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Abstract. Formal methods are invaluable for reasoning about complex
systems. As these techniques and tools have improved in expressiveness
and scale, their adoption has grown rapidly. Sustaining this growth, how-
ever, requires attention to not only the technical but also the human side.
In this paper (and accompanying talk), we discuss some of the challenges
and opportunities for human factors in formal methods.
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1 Humans and Formal Methods

Formal methods are experiencing a long-overdue surge in popularity. This ranges
from an explosion in powerful traditional tools, like proof assistants and model
checkers, to embeddings of formal methods in program analysis, to a growing
recognition of the value to writing formal properties in other settings (like soft-
ware testing). Whereas traditionally, corporate use was primarily in hardware
(e.g., Seger [26]), now major software companies like Amazon [1,7,21], Face-
book [6], and Microsoft [3,12] are growing their use of formal methods.

What does it take to support this growth? Researchers will, naturally, con-
tinue to work on formal techniques. We believe, however, that not enough atten-
tion has been paid to the humans in the loop. In this paper and accompanying
talk, we discuss some of the challenges and opportunities in this area.

To set a context for what follows, our own work has focused largely on au-
tomated methods, specifically model finding [18, 34], as typified by tools like
Alloy [15] and SAT/SMT solvers. This is not to decry the value of other tech-
niques, including deductive methods, which we have worked with in some of our
research. However, we find that model-finding tools offer a useful sweet spot:

— Because of their automation, they provide a helpful separation between spec-
ification and proof, enabling the user to focus on the former without having
to dwell very much on the latter. This separation of concerns is invaluable
in training contexts, since it enables us to focus on one skill at a time.

— Because model-finders can be used without properties, they enable explo-
ration in addition to verification and proof. Furthermore, this can start with
small amounts of partial specification. This idea, which is one aspect of
lightweight formal methods [16], is a powerful enabler for quickly seeing the
value that formal methods can provide.
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— The manifestation of these methods in tools like Alloy proves particularly
convenient. An Alloy user can write a small part of a specification and click
“Run” (an action already familiar from programming environments), and
immediately get at least somewhat useful feedback from the system.

Due to these factors, in our experience, we have found these methods more
accessible than others to a broad range of students. Since, in particular, our
emphasis is not just on cultivating the small group of “hard core” students but
to bring the “other 90%” into the fold, tools that immediately appeal to them—
and hold their attention, while they are choosing between courses in formal
methods and in other exciting areas such as machine learning—are important.

In the rest of this paper, we focus on two human-facing concerns: the human-
factors qualities of model finding tools (sec. 2), and education (sec. 3). We believe
both are vital: the latter to growing the number of people comfortable with
formal methods, and the former to their effectiveness.

2 User Experience

We believe that the user experience of formal-methods tools has largely been
understudied, although there have been promising past venues such as the Work-
shops on User Interfaces for Theorem Provers (e.g., [2]) and Human-Oriented
Formal Methods (e.g., [19]). The majority of this work focuses on interactive
tools such as proof assistants, which is to be expected. For instance, in deduc-
tive methods, the experience of stating and executing deduction steps is critical.
(For early student-facing work, see the efforts of Barker-Plummer, Barwise, and
Etchemendy [4].)

However, other formal tools could also benefit from user-focused research. For
instance, model finders are often integrated into higher-level tools (with their
model output presented in a domain-specific way). Thus, questions of quality
and comprehensibility by lay users are key.

Our own work [8] has found that a model finder’s choice of output and
its presentation can make a major difference in user experience. Experiments
with students found that output minimality, while intutively appealing, is not
necessarily helpful for comprehending systems. Moreover, experiments with users
on Amazon’s Mechanical Turk crowdsourcing platform seem to suggest that
providing a small amount of additional information alongside output can be
helpful for comprehension.

3 Education

An equally important—and critically human-centric—problem is thinking about
education. Numerous authors have books that present different educational view-
points but, to our knowledge, most of these have not been subjected to any
rigorous evaluation of effectiveness. Nevertheless, beyond books and curricula,
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we believe much more attention should be paid to design methods and student-

centric tools. There is a large body of literature on these topics in programming

education, but its counterparts are often missing in formal methods education.
We are focusing primarily on the task of writing specifications, because:

— It is a near-universal requirement shared between different formal methods—
indeed, it is perhaps a defining characteristic of the field.

Specifications are sufficiently different from programs that we cannot blindly
reuse existing knowledge about programming education, though of course
there are many problems in common and we should try to port ideas. If
anything, we conjecture that the need for formal methods to consider all
possible behaviors, thanks to attributes like non-determinism, might make
it harder than programming.

Specifications are useful even outside traditional formal methods settings,
such as in property-based testing, monitoring, etc. Hence, they increasingly
affect a growing number of programmers, even ones who don’t think of them-
selves as using traditional formal methods.

We will in turn discuss design methods (sec. 3.1) and tools (sec. 3.2).

3.1 A Design Recipe for Writing Specifications

One of the challenges every author faces is the “blank page syndrome” [9]: given
a problem statement, they must fill a blank page (or editor) with magical in-
cantations that match the given statement. For many students, this can be a
daunting and even overwhelming experience; ones for whom it is not are some-
times merely overconfident in their abilities.

However, in other design disciplines—from electrical engineering to building
architecture—designers produce not just one final artifact but a series of inter-
mediate artifacts, using a range of representations with distinct viewpoints that
hide some aspects and make others salient. What might that look like in our
discipline?

One answer is provided by How to Design Programs [9], which breaks down
the programming process into a series of steps called the Design Recipe. These
steps incrementally build towards a solution, alternating abstract and concrete
steps that build on previous ones. For programming, these steps are:

1. Data definitions: translating what is given in the problem statement into
abstract descriptions for the computer system.

2. Data examples: constructing examples of each data definition to ensure the
student understands it, has created a well-formed definition, and can cover
the cases the problem demands.

3. Function outline: translating the function expected in the problem into an
abstract computational representation, including type signatures, purpose
statements, and a function header.
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4. Function examples: constructing input-output examples of the function’s use,
using the data examples and the function outline components. These ensure
the student actually understands the problem before they start working on
it. These are usually written using the syntax of test cases, so they can even-
tually be run against the final function, but they are conceptually different:
they represent exploration and understanding of the problem.

5. Function template: Using the data definition and function outline to create
a skeleton of the body based purely on the structure of the data.

6. Function definition: Filling in the template to match the specific function
definition, using the examples as a guide.

7. Testing: Constructing tests based on the chosen implementation strategy,
checking for implementation-specific invariants. The goal of tests, in contrast
to function examples, is to falsify the purported implementation.

There is significant cognitive theory backing the use of this recipe. The process
corresponds to Bruner’s notion of scaffolding [31], while the steps reflect Vygot-
sky’s theory of zones of proximal development [29]. The progression from data
through examples to code and tests provides a form of concreteness fading [13].
Completed sequences form worked examples [28] that students can apply to new
problems. The templates are a form of program schema [22,27] that students
can recall and reuse in constructing solutions to new problems.

How can we translate this from writing programs to writing specifications?
We believe many of the steps carry over directly (and serve the same purpose),
while others need some adaptation, depending on what students are authoring
(the process for specifications would look different than that for models given
to a model-checker, etc.). For instance, the “function examples” stage translates
well to students creating concrete instances of behavior that they believe should
or should not satisfy the eventual specification.

We will not go here into the details of how to adapt this process to different
settings, especially authoring specifications. However, we believe the basic ideas
are fairly universal: of proceeding in a step-wise way with new artifacts building
on old artifacts; of proceeding from the concrete to the abstract; of writing
illustrative, concrete examples of preceding abstract steps to test well-formedness
and understanding; and so on.

3.2 Tools

Researchers and developers have invested significant effort into formal methods
tools, many of which are then brought into the classroom. On the one hand,
industrial-strength tools tend to be robust and performant, and are endowed
with authenticity, which can make a difference for some students. On the other
hand, they may expose too much power: they accept full and complex languages
that contain features that may confuse students, they produce errors and other
feedback with terminology that students may not understand, and so on. In light
of this, projects have advocated the use of language levels [5,10,14], arguing that



The Human in Formal Methods 5

students would benefit from a graduated introduction through a sequence of sub-
languages (and corresponding tool interfaces), each sub-language presenting an
epistemic closure that corresponds to a student’s learning at that point.

Beyond this, we argue that educational settings have one key advantage that
conventional industrial use does not: the presence of ground truth, i.e., someone
already knows the answer! In industry, users rarely build a whole new specifica-
tion that precisely matches one that already exists. In education, however, that
is exactly what students do almost all the time. Therefore, we can ask:

How does the presence of a ground truth affect formal tools in education?

We argue that “knowing the answer” especially helps in light of the Design
Recipe discussed above, because we can build tools to help with each step. We
discuss a concrete manifestation of this below. These should be thought of as
training wheels to help beginners become comfortable with formal methods;
naturally, we need to study how to wean students so that they can engage in the
more authentic experience of writing specifications and models un-aided.

Understanding Before Authoring A growing body of literature in programming
education [17,25,30] shows that students frequently start to write programs
before they have understood the problem. As a result they “solve” the wrong
problem entirely. Not only is this frustrating, it also leads to learning loss: the
stated problem presumably had certain learning goals, which the student may
not have met as a result of their misdirection.

Recent work [24,32] has begun to address this issue by devising techniques
to make sure students can check their understanding of the problem before they
embark on a solution. These critically rely on having intermediate artifacts au-
thored by the student in the process of authoring, precisely matching the inter-
mediate steps proposed by the Design Recipe. In particular, function examples
are a valuable way for them to demonstrate their understanding; because they
are written in executable form, they can be run against implementations.

We especially draw on the perspective of Politz, et al. [23] and Wrenn, et
al. [33], which think of tests (and examples) as classifiers. That is, the quality
of a suite of tests or examples can be judged by how well they classify a pur-
ported implementation as correct or faulty. If we want a quantitative result, we
can compute precision and recall scores to characterize these classifiers. Thus,
students can rapidly obtain concrete feedback about how well they are doing in
terms of understanding the problem, and our evidence in the context of program-
ming [32] suggests that they take great advantage of this. Initial explorations for
specification authoring suggests that this phenomenon carries over.

More Artifacts More broadly, there are several artifacts that can be produced
on both sides for specification-authoring assignments, including;:

— Student’s concrete examples
— Student’s properties
— Student’s completed specification
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— Instructor’s concrete examples
— Instructor’s properties
— Instructor’s completed specification

the latter three of which are ground truth components. Furthermore, instruc-
tional staff can be pressed to produce multiple kinds of each of these, such as
correct and faulty specifications to enable classification.

Given this rich set of artifacts, it is instructive to consider all their (at least)
pairwise combinations. For example, consider the point where the student be-
lieves they have completed their specification. This can now be compared for
semantic difference [11,20] against the instructor’s specification, with the differ-
ences presented as concrete examples that the student has to determine how to
incorporate to adjust their specification. There are several interesting questions
of mechanism design, i.e., how to structure rewards and penalties for students
using these modes.

4 Conclusion

In sum, we believe there are large human-facing aspects of formal methods that
have not yet been explored, and that exploring them is vital for the field to
thrive. With enough emphasis, we believe formal methods can be democratized
and made accessible to large numbers of users—not only scientists and trained
operators, but even the general public, from children to retirees. Even the most
non-technical user has to make consequential decisions every time they set a
configuration option on a system, and would hence benefit from the specification
and state-exploration powers that characterize our field. These problems are
intellectually exciting and challenging, and serious progress requires wedding
technical results to cognitive and social ones.
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