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Abstract

We propose a Bayesian nonparametric approach to the praiflemdeling re-
lated time series. Using a beta process prior, our appra&abhsed on the dis-
covery of a set of latent dynamical behaviors that are shamahg multiple time
series. The size of the set and the sharing pattern are Hetindd from data. We
develop an efficient Markov chain Monte Carlo inference rodtthat is based on
the Indian buffet process representation of the predidtistibution of the beta
process. In particular, our approach uses the sum-protyarithm to efficiently
compute Metropolis-Hastings acceptance probabilitied explores new dynami-
cal behaviors via birth/death proposals. We validate oonpdimg algorithm using
several synthetic datasets, and also demonstrate prgmésialts on unsupervised
segmentation of visual motion capture data.

1 Introduction

In many applications, one would like to discover and modeladyical behaviors which are shared
among several related time series. For example, considepvar motion capture data depicting
multiple people performing a number of related tasks. BwtJgimodeling such sequences, we
may more robustly estimate representative dynamic modetbalso uncover interesting relation-
ships among activities. We specifically focus on time sensre behaviors can be individually
modeled via temporally independent or linear dynamicalesys, and where transitions between
behaviors are approximately Markovian. Examples of Suahkov jump processénclude the hid-
den Markov model (HMM), switching vector autoregressivRY process, and switching linear
dynamical system (SLDS). These models have proven use$uldh diverse fields as speech recog-
nition, econometrics, remote target tracking, and humation@apture. Our approach envisions
a largelibrary of behaviors, and each time seriesaljectexhibits a subset of these behaviors.
We then seek a framework for discovering the set of dynami@biers that each object exhibits.
We particularly aim to allow flexibility in the number of tdtand sequence-specific behaviors, and
encourage objects to share similar subsets of the largé pessible behaviors.

One can represent the set of behaviors an object exhibiswvassociated list deatures A stan-
dard featural representation fof objects, with a library ofX” features, employs aiV x K binary
matrix F' = { f;x}. Settingf;, = 1 implies that object exhibits feature:. Our desiderata motivate
a Bayesian nonparametric approach based ohéteeproces§l0, 22], allowing for infinitely many



potential features. Integrating over the latent beta m®@educes a predictive distribution on fea-
tures known as thindian buffet proceséiBP) [9]. Given a feature set sampled from the IBP, our
model reduces to a collection of Bayesian HMMs (or SLDS) witintially shared parameters.

Other recent approaches to Bayesian nonparametric repatisas of time series include the HDP-
HMM [2, 4, 5, 21] and the infinite factorial HMM [24]. These meld are quite different from
our framework: the HDP-HMM does not select a subset of baimaor a given time series, but
assumes that all time series share the same set of behawtbssvitch among them in exactly the
same manner. The infinite factorial HMM models a single tiseeies with emissions dependent
on a potentially infinite dimensional feature that evolvethwndependent Markov dynamics. Our
work focuses on modeling multiple time series and on capgudynamical modes that are shared
among the series.

Our results are obtained via an efficient and exact Markoindilante Carlo (MCMC) inference al-
gorithm. In particular, we exploit the finite dynamical ssrstinduced by a fixed set of features to ef-
ficiently compute acceptance probabilities, and reveggibbhp birth and death proposals to explore
new features. We validate our sampling algorithm usingredegnthetic datasets, and also demon-
strate promising unsupervised segmentation of data fren€U motion capture database [23].

2 Binary Featuresand Beta Processes

The beta process ismmpletely random measui®2]: draws are discrete with probability one, and
realizations on disjoint sets are independent randombiasa Consider a probability spaée and
let By denote a finitdbase measuren © with total massB,(0) = «. AssumingBy is absolutely
continuous, we define the followirgevy measuren the product spade, 1] x ©:

v(dw,df) = cw (1 — w)“ tdwBy(db). 1)
Here,c > 0 is aconcentration parametewe denote such a beta process by(BB;). A draw
B ~ BP(c, By) is then described by

B = Zwklsak, 2)
k=1

where (wy, 61), (w2,62), ... are the set of atoms in a realization of a nonhomogeneousd?tois
process with rate measure If there are atoms i3y, then these are treated separately; see [22].
The beta process is conjugate to a clas8efnoulli processef??2], denoted by Bef3), which
provide our sought-for featural representation. A reditimaX, ~ BeRB), with B an atomic
measure, is a collection of unit mass atoms@mocated at some subset of the atomsAn In
particular, f;, ~ Bernoulliwy) is sampled independently for each atémin Eqg. (2), and then

Xi = firde,.

In many applications, we interpret the atom locatighsas a shared set of global features. A
Bernoulli process realizatioN; then determines the subset of features allocated to object

B | BQ, C ~ BF’(C7 BQ)
X;|B~BeRB), i=1,...,N. (3)
Because beta process priors are conjugate to the Bernondiegs [22], the posterior distribution
given N samplesX; ~ BeR B) is a beta process with updated parameters:

Ky
(& mp
B|X.,....Xn,B ~ BP N,——B 2—5 . 4
| 1 y AN, Do, C <C+ 7C+N O+k:1c+N 9k> ()
Here,m;, denotes the number of objects which select thé!" featured;,. For simplicity, we have
reordered the feature indices to list the features used by at least one object first.

Computationally, Bernoulli process realizatioNs are often summarized by an infinite vector of
binary indicator variabley; = [fi1, fi2,-..], wheref;, = 1 if and only if object: exhibits fea-
ture k. As shown by Thibaux and Jordan [22], marginalizing over ltleéa process measurfg,
and takinge = 1, provides a predictive distribution on indicators knowrtlae Indian buffet pro-
cess (IBP) Griffiths and Ghahramani [9]. The IBP is a culinamstaphor inspired by the Chinese
restaurant process, which is itself the predictive distidn on partitions induced by the Dirichlet
process [21]. The Indian buffet consists of an infinitelyddsuffet line of dishes, or features. The
first arriving customer, or object, chooses Poigsgrdishes. Each subsequent custormselects

a previously tasted dish with probabilitym, /i proportional to the number of previous customers
my, to sample it, and also samples Poiszofi) new dishes.
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3 Describing Multiple Time Series with Beta Processes

Assume we have a set @f objects, each of whose dynamics is described by a switcheatpw
autoregressive (VAR) process, with switches occurringetiag to a discrete-time Markov process.
Such autoregresswe HMMs (AR-HMMs) provide a simpler, bitgio equally effective, alternative

to SLDS [17]. LetytZ represent the observation vector of iHeobject at timet, andztz) the latent
dynamical mode. Assuming an ordeswitching VAR process, denoted by VAR( we have

A0 ) (5)
v =34 oy e 2 Aot + el (27), (6)

j=1
wheree(” (k) ~ N(0,5), Ay = [Aix ... Angl, andg(” = [y| @ y9T The

standard HMM with Gaussian emissions arises as a specialatahis model whem;, = 0 for
all k. We refer to these VAR processes, with parameigrs- { A, ¥, }, asbehaviors and use a
beta process prior to couple the dynamic behaviors exkdibiyedifferent objects or sequences.

As in Sec. 2, letf; be a vector of binary indicator variables, whefig denotes whether object
exhibits behaviok for somet € {1,...,T;}. Given f;, we define deature-constrained transition

distribution 7w(9) = {wfj)}, which governs thé'” object’'s Markov transitions among its set of dy-
namic behaviors. In particular, motivated by the fact th&tigchlet-distributed probability mass
function can be interpreted as a normalized collection ofiga-distributed random variables, for
each object we define a doubly infinite collection of random variables:

773(;3 | v, & ~ Gammdy + xd(j, k), 1), 7)

whered(j, k) indicates the Kronecker delta function. We denote thisectibn oftransition vari-
ablesby (¥, and use them to define object—specific, feature-consttaraasition distributions:

7Tj =

(8)
2ok =t "a(k)

Here,® denotes the element-wise vector product. This constnmctdiliinearlgi) over the full set of
positive integers, but assigns positive mass only at irsdiogheref;, = 1.

The preceding generative process can be equivalentlysepted via a samp}éf) from a finite
Dirichlet distribution of dimensiot’; = >, f;x, containing the non-zero entriesmj‘i):

A fovar ~ DIR(s% + 87s-)). ©)

Thex hyperparameter places extra expected mass on the commrﬁm*éﬁtcorresponding to a self-

transitionw§§), analogously to the sticky hyperparameter of Fox et al. ¥ refer to this model,
which is summarized in Fig. 1, as theta process autoregressive HMBP-AR-HMM).

4 MCMC Methodsfor Posterior Inference

We have developed an MCMC method which alternates betweamyging binary feature assign-
ments given observations and dynamical parameters, arahdgal parameters given observations
and features. The sampler interleaves Metropolis-Hast{iiMH) and Gibbs sampling updates,
which are sometimes simplified by appropriate auxiliaryialsles. We leverage the fact that fixed
feature assignments instantiate a sefimife AR-HMMs, for which dynamic programming can be
used to efficiently compute marginal likelihoods. Our nasgproach to resampling the potentially
infinite set of object-specific features employs incremiebieth” and “death” proposals, improving
on previous exact samplers for IBP models with non-conjigi¢lihoods.

4.1 Sampling binary feature assignments

Let F~** denote the set of all binary feature indicators excluding andKf be the number of
behaviors currently instantiated by objects other thaRor notational simplicity, we assume that
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Figure 1:Graphical model of the BP-AR-HMM. The beta process distédumeasures | By ~ BP(1, By)

is represented by its masses and locationsdy,, as in Eq. (2). The features are then conditionally inde-
pendent drawg, | wi ~ Bernoulliws), and are used to define feature-constrained transitiontigons
w;” | fisv, 6 ~Dir([y,...,v, 7+ K,7,...] ® F;). The switching VAR dynamics are as in Eq. (6).

these behaviors are indexed by, . . ., K‘i}. Given thei'" object’s observation sequenyéf)

iti ; (@) — @ i v indi
transition variableg!* =1, KoLK and shared dynamic parameté{%:,, feature indicators
fix for currently used featurdse {1, ..., K"} have the following posterior distribution:

p(fie | F 5540 @0, o0) o plf | B8 a)plyily, | £m D00 (10)

Here, the IBP prior implies that(f;x = 1 | F~* a) = m, " /N, wherem, * denotes the number of
objectsotherthan object that exhibit behaviok. In evaluating this expression, we have exploited
the exchangeability of the IBP [9], which follows directiyofn the beta process construction [22].

For binary random variables, MH proposals can mix fasteraédi have greater statistical effi-

ciency [14] than standard Gibbs samplers. To updategiven F~*, we thus use the posterior
of Eqg. (10) to evaluate a MH proposal which flis to the complemenf of its current valuef:

fiw ~ p(f 1 F)O(fires [) + (1 = p(f [ F)3(fire, f)
(F1 /) = mi {p(fik—f|F h oy D0, 5, 0) 1}
g p(fik:f|F Zk,ygl)Tﬂ”l )76‘1;[(;’5’04)’ '

(11)

To compute likelihoods, we combing andn(¥) to construct feature-constrained transition distribu-
t|onS7r(l) as in Eq. (8), and apply the sum-product message passingtaigg19].

An alternative approach is needed to resample the Pdisgdi “unique” features associated only
with objecti. Let K\ = K +n;, wheren; is the number of features unique to objgand define

fo=1 LK andf,; = fi,K;f‘+1;K+- The posterior distribution over; is then given by

(@)

(nl | fuyl Tﬂ'r’ el_K—i Oé)

// 0 | o Fai = 1m0, pe.04) dBo(0,)dH (n,), (12)

whereH is the gamma prior on transition variablés, = 9K¢+1:K+ are the parameters of unique

features, andy, are transition parameten%) to or from unique featureg k € {Kf +1: K.}
Exact evaluation of this integral is intractable due to dejencies induced by the AR-HMMs.

One early approach to approximate Gibbs sampling in notjugaite IBP models relies on a finite
truncation [7]. Meeds et al. [15] instead consider indeped/etropolis proposals which replace
the existing unique features by ~ Poissofic/N) new features, with corresponding parameters
6?’+ drawn from the prior. For high-dimensional models like tbansidered in this paper, however,
moves proposing large numbers of unique features have logpsence rates. Thus, mixing rates
are greatly affected by the beta process hyperparametéfe instead develop a “birth and death”
reversible jump MCMC (RIMCMC) sampler [8], which proposeeither add a single new feature,



or eliminate one of the existing featuresfin,. Some previous work has applied RIMCMC to finite
binary feature models [3, 27], but not to the IBP. Our propdssribution factors as follows:

q(fri 0 | Frin0emy) = ap(Fs | £10)a0(0 | Fosy Frin 00)an (s | Fro Frimy). (13)

Letn; = >, f+i. The feature proposals(- | -) encodes the probabilities of birth and death
moves: a new feature is created with probability, and each of the; existing features is deleted
with probability0.5/n;. For parameters, we define our proposal using the generatidel:

, , - b0(9+n+1)Hk 106,,,(0",), birth of featuren; + 1;
0(0 | fii) fri04) = { Hk# 69%(9%), o death of featuré, (14)

whereby is the density associated with ! By. The distributiong, (- | -) is defined similarly, but
using the gamma prior on transition variables of Eq. (7). Mitacceptance probability is then

p(f-/ﬁ-h 02—7 "7{5— | f+ia 0+a 77+) = min{r(f-;—iv 0;1 77{5— | f+ia 0+7 77+)1 1} (15)
Canceling parameter proposals with corresponding priardethe acceptance rati¢- | -) equals
(yl T | [f— f-H] 1: K;laeg—an(z)vn;) POiSSOlQTLQ | CY/N) q.f(f+i | f-/H)
(Y1 T | [.f_ f-H] 1: K;i30+vn(i)7n+) POiSSO'(‘m | O‘/N) Qf(f—/ﬁ-i | f-H)

with n; = >, f’ ;.. Because our birth and death proposals do not modify theesadf existing
parameters, the Jacobian term normally arising in RIMCM@Grg¢hms simply equals one.

4.2 Sampling dynamic parametersand transition variables

Posterior updates to transition variabig® and shared dynamic parametéfsare greatly simpli-

fied if we instantiate the mode sequene{e% for each objeci. We treat these mode sequences as
auxiliary variables they are sampled given the current MCMC state, conditimred/hen resam-
pling model parameters, and then discarded for subseqpéates of feature assignmerfis

Given feature-constrained transition distributian) and dynamic parametef®,.}, along with
the observation sequenyé) _, wejointly sample the mode sequenéé)r by computing backward

messagesi 1, t(zt( )) x p(yiﬁl 7, | ztl), ygﬂ,ru ,{0x}), and then recursively sampling eatfﬁ).

z @ | Zt 1 yi”T ,ﬂ'(z), {9k} ~ Wilm (zt(z))N(yﬁi);AZmef), Ez<i>)mt+1,t(2§i))- (17)

Because Dirichlet priors are conjugate to multinomial aﬂz;ez'ﬂaonSz1 . the posterior ofr( Dis

z) | (4) .

ulev’Yv’%NDir(h/'i_n' ,’)/—FTL() 74_,{_'_”(1 7+n§3)+17]®f) (18)

Jji—1 Ji’

Here n§k) are the number of transitions from mogléo £ in 21 . Since the mode sequenﬁjézf is
generated from feature-constrained transition dlstlmlmsl;n is zero for anyk such thatf;;, = 0.
Thus, to arrive at the posterior of Eq. (18), we only updé;bfor instantiated features:

) | 20y, K ~ Gammay + k6(j, k) +nl), 1), ke {€] fi =1} (19)

We now turn to posterior updates for dynamic parameters. Miepa conjugate matrix-normal
inverse-Wishart (MNIW) prior [26] o4 Ay, X1 }, comprised of an inverse-Wishart prior [\86, ng)
on X; and a matrix-normal prioMN (Ay; M, X, K) on Ay givenX,. We consider the follow-
ing sufficient statistics based on the s&fs = {y\” | 2\ = &k} and ¥}, = {7\” | 2! = &} of
observations and lagged observations, respectivelyciased with behaviok:
~ (i) ~())T ) ~(0)T
Sy= > w4k sP= 3 ywWe) + MK
()2 =k ()2 =k
(k) _ (i) ON T (k) _ a(k) _ k) g—(k) o(B)T

S yvi! + MKM Syi3 = S% =S, Sz Sig -

(t,i)] 2P =k

Following Fox et al. [5], the posterior can then be shown toatq

Ak|2k,Yk~M./\/(A 5B g—(k) 5, S(k)), Ek|Yk~IW(S

v 25 yig + 50 1Yl + no)
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Figure 2:(a) Observation sequences for each of 5 switching AR(1) semies colored by true mode sequence,
and offset for clarity. (b) True feature matrix (top) of theefiobjects and estimated feature matrix (bottom)
averaged over 10,000 MCMC samples taken from 100 trialy/eM@h sample. White indicates active features.
The estimated feature matrices are produced from mode seggienapped to the ground truth labels according
to the minimum Hamming distance metric, and selecting madsmore than 2% of the object’s observations.

4.3 Sampling the beta processand Dirichlet transition hyper parameters

We additionally place priors on the Dirichlet hyperparaenst andx, as well as the beta process
parameter. Let FF = {f,}. As derived in [9],p(F | «) can be expressed as

Ry
p(F|a)o<aK+exp(—aZ E)’ (20)
n=1

where, as befordy, is the number of unique features activatedinAs in [7], we place a conjugate
Gammda,, b,) prior ona, which leads to the following posterior distribution:

N
pla| F,aq,bs) x p(F | a)p(a | ag,by) Gamma(aa + Ky, by + Z l) (21)
n
n=1

Transition hyperparameters are assigned similar priocrssGammaa.,, by ), £ ~ Gammda,, b, ).
Because the generative process of Eq. (7) is non-conjugatezly on MH steps which iteratively
resampley givenx, andx given~y. Each sub-step uses a gamma proposal distribgtioh-) with
fixed variancefﬁ or o2, and mean equal to the current hyperparameter value. Tdewpdgvenx,
the acceptance probabilityisin{r(y’ | v), 1}, wherer(y’ | ) is defined to equal

p(y |k, F)a(y | ¥) _ p(m |75 F)p(y)a(y | ) _ F(OT@)e 7Py 0= g27

p(v | K, F)g(y' |v)  plm |76, F)p(v)a(y' | 7)  f(y)D()e 100 =" =ar 520"

itk K; K; 3 y+rd(k,j)—1
Here,d = 72/0—3, 9 = 7/2/0—3, andf(y) =TI, rm)i(?vi;()wn)m H(j,k):l ﬂ-l(cj) The
MH sub-step for resampling given-y is similar, but with an appropriately redefing¢k).

5 Synthetic Experiments

To test the ability of BP-AR-HMM to discover shared dynamieg generated five time series that
switched between AR(1) models

v = a0y’ e’ ) (22)

with a;, € {-0.8,-0.6,—0.4,-0.2,0,0.2,0.4,0.6,0.8} and process noise covariangg drawn
from an IW(0.5, 3) prior. The object-specific features, shown in Fig. 2(b), eveampled from a
truncated IBP [9] usingr = 10 and then used to generate the observation sequences of&)g. 2
The resulting feature matrix estimated over 10,000 MCMCpagmis shown in Fig. 2. Comparing
to the true feature matrix, we see that our model is indeegl @mhiliscover most of the underlying
latent structure of the time series despite the challenggtiing defined by the close AR coefficients.

One might propose, as an alternative to the BP-AR-HMM, usin@rchitecture based on the hi-
erarchical Dirichlet process of [21]; specifically we coulde the HDP-AR-HMMs of [5] tied

together with a shared set of transition and dynamic pamsietTo demonstrate the difference
between these models, we generated data for three switéliRiig)) processes. The first two ob-
jects, with four times the data points of the third, switchextween dynamical modes defined
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Figure 3:(a)-(b) The 10th, 50th, and 90th Hamming distance quanfilesbject 3 over 1000 trials for the
HDP-AR-HMMs and BP-AR-HMM, respectively. (c)-(d) Examplef typical segmentations into behavior
modes for the three objects at Gibbs iteration 1000 for tleerhedels (top = estimate, bottom = truth).
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Figure 4:Each skeleton plot displays the trajectory of a learnedigoatis segment of more than 2 seconds.
To reduce the number of plots, we preprocessed the datadigebsegments separated by fewer than 300 msec.
The boxes group segments categorized under the same fedialewith the color indicating the true feature
label. Skeleton rendering done by modifications to Neil Lewee’'s Matlab MoCap toolbox [13].

by ar € {—0.8,—0.4,0.8} and the third object used, € {—0.3,0.8}. The results shown in
Fig. 3 indicate that the multiple HDP-AR-HMM model typicaltlescribes the third object using
ar, € {—0.4,0.8} since this assignment better matches the parameters dbfirtke other (lengthy)
time series. These results reiterate that the feature neodghasizes choosing behaviors rather than
assuming all objects are performing minor variations ofsame dynamics.

For the experiments above, we placed a Gafiimig prior ona andy, and a Gamm@00, 1) prior

on k. The gamma proposals usedl = 1 ands? = 100 while the MNIW prior was given\/ = 0,

K =01%1I4,n0 = d+ 2, andS, set to 0.75 times the empirical variance of the joint set of
first difference observations. At initialization, each érseries was segmented into five contiguous
blocks, with feature labels unique to that sequence.

6 Motion Capture Experiments

The linear dynamical system is a common model for describiimgle human motion [11], and the
more complicated SLDS has been successfully applied torthtdem of human motion synthesis,
classification, and visual tracking [17, 18]. Other apphezcdevelop non-linear dynamical models
using Gaussian processes [25] or based on a collection afibiatent features [20]. However, there
has been little effort in jointly segmenting and identifyinommon dynamic behaviors amongst a
set ofmultiplemotion capture (MoCap) recordings of people performingotestasks. The BP-AR-
HMM provides an ideal way of handling this problem. One bearafthe proposed model, versus
the standard SLDS, is that it does not rely on manually spiegjfthe set of possible behaviors.



—GMM
— GMM 1st diff

HMM
HMM 1st diff
---BP-AR-HMM

* HDP-AR-HMM|

e
©

Truth

°
3

I3
o

d

o
b

****************

Normalized Hamming Distance
o
e <

o

5 10 15
Number of Clusters/States

@ (b)

Figure 5:(a) MoCap feature matrices associated with BP-AR-HMM (t&fp-and HDP-AR-HMM (top-right)
estimated sequences over iterations 15,000 to 20,000, &M &désignment of the GMM (bottom-left) and
HMM (bottom-right) using first-difference observationsdal? clusters/states. (b) Hamming distance versus
number of GMM clusters / HMM states on raw observations (lgireen) and first-difference observations
(red/cyan), with the BP- and HDP- AR-HMM segmentations ¢k)and true feature count (magenta) shown for
comparison. Results are for the most-likely of 10 EM ini#ations using Murphy’s HMM Matlab toolbox [16].

As an illustrative example, we examined a set of six CMU Mo@aprcise routines [23], three
from Subject 13 and three from Subject 14. Each of theserresitised some combination of the
following motion categories: running in place, jumpingkacarm circles, side twists, knee raises,
squats, punching, up and down, two variants of toe touchels,aver, and a reach out stretch.

From the set of 62 position and joint angles, we selected I#sorements deemed most informative
for the gross motor behaviors we wish to capture: one bodsptposition, two waist angles, one
neck angle, one set of right and left (R/L) shoulder anglesR/L elbow angles, one set of R/L hip
angles, and one set of R/L ankle angles. The MoCap data asedeztat 120 fps, and we block-
average the data using non-overlapping windows of 12 fraklsisg these measurements, the prior
distributions were set exactly as in the synthetic data exmmts except the scale matris, of the
MNIW prior which was set to 5 times the empirical covariantéhe first difference observations.
This allows more variability in the observed behaviors. \&ke 25 chains of the sampler for 20,000
iterations and then examined the chain whose segmentatiomined the expected Hamming dis-
tance to the set of segmentations from all chains over iteraitl5,000 to 20,000. Future work
includes developing split-merge proposals to further mepmixing rates in high dimensions.

The resulting MCMC sample is displayed in Fig. 4 and in thepdeimental video available online.
Although some behaviors are merged or split, the overafbperance shows a clear ability to find
common motions. The split behaviors shown in green and wetlan be attributed to the two
subjects performing the same motion in a distinct manner.,(&nee raises in combination with
upper body motion or not, running with hands in or out of synrthvknees, etc.). We compare
our performance both to the HDP-AR-HMM and to the Gaussiaxtuné model (GMM) method
of Barbi€ et al. [1] using EM initialized with k-means. Bathket al. [1] also present an approach
based on probabilistic PCA, but this method focuses prignan change-point detection rather than
behavior clustering. As further comparisons, we look at aNGbh first difference observations,
and an HMM on both data sets. The results of Fig. 5(b) dematestnat the BP-AR-HMM provides
more accurate frame labels than any of these alternativeagpipes over a wide range of mixture
model settings. In Fig. 5(a), we additionally see that theABRHMM provides a superior ability
to discover the shared feature structure.

7 Discussion

Utilizing the beta process, we developed a coherent Bayesiaparametric framework for dis-
covering dynamical features common to multiple time serigsis formulation allows for object-
specific variability in how the dynamical behaviors are us¥é additionally developed a novel
exact sampling algorithm for non-conjugate beta processatso The utility of our BP-AR-HMM
was demonstrated both on synthetic data, and on a set of Meg&ppences where we showed per-
formance exceeding that of alternative methods. Althougliogused on switching VAR processes,
our approach could be equally well applied to a wide rangehodroswitching dynamical systems.

Acknowledgments

This work was supported in part by MURIs funded through AFAB&nt FA9550-06-1-0324 and ARO Grant
W911NF-06-1-0076.



References

(1]
(2]
(3]
(4]
(5]

(6]

(7]
(8]
9]
[10]
[11]

[12]
[13]
[14]

[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]

(23]
[24]

[25]

[26]
[27]

J. Barbi¢, A. Safonova, J.-Y. Pan, C. Faloutsos, J.Kd#ios, and N.S. Pollard. Segmenting motion
capture data into distinct behaviors. Rnoc. Graphics Interfacepages 185194, 2004.

M.J. Beal, Z. Ghahramani, and C.E. Rasmussen. The iefindden Markov model. Iidvances in
Neural Information Processing Systemslume 14, pages 577-584, 2002.

A.C. Courville, N. Daw, G.J. Gordon, and D.S. Touretzijiodel uncertainty in classical conditioning.
In Advances in Neural Information Processing Systerakime 16, pages 977-984, 2004.

E.B. Fox, E.B. Sudderth, M.l. Jordan, and A.S. Willskyn ADP-HMM for systems with state persis-
tence. InProc. International Conference on Machine Learnidgly 2008.

E.B. Fox, E.B. Sudderth, M.l. Jordan, and A.S. WillskyoMparametric Bayesian learning of switching
dynamical systems. IAdvances in Neural Information Processing Systerakime 21, pages 457—464,
20009.

A. Frigessi, P. Di Stefano, C.R. Hwang, and S.J. Sheu. v€aence rates of the Gibbs sampler, the
Metropolis algorithm and other single-site updating dyi@mJournal of the Royal Statistical Society,
Series Bpages 205-219, 1993.

D. Gorir, F. Jakel, and C.E. Rasmussen. A choice madtél infinitely many latent features. IRroc.
International Conference on Machine learnjnlyine 2006.

P.J. Green. Reversible jump Markov chain Monte Carlo potation and Bayesian model determination.
Biometrikg 82(4):711-732, 1995.

T.L. Griffiths and Z. Ghahramani. Infinite latent featur@dels and the Indian buffet procesSatsby
Computational Neuroscience Unit, Technical Report #2005-2005.

N.L. Hjort. Nonparametric Bayes estimators based da peocesses in models for life history datde
Annals of Statisticpages 1259-1294, 1990.

E. Hsu, K. Pulli, and J. Popovit. Style translation fmman motion. I'SIGGRAPH pages 1082—-1089,
2005.

J. F. C. Kingman. Completely random measureacific Journal of Mathemati¢21(1):59-78, 1967.
N. Lawrence. MATLAB motion capture toolbottp://www.cs.man.ac.uk/ neill/mocap/

J.S. Liu. Peskun’s theorem and a modified discreteesgibbs sampler.Biometrikg 83(3):681-682,
1996.

E. Meeds, Z. Ghahramani, R.M. Neal, and S.T. Roweis. &liad dyadic data with binary latent factors.
In Advances in Neural Information Processing Systerakime 19, pages 977-984, 2007.

K.P. Murphy. Hidden Markov model (HMM) toolbox for MATAB. http://www.cs.ubc.ca/ mur-
phyk/Software/HMM/hmm.html

V. Pavlovi¢, J.M. Rehg, T.J. Cham, and K.P. Murphy. Aneic Bayesian network approach to figure
tracking using learned dynamic models.Rroc. International Conference on Computer Visi@eptem-
ber 1999.

V. Pavlovi¢, J.M. Rehg, and J. MacCormick. Learningitshing linear models of human motion. In
Advances in Neural Information Processing Systamkime 13, pages 981-987, 2001.

L.R. Rabiner. A tutorial on hidden Markov models andesttd applications in speech recognition.
Proceedings of the IEEE7(2):257-286, 1989.

G.W. Taylor, G.E. Hinton, and S.T. Roweis. Modeling rammotion using binary latent variables. In
Advances in Neural Information Processing Systerakime 19, pages 1345-1352, 2007.

Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. Hierhical Dirichlet processeslournal of the Ameri-
can Statistical Associatiori01(476):1566—1581, 2006.

R. Thibaux and M.I. Jordan. Hierarchical beta process® the Indian buffet process. Pnoc. Interna-
tional Conference on Artificial Intelligence and Statistieolume 11, 2007.

Carnegie Mellon University. Graphics lab motion captdatabasehttp://mocap.cs.cmu.edu/

J. Van Gael, Y.W. Teh, and Z. Ghahramani. The infinitddaal hidden Markov model. Idvances in
Neural Information Processing Systemslume 21, pages 1697-1704, 2009.

J.M. Wang, D.J. Fleet, and A. Hertzmann. Gaussian m®dgnamical models for human motid&EEE
Transactions on Pattern Analysis and Machine Intelliger3f%2):283—298, 2008.

M. West and J. HarrisorBayesian Forecasting and Dynamic ModeBpringer, 1997.

F. Wood, T. L. Griffiths, and Z. Ghahramani. A non-pararnteBayesian method for inferring hidden
causes. IfProc. Conference on Uncertainty in Artificial Intelligenamlume 22, 2006.



