CNS: Cortical Network Simulator

A general, GPU-based framework for the fast simulation of cortically-organized networks.

Jim Mutch
Center for Biological and Computational Learning
MIT Dept. of Brain & Cognitive Sciences
Some Current Deep Architectures

Convolutional Networks (Lecun)

Lecun et al. (1995)

HTM (Hawkins)

Dileep George (2008)

DBNs (Hinton)

Hinton et al. (2006)

HMAX (Poggio)
Some Challenges with Deep Models

1. While single cells typically do simple things, keeping track of connectivity can get complicated.

2. They are computationally demanding.

GPU programming helps address the second problem, but exacerbates the first.

One option: do your experiments in a slow but flexible language and then port your best models to GPUs.

Better option: use a framework that is both flexible and fast.
“Cortical” Models and CNS

• “Cortical” model class:
 • Any number of layers.
 • Layers are N-dimensional arrays of cells. (N may differ from layer to layer.)
 • All cells in a layer are of the same type (perform same operations, maintain same variables).
 • Many different connectivity patterns.
 • Feedforward or recurrent, static or dynamic.

• Goals of CNS:
 • Flexibly cover this entire class.
 • Minimize complexity of code without loss of generality.
 • Automatically run on GPUs.
Working with CNS

- Network structure defined in a MATLAB struct:
 - Number and type of layers.
 - Dimensionality and size of layers.
 - Connectivity.
 - Initial values of variables.

- The only procedural code you write (in C++) is that executed by a single cell.

- Cell code calls macros to read/write its variables, find other cells, read their variables.
 - Makes it possible to compile for CPU or GPU.

- Details of who is connected to who, how memory is organized, etc. all handled by the framework.

```c++
m = struct;
m.layers{1}.type = 'ndp';
m.layers{1}.size = {100 100 50};
...
m.layers{2}.type = 'max';
m.layers{2}.size = {30 30 50};
...
```

// Retrieve the filter size.
int ySize = WEIGHT_Y_SIZE(ZW);
int xSize = WEIGHT_X_SIZE(ZW);

// Find RF in the previous layer.
FIND_LAYER_Y_NEAREREST(ZP, ySize, y1, y2);
FIND_LAYER_X_NEAREREST(ZP, xSize, x1, x2);

// Compute response to the filter.
float v = 0.0f;
for (int j = xSize - 1, x = x1; j >= 0
 for (int i = ySize - 1, y = y1; i >= 0
 float p = READ_LAYER_VAL(ZP, y, x);
 float w = READ_WEIGHT_VAL(ZW, i, j,
 ...
```
Challenge #1: Connectivity

- CNS addresses two significant challenges in working with cortical models.
- Challenge #1: while single cells typically do simple things, network connectivity can get complicated – mainly due to convolution, i.e. limited receptive field size along at least one dimension.
- Occurs for stimulus dimensions (often spatial ones) where there is topography (proximity in layer = proximity in feature space).

modified from Blasdel & Salama (1986)
Topographic Dimensions

• A dimension over which the receptive fields of downstream cells are limited.
A dimension over which the receptive fields of downstream cells are limited.
• A dimension over which the receptive fields of downstream cells are limited.
What Connectivity Problems?

- Annoying problem:
  - Repeated convolution, with edge loss & subsampling → lose track of where higher level units are centered in the original input space.

- Hard problem: **convergence**.
• General problem: an average cortical area gets input from around 10 others… how to define local convolution-type operations over multiple layers having different resolutions & edge loss?

• One solution: forget convolution and just enumerate synapses.
  • Consumes memory and time.

• Another (everyone’s favourite): only study the subset of models for which the problem doesn’t arise.

Felleman & Van Essen (1991)
Connectivity Under CNS

- Integer indices of cells within layers are not meaningful across layers.
- Under CNS, for topographic dimensions, each cell knows its position in a real-valued coordinate space that is meaningful (e.g. retinal position).
- When a cell executes, it can call macros to find its input cells:
  - e.g. “find the 4x4 cells nearest me in layer 1”
  - e.g. “find all cells within 0.03 units of me”
Challenge #2: Speed

- Any cortically-inspired model is going to be susceptible to parallelization.
  - Neurons are slow: the brain’s computational power derives from parallelism.
- Modern GPUs can support millions of threads and execute any 480 of them simultaneously. So: just map 1 neuron/unit to 1 thread.

- But it’s not quite that simple....

Why aren’t there PCs with 512 CPUs?
  - Acting independently they would overwhelm the memory system.

GPU processors need to work in coordinated groups of 32.

GPU programs only run fast if:
  - All 32 threads in a group are executing the same instruction.
  - If they’re accessing main memory, locations must be contiguous.

In a sense, instead of 512 scalar processors, you actually have 16 vector processors that operate on 32-element vectors.

But you can program them as if they’re scalar processors.

If above constraints are not observed, code still runs, but slower.
  - Better than having to write vectorized code.
  - But still not easy.
So: GPU programming shortens run time but can lengthen development time.

But under CNS, models can run automatically on NVIDIA GPUs without modification. How does this work?

- Everything in CNS is defined parametrically except the code a single kernel thread executes.
- Even that code only communicates with its environment via macros.
- When compiling for a CPU, kernel macros expand into code that accesses data structures in host memory.
- When compiling for a GPU, those same macros expand into code that accesses GPU memory.

GPU details that CNS hides from you:

- Memory management:
  - Class of memory (global, texture, constant, shared, ….)
  - Host-GPU transfers.
  - Alignment and addressing.
  - Dimension mapping (N-D to 2-D, texture packing).
- Thread management.
- The GPU programming API (CUDA).
Example Package: 3-D Convolutional Networks

- Developed with Srini Turaga et al. from the Seung lab.
- Learns to segment cell bodies in 3-D scanning electron microscope stacks.
- Implements the backpropagation algorithm: forward pass, backward pass, weight update.
- Speedup of about 100x over a single CPU.
- 300 lines of code, about 2d development time.
Example Package: 3-D Convolutional Networks

Turaga et al. (2009)
• The Poggio lab’s object recognition model based on the ventral visual pathway.
• Similar to some of Lecun’s convolutional nets for digit/object recognition, but:
  • hardwired layer 1 features
  • MAX pooling
  • thousands of learned features
  • forward pass only
  • multiresolution
• Most recent Caltech 101 results are around 71%.
• CNS version is about 100x faster than older implementation on a single CPU.
• Dynamic simulations using biophysically realistic neurons. Models are iterated through many time steps.

• Each neuron (or compartment) maintains a full set of Hodgkin-Huxley state variables.

• Connectivity is irregular: each cell has an explicit list of synapses.
  • Each synapse also maintains its own state variables (channel states, conductances).

• For a model with 10,000 neurons and 330,000 synapses, CNS was able to process 5,000 time steps per second on a GTX 285 GPU.

• For dynamic models, CNS can pull out time series of variables as they change.
Another Application: Action Recognition in Video

- Basically HMAX with a time dimension added.
- Spatiotemporal filters.
- Initial port to CNS: about a day’s work.
- Speed increased from 0.55 frames/sec to 32 frames/sec (real time).

Jhuang et al. (2007)
Temporal Shifting

- Special handling for a “time” dimension.
- Enables streaming video with operations that span multiple frames.
- Special handling for a “time” dimension.
- Enables streaming video with operations that span multiple frames.
Temporal Shifting

- Special handling for a “time” dimension.
- Enables streaming video with operations that span multiple frames.
Temporal Shifting

- Special handling for a “time” dimension.
- Enables streaming video with operations that span multiple frames.
Internals: Mapping N-D to 2-D Textures

\[ \text{dnames} = \{ 'f', 't', 'y', 'x' \}; \]
\[ \text{dims} = \{ 1, 2, 1, 2 \}; \]
\[ \text{dparts} = \{ 2, 2, 1, 1 \}; \]

Also: “dimension splitting”

\[ \text{dnames} = \{ 'f', 'y', 'x' \}; \]
\[ \text{dims} = \{ [1, 2], 1, 2 \}; \]
\[ \text{dparts} = \{ [2, 2], 1, 1 \}; \]
• One texture per cell field.
  • If caching on.

• Each block = one layer
  (already flattened to 2-D)

(Packing algorithm could be improved)
To Do List

• Open up data structures to allow manipulation via:
  • MATLAB’s new gpuArray type
  • Arbitrary (non-CNS) CUDA code
Resources

• Has links to:
  • Tech report (high level)
  • Programmer’s manual (full details)
  • Code download & installation instructions
  • Example packages
  • Forum
Collaborators

Ulf Knoblich (Ph.D. student, Poggio lab, MIT)
  • Spiking models

Tomaso Poggio (MIT)
  • My supervisor

Other early adopters:
Hueihan Jhuang, Sharat Chikkerur (Poggio lab)
Srini Turaga, Kannan Venkataraju, Matt Greene, Viren Jain (Seung lab)