mathematics.

[11] J. Greiner. A comparison of parallel algorithms for
connected components. In SPAA ’94: Proceedings of
the sixth annual ACM symposium on Parallel
algorithms and architectures, pages 16–25, New York,
NY, USA, 1994. ACM Press.

[12] M.-Y. Kao. Linear-processor nc algorithms for planar
directed graphs i: Strongly connected components.
SIAM J. Comput., 22:431–459, 1993.

[13] M.-Y. Kao and P. N. Klein. Towards overcoming the
transitive-closure bottleneck: efficient parallel
algorithms for planar digraphs. In STOC ’90:
Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 181–192,
New York, NY, USA, 1990. ACM Press.

[14] R. M. Karp and V. Ramachandran. Parallel
algorithms for shared-memory machines. Handbook of
theoretical computer science (vol. A): algorithms and
complexity, pages 869–941, 1990.

[15] W. McLendon, III, B. Hendrickson, S. Plimpton, and
L. Rauchwerger. Finding strongly connected
components in parallel in particle transport sweeps. In
ACM Symposium on Parallel Algorithms and
Architectures, pages 328–329, 2001.

[16] W. McLendon, III, B. Hendrickson, S. J. Plimpton,
and L. Rauchwerger. Finding strongly connected
components in distributed graphs. J. Parallel Distrib.
Comput., 65(8):901–910, 2005.

[17] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis, chapter 4.2, page 66. Cambridge University
Press, 2005.

[18] S. Plimpton, B. Hendrickson, S. Burns, and
W. McLendon, III. Parallel algorithms for radiation
transport on unstructured grids. In Supercomputing
’00: Proceedings of the 2000 ACM/IEEE conference
on Supercomputing (CDROM), page 25, Washington,
DC, USA, 2000. IEEE Computer Society.

[19] S. Rajasekaran and J. H. Reif. Optimal and
sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput., 18(3):594–607, 1989.

[20] J. H. Reif. Depth-first search is inherently sequential.
Information Processing Letters, 20(5):229–234, 1985.

[21] T. H. Spencer. Time-work tradeoffs for parallel

algorithms. J. ACM, 44(5):742–778, 1997.

[22] R. E. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1:146–160,
1972.

[23] J. D. Ullman and M. Yannakakis. High probability
parallel transitive-closure algorithms. SIAM J.
Comput., 20(1):100–125, 1991.

APPENDIX

A. REACHABILITY
We only change the analysis of Ullman and Yannakakis [23]

slightly, so we only sketch our variant of their work.
Ullman and Yannakakis [23] proved that Õ(t) time is achiev-

able with p = nm/t2 processors as long as (n2/m)1/3 ≤ t ≤√
n, so to prove Lemma 2 it suffices to analyze the case√
n ≤ t ≤ n. We assume that there is only one source

vertex by creating a new super-source vertex u.
Let BasicBFS(G, S, d) refer to the naive parallel breadth-

first-search algorithm on graph G with depth limit d, |S| in-
dependent source vertices. This is Ullman and Yannakakis’s
Basis Rule B2.

Their analysis of the work required in Basis Rule B2 (page
109 of [23]) conservatively assumes that the number of pro-

cessors is m and hence the work required is Õ(m|S| + md).

We use the tighter bound Õ(m|S|+pd). A nice consequence
of this change is that the algorithm is shown to be efficient
when t = n.

If a vertex v is reachable from u, there must be a path P
from u to v. Consider taking a random sample of vertices
S by sampling each vertex with probability Õ(1/t). One
can show that there probably won’t be a string of unsam-
pled vertices in the path of length more than t. The key
observation of Ullman and Yannakakis [23] is you can then

decompose the path into at most Õ(n/t) hops between sam-
pled vertices, with each hop being a path of length at most
t. Hence we have Algorithm 3.

The time spent looking for shortcuts among the distin-
guished nodes is Õ((n/t)(m/p) + t) = Õ(t2/t + t) = Õ(t).
The number of shortcuts added is at most (n/t)2 ≤ n2/(

√
n)2 =

Õ(m) (using t ≥ √
n by assumption), so G′ is not much big-

ger than G. The time spent searching for paths in G′ is
Õ(m/p + n/t + t) = Õ(t) (using t ≤ n).

Algorithm 3 Our variant of the reachability algorithm of
Ullman and Yannakakis
Reachability(u):

• Let t be the time budget and p = nm/t2 be the number
of processors

• Take a random sample of distinguished nodes of size
Õ(n/t). Let D be the distinguished nodes.

• Run BasicBFS(G, D, t), and create a new graph
G′ with extra “shortcut” edges between distinguished
nodes that have paths of length at most t in G.

• Run BasicBFS(G′, {u}, |D|+2t) to determine the nodes
reachable from u.

• Check if there are no edges from reachable vertices to
unreachable ones. If there are, we were unlucky, so try
again with a new set of distinguished nodes.

	Introduction
	Related Work
	Algorithms
	Analysis: correctness
	Analysis: runtime
	Proof of Lemma 9
	Putting the pieces together

	Future Work
	Acknowledgements
	References
	Reachability

