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1. INTRODUCTION

Suppose you ran a chess tournament, everybody played everybody, and you wanted
to use the results to rank everybody. Unless you were really lucky, the results would
not be acyclic, so you could not just sort the players by who beat whom. A natural
objective is to find a ranking that minimizes the number of upsets, where an upset is
a pair of players where the player ranked lower in the ranking beat the player ranked
higher. This is the minimum feedback arc set (FAS) problem in tournaments.

For general directed graphs, the FAS problem consists of removing the fewest
number of edges so as to make the graph acyclic, and has applications such as
scheduling [Flood 1990] and graph layout [Sugiyama et al. 1981; Demetrescu and
Finocchi 2000] (see also [Lempel and Cederbaum 1966; Baker and Hubert 1977;
Jünger 1985]). This problem has been much studied, both in the mathematical
programming community [Grötschel et al. 1985a; 1985b; Jünger 1985; Korte 1979;
Newman and Vempala 2001; Newman 2004], the approximation algorithms com-
munity [Leighton and Rao 1999; Seymour 1995; Even et al. 2000; Even et al. 1998]
and various applied communities [Demetrescu and Finocchi 2000; 2001; Eades et al.
1993; Dwork et al. 2001]. The best known approximation ratio is O(log n log log n).
Unfortunately the problem is NP-hard to approximate better than 1.36 [Karp 1972;
Dinur and Safra 2002]. The equivalent problem of maximizing the number of edges
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not removed, called max acyclic subgraph, has also been extensively studied [Hassin
and Rubinstein 1994; Berger and Shor 1997; Charikar et al. 2007b; Newman 2001].

A tournament is the special case of directed graphs where every pair of vertices is
connected by exactly one of the two possible directed edges. For tournaments, the
FAS problem also has a long history, starting in the early 1960s in combinatorics [Se-
shu and Reed 1961; Younger 1963] and statistics [Slater 1961]. In combinatorics
and discrete probability, much early work [Erdös and Moon 1965; Reid 1969; Reid
and Parker 1970; Jung 1970; Spencer 1971; 1980; Fernandez de la Vega 1983] fo-
cused on worst-case tournaments. In statistics and psychology, one motivation is
ranking by paired comparisons [Slater 1961]: here, you wish to sort some set by
some objective but you do not have access to the objective, only a way to compare
a pair and see which is greater; for example, determining people’s preferences for
types of food. Feedback arc set in tournament graphs and closely related problems
have also been used in machine learning [Cohen et al. 1999; Ailon and Mohri 2008].
Unfortunately the FAS problem is NP-hard even in tournaments [Ailon et al. 2008;
Alon 2006; Charbit et al. 2007] (see also [Conitzer 2006]).

Researchers have been designing algorithms for the FAS problem in tournament
graphs since the dawn of computer science. Slater and Alway describe simple
heuristics for the FAS tournament problem in Slater [1961] (for comparison Hoare
published quicksort the same year). Coleman and Wirth [2008] compare various al-
gorithms empirically, including an algorithm by Ailon et al. [2008] and many others
with no approximation guarantees. The best previously known approximation algo-
rithms achieve constant factor approximations: 2.5 in the randomized setting [Ailon
et al. 2008] and 3 in the deterministic setting [Van Zuylen et al. 2007; Van Zuylen
and Williamson 2007; Ailon et al. 2008] (see also Coppersmith et al. [2006]). Our
main result is a polynomial time approximation scheme (PTAS) for this problem:
thus the problem really is provably easier to approximate in tournaments than on
general graphs.

Here is a weighted generalization of feedback arc set in tournaments.

Problem 1.1 Weighted FAS Tournament.
Input: complete directed graph with vertex set V , n ≡ |V | and non-negative edge
weights wuv with b ≤ wuv + wvu ≤ 1 for some fixed positive constant b.
Output: An ranking π minimizing C(π) =

∑

{u,v}⊂V :π(v)>π(u) wvu, where a ranking

is a bijective mapping from V to {1, 2, . . . |V |}.

(The unweighted problem is the special case where wuv = 1 if (u, v) is an edge and
wuv = 0 otherwise.)

We now state our main theorem.

Theorem 1.2 PTAS. There is a randomized algorithm for minimum Feedback
Arc Set on weighted tournaments. Given ǫ > 0, it outputs a ranking with expected
cost at most (1 + ǫ)OPT . The expected running time is:

O
(

n3 log n(log(1/b) + 1/ǫ)
)

+ n2Õ(1/(ǫb)6).

The algorithm can be derandomized at the cost of increasing the running time to

nÕ(1/(ǫb)12).

Journal of the ACM, Vol. in submission, No. N, Month 20YY.



How to Rank with Fewer Errors · 3

We remark that our PTAS is singly exponential in 1/ǫ, whereas the PTAS in the
conference version of this work [Kenyon-Mathieu and Schudy 2007] was doubly
exponential in 1/ǫ.

Ailon et al. [2008] study the special-case b = 1, which they call weighted FAS
tournament with probability constraints. Indeed, sampling a population naturally
leads to defining wij as the probability that type i is preferred to type j. We
note that all known approximation algorithms [Ailon et al. 2008; Coppersmith et
al. 2006; Van Zuylen et al. 2007; Van Zuylen and Williamson 2007] extend to
weighted tournaments for b = 1.

An important application of weighted FAS tournaments is rank aggregation. Fre-
quently, one has access to several rankings of objects of some sort, such as search
engine outputs [Dwork et al. 2001], and desires to aggregate the input rankings into
a single output ranking that is similar to all of the input rankings: it should have
minimum average distance from the input rankings, for some notion of distance.
This ancient problem was already studied in the context of voting by Borda [1781]
and Condorcet [1785] in the 18th century, and has aroused renewed interest re-
cently [Dwork et al. 2001; Conitzer et al. 2006]. A natural notion of distance is the
number of pairs of vertices that are in different orders: this defines the Kemeny rank
aggregation problem [Kemeny 1959; Kemeny and Snell 1962]. This choice yields a
maximum likelihood estimator for a certain näıve Bayes model [Young 1995]. This
problem is NP-hard [Bartholdi et al. 1989], even with only 4 voters [Dwork et al.
2001]. Constant factor approximation algorithms are known: choosing a random
(or best) input ranking as the output gives a 2-approximation; finding the optimal
aggregate ranking using the footrule distance as the metric instead of the Kendall-
Tau distance also gives a 2-approximation [Dwork et al. 2001; Diaconis and Graham
1977]. There is also a randomized 4/3 approximation algorithm [Ailon et al. 2008].
We improve on these results by giving a polynomial time approximation scheme
(PTAS).

Corollary 1.3. There is a randomized algorithm for Kemeny rank aggregation
that. Given ǫ > 0, it outputs a ranking with expected cost at most (1+ ǫ)OPT . The
expected running time for n candidates is:

O

(

n3 log n

ǫ

)

+ n2Õ(1/ǫ6) + O
(

n2 · (number of voters)
)

.

The algorithm can be derandomized at the cost of increasing the running time to

nÕ(1/ǫ12).

An important open question is whether there is a PTAS for the generalization of
Kemeny rank aggregation to partial rankings such as search engine outputs. There
is a 1.5-approximation algorithm [Ailon 2007].

It is surprising that the minimum Feedback Arc Set problem on tournaments
has an approximation scheme. The related problems of correlation clustering on
complete graphs1 [Charikar et al. 2005] and of feedback vertex set on tournaments
[Cai et al. 2001] do not have PTASs unless P=NP.

1This problem is identical to FAS except it deals with symmetric transitive relations instead of
antisymmetric ones.
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KwikSort(vertices S):

Choose a vertex v uniformly at random from S
Let L be the set of vertices u such that wuv ≥ wvu and R = S \ L.
Return the concatenation of KwikSort(L) and KwikSort(R).

Fig. 1. KwikSort algorithm for minimum Feedback Arc Set in tournaments by Ailon et al. [2008].

Certain special cases can be solved exactly in polynomial time. Braverman and
Mossel [2008] give an exact algorithm for feedback arc set when the input is gener-
ated by adding noise to a base ranking. There are also good algorithms for low-cost
instances of FAS tournament and Kemeny rank aggregation (i.e. fixed-parameter
tractability) [Dom et al. 2006; Betzler et al. 2008].

Other related problems include d-dimensional arrangement [Charikar et al. 2007a].

We note that Amit Agarwal has informed us that he has obtained similar results.

2. MAIN RESULTS

2.1 Algorithmic tools

Our first algorithmic tool is local search. A single vertex move, given an ranking
π, a vertex x and a position i, consists of taking x out of π and putting it back in
position i. We say a ranking is locally optimal if no single vertex move can improve
its cost. Single vertex moves were used for FAS tournament as early as 1961 [Slater
1961]. Single vertex moves and variants were also used in [Hassin and Rubinstein
1994; Younger 1963; Dwork et al. 2001; Coleman and Wirth 2008]. Coleman and
Wirth [2008] show that single vertex moves alone do not yield a constant factor
approximation by giving a graph with global optimum Θ(n) and a local optimum
of value Θ(n2).

Our second algorithmic tool is the KwikSort algorithm by Ailon Charikar and
Newman [2008]. Recall from Problem 1.1 that b is a lower bound on wuv + wvu for
every pair {u, v}. We show that Ailon et al. [2008]’s KwikSort algorithm, (which
we reproduce for completeness in Figure 1) is a 5/b-approximation for any b > 0.

Theorem 2.1. [Ailon et al. 2008] Let w be non-negative weight function on
the edges. Assume that for every u, v, x ∈ V , if wuv ≥ wvu, wvx ≥ wxv and
wxu ≥ wux, then wuv + wvx + wxu ≤ α ·min{wuv, wvx, wxu} for some α > 1. Then
the KwikSort algorithm is an α-approximation in expectation.

Corollary 2.2. Assume that for every pair of vertices, b ≤ wuv + wvu ≤ 1.
Then the KwikSort algorithm is a 5/b-approximation in expectation.

Proof. (Adapted from the proof in Ailon et al. [2008] for the case b = 1.)
Fix some triple {u, v, x} ⊆ V with wuv ≥ wvu, wvx ≥ wxv and wxu ≥ wux. We
assume without loss of generality that wuv ≤ wvx, wxu. By weighted tournament
assumption wuv + wvu ≥ b so wuv ≥ b/2, hence 2 ≤ 4

b wuv.
Therefore

wuv + wvx + wxu ≤ 2 + wuv ≤
(

4

b
+ 1

)

wuv =

(

4

b
+ 1

)

min{wuv, wvx, wxu}

≤ 5

b
min{wuv, wvx, wxu}.
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FAST-Scheme:

Run the KwikSort algorithm on V to define an ranking π
Return Improve(π, ǫb/5).

Improve(ranking π, error tolerance η):

Set β ←
ηC(π)

4n log3/2 n
and κ← η2b3

350·4002

Perform single vertex moves on π until none can improve the cost by more than β.
Return ImproveRec(V, π)

ImproveRec(vertices S, ranking π on S):

if |S| = 1 then

Return π
else

if C(π) ≥ κ|S|2 then

Return the ranking from AddApprox with δ = η
4
κ

else

Choose an integer k uniformly at random from [|S|/3, 2|S|/3]
Let L be the set of vertices v such that π(v) ≤ k and R = S \ L
Return concatenation of ImproveRec(L, πL) and ImproveRec(R, πR) where

πL is the ranking of L induced by π, i.e. πL(v) = π(v), and
πR is the ranking of R induced by π, i.e. πR(v) = π(v) − k.

end if

end if

Fig. 2. Approximation scheme for minimum Feedback Arc Set on tournaments

Our third and last algorithmic tool is the sampling-based approximation algo-
rithms due to Arora, Frieze and Kaplan [2002] and to Frieze and Kannan [1999].
For completeness we use a (much simpler) algorithm based on Mathieu and Schudy
[2008], which we state and analyze in Appendix A.

Theorem 2.3. Let δ > 0 be fixed. There is a randomized algorithm AddAp-

prox for minimum Feedback Arc Set on weighted tournaments with expected addi-

tive error δn2 and runtime O
(

n2
)

+ 2Õ(1/δ2).

2.2 Algorithm

Our main algorithm FAST-Scheme (short for Feedback Arc Set Tournament Ap-
proximation Scheme) is presented in Figure 2.

Lemma 2.4. Let πin be the input and πout be the output of the Improve sub-
routine. Then:

E
[

C(πout)
]

≤ OPT + η · C(πin).

With this, it is easy to see that FAST-Scheme is an approximation scheme.
Indeed, by Corollary 2.2, it calls the Improve subroutine for a ranking of expected
cost at most (5/b)OPT . By definition of η and Lemma 2.4, the output ranking
then has expected cost at most (1+ ǫ)OPT . To obtain the running time claimed in
Theorem 1.2, we actually need a slightly modified version of FAST-Scheme that
calls Improve repeatedly (see Section 5.)
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Definition 2.5. Ranking π of S respects partition L, R of S if π(u) < π(v) for
every u ∈ L and v ∈ R.

The keystone of our analysis is the following Lemma.

Lemma 2.6. Let β ≥ 0 and πloc be an ranking such that no single vertex move
can improve the cost by more than β. Let k be an integer chosen uniformly at
random from [|S|/3, 2|S|/3], L be the set of vertices such that πloc(v) ≤ k and
R = S \ L. Let π∗ be an optimum ranking and π′ be an optimum ranking that
respects L, R. We have

E [C(π′)] ≤ C(π∗) +
400

|S|

(

C(πloc)

b

)3/2

+ β|S|

2.3 Why FAST-Scheme needs single vertex moves

As a warm-up to build intuition we demonstrate that FAST-Scheme needs sin-
gle vertex moves. Consider a variant of FAST-Scheme that calls ImproveRec

directly on the output of KwikSort, without doing any single vertex moves. We
now show that this variant is not a PTAS.

Consider a chess tournament (instance) where all the results are consistent except
that the worst player beat the best. If KwikSort picks any player other than the
worst or best as the first pivot it finds a ranking with cost 1, which is optimal. On
the other hand, if KwikSort picks the best player as the first pivot it produces
ranking πbad, which puts the worst player first and has cost n − 1.

Now consider what happens when ImproveRec is called on πbad. As long as
n is not too small ImproveRec divides and conquers, irrevocably committing to
ranking the worst player among the k best for some n/3 ≤ k ≤ 2n/3. No matter
what happens in the later recursions, the output clearly has cost at least n/3.

The overall expected cost of the output of this variant of FAST-Scheme is
therefore at least

n − 2

n
1 +

2

n

n

3
=

5

3
+ o(1)

hence this variant is not a PTAS.

2.4 Organization of this article

The core of our paper is §3, which proves Lemma 2.6. In §4 we use Lemma 2.6 to
prove Lemma 2.4, completing our proof that FAST-Scheme is an approximation
scheme. In §5 we describe a variant of FAST-Scheme with better runtime and
prove Theorem 1.2. In §6 we derandomize. An appendix describes the AddApprox

algorithm promised by Theorem 2.3.

3. BOUNDING THE COST OF PARTITION-RESPECTING RANKINGS

3.1 A good partition-respecting ranking

In preparation for proving Lemma 2.6 we adopt its notation. We modify π∗ to
construct a partition-respecting ranking πgood as follows. To avoid having to in-
troduce cumbersome tie-breaking rules, we shift values a little: let δ = 1/100,
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1 2 3 4 5 6 7 8 9

1−2δ 3−δ

4−2δ

4−δ 5−δ 6−δ 7−2δ 8−2δ 9−2δ

1 2 3 4 5 6 7 8 9

k=4

σ
good

σ
∗

σ
loc

σ
loc

π
loc

π
good

1−δ 3−δ 4−δ2−δ 5−δ 6−δ 7−δ 8−δ 9−δ

1−δ 3−δ 4−δ2−δ 5−δ 6−δ 7−δ 8−δ 9−δ

1−2δ 3−2δ 4−2δ2−2δ 5−2δ 6−2δ 7−2δ 8−2δ 9−2δ

Fig. 3. Definition of πgood: edges such that k is between σloc(u) and σ∗(u) are in bold.

σloc(v) = πloc(v) − δ and σ∗(v) = π∗(v) − 2δ. Let

σgood(v) =

{

σ∗(v) if σloc(v) and σ∗(v) are on the same side of k
σloc(v) otherwise

.

We then define πgood as the ranking naturally associated with σgood: πgood(v) is
the rank of σgood(v) among {σgood(u) : u ∈ S}. See Figure 3 for an illustration.

Lemma 3.1. πgood respects (L, R).

Proof. By definition of σgood, σgood(u) < k if and only if σloc(u) < k, which
holds if and only if πloc(u) ≤ k, or in other words, if and only if u ∈ L.

3.2 Proof of Lemma 2.6

We call an injective map σ from S to R an ordering. Given ordering σ, we define
Ranking(σ) as the ranking naturally associated to σ: Ranking(σ)(v) is the rank of
σ(v) among {σ(u) : u ∈ S}. For instance, Ranking(σloc) = πloc, Ranking(σ∗) = π∗,
and Ranking(σgood) = πgood. The notion of single vertex move extends naturally
to orderings and consists of changing the value of the ordering at a single vertex.
We also extend the notion of cost in the obvious way: C(σ) = C(Ranking(σ)).

For any vertex u, define σloc
u to be the result of applying a certain single vertex

move to σloc, defined by σloc
u (v) = σloc(v) for all v except for u and σloc

u (u) = σ∗(u).
For any x ∈ R we write u crosses x if x is between σloc(u) and σ∗(u).

Lemma 3.2. Let T =
∑

u : u crosses k

(

C(σloc) − C(σloc
u )

)

. Then T ≤ β|S|.

Proof. By definition of πloc (the ranking associated with σloc), no single vertex
move can improve the cost by more than β, so C(σloc) − C(σloc

u ) ≤ β. Summing
over u concludes the proof.
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8 · C. Mathieu and W. Schudy

Lemma 3.3. Let F =
∑

v∈S |πloc(v) − π∗(v)| denote the Spearman’s footrule

distance between rankings πloc and π∗. Then

E
[

C(σgood) − C(σ∗) − T
]

≤ 32
√

2

|S| F 3/2

Before proving Lemma 3.3, let us see how it implies Lemma 2.6.

Proof. (of Lemma 2.6). By Lemma 3.1 and the definition of π′ we have
C(π′) ≤ C(πgood), which equals C(σgood) by the correspondence between rankings
and orderings. By Lemma 3.3, in expectation this is at most

E [C(σ∗) + T ] +
32

√
2

|S| F 3/2.

which we can in turn bound using Lemma 3.2 by

C(σ∗) + β|S| + 32
√

2

|S| F 3/2

By Diaconis and Graham [1977]’s Theorem 2 relating the Spearman’s footrule
and Kendall-Tau metrics on rankings, we have:

F =
∑

v

|πloc(v) − π∗(v)|

≤ 2
∑

u,v

11
(

π∗(u) > π∗(v) and πloc(u) < πloc(v)
)

[D&G 1977, Thm 2]

≤ 2
∑

u,v

[

11 (π∗(u) > π∗(v))
wuv

b
+ 11

(

πloc(u) < πloc(v)
) wvu

b

]

since wuv + wvu ≥ b

= (2/b)(C(π∗) + C(πloc)). by definition of C

≤ (4/b)C(πloc),

where 11 (p) is the indicator function of event p. Therefore

E [C(π′)] ≤ C(σ∗) + β|S| + 32
√

2

|S|

(

4C(πloc)

b

)3/2

.

By the correspondence between orderings and rankings again, C(σ∗) = C(π∗), and
clearly 32 ·

√
2 · 43/2 < 400, hence the Lemma.

3.3 Proof of Lemma 3.3

For any x, z ∈ R, define (x, z) = { y ∈ R : x < y < z or z < y < x }. We say {u, v}
is a crossing pair if the intervals

(

σ∗(u), σloc(u)
)

and
(

σ∗(v), σloc(v)
)

intersect but
neither is contained within the other. We say that {u, v} is a cut crossing pair if it
is a crossing pair and k ∈

(

σ∗(u), σloc(u)
)

∪
(

σ∗(v), σloc(v)
)

.

Lemma 3.4.

C(σgood) − C(σ∗) − T ≤ 4|{{u, v} cut crossing pair}|
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σ
loc(u) σ

loc(v)

k

σ
loc(v) σ

∗(u)

k

σ
loc(v)σ

∗(u)

k

Case 1 Case 2 Case 3

σ
good(u)

σ
∗(u) = σ

∗(v) =

σ
good(v)

σ
loc(u) =

σ
good(u)

σ
∗(v) =

σ
good(v)

σ
loc(u) =

σ
good(u)

σ
∗(v) =

σ
good(v)

Fig. 4. Illustration of cases in proof of Lemma 3.4

Proof. We use the following notation: given an ordering σ, let C(σ)uv denote
the contribution of edge {u, v} to the cost of σ, that is, wuv or wvu depending on
the relative order of u and v. Let tuv = 11 (u crosses k)

(

C(σloc)uv − C(σloc
u )uv

)

.
With these notations, it trivially follows that

C(σgood) − C(σ∗) − T =
∑

{u,v}

[

C(σgood)uv − C(σ∗)uv − (tuv + tvu)
]

.

If {u, v} is a cut-crossing pair, we use näıve bounds: C(σgood)uv, C(σ∗)uv, tuv

and tvu are all at most 1 in absolute value, and so

C(σgood)uv − C(σ∗)uv − (tuv + tvu) ≤ 4.

If {u, v} is not a cut crossing pair, we do a case-by-case analysis to prove that

C(σgood)uv − C(σ∗)uv − (tuv + tvu) = 0.

The three cases are illustrated in Figure 4.
Case 1: If neither u nor v cross k, then C(σgood)uv = C(σ∗)uv by definition of

σgood, and tuv = tvu = 0 by definition of t.
Case 2: Suppose either v or u (or both) cross k and the intervals

(

σ∗(u), σloc(u)
)

and
(

σ∗(v), σloc(v)
)

are nested. Without loss of generality suppose
(

σ∗(v), σloc(v)
)

is contained within
(

σ∗(u), σloc(u)
)

. It is impossible for v to cross k without
u crossing k as well so we conclude u crosses k. Whether the image of v is
σloc(v) or σ∗(v) does not affect the orientation of edge uv, and so C(σgood)uv =
C(σloc)uv, C(σ∗)uv = C(σloc

u )uv and C(σloc
v )uv = C(σloc)uv. Therefore by defini-

tions C(σgood)uv − C(σ∗)uv = tuv and tvu = 0.
Case 3: Suppose either v or u (or both) cross k and the intervals

(

σ∗(u), σloc(u)
)

and
(

σ∗(v), σloc(v)
)

are disjoint. The edge uv is oriented the same way in all of the
relevant orderings so C(σgood)uv = C(σloc)uv = C(σ∗)uv = C(σloc

u )uv = C(σloc
v )uv.

Therefore C(σgood)uv − C(σ∗)uv = tuv = tvu = 0.
This proves the Lemma.

Lemma 3.5. For any u ∈ S, the probability that u crosses k is at most

4|πloc(u) − π∗(u)|
|S| .

Proof. Let K = { k : |S|/3 ≤ k ≤ 2|S|/3 } be the set k is chosen randomly
from. The probability that u crosses k equals |{ k ∈ K : u crosses k }|/|K|. The
numerator |{ k ∈ K : u crosses k }| is at most |πloc(u) − π∗(u)|. The denominator
|K| is approximately |S|/3, and a careful analysis for |S| small shows that for |S| > 1
it is always at least |S|/4, hence the result.
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Lemma 3.6. For any vertex u ∈ S, |{ v ∈ S : {u, v} crossing pair }| ≤ 2
√

2F

Proof. Fix a vertex u. Observe that if {u, v} is a crossing pair, then v must
cross

⌈

σloc(u)
⌉

or ⌊σ∗(u)⌋ (the floor and ceiling come from the shift by −δ for σloc

and by −2δ for σ∗). Thus

|{ v ∈ S : {u, v} crossing pair }| ≤ ξ(
⌈

σloc(u)
⌉

) + ξ(⌊σ∗(u)⌋), (1)

where ξ(j) denotes the number of vertices that cross integer j.
Now we need to relate ξ(i) to the footrule distance F . We write:

F =
∑

u

|πloc(u) − π∗(u)| =
∑

u

∑

j∈Z

11
(

j ∈
(

σ∗(u), σloc(u)
))

=
∑

j∈Z

ξ(j).

Now, it is easy to see that we always have |ξ(j)− ξ(j +1)| ≤ 2 (since the difference
can only come from two vertices: the vertex such that σloc(u) = j + 1− δ, and the
vertex such that σ∗(u) = j + 1 − δ.) Thus for any i we have:

∑

j∈Z

ξ(j) ≥ ξ(i) + 2

⌊ξ(i)/2⌋
∑

j=1

(ξ(i) − 2j) ≥ ξ(i)2

2
,

where the last inequality follows after a straightforward calculation. Thus for all i

ξ(i) ≤
√

2F (2)

Applying Equation (2) to i =
⌈

σloc(u)
⌉

and to i = ⌊σ∗(u)⌋, summing the results
and plugging into Equation (1) yields the Lemma.

Now we prove Lemma 3.3.

Proof. By Lemmas 3.4, 3.5 and 3.6

E
[

C(σgood) − C(σ∗) − T
]

≤ 4
∑

u

Pr (u crosses k) · |{ v ∈ S : {u, v} crossing pair }|

≤ 4
∑

u

4|πloc(u) − π∗(u)|
|S| 2

√
2F = 32

√
2
F 3/2

|S| .

4. SUMMING ERRORS OVER THE RECURSION TREE (PROOF OF LEMMA 2.4)

Consider each set S on which we execute algorithm ImproveRec, and call such a
set leaf or internal depending on whether or not there are further recursive calls to
ImproveRec. Let πloc

S and πout
S denote respectively the input and output orderings

of ImproveRec when run on S. Let π′ denote the optimal ranking of S that
respects (L, R), π′

L denote the optimal ranking of L (which is also the restriction
of π′ to L) and π′

R denote the optimal ranking of R (which is also the restriction of
π′ to R). Let πout

L and πout
R denote the restrictions of πout to L and R respectively.

The key observation is:

E
[

C(πout
S )

]

− OPTS

= E
[

C(πout
S ) − C(π′)

]

+ E [C(π′) − OPTS ]

= E
[

C(πout
L ) − C(π′

L)
]

+ E
[

C(πout
R ) − C(π′

R)
]

+ E [C(π′) − OPTS ] (3)
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because πout and π′ both respect L, R. To be more precise about the meanings of
the expectations in(3) let TS be a random variable expressing the random choices
made by ImproveRec(S, πloc

S ) and all of its descendants. We restate (3) formally
as:

ETS

[

C(πout
S )

]

− OPTS

= Ek

[

ETL

[

C(πout
L ) − OPTL

]]

+ Ek

[

ETR

[

C(πout
R ) − OPTR

]]

+

+ Ek [C(π′) − OPTS ] (4)

Now use Lemma 2.6 to write

Ek [C(π′) − OPTS ] ≤ 400

|S|

(

C(πloc)

b

)3/2

+ β|S|. (5)

Applying (4) and (5) repeatedly over the recursion tree we get

ETV

[

C(πout
V )

]

− OPT (6)

≤ ETV

[

∑

S leaf

ETS

[

C(πout
S ) − OPTS

]

+
∑

S internal

β|S| +
∑

S internal

400

|S|

(

C(πloc
S )

b

)3/2
]

.

To complete the proof we bound the argument of the expectation that is the right
hand side of (6) by ηC(πloc

V ) uniformly over any set of random choices TV . Dealing
with the first sum is straightforward: any leaf must have E [C(πout

S )] ≤ OPTS +
η
4κ|S|2 ≤ OPTS + η

4C(πloc
S ). Summing,

∑

S leaf

E
[

C(πout
S ) − OPTS

]

≤ η

4

∑

S leaf

C(πloc
S ) ≤ η

4
C(πloc

V ) ≤ η

4
C(πin

V )

where πin is the ranking input to Improve.
Dealing with the second sum in (6) is also straightforward: note that the tree of

recursive calls has at most log3/2 n levels of internal nodes and that on each level
the sets S are disjoint so

∑

S internal

β|S| ≤
∑

levels

βn ≤ βn log3/2 n ≤ η

8
C(πin

V ).

To deal with the third sum in (6), we start with two preliminary lemmas. Con-
sider an internal node S and its two children L and R.

Lemma 4.1. Let cS , cL, cR denote C(πloc
S ), C(πloc

L ) and C(πloc
R ) respectively. Then:

(cS − cL)3/2

|S| − |L| − b3/2

400

3

2

η

27
(cS − cL − cR) ≤ c

3/2
R

|R| ≤ (cS − cL)3/2

|S| − |L| .

Proof. Let α = b3/2

400
3
2

η
27 . The second inequality is obvious since |R| = |S| − |L|

and cS ≥ cL + cR. To prove the first inequality, let φ(x) = x3/2/|R| − αx. Note
that the derivative φ′(x) = (3/2)(x1/2/|R|)−α is increasing. Since |R| ≥ |S|/3, we

have φ′(cS) ≤ (1/2)(c
1/2
S /|S|)−α. Since S is internal, by definition of the algorithm

cS ≤ κ|S|2, which implies φ′(cS) ≤ 0 by definition of κ and α. So, φ is decreasing
in the range [0, cS]. Since cR ≤ cS − cL ≤ cS , we deduce φ(cR) ≥ φ(cS − cL), hence
the lemma.
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12 · C. Mathieu and W. Schudy

Lemma 4.2. For any x ∈ [0, 1] and y ∈ [1/3, 2/3], we have:

x3/2

y
+

(1 − x)3/2

1 − y
≥ 4/3.

Proof. We study the minima of f(x, y) = x3/2/y + (1 − x)3/2/(1 − y).
If x is at the boundary, say x = 0, then f(x, y) = 1/(1 − y) which has minimum

3/2 for the specified range of y. The case x = 1 is symmetric. If x is not at a

boundary then any local minimum must satisfy ∂f
∂x = 0, hence

√
x

y =
√

1−x
1−y . If y

is at the boundary, say y = 1/3, this gives x = 1/5, hence f(x, y) = 3/
√

5. The
case y = 2/3 is symmetric. Finally, if (x, y) is in the interior of the domain then
we must have ∂f

∂y = 0 as well, hence x = y = 1/2, and f(x, y) =
√

2. Finally the

minimum of those three values is 3/
√

5 > 4/3.

Applying first Lemma 4.1 and then Lemma 4.2 for x = cL/cS and y = |L|/|S|
yields

c
3/2
L

|L| +
c
3/2
R

|R| ≥ c
3/2
L

|L| +
(cS − cL)3/2

|S| − |L| − b3/2

400

3

2

η

27
(cS − cL − cR)

≥ (4/3)
c
3/2
S

|S| − b3/2

400

3

2

η

27
(cS − cL − cR)

Thus,

c
3/2
S

|S| ≤ (3/4)
c
3/2
L

|L| + (3/4)
c
3/2
R

|R| +
3

4

b3/2

400

3

2

η

27
(cS − cL − cR). (7)

The rest of the analysis is straightforward. Applying Equation (7) from the root
down, we bound the third sum of (6), call it A, as follows:

A =
∑

S internal

400

b3/2

C(πloc
S )3/2

|S|

≤





∑

S leaf

400

b3/2

C(πloc
S )3/2

|S|
∑

i≥1

(3/4)i



 +
3

4

1

400

3

2

η

27
C(πloc

V ). (8)

We bound the second term of (8) trivially by (η/8)C(πin
V ).

Let S be a leaf and S′ its parent.2 Since C(πloc
S ) ≤ C(πloc

S′ ) and |S| ≥ |S′|/3, we
have

C(πloc
S )1/2

|S| ≤ 3
C(πloc

S′ )1/2

|S′| ≤ 3
√

κ = 3

√

η2b3

350 · 4002
≤ 3ηb3/2

18 · 400

by definition of internal nodes. Substituting and using the fact that leaves are
disjoint, we bound the first term of (8) by

∑

S leaf

400

b3/2

3ηb3/2

18 · 400

3/4

1 − 3/4
C(πloc

S ) =
η

2
C(πloc

V ) ≤ η

2
C(πin

V ).

2If the root is a leaf no such parent exists, but in that case A = 0.
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FASTer-Scheme:

Run KwikSort to define an ranking π
for i← 1 to ⌈log2 1/b⌉ do

π ← Improve(π, 1/2)
end for

Return Improve(π, ǫ/7).

Fig. 5. Faster approximation scheme (error tolerance ǫ > 0)

Therefore A ≤ (1/8 + 1/2)C(πin
V ) = 5/8C(πin

V ), completing the proof of the
lemma.

5. RUNTIME

5.1 A faster algorithm

To speed up FAST-Scheme, we perform the following two modifications: First,
instead of calling Improve just once with error tolerance ǫb/5, we first call it
log(1/b) times with error tolerance 1/2 before running it once with error tolerance
ǫ/7. The improved approximation scheme, denoted FASTer-Scheme, is presented
in Figure 5. Second, to bound the total runtime of the single-vertex moves, we need
the cost to be monotone non-increasing. For that purpose, we modify algorithm
Improve, replacing the line

Return ImproveRec(V, π)

with

Return either π or ImproveRec(V, π), whichever has lower cost.

Lemma 2.4 clearly remains valid despite this modification.
We now prove that FASTer-Scheme is a 1 + ǫ-approximation.

Proof. (Of Theorem 1.2) Let m = ⌈log2 1/b⌉ and πi denote the ranking π
after the ith iteration of FASTer-Scheme, 0 ≤ i ≤ m. By the law of iterated
expectations and Lemma 2.4, for any 1 ≤ i ≤ m we have

E
[

C(πi)
]

= E
[

E
[

C(πi)|πi−1
]]

≤ E

[

OPT +
1

2
C(πi−1)

]

= OPT +
1

2
E

[

C(πi−1)
]

.

Therefore by Corollary 2.2 and the definition of m,

E [C(πm)] ≤ 2OPT + 2−m 5

b
OPT ≤ 7OPT . (9)

Finally, by Lemma 2.4, the expected cost of the output is at most

OPT +
ǫ

7
E [C(πm)] = (1 + ǫ)OPT.

5.2 Analysis of running time

Here we analyze the runtime of FASTer-Scheme. Throughout this section let
n = |V |, the number of vertices in the overall input.
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Lemma 5.1. All the single vertex move local optimizations in FASTer-Scheme

have a combined expected runtime of O(n3 log n(log(1/b) + 1
ǫ )).

Proof. The modification to Improve discussed in subsection 5.1 ensures that
after a single vertex move yields a ranking with cost C, FASTer-Scheme will
never apply a single vertex move to an ranking costing at least C. Let π0 denote the
constant-factor ordering in FASTer-Scheme. Each single vertex move multiplies
the cost of the ranking by a factor of at most 1− η

4n log3/2 n . Therefore after j moves,

C(π) ≤ C(π0)(1 − η
4n log3/2 n )j ≤ C(π0)e

−j η
4n log3/2 n . Clearly C(π) ≥ OPT hence

E [j] is at most E

[

4n log3/2 n

η ln OPT
C(π0)

]

≤ 4n log3/2 n

η lnE

[

C(π0)
OPT

]

≤ 4n log3/2 n

η ln(5/b)

moves are needed in expectation. During all the calls to Improve except the last

η = 1/2, hence at most
4n log3/2 n

1/2 ln 5
b = O (n log n log(1/b)) moves are required.

During the final call to Improve η = ǫ/7 hence using a similar argument and

(9) at most
4n log3/2 n

ǫ/7 lnE

[

C(πm)
OPT

]

= O
(

n log3/2 n

ǫ

)

moves are required. There

are an additional ⌈log(1/b)⌉ + 1 times that no improving move exists but this
fact must still be verified. Overall one must check for local optimality and make
an improving move if one exists O(n log n log(1/b)) + O(n log n

ǫ ) + O(log 1/b) =
O(n log n(log(1/b) + 1

ǫ )) times. Each check for local optimality can be trivially
done in O(n2) time, so the single vertex moves take O(n3 log n(log(1/b) + 1

ǫ )) time
overall.

Lemma 5.2. ImproveRec has runtime O(n2) + n2Õ(1/η6).

Proof. We refer to the call to ImproveRec made by Improve the root call. We
first analyze the runtime of the AddApprox calls. Recall from Theorem 2.3 that
each AddApprox call has runtime O(|S|2) + 2O(1/η6). Each vertex participates
in exactly one AddApprox call, so the total runtime of the AddApprox calls

descended from the root call is O(n2) + n2Õ(1/η6).
Each call to ImproveRec, excluding descendent ImproveRec and AddApprox

calls, can easily be implemented to run in O(|S|2) time. Summing over the levels

of the recursion tree gives total runtime O
(

n2 + n 2n
3 + n 22n

32 + . . .
)

= O
(

n2
)

.

We now prove the runtime portion of Theorem 1.2.

Proof. The overall runtime of FASTer-Scheme is:

O(n log n) (KwikSort [Ailon and Mohri 2008])
+ O(n3 log n(log(1/b) + 1

ǫ )) (Single vertex moves, Lemma 5.1)

+ O(log(1/b))
(

O(n2) + n2Õ(1/b6)
)

(ImproveRec η = 1/2, Lemma 5.2)

+
(

O(n2) + n2Õ(1/(ǫb)6)
)

(ImproveRec η = ǫ/7, Lemma 5.2)

= O
(

n3 log n(log(1
b ) + 1

ǫ )
)

+ n
(

2Õ(1/(ǫb)6)
)

6. DERANDOMIZATION

The KwikSort algorithm was derandomized in [Van Zuylen et al. 2007; Van
Zuylen and Williamson 2007]. The following theorem is implicit in the proof of
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ImproveRec(vertices S, ranking π on S):

if ImproveRec(S, π) previously computed then

Return cached πout.
else if |S| = 1 then

Return π
else if C(π) ≥ κ|S|2 then

Return the ranking from the deterministic additive error algorithm
by Frieze and Kannan [1999] with δ = η

4
· κ

else

Initialize πout to an arbitrary ranking (e.g. π).
for k = ⌈|S|/3⌉ to ⌊2|S|/3⌋ do

Let L = { v ∈ S : π(v) ≤ k } and R = S \ L
Let πL be the ranking of L induced by π, i.e. πL(v) = π(v)
Let πR be the ranking of R induced by π, i.e. πR(v) = π(v) − k
Let πtemp be the concat. of ImproveRec(L, πL) and ImproveRec(R, πR).
if C(πtemp) < C(πout) then

πout ← πtemp

end if

end for

Return πout.
end if

Fig. 6. Derandomized version of ImproveRec.

Theorem 2.1 in Van Zuylen and Williamson [2007]:

Theorem 6.1. [Van Zuylen and Williamson 2007] Let w be non-negative weight
function on the edges. Assume that for every u, v, x ∈ V with wvu − wuv ≤
min{wxv − wvx, wxu − wux} we have

wvu +
1

2
(wvx + wxv) +

1

2
(wxu + wux) ≥ 1

α
(wuv + wvx + wxu)

for some α > 1. Then there exists a deterministic polynomial-time α-approximation
algorithm.

Theorem 6.2. There exists a deterministic 3/b-approximation algorithm for
weighted feedback act set tournament.

Proof. (Adapted from the proof by Van Zuylen and Williamson [2007] for the
case b = 1.) We know wvx + wxv, wxu + wux ≥ b and w ≤ 1 hence

wvu+
1

2
(wvx+wxv)+

1

2
(wxu+wux) ≥ 0+

b

2
+

b

2
= b =

1

3/b
3 ≥ 1

3/b
(wuv +wvx+wxu)

To derandomize FAST-Scheme we make three changes to our algorithms. Firstly,
we replace AddApprox with the deterministic additive error algorithm by Frieze
and Kannan [1999]. Secondly, we replace KwikSort with the deterministic constant-
factor approximation algorithm of Theorem 6.2.

Thirdly we must eliminate the randomized choice of k in ImproveRec. We do
this by trying every possible k and keeping the best ranking found. We cache inter-
mediate results to prevent exponential blow-up in the runtime. The derandomized
version of ImproveRec is given in Figure 6.
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AddApprox:

Take a sample S of Õ(1/δ4) vertices chosen uniformly at random without replacement
from V .
Take a sample T of Õ(1/δ2) vertices chosen uniformly at random without replacement
from S.
for each of the possible bucketed rankings of T do

for each vertex v of S \ T in random order do

Place v in the bucket that minimizes the cost (of the bucketed
ranking of the vertices placed so far.)

end for

end for

Extend the discovered bucketed ranking of S with the minimum cost as follows:
for each vertex v of V \ S in random order do

Place v in the bucket that minimizes the cost so far.
end for

Fig. 7. Algorithm for bucketed FAS with additive error O(δn2)

Let πloc denote the input order. It is easy to see that every (S, π) pair encoun-
tered is of the form S = { u : i ≤ πloc(u) ≤ j } and π(u) = πloc(v) − i for some
i ≤ j, so ImproveRec runs O(n2) times (excluding lookups in cache). Each call
to ImproveRec has runtime dominated by the derandomized additive error algo-

rithm, with runtime nÕ(1/((ǫb)3)4) = nÕ(1/(ǫb)12). The overall runtime of Improve

is therefore O
(

n2
)

· nÕ(1/(ǫb)12) = nÕ(1/(ǫb)12).
The runtime of the derandomized FAST-Scheme is dominated by the O(log 1/b)

calls to Improve so the overall runtime is (log 1/b)nÕ(1/(ǫb)12) = nÕ(1/(ǫb)12).

A. APPENDIX

In this appendix we prove Theorem 2.3. We want to find a O(δn2) additive ap-

proximation in time O(n2) + 2Õ(1/δ2) for any constant δ > 0.
Let a bucketed ranking be a function π̃ from V to {1, 2, 3, . . .

⌈

1
δ

⌉

}. If π̃(v) = i
we say that vertex v is in bucket i.

Problem A.1 Bucketed FAS.
Input: complete directed graph with vertex set V , n ≡ |V | and non-negative edge
weights wuv with wuv + wvu ≤ 1.
Output: A bucketed ranking minimizing C̃(π̃) =

∑

{u,v}⊂V :π̃(v)≥π̃(u) wvu.

Note the “≥” in the objective function C̃ of Problem A.1 – if vertices u and v
are in the same bucket then C̃ pays for both wuv and wvu.

Algorithm 7 is the specialization of an algorithm by Mathieu and Schudy [2008]
to the bucketed feedback arc set problem. We remark that in Algorithm 7 |T | =
Õ(1/δ2) whereas Mathieu and Schudy [2008] has |T | = O(1/δ2) because Mathieu
and Schudy [2008] assume that the variables have constant-sized domains whereas
we have a number of buckets that depends on δ.

Theorem A.2. [Mathieu and Schudy 2008] Algorithm 7 has expected additive
error O(δn2).

Now we prove Theorem 2.3.
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Proof. Run Algorithm 7 and convert the output bucketed ranking ÕUT into
a ranking OUT by concatenating the buckets and ordering arbitrarily within each

bucket. The pessimistic definition of C̃ ensures C(OUT ) ≤ C̃(ÕUT ). On the other

hand, the optimum ranking OPT can be converted into a bucketed ranking ÕPT
that costs at most O(δn2) more by placing δn vertices in each bucket. Putting
these remarks together with Theorem A.2 we see

C(OUT ) ≤ C̃(ÕUT ) ≤ C̃(ÕPT ) + O(δn2) ≤ C(OPT ) + O(δn2) + O(δn2)

proving the approximation factor portion of Theorem 2.3.
Determining where to place each vertex can be done in time O(m/δ) totally

näıvely, where m is the number of vertices placed so far. Exploiting the specific
structure of C̃ allows each greedy choice to be made in time O(m+ 1

δ ), which yields

the runtime O(n2) + 2Õ(1/δ2) of Theorem 2.3.
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its applications II, P. Erdös, A. Rényi, and V. Sós, Eds. North Holland, 675–677.
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