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ABSTRACT
We present a polynomial time approximation scheme (PTAS)
for the minimum feedback arc set problem on tournaments.
A simple weighted generalization gives a PTAS for Kemeny-
Young rank aggregation.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Algorithms, Theory

Keywords
Approximation algorithm, Feedback arc set, Kemeny-Young
rank aggregation, Max acyclic subgraph, Polynomial-time
approximation scheme, Tournament graphs

1. INTRODUCTION
Suppose you ran a chess tournament, everybody played

everybody, and you wanted to use the results to rank every-
body. Unless you were really lucky, the results would not
be acyclic, so you could not just sort the players by who
beat whom. A natural objective is to find a ranking that
minimizes the number of upsets, where an upset is a pair of
players where the player ranked lower on the ranking beats
the player ranked higher. This is the minimum feedback
arc set (FAS) problem on tournaments. Our main result is
a polynomial time approximation scheme (PTAS) for this
problem. A simple weighted generalization gives a PTAS
for Kemeny-Young rank aggregation.
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For general directed graphs, the FAS problem consists of
removing the fewest number of edges so as to make the graph
acyclic, and has applications such as scheduling [21] and
graph layout [42, 13] (see also [34, 5, 27]). This problem has
been much studied, both in the mathematical programming
community [43, 23, 24, 27, 32] and the approximation algo-
rithms community [33, 38, 19]. The best known approxima-
tion ratio is O(log n log log n). Unfortunately the problem is
NP-hard to approximate better than 1.36... [28, 15].

A tournament is the special case of directed graphs where
every pair of vertices is connected by exactly one of the two
possible directed edges. For tournaments, the FAS problem
also has a long history, starting in the early 1960s in com-
binatorics [37, 44] and statistics [39]. In combinatorics and
discrete probability, much early work [18, 35, 36, 26, 40, 41,
20] focused on worst-case tournaments, starting with Erdös
and Moon and culminating with work by Fernandez de la
Vega. In statistics and psychology, one motivation is rank-
ing by paired comparisons: here, you wish to sort some set
by some objective but you do not have access to the objec-
tive, only a way to compare a pair and see which is greater;
for example, determining people’s preferences for types of
food. Early interesting heuristics due to Slater and Alway
can be found in [39]. Unfortunately, even on tournaments,
the FAS problem is still NP-hard [1, 3] (see also [11]). The
best approximation algorithms achieve constant factor ap-
proximations [1, 12, 45]: 2.5 in the randomized setting [1],
3 in the deterministic setting [45, 46, 1]. Our main result
is a polynomial time approximation scheme (PTAS) for this
problem: thus the problem really is provably easier to ap-
proximate in tournaments than on general graphs.

Here is a weighted generalization.

Problem 1 (Weighted FAS Tournament). Input:
complete directed graph with vertex set V , n ≡ |V | and non-
negative edge weights wij with wij + wji ∈ [b, 1] for some
fixed constant b ∈ (0, 1]. Output: A total order R(x, y) over
V minimizing

P

{x,y}⊂V wxyR(y, x).

(The unweighted problem is the special case where wij = 1
if (i, j) is an edge and wij = 0 otherwise.)

In [1], the variant where b = 1 is called weighted FAS
tournament with probability constraints. Indeed, sampling
a population naturally leads to defining wij as the proba-
bility that type i is preferred to type j. We note that all
known approximation algorithms [1, 12] extend to weighted
tournaments for b = 1.

An important application of weighted FAS tournaments
is rank aggregation. Frequently, one has access to several



rankings of objects of some sort, such as search engine out-
puts [16, 17], and desires to aggregate the input rankings
into a single output ranking that is similar to all of the in-
put rankings: it should have minimum average distance
from the input rankings, for some notion of distance. This
ancient problem was already studied in the context of vot-
ing by Borda [6] and Condorcet [10] in the 18th century,
and has aroused renewed interest in learning [9]. A nat-
ural notion of distance is the number of pairs of vertices
that are in different orders: this defines the Kemeny-Young
rank aggregation problem [29, 30]. This problem is NP-hard,
even with only 4 voters [17]. Constant factor approximation
algorithms are known: choosing a random (or best) input
ranking as the output gives a 2-approximation; finding the
optimal aggregate ranking using the footrule distance as the
metric instead of the Kendall-Tau distance also gives a 2-
approximation [16]. There is also a randomized 4/3 approx-
imation algorithm [1, 2]. We improve on these results by
designing a polynomial-time approximation scheme.

Theorem 1 (PTAS). There are randomized algorithms
for minimum Feedback Arc Set on weighted tournaments and
for Kemeny-Young rank aggregation that, given λ > 0, out-
put orderings with expected cost less than (1 + λ)OPT . Let
ǫ = λb. The running time is:

O

„

(1/ǫ)n6 + n22Õ(1/ǫ) + n22Õ(1/ǫ)
«

.

The algorithms can be derandomized at the cost of increasing

the running time to n2Õ(1/ǫ)

.

Our algorithm combines several existing algorithmic tools.
It uses (a) existing constant factor approximation algorithms.
In addition, it uses (b) existing polynomial-time approxima-
tion schemes for the complementary maximization problem
(a.k.a. max acyclic subgraph tournaments), due to Arora,
Frieze and Kaplan [4] and to Frieze and Kannan [22]. More-
over, our central algorithm, Algorithm 2, also uses (c) the
divide-and-conquer paradigm. Of course, this has been pre-
viously used in this setting, in partitioning algorithms in
general graphs [33] and in a Quicksort-type algorithm [1],
but both of these constructions are top-down, whereas our
algorithm is bottom-up, which gives it a very different flavor.
Finally, it also relies on (d) a simple but useful technique,
used already in 1961 by Slater and Alway [39]: iteratively
improve the current ordering by taking a vertex out of the
ordering and moving it back at a different position. (Such
single vertex moves and variants have been studied at some
length since that time [25, 44, 16, 17].)

It is fortunate that the FAS problem on tournaments has
an approximation scheme. The closely related problem of
correlation clustering on complete graphs1 is APX-hard [8].
The related problem of feedback vertex set is also hard to
approximate even on tournaments, though it does have a
2.5-approximation algorithm [7].

We note that Amit Agarwal has informed us that he re-
cently obtained similar results.

1This problem is identical to FAS except it deals with sym-
metric transitive relations instead of antisymmetric ones.

2. ALGORITHM
In this section, we present our deterministic and random-

ized algorithms and reduce one to the other.
Our algorithms use the sampling-based additive approx-

imation algorithms of [4, 22] as a subroutine. For simplic-
ity, here we use the derandomized additive error algorithm.
Section 4.1 discusses how to extend our analysis to use the
randomized version, yielding the runtime in Theorem 1.

Theorem 2 (Small additive error). [4, 22] There
is a randomized polynomial-time approximation scheme for
maximum acyclic subgraph on weighted tournaments. Given
β, η > 0, the algorithm outputs, in polynomial time, [22]

O
“h

n/β4 + 2O(1/β2)
i

log(1/η)
”

an ordering whose cost is, with probability at least 1−η, less
than OPT+βn2. The algorithm can be derandomized into an
algorithm which we denote by AddApprox, which increases

the runtime to nO(1/β4).

We also use a simple type of local search. A total order
R can be specified by an ordering π : V → {1, . . . , n} such
that π(x) is the position of vertex x: π(x) < π(y) iff R(x, y).
A single vertex move, given a ordering π, a vertex x and a
position i, consists of taking x out of π and putting it back
in position i.

All of our algorithms call the additive approximation al-
gorithm with parameter

β = β(ǫ) ≡ 9− 1
ǫ

log3/2(1/ǫ2)ǫ3 = 2−O(1/ǫ log(1/ǫ)).

Our deterministic PTAS is given in Algorithm 1. Recall
from Problem 1 that b is the lower bound on wxy +wyx for
every pair {x, y}. For ease of thinking, the reader may think
of b as being equal to 1. Also recall that we are seeking a
1 + λ = 1 + ǫ/b approximation.

Our (somewhat faster) randomized PTAS is given in Al-
gorithm 2. Curiously, if the constant factor approximation
algorithm used is the sorting by indegree algorithms from [6,
12], the initial order πlocal computed in Algorithm 2 is pre-
cisely the order returned by the heuristic algorithm created
by Slater and Alway [39] in 1961!

For the analysis, it is enough to study Algorithm 2, since
the result for Algorithm 1 follows as a simple corollary:

Algorithm 1 Deterministic polynomial time approximation
scheme of Theorem 1 (PTAS)

Given: Fixed parameters ǫ > 0 and b ∈ (0, 1].
Input: A weighted tournament.

Round weights to integer multiples of ǫ/n2.
π ← constant factor approximation [1, 12].
While some move decreases cost, do it. Types of moves:

1. Single vertex moves. Choose vertex x and rank j,
take x out of the ordering and put it back in so that
its rank is j.

2. Additive approximation. Choose integers i <
j; let U = {vertices with rank in [i, j]}.
π′

U ←AddApprox(U) with parameter β(ǫ).
Replace the restriction πU of π to U by π′

U .

Output: π.



Algorithm 2 Randomized polynomial time approximation
scheme (RPTAS) of Theorem 1. Vertical lines in left margin
denote differences from Algorithm 3.

Given: Fixed parameters ǫ > 0 and b ∈ (0, 1].
Input: A weighted tournament

Round weights to integer multiples of ǫ/n2.
π ← constant factor approximation [1, 12].
Apply single vertex moves to get a local optimum πlocal.

Output: Rec(1, n)

Rec(i, j) =
If i=j then Return i
For any ℓ,m, let Vℓ,m = { vertices x: πlocal(x) ∈ [ℓ,m]}
K ← {k : |Vik|, |Vk+1,j | ≥ |Vij |/3}.
Choose k uniformly at random from K.
ρ1 ← AddApprox(Vij) with parameter β(ǫ)
ρ2 ← Concatenate Rec(i, k) and Rec(k + 1, j)
Return ρ1 or ρ2, whichever has lower cost.

Lemma 3. If Algorithm 2 outputs an ordering whose cost
is ≤ (1 + λ)OPT with positive probability, then Algorithm 1
outputs an ordering with cost ≤ (1 + λ)OPT.

Proof. Let π denote the output of Algorithm 1. Since
we started with a constant factor approximation and only
performed cost-improving moves, π is still a constant fac-
tor approximation, of course. Execute Algorithm 2 starting
with this ordering π. Since there are no cost-decreasing
single-vertex moves, πlocal = π. Since Algorithm AddAp-
prox cannot improve any subinterval U of π, the recursive
process will always choose ρ2 rather than ρ1: in the end,
we obtain πout = π for every execution of our Algorithm 2.
Therefore it must be that π has cost ≤ (1 + λ)OPT.

3. ANALYSIS: CORRECTNESS

3.1 Rounding analysis
The following lemma shows that rounding the weights,

which is done to ensure polynomial-time termination of local
search, is irrelevant for the correctness analysis.

Lemma 4 (Rounding). Let C denote the cost function

with the original weights, C̃ denote the cost function with the
rounded weights, and ˜OPT = minρ C̃(ρ) denote the value of
the optimal solution to the problem with rounded weights. If
C̃(π) ≤ (1 + λ) ˜OPT , then C(π) ≤ (1 + 3λ)OPT .

Proof Sketch. The proof is split into two cases, de-
pending on whether OPT < b(1/2− λ).

Thanks to Lemma 4, without loss of generality we can as-
sume that the input weights are integer multiples of ǫ/n2;
we will make this assumption for the remainder of the paper.

3.2 Reduction to a virtual algorithm
Algorithm 2 is quite difficult to analyze directly, because

it uses bottom-up recursion, and so we will instead analyze
a different, top-down process, Algorithm 3. This is a vir-
tual algorithm whose sole purpose is to guide the analysis:
indeed, it takes as input parameter an optimal ordering π∗,
so it cannot be a real algorithm!

For any subset S of vertices, the Spearman’s footrule dis-
tance between the two orderings used in the specification of

Algorithm 3 Virtual algorithm. Vertical lines in left mar-
gin denote differences from Algorithm 2.

Given: Fixed parameters ǫ > 0 and b ∈ (0, 1].
Input: Weighted tournament; optimal ordering π∗

Round weights to integer multiples of ǫ/n2.
π ← constant factor approximation [1, 12].
Apply single vertex moves to get a local optimum πlocal.
Let α = 9−r , with r uniform in [0, log9(ǫ

3/β)].
Output: πout = Rec(1,n)

Rec(i, j) =
If i=j then Return i
For any ℓ,m, let Vℓ,m = {vertices x : πlocal(x) ∈ [ℓ,m]}
K ← {k : |Vik|, |Vk+1,j | ≥ |Vij |/3}.
Choose k uniformly at random from K.
ρ1 ← AddApprox(Vij) with parameter β
ρ2 ← Concatenate Rec(i, k) and Rec(k + 1, j)
If FVi,j ≥ αǫ2|Vi,j |2

Return ρ1 (Vij is called a leaf)
else

Return ρ2 (Vij is called an internal node)

the stopping condition used in Algorithm 3 is defined by

FS =
X

x∈S

|πlocal(x)− π∗(x)|.

In tournament graphs, the footrule distance is related to the
cost of the two orderings:

Lemma 5. FV ≤ (2/b)(CV (π∗) +CV (πlocal)).

Proof. By [14]’s Theorem 2 relating Spearman’s footrule
and Kendall-Tau, we have:
X

j

|πlocal(j)− π∗(j)|

≤ 2
X

i,j

11 (π∗(i) > π∗(j)) 11
“

πlocal(i) < πlocal(j)
”

≤ 2

b

X

i,j

h

11 (π∗(i) > π∗(j))wij + 11
“

πlocal(i) < πlocal(j)
”

wji

i

= (2/b)(C(π∗) + C(πlocal)).

where

11 (p) ≡


1 if p is true
0 otherwise

.

The second inequality follows from wij +wji ≥ b.

The following Lemma shows that it is sufficient to analyze
Algorithm 3.

Lemma 6. If πout
2 denotes the output of the Algorithm 2

and πout denotes the output of the Algorithm 3, then:

∀x, Pr(cost(πout
2) ≤ x) ≥ Pr(cost(πout) ≤ x).

Proof. Couple the executions of the two algorithms so
that they start with the same π, do the same sequence of
single-vertex moves leading to the same πlocal, and make
the same choice of k in their recursive divide-and-conquer
process when they have the same value of (i, j). The two
divide-and-conquer processes have the same tree of recur-
sive calls. By bottom-up induction on the tree nodes, the



ordering returned by the process used in Algorithm 2 has
cost less than or equal to that of the ordering returned by
the process used in Algorithm 3.

We now focus on the output πout of Algorithm 3, whose
analysis hinges on the following main technical result, proven
in Section 3.5. For any subset of vertices S, let

CS(π) =
X

{x,y}⊆S,π(x)>π(y)

wxy.

The objective is to minimize the overall cost CV (π), which
we also denote as C(π) (no subscript) for shorthand.

Theorem 7. For the orderings defined in Algorithm 3:

E
ˆ

C(πout)
˜

− C(π∗) ≤ O(ǫ/b)(C(πlocal) + C(π∗)).

Since πlocal is an improvement over the constant factor ap-
proximation π, we still have C(πlocal) ≤ C(π) = O(C(π∗)).
Thus E

ˆ

C(πout)
˜

≤ C(π∗)(1+O(ǫ/b)), hence Algorithm 3 is
an approximation scheme. By Lemma 6, so is Algorithm 2,
and by Lemma 3, so is Algorithm 1.

The running time analysis is deferred to Section 4.2, so
all we need to do is analyze the virtual algorithm.

3.3 Intuition
We are now ready for some intuition for Algorithm 3.

When the optimal cost C(π∗) is large, the additive approx-
imation algorithm is satisfactory. When C(π∗) is small,
C(πlocal) is also small (because it is a constant factor ap-
proximation). This implies that the footrule distance will
also be small (Lemma 5), the stopping condition will not
hold, and Algorithm 3 will recurse. It will perform some
partition V = V1,k∪Vk+1,n, thereby irrevocably committing
all vertices of V1,k to precede all vertices of Vk+1,n in the
output ordering. We need to show that the mistakes made
in such dividing steps are not too bad.

However, since the footrule distance is small in that case,
by definition of footrule, the positions of the vertices in πlocal

are typically close to their positions in π∗. When k is chosen
at random, the vertices with rank {1, . . . , k} in πlocal will be
more or less the same as the vertices with rank {1, . . . , k}
in π∗. Thus, we expect that only a few vertices will be
misplaced during the divide step.

How costly can it be, if just one or two vertices are mis-
placed during the divide step? Unfortunately, it can be quite
costly. For example, if a misplaced vertex x, which has rank
ℓ > k in πlocal, has rank 1 in π∗, then misplacing just a
single vertex x may conceivably incur a cost of Θ(n). This
is where the single-vertex moves come to the rescue. By op-
timality, π∗ cannot improve its cost by moving x to position
ℓ, and by local optimality, πlocal cannot improve its cost by
moving x to position 1. It must be that about half of the
edges between x and V1,k are directed towards x and about
half are directed away from x, and so, it does not really mat-
ter whether we place x in position 1 or in position ℓ. This
explains why the algorithm makes sense intuitively.

3.4 Reduction to analyzing πlocal

We first reduce the problem to analyzing πlocal instead of
πout. Since the two orderings only differ inside the leaves of
the recursion tree, we have:

Lemma 8. For every sequence of random choices of the
algorithm, we have

CV (πout)−CV (πlocal) =
X

S leaf

(CS(πout)− CS(πlocal)).

To prove Theorem 7, we replace CV (πout)− CV (π∗) by:

(CV (πout)− CV (πlocal)) + (CV (πlocal)− CV (π∗)).

We then apply Lemma 8 and replace, in each leaf S, the
quantity CS(πout)− CS(πlocal) by

(CS(πout)− CS(π∗))− (CS(πlocal)− CS(π∗)).

Now all we need to do is analyze, on the one hand, the
expectation of

CV (πlocal)− CV (π∗)−
X

S leaf

(CS(πlocal)− CS(π∗)), (1)

(this only involves πlocal, not πout, and will be the bulk of
the proof), and on the other hand,

X

S leaf

(CS(πout)− CS(π∗)), (2)

which we now deal with.
The following lemma motivates the stopping condition of

Algorithm 3.

Lemma 9 (Leaf nodes). Let S be a leaf of the recur-
sion tree. Then CS(πout)− CS(π∗) ≤ ǫFS.

Proof. If |S| = 1 then the claim is trivial. Otherwise,
using Theorem 2, the definition of tree leaves, and defining
αmin = β/ǫ3 ≤ α:

CS(πout)− CS(π∗) ≤ CS(πout)−OPTS

≤ β|S|2 = αminǫ
3|S|2

≤ (αminǫ
3)(FS/(αǫ

2)) ≤ ǫFS .

Using Lemma 9 in Expression (2), along with the obvious
fact

P

S FS = FV , and applying Lemma 5 yields

X

S leaf

(CS(πout)− CS(π∗)) ≤ (2ǫ/b)(CV (π∗) +CV (πlocal)),

which is one of the contributions to the right-hand side of
Theorem 7.

In order to complete the proof of Theorem 7, all that is
left to do is to argue that in expectation, Expression (1) is
also O(ǫ/b)(CV (π∗) + CV (πlocal)).

3.5 Cost decomposition
To analyze Expression (1), we need to compare πlocal to

π∗. Define the displacement graph with vertex set [1, n] (cor-
responding to the ranks), and arc set (πlocal(x), π∗(x)) for
every x. For example, here is the displacement graph if π∗ is
in almost perfect agreement with πlocal, except for switching
the first and last vertices in the ordering:

•
|| ""

• • · · · • • •
1 2 · · · n



The local optimality of πlocal with respect to single-vertex
moves helps bound the difference in cost between π∗ and
πlocal.

Let f(e) denotes the cost, for edge e = {x, y} of modifying
πlocal by switching the relative order of x and y:

f(x, y) =



wxy − wyx πlocal(x) < πlocal(y)
wyx − wxy o.w.

Let TS denote the (negation of the) sum of the costs of the
single vertex moves that modify πlocal by taking x ∈ S and
moving it from position πlocal(x) to position π∗(x). More
precisely:

TS = T
(1)
S + T

(2)
S , with

T
(1)
S =

X

x∈S

X

y∈S:πlocal(x)<πlocal(y)≤π∗(x)

−f(x, y)

T
(2)
S =

X

x∈S

X

y∈S:π∗(x)≤πlocal(y)≤πlocal(x)

−f(x, y)

The two terms T
(1)
S and T

(2)
S correspond to arcs from left to

right and right to left respectively in the displacement graph.
(The negation is there because we are trying to upperbound
C(πlocal)−C(π∗), not C(π∗)−C(πlocal).) TS considers the
displacement arcs one at a time: this is in a sense a first
order approximation to the change in cost, since it ignores
the interaction between several displacements.

How does TS compare to CS(πlocal)−CS(π∗)? Some pairs
{x, y} contribute the same to TS as to CS(πlocal)−CS(π∗),
such as:

πlocal(x)
''

πlocal(y)
,,

π∗(y) π∗(x)

For some other pairs, there is a discrepancy, such as the
following pair which appears in the sum for TS but not in
the sum for CS(πlocal)−CS(π∗):

πlocal(x)
%%

πlocal(y)
$$

π∗(x) π∗(y)

This is what we call a “crossing pair” (see Section 3.7), and
we need a corrective term, which we will denote by ΦV ,
taking those into account. Thus we define:

ΦS = CS(πlocal)− CS(π∗)− TS.

The following two Lemmas, proved in later subsections,
analyze the increase of the first order (T ) and second order
(Φ) effects from the leaves to the root.

Recall that α ∈ [αmin, 1] with αmin = 9− log3/2(1/ǫ2)/ǫ.
The choice of α and of the random k’s determines the ran-
dom choices in the execution. Let B denote the choices of
k for an execution of Algorithm 3 with α = 1. Smaller α
leads to earlier termination, so B also defines the random
choices made for any choice of α. Thus, for a given πlocal,
the random choices are determined by (B,α).

Lemma 10. For a random execution defined by a random
choice of (B,α), we have

TV −EB,α

2

4

X

S leaf

TS

3

5 ≤ 14ǫFV .

Lemma 11. Let γ =
√

5/3

1−
√

5/3
. For any α, for a random

execution defined by a random choice of (B), we have

ΦV −EB

2

4

X

S leaf

ΦS

3

5 ≤ 96γǫFV .

Now we can bound Expression (1). Since Lemma 11 is true
for every α, it is also true in expectation over α. Adding
Lemma 10 and substituting the definition of Φ to both sides
yields:

CV (πlocal)− CV (π∗)−E

2

4

X

S leaf

(CS(πlocal)− CS(π∗))

3

5

≤ (14 + 96γ)ǫFV = O(ǫ)FV ;

applying Lemma 5 concludes the proof of Theorem 7. It
only remains to prove Lemmas 11 and 10.

3.6 Proof of Lemma 10 (analyzing TV )
In this part, we prove Lemma 10. We split TV−

P

S leaf TS

into separate terms for each vertex y, and bound each term
by the displacement |π∗(y)− πlocal(y)| of that vertex times
ǫ.

Given two vertices x and y, let E(x) be the event that
πlocal(x) is between πlocal(y) and π∗(y) but x is not in the
leaf containing y. First we see that by definition of TV and
{TS},

TV −EB,α

2

4

X

S leaf

TS

3

5 = EB,α

2

4

X

y

X

x:E(x)

f(x, y)

3

5 .

Let s(y) be the size of the leaf containing y (number of
vertices in that set). We can split the sum for each y into
several parts depending on the relative size of the leaf con-
taining y and |π∗(y)− πlocal(y)|. The cases correspond to

• small leaves: |π∗(y)− πlocal(y)| > s(y)/ǫ, and

• big leaves: ǫs(y) > |π∗(y)− πlocal(y)|,

• intermediate leaves: ǫs(y) ≤ |π∗(y)−πlocal(y)| ≤ s(y)/ǫ.

Small leaves are easy thanks to local optimality.

Lemma 12 (Small Leaves). For any execution (deter-
mined by B and α), we have

X

y∈ small leaf

X

x:E(x)

−f(x, y) ≤ ǫFV .

Proof Sketch. Moving y cannot improve πlocal.

We handle the big leaves by proving that the probability
that πlocal(y) and π∗(y) are in different leaves (and hence
able to contribute to the sum) is O(ǫ).



Lemma 13 (Big Leaves). For any α and for a random
B, we have:

EB

"

X

y∈ big leaf

X

x:E(x)

−f(x, y)

#

≤ 12ǫFV .

Proof Sketch. Let α be fixed. If πlocal(x) is between
πlocal(y) and π∗(y), but x is not in leaf(y), then the vertex
whose rank in πlocal is π∗(y) is also not in leaf(y). Thus
we can bound the expression on the left hand side by the
expectation (over the random tree construction) of

X

y

|π∗(y)−πlocal(y)|·11
„

y ∈ big leaf

and πlocal−1
(π∗(y)) /∈ leaf(y)

«

.

One can that for any vertex y, the event E1 that “y ∈ big

leaf and πlocal−1
(π∗(y)) /∈ leaf(y)” has probability at most

9ǫ over the sequence B of random choices defining the de-
composition. The intuition is that the random choice of k
is unlikely to land between πlocal(y) and π∗(y).

We bound the contribution of the intermediate leaves by
using the variation in α to force a variation in the leaf size,
making it unlikely that a given vertex y will be in an inter-
mediate leaf.

Lemma 14 (Intermediate Leaves). For any fixed B
and for a random α, we have

Eα

"

X

y∈ intermediate leaf

X

x:E(x)

−f(x, y)

#

≤ ǫFV .

Proof Sketch. Let B = (kS) be fixed.
As in the beginning of the proof of Lemma 13, we can

bound the expression on the left hand side by the expecta-
tion (over the random choice of α) of

X

y

8

>

>

>

>

<

>

>

>

>

:

0 if s(y) = n
P

x:E(x)−f(x, y) if s(y) = 1

|π∗(y)− πlocal(y)|·
11(y ∈ intermediate leaf and

πlocal−1
(π∗(y)) /∈ leaf(y)) otherwise.

One can argue that for any y, the event that “y ∈ interme-

diate leaf, πlocal−1
(π∗(y)) /∈ leaf(y) and 1 < s(y) < n” has

low probability; but here for the first time, the probabilistic
space is over the random definition of α.

3.7 Proof of Lemma 11 (analyzing ΦV )
First, we need an algebraic formula expressing ΦV in terms

of contributions of vertex pairs. We say that a pair of ver-
tices x, y such that πlocal(x) < πlocal(y) is a crossing pair if
exactly one of the following four cases occur:
8

>

>

<

>

>

:

πlocal(x) < π∗(y) < π∗(x) < πlocal(y)
π∗(y) ≤ πlocal(x) ≤ πlocal(y) ≤ π∗(x)
π∗(x) ≤ π∗(y) ≤ πlocal(x) ≤ πlocal(y)
πlocal(x) ≤ πlocal(y) ≤ π∗(x) ≤ π∗(y)

We define δxy to be equal to 1 in the first case, −1 in the
other three cases, and to be equal to 0 for non-crossing pairs.
Intuitively, {x, y} is a crossing pair if, when we move x
continuously from position πlocal(x) to position π∗(x), we
pass exactly one of {πlocal(y), π∗(y)}.

Lemma 15 (Mistake Decomposition). We have:

ΦS =
X

x,y∈S

−f(x, y) · δxy

Proof. ∆C ≡ CS(πlocal)−CS(π∗) =
P−f(x, y), where

the sum is over pairs x, y in S such that πlocal(x) < πlocal(y)
and π∗(x) > π∗(y). To prove the Lemma, it suffices to show
that each term f(x, y) appears with the same coefficient in

∆C as it does in TS + ΦS . First rewrite T
(2)
S by swapping

the names x and y and using the fact that f is symmetric to

yield T
(2′)
S =

P−f(x, y), where the sum is now over pairs

x, y in S such that π∗(y) ≤ πlocal(x) < πlocal(y). Note that

every pair (x, y) in the sums ∆C, T
(1)
S , T

(2′)
S and ΦS has

πlocal(x) < πlocal(y). We divide the pairs (x, y) into seven
sets based on the truth of the inequalities π∗(x) > π∗(y),
π∗(x) ≥ πlocal(y), and π∗(y) ≤ πlocal(x) (The eighth possi-
bility never happens because it would imply a contradiction
with πlocal(x) < πlocal(y).) The seven cases are shown in
the following table. T indicates that the inequality in the
heading is true, integers indicate the coefficient of f(x, y) in
the sums, and dots indicate false or zero.

π∗(x) > π∗(x) ≥ πlocal(x) ≥ ∆C T1 T2 Φ
π∗(y) πlocal(y) π∗(y)

· · · · · · ·

· · T · · 1 −1
· T · · 1 · −1
T · · 1 · · 1
T · T 1 · 1 ·

T T · 1 1 · ·

T T T 1 1 1 −1

Our proof of Lemma 11 is by induction on the nodes of
the recursion tree. To analyze crossing pairs, the number
of vertices such that the displacement arc (πlocal(x), π∗(x))
crosses k is relevant. Let

ψL
S = |{x ∈ S| π∗(x) ≤ k < πlocal(x) }|, and

ψR
S = |{x ∈ S| πlocal(x) ≤ k < π∗(x) }|.

Lemma 16 (Core). Let S = Vi,j , let L be the set of
x ∈ S such that πlocal(x) ≤ k, and R = S \ L, where Vi,j

and k are defined as in Algorithm 3. Then:

ΦS −Ek [ΦL + ΦR] ≤ 32

|S|
X

x∈S

|π∗(x)− πlocal(x)|ψ∗
S.

where ψ∗
S = maxk∈S max(ψL

S (k), ψR
S (k))

Proof. Apply Lemma 15 to ΦS ,ΦL and ΦR. Restrict
attention to pairs x, y such that πlocal(x) < πlocal(y) (the
other pairs have δxy = 0.) Since |δxy| ≤ 1 and |f(x, y)| ≤ 1,
we can write

ΦS − ΦL − ΦR ≤ |{(x, y) ∈ Lk ×Rk, crossing pair}|,
where we write L = Lk and R = Rk to make the depen-
dency in k explicit. Now, it is easy to see that the set
K from which Algorithm 3 randomly chooses k satisfies
|K| ≥ |Vij |/4 whenever i 6= j. We thus have:

Ek [ΦS − ΦL − ΦR] ≤
4

|S| |{(x, y, k) : (x, y) ∈ Lk ×Rk, crossing pair}|.



In such a triple (x, y, k), we must have that k is either
between πlocal(x) and π∗(x) or between πlocal(y) and π∗(y).
Moreover, in order for {x, y} to be a crossing pair, it must
be that y cross over either πlocal(x) or over π∗(x), so y is
counted in ψL

S (πlocal(x)) or in ψR
S (πlocal(x)) or in ψL

S (π∗(x))
or in ψR

S (π∗(x)). Taking the union of these cases yields the
Lemma.

Lemma 17. ψ∗
S ≤ F 1/2

S .

Proof Sketch. i 7→ ψS(i) is a 1-Lipschitz function (it
changes by at most 1 when going from i to i + 1), and its
integral is bounded by FS. It is easy to see that these ob-
servations imply that the maximum value of this function
cannot be more than

√
FS.

Corollary 18.

ΦS −Ek [ΦL + ΦR] ≤ 32

|S|F
3/2
S .

At this point we are prepared to show that at any one
level the mistakes made are bounded by 32ǫ times the opti-
mum cost. To do this, note that by the stopping condition√
FS/|S| < ǫ, so F

3/2
S /|S| < ǫFS . This shows that any one

level of the tree does not contribute excessive mistakes. The
following lemma proves that the sum of mistakes over all of
the levels is dominated by the nodes near the leaves of the
tree.

Lemma 19 (Inductive). For every α ∈ [αmin, 1],

ΦV ≤ EB

2

4

X

S leaf

[96γǫFS + ΦS ]

3

5 ,

where γ =
√

5

3−
√

5
.

Proof. Let α ∈ [αmin, 1] be fixed. If V is a leaf, then the
statement is true. Else, given α, we first prove by induction
that for any l ≤ m, with U = {x| ℓ ≤ πlocal(x) ≤ m } and
E [·|U ∈ B] meaning expectation conditioned on U being a
leaf or internal node in execution tree B:

ΦU ≤ EB

"

X

S internal
descendant of U

32
F

3/2
S

|S|

+
X

S leaf
descendant of U

ΦS

˛

˛

˛

˛

˛

U ∈ B
#

. (3)

The base case of U being a leaf is trivial.
Let k be the random variable used at U to decompose

U into L and R. Let Xk = ΦU − ΦL − ΦR. Let B1 be
the random sequence used to construct the decomposition
of the left child, and B2 be the random sequence used to
construct the decomposition of the right child, so that B =
(k,B1, B2). Note that given an interval U , ΦU = EB [ΦU ] is
deterministic. Therefore:

ΦUEB [Xk + ΦL + ΦR] = Ek [Xk] + Ek [ΦL + ΦR] .

Using the induction hypothesis for fixed L,R we have:

ΦL + ΦR ≤ EB1,B2

"

X

S internal desc. of L or R

32
F

3/2
S

|S|

+
X

S leaf desc. of L or R

ΦS

˛

˛

˛

˛

˛

U,L,R ∈ B
#

.

Take expectation over k and rewriting:

Ek [ΦL + ΦR] ≤ EB

"

X

S internal strict desc. of U

32
F

3/2
S

|S|

+
X

S leaf desc. of U

ΦS

˛

˛

˛

˛

˛

U ∈ B
#

.

Adding Ek [Xk] ≤ 32F
3/2
U /|U | (from Corollary 18) to this

and combining 32F
3/2
U /|U | with the sum over internal nodes

completes the induction, proving Equation 3
The rest of the proof is deterministic. We prove that for

every tree decomposition B, the argument of the expectation
on the right hand side of Equation 3 with ℓ,m = 1, n and
U = V is bounded by O(1)ǫFV . Therefore the expectation
must also be bounded. The proof uses the following alge-

braic claim which is easily checked. Recall that γ =
√

5/3

1−
√

5/3
.

If 0 ≤ F1 ≤ F , s > 0, and s1 > 0 such that s1, (s−s1) ≥ s/3,
then:

F 3/2

s
<
√

5/3

 

F
3/2
1

s1
+

(F − F1)
3/2

s− s1

!

.

Thus, for every internal node S, we have:

F
3/2
S /|S| ≤

√
5/3(F

3/2
S1

/|S1|+ F
3/2
S2

/|S2|).

Summing over the recursion tree, we obtain:

X

S internal

F
3/2
S

|S| ≤
X

S leaf

F
3/2
S

|S| (
√

5/3 + (
√

5/3)2 + · · · )

which is bounded by γ
P

S leaf
F

3/2
S
|S| . If S is a leaf, then let

P be the parent of S.2 The parent is not a leaf, so by the
stopping condition

√
FP /|P | ≤ αǫ ≤ ǫ. Thus:

F
3/2
S

|S| = FS

√
FS

|S| ≤ FS

√
FP

|P |
|P |
|S| ≤ 3FS

√
FP

|P | ≤ 3ǫFS .

Summing yields the lemma.

Combining Lemma 19 with the simple fact that
P

S leaf FS =
FV proves Lemma 11.

4. RUNNING TIME

4.1 Improved running time: Randomization
The running time of Algorithms 2 and 1 can be improved

somewhat by replacing the deterministic additive error al-
gorithm with the randomized one. To use the randomized
version of the AddApprox algorithm set η = δ/n for Algo-
rithm 2 and η = δǫ/n4 for Algorithm 1. Consider the event

2If S is the root, no parent is available but in that case the
lemma is trivially true anyway.



E0 stating that “During execution of the algorithm, every
call to the randomized version of AddApprox yields a result
within the stated bounds.” Each call fails with probability
at most η. As shown in Section 4.2, there are at most n
(resp. n4/ǫ) such calls, so event E0 has probability at least
1 − δ. Modify the analysis by assuming throughout that
event E0 holds and do the analysis conditioned on E0.

Using the randomized version of the AddApprox algo-
rithm introduces a complication because the proof of Lemma
3 implicitly assumes determinism. This is easily remedied
by reusing the random numbers used the previous time ran-
domized AddApprox was called on the same vertices.

4.2 Analysis: Running time
Both Algorithm 1 and 2 have a greedy local search phase.

The preprocessing step ensures that the edge weights are
integer multiples of ǫ/n2, so the cost decreases by at least
ǫ/n2 at each iteration. Since the cost is always between n2

and zero, the total number of iterations is bounded by n4/ǫ.
The single vertex move local search phase takes timeO(n2·

n4/ǫ), where the first term comes from the time to search for
an improving single vertex move and the second is a bound
on the number of iterations.

The runtime is dominated by the calls to the additive er-
ror algorithm. There are at most n calls for the randomized
version (Algorithm 2) and at most n2 · n4/ǫ for the deter-
ministic one (Algorithm 1), where the n2 comes from the
number of intervals that need to be checked each iteration
to find an improving move. Thus the runtime is

O(n6/ǫ+ nf(n, (1/ǫ)O(1/ǫ), δ/n4))

randomized and

O(n6/ǫ · f(n, (1/ǫ)O(1/ǫ), 0))

deterministic, where f(n, β, η) is the time required for the
additive approximation algorithm to run on the problem
of size n with error parameter β and failure probability η.
The best-known additive approximation run time f(n, β, η)

is
“

n/β4 + 2O(1/β2)
”

log 1/η randomized in [22], or nO(1/β4)

for deterministic (η = 0).

5. CONCLUSIONS AND FUTURE WORK
The reader may wonder whether our results can extend

to the dense case, with Ω(n2) edges but no constraint that
every pair of vertices must have an edge between them. This
extension is not feasible because the dense case is as hard as
the general case, which is APX-hard. To see this, consider
an arbitrary directed graph with n vertices that we want
the feedback arc set for. Union this graph with an arbitrary
acyclic dense graph on n vertices. The result is a dense
graph with 2n vertices that is essentially equivalent to the
original problem.

Interesting open questions include:

1. Does weighted feedback arc set with the triangle in-
equality admit a PTAS? This would give a PTAS for
partial rank aggregation [2].

2. Can the runtime be improved to be only singly expo-
nential in ǫ? The doubly exponential runtime comes
from the intermediate leaves case in the T analysis
(Lemma 14).

3. Is single vertex move local optimality sufficient to achieve
a constant factor approximation? We have an example
showing that such a constant factor is at least three.
Also does sorting by indegree followed by single ver-
tex moves have a provably better approximation factor
than either one by itself?
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[24] M. Grötschel, M. Jünger, G. Reinelt. On the acyclic
subgraph polytope. Math. Programming 33, 1985,
28-42.

[25] R. Hassin and S. Rubinstein. Approximations for the
maximum acyclic subgraph problem. Information
processing letters 51 (1994) 133-140.

[26] H.A. Jung, On subgraphs without cycles in
tournaments, Combinatorial Theory and its
Applications II, North Holland (1970) 675-677.
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