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Abstract. This paper is a sequel to an earlier paper 
which proposed an active role for the thalamus, inte- 
grating multiple hypotheses formed in the cortex via the 
thalamo-cortical loop. In this paper, I put forward a 
hypothesis on the role of the reciprocal, topographic 
pathways between two cortical areas, one often a 
'higher' area dealing with more abstract information 
about the world, the other 'lower', dealing with more 
concrete data. The higher area attempts to fit its ab- 
stractions to the data it receives from lower areas by 
sending back to them from its deep pyramidal cells a 
template reconstruction best fitting the lower level view. 
The lower area attempts to reconcile the reconstruction 
of its view that it receives from higher areas with what 
it knows, sending back from its superficial pyramidal 
cells the features in its data which are not predicted by 
the higher area. The whole calculation is done with all 
areas working simultaneously, but with order imposed 
by synchronous activity in the various top-down, bot- 
tom-up loops. Evidence for this theory is reviewed and 
experimental tests are proposed. A third part of this 
paper will deal with extensions of these ideas to the 
frontal lobe. 

1 Introduction 

The point of view of these papers and the motivation 
behind them was described in the introduction to the 
first part of this paper. Summarizing, the idea is that 
the uniformity and highly specific layered structure of 
the neocortex of mammals suggests that some quite 
universal computational ideas are embodied by this 
architecture. This paper presents two proposals for 
computational mechanisms embodied in this structure. 

The first part dealt with a conjecture for the role of 
the reciprocal and largely topographic pathways con- 

necting each area of the cortex with a corresponding 
nucleus in the thalamus. It was proposed that a very 
important part of the computation performed by the 
cortex made use of this loop: 
�9 that the cortex learns multiple patterns that recur in 
sensory stimuli and in stereotyped motor output, 
�9 that at any given time, the cortex is attempting to 
analyze the present situation in terms of these patterns 
and, in so doing, generates multiple hypotheses, often 
conflicting, 
�9 that all these hypotheses are sent down to the thala- 
mus where a kind of voting takes place in the dendritic 
arbors of the thalamic neurons, 
�9 that the consensus is then broadcast back to the 
cortex as an updated view of that aspect of the world 
dealt with by that area of cortex. 

This theory was summarized by describing the role of 
the thalamus as that of an 'active blackboard' bearing 
the data on which the cortex was working. 

The second part will deal with the reciprocal and 
largely topographic pathways that are found through- 
out the cortex connecting pairs of cortical areas. A 
detailed proposal will be made for the nature of compu- 
tation performed by exchange of messages via this loop. 
The present paper will expand these ideas for sensory 
processing carried out in the posterior half of the cortex 
and a third part of the paper will apply them to the 
computations underlying planning and action carried 
out in the frontal lobe. I will propose specific tests for 
some of these ideas. As in the earlier paper, we have 
included a good deal of background both on neuro- 
anatomy and on computer science in order to make the 
ideas as clear as possible to readers from various spe- 
cialties. Finally many people have had ideas similar in 
various ways with ideas presented below: the ones I 
know of are the 'Adaptive resonance theory' of Carpen- 
ter and Grossberg (1987), the 'HyperBF' theory of 
Poggio and collaborators (Poggio 1990), the 'counter- 
current' processing theory of Deacon (1988) and recent 
theories of Rolls (1990) on the 'back-projections' in the 
brain. 
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2 Pyramidal neurons and cortico-cortical pathways 

I begin by reviewing some neuroanatomical  facts about 
cortical pathways. As described above in the first part  
of  this paper, each hemisphere of  the primate cortex 
seems to be divided into something of  the order of  a 
hundred areas each with a specialized role. There are, 
of  course, species differences ~, but the general map and 
often many of  its details are roughly homologous for 
most species. 

Tracing pathways supplements the map  of cortical 
areas with a diagram of  their interconnections. These 
interconnections turn out to be relatively sparse, in the 
sense that of  the 10,000 possible one-way pathways that 
could exist between 100 areas in each hemisphere, per- 
haps only the order of  magnitude of  2000 exist (Felle- 
man and Van Essen 1991). This could well be the result 
of  limitations of  space inside the cerebral hemispheres, 
which can only contain so much white matter, but it 
obviously has computat ional  significance. A very im- 
portant  fact, central to the theory in this paper, is that 
all or almost all (there are some ambiguous cases) 
interconnections so far discovered are reciprocal: i f  area 
A projects to area B, then B projects to A. 

What  types of  cells set up these pathways? There 
are two main types of  neuron in the neocortex: pyrami- 
dal cells and interneurons. Pyramidal cells are large, 
excitatory, with a pyramid shaped cell body, spiny 
dendrites and a long myelinated axon (myelin is na- 
ture's way of  insulating axons to ensure stronger, faster 
long-distance signals) that projects to another area 
of  the brain (another  cortical area or subcortically), 
usually with branches projecting locally 2. These are 
the neurons which create these cortico-cortical path- 
ways. Interneurons are small with only local projec- 
tions, spineless dendrites and are usually inhibitory. An 
intermediate class consists of  the spiny stellate cells 
populating layer IV which generally project only locally 
but resemble pyramidal  cells in being excitatory and 
having spines: they are roughly pyramidal cells without 
a long axonal projection, and are sometimes called 
small pyramidal  cells. 

The percentage of  neurons in human cortex which 
are pyramidal  has been variously estimated as 600/0 - 
80%, although there seems to be some doubt about  
counting accurately the interneurons which have 
smaller cell bodies 3. This distinguishes the structure of  

The major difference is that the number of areas increases with 
increasing brain size. For instance, the frontal lobe in humans is much 
larger than in other primates and seems to contain many more areas 
a The existence of extensive local collaterals is a major difference 
between the output, pyramidal cells of the cortex and the output cells 
of the thalamus. It allows the cortex to carry on local calculations 
indefinitely without further stimulation, whereas the thalamus cannot 
do this 
3 Various references can be found in the discussion in DeFelipe and 
Jones (1988), pp. 590-599. The counts in Winfield et al. (1980) seem 
representative and are confirmed by immunochemical determination of 
the percentage of GABA cells. They find on average 67% pyramidal, 
5% large stellate and 28% smaller interneurons (presumably in- 
hibitory) in cat and rat cortex 

the cortex strikingly from other bodies such as the 
olfactory bulb and the cerebellum, in which interneu- 
rons substantially outnumber  the cells with long axons. 

Some crude numerical estimates may be useful: 
using the estimates cited in the first part, each hemi- 
sphere of  the human cerebal cortex may contain 
roughly 10 billion neurons. Then an average area would 
have about  100 million neurons, with say 60 million 
pyramidal cells projecting to some other cortical area. 
I f  this area is connected to 30 others, each pathway 
comes out as containing the order of  2 million fibres, 
the same order of  magnitude as the optic nerve. In 
strong contrast, the cerebellum has an order of  magni- 
tude more neurons than the cortex, and most of  these 
are its principal interneurons, the granular cells, whose 
number is estimated at 100 billion in man! The number 
of  Purkinje cells, its output cells, is only 15 million or 
.03% of  the total (I to 1984). The pathway between the 
cerebellum and the rest of  the brain is also an order of  
magnitude bigger than the cortical pathways: in man it 
is estimated to contain 20 million axons (Brodel 1981, 
p. 297). 

The fact  that the majority o f  cortical cells have 
inter-area projections, as opposed to exclusively intra- 
area projections, seems already to bear an important 
computational message: it means that almost nothing 
goes on internally in one area without this activity being 
transmitted to at least one other area. The classical view 
on the significance of  the different areas of  the brain 
was that it was similar to the modular  decomposition of  
a computer  program into subroutines. In computer 
programs, each module performs a specific task and the 
various modules pass input and output back and forth 
by means of  messages (or via globally accessible data 
structures, like blackboards). The analogy suggests that 
each area in the brain has a specific capability, e.g. 
looking up words in a lexicon, sequencing motor  acts, 
etc. and that the inter-area pathways exchange requests 
and answers. But this analogy would only make sense if 
the number of  intra-area locally projecting neurons 
were an order of  magnitude larger than the number of  
inter-area globally projecting neurons. 

Since this isn't the case, a different paradigm must 
be sought. This is the main idea of  this paper, which I 
will develop in stages. In essence, I want to propose 
that the bulk o f  the computational work o f  the cortex is 
not carried out by one area at a time, but by information 
going back and forth over reciprocal pathways connecting 
pairs o f  areas: in doing this, each such pair o f  areas is 
trying to reconcile their constructs by some kind o f  
relaxation algorithm. Before developing this idea fur- 
ther, we need some more anatomical facts. 

3 Higher versus lower areas 

For  a long time, there have been attempts, using the 
above mentioned modular  view of the brain, to give 
each of the different cortical areas a particular func- 
tional significance and to describe the nature of  the 
information represented by neuronal activity in each 



cortical area. From such assignments, we can describe 
the pathways between the areas in terms of passing data 
from an area with one sort of concern to another. A 
persistent theme is to distinguish lower cortical areas, 
with direct sensory or motor connections from higher 
ones which are associating information from lower 
areas, so that information moves first from lower, more 
sensory areas to higher, more cognitive association 
areas and secondly from these association areas back 
down to lower motor areas. 

There are several ways of establishing such func- 
tional correlations: firstly, the distance of an area from 
the nearest area with direct sensory or motor connec- 
tions (the primary sensory and motor areas) is one 
indicator of how high-level it is. This is confirmed by 
comparative neuroanatomy, in that lower mammals 
have almost all their cortex taken up by the primary 
motor and sensory areas 4, while an increasing amount 
of secondary tissue appears in mammals with greater 
intelligence. Secondly, direct stimulation of the cortex 
of humans, first employed in operations for intractable 
epilepsy by Penfield, resulted in the patient's experienc- 
ing a variety of thoughts, ranging from very concrete 
sensations or motor reactions to quite elaborate memo- 
ties or abstract ideas. Thirdly, the loss of functions in 
strokes can be correlated to the cortical area destroyed 
by the stroke. Fourthly, single cell recordings in ani- 
mals, especially primates, enable one to correlate the 
firing of a particular neuron to the presence of various 
stimuli, or the performance of various tasks, and these 
show a clear gradient from elementary sensory or mo- 
tor responses, to elaborate complex responses (e.g. the 
presence of a monkey's face in the field of view). 

These four techniques give a fairly consistent, though 
imprecise, idea of which areas were 'higher' and which 
'lower' than others and roughly what sort of data was 
being dealt with. Traditionally, one way in which this 
data has been put together is via a division of the cortex 
into primary sensory and motor areas, secondary sen- 
sory and motor areas and tertiary 'association' areas. 

A much more precise way of ordering cortical areas, 
which agrees with and extends the above higher/lower 
ordering was found by analyzing the connections of the 
areas in terms of the layers of origin and the layers of 
termination of each pathway. To describe this, I need to 
first sketch the cell populations of the six layers. The 
pyramidal ceils occur in two populations: the deep 
pyramidal cells in layers V and VI and the superficial 
ones in layers II and III. Layer IV in the middle is 
occupied mainly by the spiny stellate cells and, as we 
have seen, is the principal input layer for sensory data 
and other thalamic projections driving cortical calcula- 
tion (although note that the cells in layer IV, by virtue 
of their arborization, will already perform some trans- 
formation on the input data). Layer I, called by Cajal 
the plexiform layer, has extremely few cell bodies of any 
kind, but is the zone for a rich set of connections 

4 This is ignoring the limibic areas, dealing with emotion, social 
behavior and memory, which are also large in lower mammals 
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between a second type of axonal input, the interneurons 
and the apical dendrites of the pyramidals. The in- 
hibitory interneurons occur in all layers except I, and 
themselves break up into a dozen types or so with 
differing geometry and distributions. 

In terms of layers of origin and termination, there 
seem to be three types of long distance cortex to cortex 
connections between areas, all set up by pyramidal 
cells. In this division, I am quoting the results in the 
exhaustive survey paper Felleman and Van Essen 
(1991). To see a particular example in detail, the projec- 
tions to and from V1 are shown in detail in Perkel et al. 
(1986) and Van Essen et al. (1986). The survey paper 
deals primarily with the posterior, sensory-oriented ar- 
eas of the cortex, and I will restrict the discussion at 
first to these areas. The first of these types of pathway 
originates in deep pyramidal cells, usually in layer V, 
and terminates heavily in layers I and VI, avoiding 
layer IV completely. The second of these originates in 
superficial pyramidal cells and terminates primarily in 
layer IV. The third of these originates in superficial 
pyramidal cells, but instead terminates outside layer IV, 
mostly in layers I and VI. There are a few reports 
suggesting further types of connections, but these, if 
present, don't  seem to be widespread. 

What makes this division into types impressive is 
that, whenever two areas A and B are reciprocally 
connected, and the previously discussed evidence shows 
clearly that if area A is 'higher', B is 'lower', in terms of 
their function, then: 

1. The ascending pathways from B to A is set up by 
superficial pyramidals in B terminating in layer IV of A. 
Note that this is consistent with layer IV being the 
standard input layer at each stage of the stream of data 
all the way from the senses themselves to the highest 
cognitive areas. 
2. The descending pathway from A to B always includes 
deep pyramidal cells in layer V of A terminating mainly 
in layers I and VI of  B. If  A is 'much higher' (in some 
loose sense, see (FeUeman and Van Essen 1991)) than 
B, this is the only projection from A to B. Note that the 
projections from A to the thalamus are also set up by 
deep pyramidals (chiefly in layer VI), so we have a 
consistent picture of deep pyramidals projecting to 
lower structures, either in the cortex or sub-cortical. 
This is also consistent with the idea that A delivers a 
different kind of input to B from its standard input. I'll 
call these the standard descending paths. 
3. The descending pathway from A to B may also 
include superficial pyramidal cells of A terminating 
chiefly in layers I and VI of B. This occurs if the 
ordering between two areas is not so clear, A is only 
slightly higher than B in Felleman and Van Essen's 
sense. Note that again terminations in layer IV are 
avoided by the 'higher' to 'lower' projections. I'U call 
these the extra descending pathways. 

A summary of this pattern is shown in Fig. 1. 
It would be nice if we could extend this picture 

unequivocally to the frontal lobe. While there have 
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Fig. 2. Top down processing reveals the dalmation dog (Rock 1984) 

4 Descending pathways carry templates 

been fewer studies of  the laminar connections to and 
within the frontal lobe, present evidence seems to favor 
the idea that this same laminar pattern is present (Dea- 
con in preparation; Primrose and Strick 1985). Felle- 
man and Van Essen (1991), however, qualify this 
conclusion with the remark that "The patterns illus- 
trated in the literature are difficult to interpret unam- 
b iguous ly . . . " ,  (cf. section entitled "Hierarchical 
relationships in other areas", subsection "Somatosen- 
sory and motor  cortex"). The data suggests a picture in 
which (a) the primary motor  area, Area 4, is lowest, 
and the other frontal areas starting with the premotor 
and supplementary motor  areas get higher and higher, 
in a complex pattern, while (b) the layers of  the connec- 
tions conform to the three types (i), (ii) and (iii) above. 

Another important  caveat is that when two areas A 
and B are reciprocally connected, one needn't be 
higher, the other lower, in any clear way. In this case, 
one can imagine that all types of  connection are possi- 
ble, and the neuroanotomy doesn't reveal anything 
directly about the functional nature of the pathway. 

Can we make some sort of  hypothesis about the 
functional role of  the ascending and descending path- 
ways? In the rest of  this paper I will try to the analyze 
the role of  these pathways in the sensory half of the 
brain, the occipital, parietal and temporal lobes, and 
leave to part III an extension of  our theory to the 
motor  half of  the brain, the frontal lobe. Now the 
ascending pathways have never seemed to be problem- 
atic, because information must obviously flow from the 
senses up to cognitive areas. This ascending stream of  
information is referred to as 'bottom-up'  processing. 
However, there is a general realization of  the impor- 
tance of  ' top-down' processing too, involving the active 
use of  high-level knowledge to help disambiguate low- 
level perceptions (as in the ability to discern the dalma- 
tion dog in Gregory's famous picture, see Fig. 2). This 
is what I want to analyse first. 

Let us step back and make some elementary observations 
about what descending pathways must do. Without any 
preconceptions about the computational nature of the 
cortex, one would expect that activity in lower sensory 
areas of the brain is directly correlated with elementary 
properties of  the sensory input, while activity in higher 
areas is correlated with the presence or absence of some 
more subtle properties of  the sensory input, e.g. the 
presence of  a face. This is clearly born out by single cell 
recordings for instance (cf. Desimone's survey paper 
(1991) for a history and description of  the so-called 'face' 
cells in inferior temporal cortex). One might say that the 
higher area is speaking a more sophisticated, more 
abstract language. In that case, when information is 
passed from a higher to a lower level of the brain, it 
must be translated from the abstract language of the 
higher area to the concrete terms employed by the lower 
area. If some particular pattern of  bits in a higher area 
happens to mean 'face', there is no point sending this 
encoded pattern down to a lower area which knows 
nothing about faces. You have to translate 'face' into 
a signal in the terms used by the lower area, e.g. a pattern 
of  bits signifying the appropriate concrete configuration 
of lines, shapes and colors. Such a translation is what 
in psychology would be called a mental image, a recon- 
struction of a detailed sensory signal that instantiates an 
abstract class of  signals. In the language of  pattern 
recognition, it is what is called a template. Early work 
in pattern recognition centered around the idea of 
recognizing classes of  signals by having a specific template 
(i.e. a standard example of  a signal in each class), which 
could be matched, feature by feature, second by second, 
or pixel by pixel, against the signal to be classified. 

Our proposal is that the axons of  the deep pyrami- 
dal cells in the descending pathways store templates in 
the weights of  their synapses in the lower area. The 
single bit represented by a pulse on the axon of such a 
cell must stimulate, via the weights on its synapses in 
the lower area, a low level template-like response repre- 



senting the translation of the information in that bit in 
the high level representation scheme into more concrete 
information in the low level representation scheme. One 
must not oversimplify here: a simplistic form of  our 
hypothesis would be that specific deep pyramidal neu- 
rons, or small sets of  them, were responsible for each 
template in the lower area. For  example, one might 
suppose that several dozen deep pyramidals in inferior 
temporal cortex constructed an eye template, in the sense 
that the strength of their synapses in lower order visual 
areas created excitation equivalent to a retinotopic eye- 
like stimulus. This would be an elegant hypothesis, but 
it looks totally unbiological. Much more likely, it seems, 
is that the computation is distributed, that thousands of  
neurons are simultaneously carrying eye, nose, mouth, 
face, etc. templates. This would explain why recordings 
from such a large percentage of  inferior temporal neu- 
rons show responses to faces, and that the ability to 
recognize faces is robust in the face of small local 
damage to cortex: all the usual arguments in favor of 
distributed representations in neural nets. 

Some evidence for this hypothesis comes from the 
experimental fact that the axonal arbors of  descending 
pathways are, on the whole, more extensive than those 
of  ascending pathways: we would expect this if the 
descending pathways were recreating the pattern of  
excitation characteristic of  some higher level construct, 
because such higher level constructs embody common 
extended patterns of excitation in the lower area. Very 
carefully drawn illustrations of  the arborizations of 
typical V2 =~ V1 axons can be found in (Rockland and 
Virga 1989). Her pictures suggest not only that a rather 
intricate excitation pattern is created by the top-down 
activity of  such a neuron, but even that this pattern may 
reproduce the effect of extended lines, which would 
usually be part of any higher level visual pattern. This 
is seen in the fact that in some of  her pictures the axon 
sprouts synapses at regular intervals, interspaced with 
synapse-free zones, as it extends in a specific direction in 
layer I; because of  the known division of  V1 into 
orientation-specific columns, this could well be the struc- 
ture needed to stimulate successive parts of an extended 
line with a fixed orientation. 

Recall that there are also extra descending paths 
formed by superficial pyramidal neurons, but only in 
case of  areas which are not too far apart, one not being 
too much higher than the other. Our hypothesis is that 
the standard descending pathways which are always 
present carry templates, especially because the further 
apart two areas are, the most different will be their 
'languages', hence the greater the need for template-like 
translations from one language to another. After I 
extend my hypothesis to the ascending pathways, I will 
come back and make some speculation on the role of 
these extra descending pathways. 

5 Templates must be flexible 

Early pattern recognition work using templates was 
never very successful, however. The difficulty was how 
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to account for the range of variation in the objects 
being recognized: two eyes are never the same, and one 
must be able to recognize as eyes all the variations 
which normally occur, including eyes in people never 
seen before, eyes in strangely lit faces, cartoon eyes, etc. 
The problem of allowing for normal variations arises 
already when trying to classify some object on the basis 
of a few measurements: a classic example in the statisti- 
cal literature was that of  discriminating three species of  
Iris from the length and width of  its petals. One must 
model the allowable variations of  length and width 
within each species or, better, the full probability distri- 
bution of  the measured features for each class before 
making an informed decision on the species from these 
two features. The problem gets harder for 1D signals 
such as speech: an essential adjustment is called time- 
warping, in which templates for the various phonemes 
are scaled to allow for the speaker's rate of  speech. In 
2D signals such as vision, the problem is much more 
difficult. Letters can be varied in many non-linear ways 
while still being readable, faces distort with differing 
expressions and shadows change the appearance of  
even simple industrial parts on an assembly belt. Other 
types of variation are not usually continuous but corre- 
spond to the object belonging to one of  several subcat- 
egories: e.g. faces with and without glasses, a person 
being male or female, a screwdriver being plain or 
Phillips, etc. What all this suggests is that you need a 
flexible template: a template with built-in variability 
embodied in a set of  parameters, whose values can be 
chosen so that the template will nearly match the 
example of the class in the signal being analyzed. In 
vision, early work in this direction is due to Fischler 
and Elschlager (1973), and a recent version can be 
found in Yuille (1991). 

The parameters in a flexible template are not imag- 
ined to vary arbitrarily, but to have some restrictions 
placed on them which form an essential part of the 
template: 

1. they generally have an allowable range, individually 
or jointly (e.g. two parameters may have to lie in some 
subset of  the plane), 
2. there may be a prior joint probability distribution, 
3. one may store a set of  useful example s -  e.g. the 
parameter values for a prototype instance and some key 
borderline cases, showing the worst instances you've 
encountered. 

How do these parameters and their allowable range fit 
into our neural theory? What I want to propose is that 
when a high level area has neurons which fire in the 
presence of  eyes, then the full pattern of  firing in this 
area will encode a set of parameters for eyes. The value 
of these parameters will determine some of  the synaptic 
input on an assemblage of  deep pyramidal cells, and 
thus it will modulate part of  the signal being sent on the 
descending pathway. Therefore, instead of having one 
signal on this pathway that says 'eye' and produces a 
fixed template response in the lower area, there will be 
a family of  varying signals, with spikes of varying rates 
and phases, representing eyes with different values of  
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the eye parameters. Each such signal will stimulate the 
lower area differently, producing the same effect as a 
flexible template with built-in parameters. Further, it is 
logical to suppose that the strengths of  the synapses of 
other neurons on the dendrites of  the deep pyramidals 
in the higher area are the place where the limits of  this 
allowable variation is stored. These limits may be 
learned by gradual modification of  these synaptic 
strengths, presumably by the presentation of multiple 
examples and by some mechanism which stores not just 
their mean but their variance in some form. 

An interesting proposal for a specific way of  repre- 
senting and learning the variances of  natural categories, 
as well as predicting the parameters for best fits, is being 
developed by Poggio and collaborators (Poggio and 
Girosi 1990; Poggio 1990). They hypothesize that both 
probability distributions for membership in a category 
and the values of  associated parameters, as functions of 
a vector of  features, may be approximated by a family 
of functions, called 'Hyper  basis functions', of  the form: 

N 

f (x)  = E c=G(IIx-LII ). 
a=l 

Here x is the vector of  features, t, are the exemplars from 
which the function has been learned, G is a function like 
a multi-dimensional Gaussian, the subscript W on the 
norm is a weighting of  the individual features (e.g. an 
inverse of  a covariance matrix) and c, are learned 
weights. They propose neural mechanisms for imple- 
menting the calculation of  suchf ' s  as well as learning the 
weights. Developing algorithms of this kind for learning 
variances or some other measure of natural variability of  
exemplars and for clustering similar exemplars seems to 
me to be a central problem for neural net architectures. 

Fodor  and Pylyshin (1988) have raised the question 
of how neural nets can express composite concepts and 
can rapidly build new composite concepts which have 
never been entertained before. Our notion of  flexible 
templates seems to incorporate a limited form of  compo- 
sitionality in a natural way. When a template is active, 
the values of  its parameters naturally associate to that 
concept a set of  qualifying properties, much like a noun 
phrase may be formed by a principle noun and a set of  
adjectives and clauses. When several templates are ac- 
tive, their parameters don' t  get confused: the two scenes 
"Black dog and white cat" and "White dog and black 
cat" correspond to two different states of  mental activ- 
ity. Such linking does not allow us to arbitrarily combine 
two different concepts, but only to form combinations 
when one already occurs as a dimension of variability of  
the other. In a more linguistic context, there could be a 
template for the action "hit",  whose parameters in- 
cluded a description of  the object hitting and for the 
object being hit. 

6 Residuals 

Flexible templates were a major improvement on tem- 
plates but flexible templates also have problems. How 

Expected symbol Best match 
with smudge by template 

Fig. 3. Problemsinrecognition bytemplate 

Unexpected 
symbol 

does one judge whether or not to accept the fit of  the 
template and decide that the signal does contain a valid 
instance of the class of objects in question? An early 
idea was to decide that the letter 'B' was present on a 
page when part of  the writing was more like a 'B' than 
any other letter. This procedure can go wrong in two 
ways. The page might have an unusual character here, 
not matching any English character, say the 'there 
exists' sign 3 of mathematics, and you shouldn't have 
accepted 'B' just because the symbol 3 was closer to a 
'B' than any other English character. Or the paper 
might have an 'R' partially obscured by a smudge 
making the whole shape a bit closer to an 'B' than an 
'R'  say (see Fig. 3). The point is that identification is 
only complete when you have analyzed all ways in 
which the signal differs from the template (after putting 
in optimal values for its parameters). These differences 
are what I call the residuals. Many things may be 
happening. 

1. The residual may be so large that the template is 
plain wrong (e.g. you were trying to fit the eye template 
to a mouth), and this particular identification should be 
rejected. 
2. It may be that a definite part of  the template is 
missing in the signal (e.g. an object in a scene is 
partially occluded by something in front of  it), so you 
should accept the identification provided that the miss- 
ing parts can be explained. 
3. It may be that the signal contains something extra- 
neous in addition to the template (e.g. while the sen- 
tence "Everything's fine at home" is being uttered, a 
child's scream breaks in), and again the identification 
should be accepted provided that the extraneous part 
can be explained. 
4. Even when the correlation between the signal and 
the template is overwhelmingly large, so the identifica- 
tion is clearly correct, there are many situations when 
the residual contains very useful information about the 
world (see example in Sect. 8 below). 
5. Finally, the residual may be 'noise' or 'clutter': 
unidentifiable, seemingly random stuff and one should 
then stop with the identification and not burden the rest 
of the algorithm further with its analysis or storage. 

The moral here is that an animal should not rest until 
it has 'explained' the full set of  signals coming to it 
from the world, as far as its past experience allows, 
and must also be able to recognize when the signal 
indica tes-  because of variations beyond the normal 
l imi t s -  something never encountered before. Ideas in 
this direction have been put forward by many people in 



different contexts, for example, in computer vision by 
Pavlidis (1988). 

The idea of residuals is closely related to concepts in 
the theory of robust statistics (Huber 1981). In robust 
statistics, one considers the problem of estimating the 
mean of a distribution from a sample, in the case where 
either the distribution itself has large tails or the sample 
is somehow corrupted. In both cases, the sample is likely 
to contain a few large outliers, which will cause large 
changes in the sample mean. Huber's solution is to 
explicitly identify the outliers and use the thinned sample 
to estimate more robustly the distribution's mean. Thus 
if 60% of a model or template fits a signal very well, one 
should explicitly mark the remaining 40% as outliers, 
and measure the goodness of fit of the remaining 60%. 
If  this fit is good enough, it is usually stronger evidence 
than 90% of the template fitting the signal crudely. 

7 Ascending pathways carry residuals 

The last part of the proposal deals with the role of the 
superficial pyramidal cells. As before, we will only 
consider sensory areas in this section. Let us assume that 
a lower area B is interconnected with a higher area A. 
We always get two sets of connections and sometimes a 
third (with the single arrow): 

Higher Area A Lower Area B 
deep pyramidal cells =~ synapses in layers I and VI 
synapses in layer I V  ~ superficial pyramidal cells 

superficial pyramidal cells --* synapses in layers I and I V  

Our proposal is that the loop with double arrows 
embodies an iterative algorithm that attempts to identify 
a specific higher level object in the lower level data. More 
specifically, the deep pyramidals of A send a signal to B 
containing the template for each predicted object O. 
Area B compares these templates to its blackboard, 
which gives its own present reconstruction of the world 
from its vantage point and computes a residual, a 
description of that part of the world which isn't expected 
or predicted. Its superficial pyramidals then send back to 
A this residual, a description of what doesn't fit A's 
prediction. The weights on its synapses in the higher area 
translate this residual into the higher level language. 
Then area A modifies the parameters in the flexible 
template to try to improve the fit and sends this back to 
B, and it may also hypothesize the presence of further 
objects in B's world. After a few turns, either a good fit 
is found and the residual is acceptably small or the 
hypothesis is rejected and area A turns to other previ- 
ously suppressed hypotheses. In the ultimate stable state, 
the deep pyramidals would send a signal that prefectly 
predicts what each lower area is sensing, up to expected 
levels of noise, and the superficial pyramidals wouldn't 
fire at all 5. At the other extreme, if you wake up in a 

5 In some sense, this is the state that the cortex is striving to achieve: 
perfect prediction of the world, like the oriental Nirvana, as Tai-Sing 
Lee suggested to me, when nothing surprises you and new stimuli cause 
the merest ripple in your consciousness 
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strange place with no expectations or are totally sur- 
prised by something, then the algorithm starts with a 
clean slate in area A. Then B just sends its whole picture 
of the world to A which excites some possible higher 
level objects. At each stage, A writes on its blackboard 
its best guess in its language (objects and their parame- 
ters) about the identity of the higher level objects found 
in B's picture. 

How do the extra descending paths from the higher 
area A to lower area B fit into our theory? Various even 
higher areas Ci are all predicting what A sees and this 
explains all but some residual of A's picture. A can tell 
the higher areas Ci about these unexplained features, to 
try to find a top-down explanation of them, and it can 
tell lower areas such as B about them. If  the superficial 
pyramidals express the residual part of the world picture 
of higher area A, then the extra descending paths would 
carry such a message to B. Their effect could be to modify 
the world picture of area B, weakening the evidence on 
which these conclusions of A were based, pushing the 
lower area B to seek alternate parses of its data and to 
explain away the residual on a bottom-up basis. Note 
that this is different from sharing with B the reconstruc- 
tion of the world which area A is entering: such sharing 
of conclusions can be accomplished through the thala- 
mus, on which these conclusions are written. 

My description is only the beginning of an al- 
gorithm for processing sensory input like a visual sig- 
nal. But ! have convinced myself of its plausibility by 
analyzing particular complex scenes of the world and 
seeking a 'rational reconstruction' of the process that 
the brain might follow in finding the correct semantic 
high-level interpretation. Such an approach has been 
followed by Cavanagh (1991), who analyzed recogni- 
tion of faces in extreme lighting conditions producing 
dark shadows and confusing contours. His conclusion 
is that an algorithm very similar to our template/resid- 
ual loop is the most likely possibility. What  is most 
striking to someone who has experimented with small 
algorithms in computer vision - which operate without 
human p rompt ing-  is that any system of this type 
working on real visual input could be stable, could 
reliably integrate multiple small clues and find the one 
combination of hypotheses which explains the whole 
image. Nonetheless, I am proposing that a large num- 
ber of independent loops, each looking for its pet 
structure in a lower level blackboard, working simulta- 
neously on low and high levels, can in real world 
situations converge rapidly to the correct solution, 
without huge oscillations and without creating fanciful 
high level images unconnected to reality. 

8 Comparison with other top-down/bottom-up theories 

The proposed sketched above has many similarities 
both to the 'adaptive resonance theory' of Carpenter 
and Grossberg (1987), the 'counter-current processing 
model' of Deacon (1988), Poggio's Hyper basis func- 
tion theory (1990) and Roll's theory of backprojections 
in cortex (1990). 
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Fig. 4a-d. The "Adaptive Resonance Theory" of Carpenter-Gross- 
berg (Carpenter and Grossberg 1987) 

Thus Carpenter and Grossberg's theory is summa- 
rized in Fig. 4, and it works like this: Fj and F 2 are two 
cortical areas projecting to each other. A pattern of  
activity X in Fj (shown by the symbolic pattern in (a)) 
evokes a signal S on the bottom-up pathway to F 2. S 
stimulates a pattern of  activity T among all the stored 
categories into which X might be classified, and, by a 
winner-take-all algorithm, the best fitting category Y is 
selected. The pattern Y in F2 evokes a signal U on the 
top-down pathway, which stimulates a pattern of  activ- 
ity V in #'1, the template or 'learned expectation'. V and 
X combine to form X*: either X* is close to X, in which 
case the network stabilizes and classifies X as being an 
instance of  Y, or else mismatch occurs. Panel (b) in the 
figure shows the latter, and, in this case, it results in an 
'arousal burst' from module A which inhibits Y in a 
long-lasting way (panel (c)). Now the same pattern of 
activity T on #'2 no longer selects Y but the second best 
matching category Y*, which is in turn compared with 
X, etc. 

We see that ART posits a recursive calculation in a 
top-down/bottom-up loop which is very similar to ours. 
The first major difference, however, is that in ART, the 
templates store some kind of  mean or median represen- 
tative of  each learned category, and make no attempt to 
explicitly encode the variation within a category as in 
the work of  Poggio et al. (1990). In Poggio's analysis, a 
suitable set of  exemplars for each category are stored, 
and used to generate a smooth function which approxi- 
mates the probability that a new feature vector input 
should be interpreted as a member of  the same cate- 

gory. As explained above, I feel that this is essential to 
any successful recognition algorithm. Moreover, along 
with storing variances, the degree of  mismatch should 
not be merely a number, whose size determines whether 
or not to seek a new category, but a signal representing 
what does not match. This is the second major differ- 
ence, and leads to our idea of residuals. Making explicit 
such residuals allows the higher area to seek complex 
explanations of the input in which several templates are 
superimposed. 

The following vastly simplified illustration may ex- 
plain why I feel storing variances and describing residu- 
als is essential in real-life situations. Suppose two 
numerical features x and y are computed from an 
olfactory stimulus, and suppose the world contains two 
animals A and B. Suppose that the smell of A excites x 
and y roughly equally, but that the smell of  B excites x 
but not y. In a noisy world, we should never say the B's 
smell doesn't ever excite y, but rather something like: in 
the presence of B alone, the value of  y is almost always 
at most 1/20th that of x. Finally, suppose A is danger- 
ous while B is not. Then suppose the input has values 
x = 5, y = 1. The template for A is x = y = any positive 
value (the smell may be strong or weak depending on 
the proximity of A), and the template for B is x = any 
position value, y = 0. Clearly, we get a much better 
correlation of  the input with the template for B, with a 
suitable parameter put in. But, knowing the variation 
expected in the smell of B, we see that there is non-triv- 
ial residual. The best fit by B alone might be x = about 
5, y = 0.25, with a residual x = unknown, y = 0.75. The 
residual can be fitted with the smell of A, and we 
recognize the presence of  danger (see Fig. 5). Note that 
to carry out this procedure, we need both to explicitly 
encode the variability of  B's smell and to separate the 
relatively small unexplained part of the input from the 
dominant part explained by the first template. Situa- 
tions of  this type occur more often than not in the 
analysis of real visual data for instance. 

Deacon has also proposed a theory of  cortical 
processing based on top-down/bottom-up loops, that 
he calls 'counter-current' processing. Like ours, his 
theory is motivated by the laminar assymetry between 
ascending and descending cortico-cortical pathways. He 
proposes that a form of relaxation between the infor- 
mation in two mutally connected areas takes place, the 
higher areas sending down foci of attention, expectation 
and associated imagery, while lower areas send up 
perceptual details and recognized patterns. He does not 
assign as precise a computational role, however, to the 
two streams as I do, but develops an interesting 
metaphor of  two fluids moving through adjacent tubes 
in opposite directions, where some quantity like heat 
diffuses from one to another at all points of  contact of  
the tubes. Finally, Rolls has discussed the bottom-up/ 
top-down loops in cortex in connection with memory 
and the learning of categories and has a primitive 
neural net simulation of this loop. He stresses the 
importance of separating two stimuli which are close in 
one sensory modality, but which are learned to be very 
different from experience in other modalities. Both 
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Deacon and Rolls analyze the entorhinal/hippocampal 
complex at the top end of the cortical area hierarchy 
and its role in the formation of memories, which I am 
excluding from this paper. 

9 Managing the top-down/bottom-up loop 

If the top-down phase and bottom-up phase of a pattern 
recognition algorithm are to work effectively together, 
it would seem necessary to coordinate them. In sequen- 
tial, yon Neumann architecture terms, one could think 
of the loop consisting of a) one 'cycle' of computation 
in the lower area, b) passing the data up to the higher 
area, c) one 'cycle' there and finally d) passing the data 
back down. Then the brain would operate by a relaxation 
algorithm, in which the loop is repeated until it stabilizes. 
The brain being, by nature, highly parallel, and there 
being not just one pair of lower/higher areas but many, 
it is more reasonable to imagine the lower and higher 
area working at once, and then exchanging their data. 

Very recent experiments by Gray and Singer (1989) 
have discovered that strong local oscillations with a 
20-30 ms period (corresponding frequency 35-50 Hz) 
accompany periods of intensive computation in at least 
some areas of cat cortex (V1 and V2). The oscillation 
may be detected in the mean local electrical field, or in 
single cell recordings from a large number of individual 
cells. Freeman (cf. the review Freeman and Skarda 
1985) has found similar, somewhat faster, oscillations in 

rabbit olfactory bulb caused by alternating bursts in 
pyramidal cells and interneurons, but the bulb, like the 
cerebellum, differs from cortex in having an order of 
magnitude more interneurons than output neurons, 
suggesting quite different computational principles. 

It seems logical to propose that these oscillations 
are caused by or synchronize calculations in the ascend- 
ing/descending pathway loop. (The same suggestion has 
been entertained by Hubel and Livingstone - oral com- 
munication.) It may be that iteration in this loop would 
be unstable if the top-down and bottom-up phases 
occurred asynchronously. This would predict that oscil- 
lations like those found in V1 by Singer will be found in 
every area of the cortex and that successive waves of 
top-down signals and bottom-up signals occur at spe- 
cific phases of the local oscillation. Bursts of this oscil- 
lation will coincide with active local computations using 
this loop. This makes a very specific prediction: that if 
simultaneous recordings are made from deep pyrami- 
dals in a higher sensory area and superficial pyramidals 
in a lower sensory area which project to each others 
'columns', i.e. to near each other, then bursts in the two 
populations will be phase locked with each other, and 
with the local mean electrical field. Allowance must be 
made for the fact that signals are by no means simulta- 
neous firings of all pyramidals of each class: the infor- 
mation is precisely in which ones are firing and 
probably in timing differences of their individual spikes 
too. But suitably averaged (as in the recordings that 
demonstrate the oscillation to begin with), I would 
expect to see this synchronization of remote neurons. 

There are other parts of our theory in which syn- 
chronization is needed. The time buffering in auditory 
and motor cortex presumably needs some kind of pace 
maker. But this would be much slower, e.g. 1 to 10 Hz. 
The time scale of our top-down, bottom-up loop must 
be much faster or the brain would never get anything 
done. The experimental finding of 35-50 Hz seems 
about right: in half the period, 10-15ms, the local 
intracolumnar circuits of the cortex should have time to 
do non-trivial calculations, and there is time for half a 
dozen iterations of the loop before the books close on 
interpreting a stimulus. 

An intriguing possibility is that the claustrum plays 
some role in modulating the 'top-down', 'bottom-up' 
calculation between various cortical areas. The claus- 
trum is a relatively small subcortical nucleus that is 
located like a seventh layer of the cortex just beneath a 
certain cortical area, the insula, but separated from it 
by a thin layer of white matter, the extreme capsule. It 
is connected to almost the whole neocortex, but n o t  
t opograph ica l l y !  This is a major exception to the pattern 
for other connections and means that if two cortical 
areas A and B projects to parts A '  and B' in the 
claustrum, than A' and B' often overlap. In fact, Pear- 
son et al. (1982) have made the following generalization 
on the basis of extensive primate studies: 

�9 A '  and B' overlap if and only if the cortical areas A 
and B are directly connected by cortico-cortical path- 
ways. 
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It should also be noted that the claustrum is an evolu- 
tionarily conservation form, being present and simi- 
larly connected in the most primitive mammals. These 
facts makes it look likely that the claustrum is 
connected to the operation of  these reciprocal path- 
ways in  some essential way. Now the claustrum seems 
to have too few neurons to play a role in the sub- 
stance of  the calculation taking place in the loop, but 
it is ideally situated to modulate the relaxation al- 
gorithm between the areas in some way, e.g. initiating 
and terminating it or in some way maintaining its 
stability (see also Crick and Koch (1990) for a related 
proposal). 

10 Mental images 

Another enticing speculation is to consider the action 
of  the brain in a purely introspective state. In the 
course of  reflecting about  some problem, we can block 
out the actual stimulus being received by our senses, 
or we can close our eyes. At that point, all the neural 
machinery for sensory processing is available for 
thought. I want to conjecture that the process of 
thinking things through often involves writing in a 
purely top-down mode on the active blackboards of  
low level areas, and using the various reciprocal path- 
ways to better understand a situation or problem 
which is not physically in front of us. This can be 
done by the deep pyramidals cells which will evoke a 
template in the activity of the lower area, and thus 
write this template on its blackboard. I want to pro- 
pose that this is exactly what we do when we form a 
mental image of  some object. This system of  thinking 
can be applied, e.g. to work out tricky things about 
the three-dimensional geometry (can we carry a piano 
up the apartment stairs), or to work out more abstract 
problems using amorphous objects as tokens for parts 
of  some situation. 

The mental rotation experiments of  Shepard and 
collaborators (Shepard and Cooper 1982), suggest that 
analog, continuous, real-time rotation is often per- 
formed on mental images. A natural interpretation of 
their results in the present context is that this step-by- 
step transformation is carried out by the top-down, 
bottom-up loop between cortical areas. In many ways 
it is analogous to the relaxation algorithms using the 
same loop by which parameters in a template are 
iteratively adjusted to achieve a better fit with a stimu- 
lus. In this case, however, a mental image which is a 
rotated version of  one stimulus is iteratively adjusted 
to achieve a better fit with another stimulus. 

Moreover, it is also known that the brain is work- 
ing intensely during dreams without any sensory input 
and that the thalamus is quite active. The visual im- 
ages present during dreams would seem to be stimuli 
evoked purely by top-down pathways. During dream- 
ing sleep, the brain also receives diffuse cholinergic 
stimulation from brain stem nuclei via so-called 'PGO 
waves' (Mamelak and Hobson 1988). But the vivid, 
often realistic though bizarre, images of dreams would 

seem to require something like our template generating 
deep pyramidal neurons. I hypothesize that the same 
mechanism that gives rise to mental images when 
awake drives the formation of  dream images. Their 
bizarreness may result from the evocation of multiple 
top-down images simultaneously for some as yet un- 
known cognitive/emotional function. 

11 Possible tests 

A much debated property of V1 neurons is that of  
'end-stopping'. Neurons with this property fire in the 
presence of  bars or edges, moving or still, with a fixed 
orientation and a fixed location provided they are not 
too long. That is, the stimulus must be contained in a 
certain receptive field and it mustn't continue outside 
this field. Zucker and collaborators (Dobbins et al. 
1987) have hypothesized that this is due to the neuron 
computing the curvature of the bar or edge, and that 
it would fire strongly if the bar or edge continued but 
turned with approximately a specific curvature. A radi- 
cally different hypothesis is that the neuron does fire 
briefly to a longer line, but that as soon as top-down 
signals from V2 incorporate this long line into a global 
segmentation of the scene, the line is accounted for 
and the firing stops. In other words, its firing indicates 
that the line is unexpected, and not part of a coherent 
global pattern. A short line never fits into such a 
pattern and firing continues: it remains a residual. This 
theory would predict that superficial end-stopped cells, 
i.e. those in layer II and III, would be responding to 
residuals. This predicts that their end-stopping would 
not be absolute: they would have a transitory response 
to longer edges, which would be inhibited as soon as 
the V1 ~ V2 =~ V1 loop kicks in (say 20 ms). It would 
further predict that deep end-stopped cells respond 
more consistently as in Zucker's theory to some prop- 
erty of the stimulus. 

More generally, a plausible prediction of the the- 
ory is that many of the responses of  superficial pyra- 
midal cells should be transitory. The idea is that when 
everything being sensed is predicted or explained by 
the high levels' models of  the state of the world, there 
are no more residuals to send upstream. In a calm 
state of  meditation, for instance, their overall activity 
would diminish substantially. 

Another conjecture would be similar to the classic 
experiment of DeValois et al. (1979) in which the 
retinotopy of  V1 was revealed by fixing a visual stimu- 
lus on the retina, injecting the animal with radioactive 
glucose taken up in metabolism, killing the animal 
after a short period and examining the pattern of  
radioactivity present post mortem in V1. I would pro- 
pose stimulating strongly a deep pyramidal cell in an 
area like V2 or V4, connected to V1, while again 
marking cell activity via a radioactive metabolite. If  
V4 is concerned with shape recognition, template-like 
shapes should appear in V1. Precisely because V4 is 
not finely retinotopic, the pattern of  activity in V1 
would be extended and not precisely localized. 
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