
Yet Another Algorithm for Dense Max Cut: Go Greedy

Claire Mathieu∗ Warren Schudy†

Abstract

We study dense instances of MaxCut and its generalizations.

Following a long list of existing, diverse and often sophisti-

cated approximation schemes, we propose taking the näıve

greedy approach; we prove that when the vertices are consid-

ered in random order, our algorithms are still approximation

schemes. Our algorithms may be simple, but the analysis is

not. It relies on smoothing the vertices defining the par-

tial cuts and on proving certain martingale properties. We

also give a simple proof that dense problems have sample

complexity O(1/ǫ4), which improves the result of Alon, Fer-

nandez de la Vega, Kannan, and Karpinski [1] by a log(1/ǫ)

factor. Like previous work, our results generalize to dense

maximum constraint satisfaction problems.

1 Introduction and main results

The MaxCut problem strives to partition the vertices
of an input graph into two parts to maximize the
number of edges crossing the cut. It has been the
object of intense research. The thread that concerns
us in this paper deals with designing approximation
schemes for dense graph instances of MaxCut, and
some generalizations, see for example [1, 6, 3, 4, 5, 2].
There exist many algorithms, each with its own unique
strong points, based on a combinatorial approach, or on
spectral techniques, or on smoothed linear programming
relaxations. This suggests that the problem is “easy” in
some sense, and thus simple algorithms have a chance
to be successful as well. Indeed, the combinatorial
approach of [6] can be interpreted as some form of a
“batched greedy” algorithm. Hence the question of
whether a simple greedy algorithm would be sufficient.

The greedy algorithm for MaxCut considers vertices
one by one in arbitrary order and places each of them
on the left or right side of the cut, depending on the
number of neighbors that are already placed on each
side (breaking ties arbitrarily). It is well known that
the greedy algorithm is a 2-approximation, and that this
bound is tight if an adversary controls the input graph
and the order in which the vertices are considered.

Here, we take advantage of the power of randomness

∗Brown University – Computer Science. Part of this work was

done while the first author was visiting Microsoft Research.
†Also Brown CS. Email: ws at cs.brown.edu

Algorithm 1 Simplest-to-analyze greedy algorithm

• Take a sample S of t0 = 1/ǫ2 vertices chosen
uniformly at random without replacement.

• For each of the 2t0 possible cuts of S:
For each vertex v of V \ S in random order,

Place v on the side that maximizes the
number of resulting crossing edges.

• Output the best cut found.

Algorithm 2 Fastest greedy algorithm

• Take a sample S of t1 = O(1/ǫ4) vertices chosen
uniformly at random

• Find a near-optimal cut in the problem induced by
the input on S, using Algorithm 1.

• For each vertex v of V \ S in random order,
Place v on the side that maximizes the
number of resulting crossing edges.

by considering vertices in random order. We define
three variants of the greedy algorithm for MaxCut.
The first algorithm is closest to the “exhaustive search”
techniques of previous papers, hence easiest to analyze.

Theorem 1.1. For any ǫ > 0, Algorithm 1 has running
time O(n2)2O(1/ǫ2) and the expected value of the output
is at least OPT − O(ǫn2).

Thus, for dense instances, Algorithm 1 is a polynomial-
time approximation scheme.

The second algorithm is basically the greedy algo-
rithm with random order, except that we start with a
good “hint” of a near-optimal solution, in the form of
a near optimal solution in a constant size sample. Note
that the running time separates into one term depend-
ing on ǫ but not on n (for solving the problem in the
sample) and the other term depending on n but not on
ǫ (for running the greedy algorithm on the rest of the
graph.) Thus it is the fastest of our variants.

Algorithm 3 Most näıve greedy algorithm

• Repeat 22Õ(poly(ǫ))

times
For each vertex v of V in random order,

Place v on the side that maximizes the
number of resulting crossing edges.

• Output the best cut found

Theorem 1.2. For any ǫ > 0, Algorithm 2 has running
time n2 + 2O(1/ǫ2) and the expected value of the output
is at least OPT − O(ǫn2).

Note that the use of Algorithm 1 in Algorithm 2 rather
than an arbitrary approximation algorithm is crucial for
our proof to work with a sample of size O(1/ǫ4).

The third algorithm eliminates the preliminary ran-
dom sample phase altogether; it is just the näıve greedy
algorithm with random order, but it is repeated enough
times to guarantee near-optimality. It is slowest but
simplest in design and does not even really require prior
knowledge of ǫ: one could just run it until satisfied with
the quality of the current cut, with the reassuring knowl-
edge that it will converge to a near-optimal value in
polynomial time.

Theorem 1.3. For any ǫ > 0, the expected value of the
output of Algorithm 3 is at least OPT− ǫnr.

The proof of Theorem 1.3, omitted in this extended
abstract, is a technical but relatively straightforward
use of the cut norm results from [1], and a variant of
the analysis of Algorithm 2.

With these results and techniques at hand, we can
give a new and simple proof of the following result. The
sample complexity is the number of vertices which must
be looked at in order to reliably estimate the value of
the maximum cut of the input graph.

Theorem 1.4. MaxCut has sample complexity t1 =
O(1/ǫ4) in the following sense: if S is a random sample
of t1 vertices chosen uniformly at random, and OPTS

is the value of the maximum cut of the graph induced by
G on S, then E [OPTS] /t21 = OPT/n2 ± O(ǫ).

Our proof of Theorem 1.4 improves the result of Alon,
Fernandez de la Vega, Kannan and Karpinski [1] by a
log(1/ǫ) factor.

We can extend Theorems 1.1, 1.2 and 1.4 to dense
Max-r-CSP problems (see extended version for details.)
It should also be possible to extend these theorems to
Chernoff-like tail bounds as well.

We analyze Algorithm 1 in §2 and Algorithm 2 in
§3. We prove Theorem 1.4 in §4.

Although we find such algorithms appealingly sim-
ple, the difficulty of the problem has not entirely disap-
peared. In this paper, it has merely been shifted from
the algorithmic design side to the algorithmic analysis
side, and thus the proof is quite involved.

The key difficulty with the proof is viewing the se-
quence of vertex placements chosen by the algorithm as a
sample of something at every timestep. Unfortunately,
in our algorithms the initial seed sample is soon drowned
out by the later greedily added vertices, so we need
to interpret the greedily added vertices as a sample of
something. Our solution is to define, at every time t, a
fictitious cut which is a fractional extension of the cur-
rent cut, and in which every vertex v not yet placed by
the algorithm is placed randomly (i.e. fractionally) by
considering how v would have been placed if it had been
selected for placement at a random time τ < t. This is
quite different from the choice made in [6], in which the
analog of the fictitious cut is obtained by placing ver-
tices not yet considered by their algorithm according to
the optimal cut. We use martingale arguments to show
that the actual partial cut and its fictitious extension
behave similarly, and therefore the greedy decisions in
the algorithm do not hurt the cost of the fictitious cut
much.

2 Analyzing Algorithm 1

2.1 Definitions and notations

The problem. Each vertex can take on 2 possible
values i ∈ [1, 2], corresponding to the two sides of
the cut. The goal is to find an cut of the vertices,
among the 2n possible cuts, so as to maximize the
number of crossing edges. We will actually view the
problem as trying to minimize the number of non-
crossing edges. We describe a cut by an 2n-dimensional
vector x, where xui ∈ {0, 1} equals 1 if and only if the
variable associated to vertex u has value equal to i. We
can then write the objective function z that needs to be
minimized as:

z(x) =
∑

1≤u1,u2≤n,
1≤i1,i2≤k

au1,i1,u2,i2xu1i1xu2i2 , (2.1)

where A = (au1,i1,u2,i2) is an 2n-dimensional array (a
matrix), symmetric under permutation of the 2 indices
(uj, ij)’s, such that au1i1u2i2 = 1/2 whenever i1 = i2
and {u1, u2} ∈ E and 0 otherwise. It will also be useful
to write z(x) = A(x, x), using the bilinear function

A(x(1), x(2)) =
∑

1≤u1,u2≤n,
1≤i1,i2≤2

au1,i1,u2,i2x
(1)
u1i1

x
(2)
u2i2

. (2.2)

The algorithm. The analysis will focus on the
run when the sample S is assigned in the same way as

OPT. For the sake of analysis pretend that the sample
is chosen one vertex at a time rather than batched. Let
“time t” denote the instant after the first t vertices are
considered by the algorithm. At any time t ∈ [0, n],
Algorithm 1 defines a partial cut xt:

xt
ui =

1 if vertex u has been given value i by time t
0 if vertex u has been given some value 6= i

by time t
0 if vertex u has not yet been given a value

by time t

Thus x0 is uniformly equal to 0, and xn describes the
output of the algorithm. We find it convenient to define
xt

v to be a 2-dimensional vector with components xt
vi,

and similarly for the other 2n-dimensional vectors.
Let rt denote the tth vertex considered by the

algorithm. Let x∗ = (x∗
ui) be the optimal cut. In

the case when t ≤ t0, we are in the initial phase
and the vertex u = rt considered by the algorithm at
time t is placed according to the optimal cut, so that
the 2-dimensional vector describing the placement of
vertex u is xt

u = x∗
u. In the case when t > t0, the

algorithm decides in a greedy fashion: let b(x) be the 2n-
dimensional vector of partial derivatives of z(x); since
z is bilinear and A(xt − xt−1, xt − xt−1) = 0, bui(x) is
the increase of z(x) when we increase xui by 1. Then,
by definition of greedy, xt

rt
= xt−1

rt
+ gt

rt
, where

gt
vi =

x∗
vi if t ≤ t0

1 if t > t0 and i = argminj bvj(x
t−1)

0 otherwise

Our analysis computes xt
u and bu(xt) inductively.

The fictitious cut. Instead of analyzing xt di-
rectly, the analysis will instead focus on the following
auxiliary variables. Let St = {r1, r2 · · · rt} be the ver-
tices placed up to time t. We extrapolate the partial
cut xt into a vector x̂t that is a complete (fractional)
cut by examining, for each v /∈ St, how v would have
been placed if it had been placed at time τ ≤ t, and
taking the average over all past times τ :

x̂t
v =

{

xt
v if v ∈ St

(1/t)
∑t

τ=1 gτ
v if v 6∈ St.

2.2 Proof of Theorem 1.1 In the first lemma, we
bound the increase in the value of the fictitious cut when
going from time t− 1 to time t, and the bound uses the
derivative of the objective function.

Lemma 2.1. For every t, we have z(x̂t) − z(x̂t−1) ≤
(x̂t − x̂t−1) · b(x̂t−1) + 4n2/t2.

Proof. Note that b(x)u1i1 = 2
∑

u2,i2
au1i1u2i2xu2i2 , so

that A(x(1), x(2)) = (1/2)x(1) · b(x(2)). Let ŝt =

x̂t − x̂t−1. By multilinearity and symmetry of A,

z(x̂t) = A(x̂t−1 + ŝt, x̂t−1 + ŝt)

= A(x̂t−1, x̂t−1) + ŝt · b(x̂t−1) + A(ŝt, ŝt).

A short calculation proves the following expression.

ŝt
u =

(

gt
u − x̂t−1

u

)

1 if u = rt is being
placed at time t

(1/t) if u 6∈ St has
not yet been placed

0 if u ∈ St−1 has
already been placed

(2.3)
Since both gt

u and x̂t−1
u have ℓ1 norm equal to 1, we

obtain that the ℓ1-norm of ŝt is
∑

u |ŝt
u| ≤ 2+ 2

t (n−t) =
2n

t . Then

|A(ŝt, ŝt)|1 ≤ |A|∞|ŝt|21 ≤ 4
n2

t2
.

Replacing A(x̂t−1, x̂t−1) by z(x̂t−1) concludes the proof.

In the second lemma, we bound the expectation of
the increase, and relate it to the difference between the
values of the fictitious cut and of the (scaled) true cut,
when evaluated by the derivative function b.

Lemma 2.2. For every t, the expected value of z(x̂t) −
z(x̂t−1) is less than or equal to

4n2/t2 + 2
n

t(n − t + 1)
E

[

|b(x̂t−1) − b(
n

t
xt−1)|1

]

.

Proof. First apply Lemma 2.1. Then, write:

ŝt · b(x̂t−1)

= ŝt · b(n

t
xt−1) + ŝt · (b(x̂t−1) − b(

n

t
xt−1))

= (
n

t
)ŝt · b(xt−1) + ŝt · (b(x̂t−1) − b(

n

t
xt−1))

≤ ŝt · (b(x̂t−1) − b(
n

t
xt−1)),

where the equality follows from the fact that the func-
tion b(y) is linear. To justify the last inequality, recall
that the greedy choice gt

u minimizes y · bu(xt−1) for y
with |y|1 = 1 and yui ∈ [0, 1]. Going back to (2.3), we
see that ŝt · b(xt−1) is less than or equal to 0. This is
where the greedy definition of the algorithm comes into
the analysis.

Given the history St−1, we can write:

E
[

ŝt · (b(x̂t−1) − b(
n

t
xt−1))|St−1

]

=
∑

v

E
[

ŝt
v · (bv(x̂

t−1) − bv(
n

t
xt−1))|St−1

]

=
∑

v

E
[

ŝt
v|St−1

]

· (bv(x̂
t−1) − bv(

n

t
xt−1))

≤
∑

v

|E
[

ŝt
v|St−1

]

|1 · |bv(x̂
t−1) − bv(

n

t
xt−1)|1

≤ 2
n

t(n − t + 1)
|b(x̂t−1) − b(

n

t
xt−1)|1,

where the second equality follows from the fact that
given St−1, b(x̂t−1) is fixed, the next inequality fol-
lows from general principles. As for the last inequal-
ity, fix St−1 and a vertex u and consider evaluating
E

[

ŝt
u|St−1

]

. If u ∈ St−1, then ŝt
u = 0 and so the

expectation is zero. Otherwise, by the random order
assumption,

E
[

|ŝt
u|1|St−1

]

= E

[|ŝt|1
n − t + 1

|St−1

]

≤ 2
n

t(n − t + 1)
.

and the last inequality follows. This concludes the proof
of Lemma 2.2.

The next lemma bounds the difference between the
b-values of the fictitious cut and of the (scaled) true cut.

Lemma 2.3. For every t, we have

E
[

|b(x̂t) − b(n
t xt)|1

]

= O(σ), where σ = O
(

n2
√

t

√

n−t
n

)

.

The proof is based on a certain martingale property and
deferred to the next section.

The next lemma relates the z-values of the fictitious
cut at two different times.

Lemma 2.4. For every t ≥ t0 we have E [z(x̂t)] −
E [z(x̂t0)] = O(ǫn2).

Proof. Use Lemma 2.2 for every τ from t0 to t, and
sum; apply Lemma 2.3 to each term in the sum, and
use t0 ≥ 1/ǫ2: after a short calculation we get:

E
[

z(xt) − z(x̂t0)
]

= n2O

(

1

t0
+

1√
t0

+
1√
t

)

= O(ǫn2).

Proof. (of Theorem 1.1.) By definition of the fictitious
cut, the output cut xn is equal to x̂n. Apply Lemma 2.4
for t = n; and recall that by definition of x∗, x̂t0 is the
optimal cut.

2.3 Proof of Lemma 2.3 using martingales. In
this section, we detail the proof of Lemma 2.3. Fix
v. The following lemma is simple, yet central. This
martingale is the key to all the future applications of
the Azuma-Hoeffding inequality.

Lemma 2.5. Zt
v = t

n−t (x̂
t
v − (n/t)xt

v) is a martingale.

Proof. If v ∈ St−1 then x̂t
v = xt

v = x̂t−1
v = xt−1

v . Let x
be their common value. Then

t

n − t
(x̂t

v−(n/t)xt
v) =

t − 1

n − t + 1
(x̂t−1

v −(n/(t−1))xt−1
v)

are both equal to −x and the martingale statement
holds in that case. If v /∈ St−1, then xt−1

v = 0; by
the random order, with probability 1/(n − t + 1) we
have v = rt and xt

v = x̂t
v = gt

v; with the remaining
probability (n − t)/(n − t + 1, we have xt

v = 0 and
x̂t

v = ((t − 1)/t)x̂t−1
v + (1/t)gt

v, and so:

E

[

t

n − t
(x̂t

v − (n/t)xt
v)|St−1

]

=

1

n − t + 1
(−gt

v) +

n − t

n − t + 1
· t

n − t

[

t − 1

t
x̂t−1

v +
1

t
gt

v

]

=
t − 1

n − t + 1
x̂t−1

v ,

which concludes the proof since xt−1
v = 0 in that case.

Lemma 2.6. Bt
vi = t

n−t (bvi(x̂
t) − bvi(

n
t xt)) is a mar-

tingale, with stepsize bounded by 4n/(n− t).

Proof. The martingale statement follows from
Lemma 2.5 by linearity: bvi(x) =

∑

uj αujxuj .
To bound its step-size, we note that α = max |αuj | ≤ 2
(since |A|∞ ≤ 1), so that the step size is at most:

∣

∣

∣

∣

∣

∣

∑

uj

αujZ
t
uj −

∑

uj

αujZ
t−1
uj

∣

∣

∣

∣

∣

∣

≤ α
∑

u

|Zt
u − Zt−1

u |1.

When u ∈ St−1, we have |Zt
u − Zt−1

u |1 = 0. When
u = rt, we have

|Zt
u −Zt−1

u |1 =

∣

∣

∣

∣

−gt
v

n − t + 1
− (t − 1)x̂t−1

v

n − t + 1

∣

∣

∣

∣

1

≤ t

n − t + 1
.

When u /∈ St, we have

|Zt
u − Zt−1

u |1 =

∣

∣

∣

∣

(t − 1)x̂t−1
u + gt

u

n − t
− t − 1

n − t + 1
x̂t−1

u

∣

∣

∣

∣

1

≤ t − 1

(n − t)(n − t + 1)
+

1

n − t

=
n

(n − t)(n − t + 1)
.

Summing, the stepsize is at most α((t+n)/(n−t+1)) ≤
4n/(n− t).

We recall the Azuma-Hoeffding inequality.

Theorem 2.1. [Azuma-Hoeffding] Let X0, X1, . . . , Xt

be a martingale such that |Xk − Xk−1| ≤ ck for all k.
Then, for all λ > 0,

Pr(|Xt − X0| ≥ λ) ≤ 2e−λ2/(2
Pt

k=1 c2
k).

Proof. (of Lemma 2.3) From Lemma 2.6, |b(x̂t) −
b(n

t xt)|1 is also a martingale with stepsize at most
4n/(n− t). Apply the Azuma-Hoeffding inequality:

Pr
(∣

∣

∣
b(x̂t) − b(

n

t
xt)

∣

∣

∣

1
≥ λ

)

≤ e−λ2/σ2

(2.4)

where σ = O
(

n2
√

t

√

n−t
n

)

. Finally, integrate over λ,

using the fact that for a non-negative random variable
X , E [X] =

∫ ∞
λ=0 Pr (X ≥ λ) dλ.

3 Analyzing Algorithm 2

Instead of Algorithm 2, we will analyze a variant,
Algorithm 4.

Lemma 3.1. With probability at least 1−ǫ, Algorithm 4
and Algorithm 2 give the same output.

Proof. Consider a coupon collection problem with N =
2t0 coupons, one per cut of the first t0 variables. Let
κ = N ln(N/ǫ) = 2t0 (t0 ln 2 + ln(1/ǫ)) = 2O(t0) be the
number of trials, one per cut in Y (excluding x∗). As
long as Algorithm 4 collects all the coupons, it iterates
over the same cuts of T as Algorithm 2 and hence
returns the same result. Each coupon has probability
(1 − 1/N)κ ≤ e−κ/N = ǫ

N of not being collected,
so a union bound shows that all are collected with
probability at least 1 − ǫ.

In the analysis of the previous section, the construc-
tion always started by a cut induced on the sample by
the optimal cut x∗. Now we need a new notation: let
xt

(y) denote the construction at time t, starting from the

cut induced on the sample by the cut y (instead of by
the optimal cut x∗). Let x̂t

(y) denote the fictitious cut
at time t, starting from cut y. Formally, replace x∗ in
the definition of gt

vi with y.

Lemma 3.2.

E

[

max
y∈Y

∣

∣

∣
b(

n

t
xt

(y)) − b(x̂t
(y))

∣

∣

∣

1

]

=
1

ǫ
O(σ)

where σ = O
(

n2
√

t

√

n−t
n

)

.

Proof. Similarly to (2.4), we have for every y ∈ Y :

Pr
(∣

∣

∣
b(x̂t

(y)) − b(
n

t
xt

(y))
∣

∣

∣

1
≥ λ

)

≤ e−λ2/σ2

. (3.5)

Algorithm 4 Variant algorithm for analysis

• Take a sample S of t1 = O(1/ǫ4) vertices chosen
uniformly at random; Take a sample T of t0 =
O(1/ǫ2) vertices of S chosen uniformly at random

• Let Y be a set of 2O(t0) random cuts of the n
vertices, plus the optimal cut x∗.

• For each cut of T induced by cuts in Y :
For each vertex v of S \ T in random order,

Place v on the side that maximizes the
number of resulting crossing edges.

• Let w ∈ Y be the cut yielding the best cut of S.

• For each vertex v of V \ S in random order,
Place v on the side that maximizes the
number of resulting crossing edges.

The set Y has size 2O(t0) = eO(1/ǫ2), so by a union
bound,

Pr

(

max
y∈Y

∣

∣

∣
b(x̂t

(y)) − b(
n

t
xt

(y))
∣

∣

∣

1
≥ λ

)

≤ eO(1/ǫ2)−λ2/σ2

Finally, integrate min(1, eO(1/ǫ2)−λ2/σ2

) over λ.

Lemma 3.3.

E

[

max
y∈Y

|z(
n

t
xt

(y)) − z(x̂t
(y))|

]

=
1

ǫ
O(σ)

where σ = O
(

n2
√

t

√

n−t
n

)

.

The ideas of the proof are similar to those in Lemmas 2.3
and 3.2 but somewhat technical, so we defer the proof
to §3.3.

3.1 Proof of Theorem 1.2 By definition of the
fictitious cut, the output cut xn

(w) is equal to x̂n
(w). As in

the previous section, looking at the process from time
t1 to time n we write:

z(x̂n
(w)) = z(x̂t1

(w)) +
∑

t1≤t≤n

z(x̂t
(w)) − z(x̂t−1

(w)).

Taking expectations, by Lemma 2.2 (which is still valid
here) we have:

E
[

z(x̂t
(w)) − z(x̂t−1

(w))
]

≤

4n2/t2 + 2
n

t(n − t + 1)
E

[

|b(x̂t−1
(w)) − b(

n

t
xt−1

(w))|1
]

.

Now, note that we have

|b(x̂t−1
(w)) − b(

n

t
xt−1

(w))|1 ≤ max
y∈Y

|b(x̂t−1
(y)) − b(

n

t
xt−1

(y))|1.

Thus we can use Lemma 3.2 to deal with this term. To
analyze z(x̂t1

(w)), we write:

z
(

x̂t1
(w)

)

≤ z

(

n

t1
xt1

(w)

)

+

∣

∣

∣

∣

z
(

x̂t1
(w)

)

− z

(

n

t1
xt1

(w)

)∣

∣

∣

∣

.

The second term can be bounded above by
maxy∈Y |z(x̂t1

(y)) − z(n
t1

xt1
(y))|, so that we can ap-

ply Lemma 3.3 to bound it. As to the first term, since
x∗ is one of the cuts in Y , by definition of the algorithm
we have

z

(

n

t1
xt1

(w)

)

≤ z

(

n

t1
xt1

(x∗)

)

.

Now we can write

z

(

n

t1
xt1

(x∗)

)

≤ z
(

x̂t1
(x∗)

)

+

∣

∣

∣

∣

z
(

x̂t1
(x∗)

)

− z

(

n

t1
xt1

(x∗)

)∣

∣

∣

∣

.

Again, the second term can be bounded above
by maxy∈Y |z(x̂t1

(y)) − z(n
t1

xt1
(y))|, and we can apply

Lemma 3.3 to bound it. Now, by Lemma 2.4 for t = t1,
we have

E
[

z(x̂t1
(x∗))

]

− E
[

z(x̂t0
(x∗))

]

= O(ǫn2).

Finally, as in the previous section, it holds that

E
[

z(x̂t0
(x∗))

]

= OPT. Together, these bounds prove

Theorem 1.2.

3.2 A probabilistic aside. For any σ > 0, let C(σ)
denote the set of random variables X such that for any
λ > 0, Pr (X ≥ σ + λ) ≤ e−λ2/σ2

.
This definition satisfies a number of easily verified

properties.

Lemma 3.4. Let σ and α be positive constants and X
and Y be random variables. Then:

• If X ∈ C(σ) then αX ∈ C(ασ).

• If X ∈ C(σ) and Y ≤ X then Y ∈ C(σ).

• The random variable with constant value σ is in
C(σ).

Furthermore this class of random variables adds nicely:

Lemma 3.5. For any real-valued random variables X,
Y , if X ∈ C(σx) and Y ∈ C(σy), then X + Y ∈
C(σx + σy).

Proof. [Proof sketch] The worst case is if both
inequalities hold with equality. Using Cher-
noff bound techniques, it is sufficient to show
that E

[

eα(X+Y −σx−σy)
]

≤ e−α2(σx+σy)2 . Clearly

E
[

eα(X+Y −σx−σy)
]

= E
[

eα(X−σx)eα(Y −σy)
]

. The
worst case for the expectation of a product given the
distribution of the factors is when X and Y are maxi-
mally correlated, and hence X/σx = Y/σy.

3.3 Proof of Lemma 3.3 The following lemma plus
a union bound suffices to prove Lemma 3.3.

Lemma 3.6. For a fixed y,

Pr
(
∣

∣

∣
z

(n

t
xt

(y)

)

− z(x̂t
(y))

∣

∣

∣
≥ σ + λ

)

≤ e−λ2/σ2

where

σ =
n2

√
t
·
√

n − t

n
.

Proof. Fix y ∈ Y and study Ft = z(n
t xt

(y)) − z(x̂t
(y)).

Define x̄ = t
n x̂t

(y). By definition, multilinearity and
symmetry:

Ft =
(n

t

)2

(n − t)A

(

xt − x̄t

n − t
, (xt + x̄t)

)

so it suffices to show A ((x − x̄)/(n − t), (x + x̄)) ∈
C(O(t2/

√

tn(n − t))).
Let Dt = A ((xt − x̄t)/(n − t), (xt + x̄t)) −

A
(

(xt−1 − x̄t−1)/(n − t + 1), (xt−1 + x̄t−1)
)

. There-
fore:

A
(

(xt − x̄t)/(n − t), (xt + x̄t)
)

(3.6)

=

t
∑

τ=1

(Dτ − E
[

Dτ |St−1
]

) +

t
∑

τ=1

E
[

Dτ |St−1
]

.

By Lemma 3.5, it is sufficient to show each of these
two terms is separately in C(O(t2/

√

tn(n − t))).
The first term of (3.6) is a martingale with step

size O(t/(n − t)), which leads to variance O(t3/n2) for
t < n/2 and O(n2/(n − t)) for t ≥ n/2. Azuma-
Hoeffding and liberal use of big-oh shows the first term
of (3.6) is in C(t2/

√

tn(n − t)).
For the second term of (3.6), we write that Dt equals

A(
xt − x̄t

n − t
− xt−1 − x̄t−1

n − t + 1
, xt−1 + x̄t−1)

+ A(
xt−1 − x̄t−1

n − t + 1
, xt + x̄t − xt−1 − x̄t−1)) (3.7)

+ A(
xt − x̄t

n − t
− xt−1 − x̄t−1

n − t + 1
, xt + x̄t − xt−1 − x̄t−1).

The first term of (3.7) has expectation given history of
zero by Lemma 2.5. The third term of (3.7) is bounded

by a negligible t/(n − t). The second term can be
rewritten as

t

n(n − t)
(xt + x̄t − xt−1 − x̄t−1)(b(x̂t) − b(

n

t
xt)).

A quick calculation shows

|E
[

xt + x̄t − xt−1 − x̄t−1|St−1
]

|∞ ≤ 1/(n − t)

and by (3.5),
∣

∣b(x̂t) − b(n
t xt)

∣

∣

1
∈ C(O(n2

√

n − t/(tn)))

so the second term of (3.7) is in C(O(
√

nt/(n− t)3)).
For t ≤ n/2 this sums to O(t3/2/n). For t > n/2, it
sums to O(t2/

√

tn(n − t).

Now we use Lemma 3.6 to prove lemma 3.3.
Union bound: Pr (maxy |z(n/tx) − z(x̂)| ≥ σ + λ) ≤
eO(1/ǫ2)−λ2/σ2

. Integration proves the lemma.

4 Proof of Theorem 1.4

With these techniques in hand, our proof of Theo-
rem 1.4 [1] is actually quite simple. Recall [1] that
the hard direction is showing that the subproblem
isn’t easier than the overall problem: E [OPTSt1] /t21 ≥
OPT/n2 − O(ǫ). The easy direction is a consequence
of Lemmas 2.4 and 3.3 (though much easier proofs ex-
ist). The key idea we use is that while Algorithm 1,
as a subroutine of Algorithm 2, is solving the problem
on the first t1 vertices, it is also implicitly generating
solutions for the whole graph x̂t1

(y).

By Theorem 1.1 the best cut found by Algorithm 1
for the outer sample St1 is a good approximation to the
optimal cut for the outer sample:

E
[

z(xt1
(w))

]

/t21 ≤ E [OPTSt1] /t21 + O(ǫ)

By Lemma 3.2, the cost of the best cut of the outer
sample found by Algorithm 1 is approximately equal to
the cost of the extrapolated solution x̂t1 :

E
[

z(x̂t1
(w))

]

/n2 ≤ E
[

z(xt1
(w))

]

/t21 + O(ǫ)

Recall that x̂ has every variable set to a convex
combination of several values (|x̂u| = 1). One can make
greedy changes to convert x̂ into an integral solution, so
by definition of OPT :

OPT/n2 ≤ E
[

z(x̂t1
(w))

]

/n2

Adding inequalities together yields:

OPT/n2 ≤ E [OPTSt1] /t21 + O(ǫ).

5 Open problems

It is well-known that running greedy once is a 2-
approximation for MaxCut on general graphs, and we
just proved that running greedy many times is a (1+ǫ)-

approximation on dense graphs. Does repeating greedy
on general graphs yield an approximation factor better
than 2?

Previous algorithms for MaxCut have been ex-
tended to weighted instances when the weights define
a metric. We conjecture that such instances can also be
solved by an extension of our greedy algorithms.

What problems other than Max-r-CSP can be an-
alyzed with our technique? It is easy to see that maxi-
mum separator can be solved with our techniques (albeit
with a less efficient t0 = 1/ǫ4), but many other possibil-
ities exist for which PTASs are not already known. For
example, consider the problem of finding a maximum
cut with the condition that the fraction of the edges
that are within the left side of the cut is the inverse of a
prime (1/2, 1/3, 1/5, etc.). This problem is likely also
solvable by our framework. Non-convex but smooth ob-
jectives should also be handled by our framework, such
as finding a three-way cut that maximizes the square
of the number of edges between piece 1 and 2 plus the
number of edges between 2 and 3, should anyone care
for such an objective function.

References

[1] Noga Alon, W. Fernandez de la Vega, Ravi Kannan,
and Marek Karpinski. Random sampling and ap-
proximation of MAX-CSPs. J. Comput. Syst. Sci.,
67(2):212–243, 2003.

[2] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf
Shapira. A combinatorial characterization of the
testable graph properties: It’s all about regularity.
In STOC ’06: Proceedings of the thirty-eighth annual

ACM symposium on Theory of computing, pages 251–
260, New York, NY, USA, 2006. ACM Press.

[3] Sanjeev Arora, David Karger, and Marek Karpinski.
Polynomial time approximation schemes for dense in-
stances of NP-hard problems. In STOC ’95: Proceed-

ings of the twenty-seventh annual ACM symposium on

Theory of computing, pages 284–293, 1995.
[4] W. Fernandez de la Vega. MAX-CUT has a random-

ized approximation scheme in dense graphs. Random

Struct. Algorithms, 8(3):187–198, 1996.
[5] Alan M. Frieze and Ravi Kannan. Quick approxi-

mation to matrices and applications. Combinatorica,
19(2):175–220, 1999.

[6] Oded Goldreich, Shari Goldwasser, and Dana Ron.
Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

