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Abstract
We present S5, a semantics for the strict mode of the ECMAScript
5.1 (JavaScript) programming language. S5 shrinks the large source
language into a manageable core through an implemented trans-
formation. The resulting specification has been tested against real-
world conformance suites for the language.

This paper focuses on two aspects of S5: accessors (getters and
setters) and eval. Since these features are complex and subtle in
JavaScript, they warrant special study. Variations on both features
are found in several other programming languages, so their study is
likely to have broad applicability.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Classes and Objects

Keywords JavaScript, LambdaJS, getters, setters, accessors, eval,
desugar, wat, wtfjs

1. Introduction
“JavaScript” is the name given to a collection of implementations
of the ECMAScript specification [4]. Defining the semantics of
this language crisply makes it possible to build tools that can
reason about its programs, and making this semantics small and
tractable helps implementers keep the number of cases in their tools
manageable. As the language evolves, adding new features and
modifying existing ones, any semantics effort must evolve, too.

A new major version of the standard, ECMAScript 5.1 (hence-
forth ES5), introduces two new features that demand particular
attention. One is an extended object model with richer properties, in-
cluding getters and setters; these features interact subtly with object
inheritance. The other is an entirely new strict mode of the language,
which impacts many parts of its behavior, especially eval. Since
similar features are present or can be simulated in many “scripting”
languages, they deserve careful semantic treatment.

Contributions
This paper describes S5, a core semantics for the strict mode of
ES5, the subset that future specifications are expected to use (mail.
mozilla.org/pipermail/es-discuss/2011-February/012895.
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html). S5 follows in the tradition of λJS [7], a widely-used semantics
for JavaScript. Concretely, this means:

1. S5 offers a core semantics of the language, shrinking a fairly
large language to under 35 syntactic forms.

2. All source-language features not covered by the S5 core seman-
tics are handled by an implemented desugaring function,1 which
translates all source programs to the core.

3. S5 is a tested semantics, meaning it has been checked for
conformance with real-world test suites. This ensures coverage
of the language and hence utility of the semantics.

In addition, S5 makes two contributions to the semantics literature,
which form the core of this paper:

4. A semantic account of getters and setters in a prototype-based
language, in section 4.

5. An account of JavaScript’s eval operators, in section 5.3.

As we describe S5, we highlight some of the tradeoffs that
induced the design of the core. For readers familiar with λJS, we
also highlight places where S5 differs from that semantics using
λJS Contrast callout boxes.

Paper Outline We begin by giving the reader a feel for the
complexity that lurks beneath JavaScript’s familiar-looking surface
syntax (section 2), and discuss how we engineer S5 to handle
JavaScript’s strict mode and more (section 3). We then focus on
objects in S5, with an account of getters and setters and their
interaction with inheritance (section 4). We then turn to eval, which
requires an in-depth discussion of environments (section 5). This
paper focuses on the key semantics contributions; it does not present
the full S5 semantics, which is quite large and possibly only of
interest to its actual users. The full semantics is available in the
appendix, or at www.cs.brown.edu/research/plt/dl/s5/.

2. The Complexity of JavaScript
JavaScript is sometimes thought of as a small language with a
Scheme-like core enhanced with Self-like objects.2 However, the
full language contains numerous instances of overloading and other
sources of complexity. Consider the following JavaScript program
from a popular talk:3

[] + {}

1 Technically, the term “desugaring” abuses language, because the generated
language is not a strict subset of the source. We continue to use the term
“desugar” because the term is more evocative of what this transformer does
than the generic term “compiler”.
2 www.crockford.com/javascript/little.html
3 www.destroyallsoftware.com/talks/wat/



1 > ./desugar "[] + {}"
2 { let (%context = %nonstrictCxt)
3 { let (#strict = false)
4 %PrimAdd({[#proto: %ArrayProto,
5 #class: "Array",
6 #extensible: true,]
7 'length' : {#value 0. ,
8 #writable true ,
9 #configurable false}},

10 {[#proto: %ObjectProto,
11 #class: "Object",
12 #extensible: true,]})}}

Figure 1. Desugaring [] + {}

This program evaluates to the string "[object Object]". Why?
Consider also this program from a popular Web site:4

(![]+[])[+[]]+(![]+[])[+!+[]]+([![]]+[][[]])
[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]

This program evaluates to the string "fail". Why?
To tackle the first example, we must inspect the definition of the

+ operation. The specification is an 8-step algorithm that roughly
instructs the evaluator to proceed as follows:

1. Invoke the ToPrimitive internal function on both arguments.

2. If the argument to ToPrimitive is an object (as in the case of
arrays), invoke the valueOf method on the argument.

3. If the call to valueOf returns a primitive value, return that value.
Otherwise, call the toString method on the argument, and return
the result of that call (if it’s primitive).

4. If the result of ToPrimitive is a string for either argument,
concatenate the string representations of both arguments.

In the first case, the valueOf method returns a non-primitive ob-
ject for both the empty array and for the object with no fields.
This invokes toString, which produces the empty string for the
empty array, and "[object Object]" for all objects with no fields.
Concatenating the appropriate results together gives the answer
"[object Object]".

The second example is more complicated, but builds up a string
by (ab)using built-in string and number conversions, along with the
ability to index the characters of a string. As a hint, the initial code
fragment (![]+[]) evaluates to "false"; +[] evaluates to 0, which
is used as an index; the 0th index of "false" is "f"; and so on.

Whether the reader finds these examples entertaining or horrify-
ing, these represent the reality of JavaScript, and such obfuscations
can thwart simplistic filters. The evaluation of + depends on several
pages of metafunctions including multiple primitive operators, two
instances of prototype lookup (one that goes two levels deep, since
the Array prototype delegates to the Object prototype for valueOf),
and several possible exceptions along the way. What should a tool
designer do when confronted with this kind of complexity? Desug-
aring provides the answer.

The First Example, Desugared S5 makes the hidden complexity
of JavaScript programs manifest in the desugaring process. All
the algorithms of the spec are themselves implemented in the core
language of S5, so that a tool only needs to comprehend this core
language to be able to process any JavaScript program.

As an illustration, figure 1 shows the desugared S5 program
corresponding to the JavaScript program [] + {}. The resulting
program relies upon several identifiers that we define separately in
es5.env (figure 2), an S5 program that defines the environment for

4 wtfjs.com/2010/07/12/fail

es5.env

let (%PrimAdd = func(left, right) {
let (leftPrim = %ToPrimitive(right))
let (rightPrim = %ToPrimitive(right))
if (typeof leftPrim === 'string') {
prim("string+", prim("prim->str", leftPrim),

prim("prim->str", rightPrim))
}
...

}
...
let (%ObjectToString = func(this, args) {
prim("string+", "[object ",
prim("string+", this<#class>, "]"))

})
%ObjectProto["toString" = {[#code: %ObjectToString]}]
...
let (%ArrayToString = func(this, args)) {
/* join array elements with commas */

}
%ArrayProto["toString"] = {[#code: %ArrayToString]}]

Figure 2. A portion of the environment used by [] + {}

desugared programs. The desugared code sets up some variables
(lines 2 and 3), then applies a function called %PrimAdd defined in
the environment. The two arguments to this application of %PrimAdd
are both object literals in S5. The first (lines 4–9), the array literal
[] in the original program, has the prototype %ArrayProto, and the
second (lines 10–12) has the prototype %ObjectProto.5 %PrimAdd
explicitly performs the type conversions, type-tests, and primitive
operations defined in the spec. %ToPrimitive (not shown) invokes
the toString method of both arguments; the environment specifies
this behavior on the array and object prototypes, which provide the
strings that give this example’s result.

3. The Engineering of S5
When combined, the environment and the desugared program
provide a precise description of a program’s behavior. In fact, S5 is
Gallic: it is properly divided into three parts.

1. A core language with a small-step operational semantics, which
provides a formal description of key features.

2. An implementation in the S5 core language of a portion of ES5’s
built-in libraries. This is the environment.

3. A desugaring function from ES5 programs to programs in the
core language.

It is easy to build an interpreter for the S5 core language. We
have implemented one in 500 lines of Ocaml, so we can read and
execute both S5 environments and S5 programs. The environment
we report results for here is about 5000 LOC, implemented in the S5
core language. We use SpiderMonkey (developer.mozilla.org/
en/SpiderMonkey) as a front-end to parse ES5 source, rather than
implementing a parser ourselves. The desugaring function, which is
also implemented in (1000 lines of) Ocaml, converts programs in
SpiderMonkey’s ES5 AST into S5 programs.

Composing a parser, desugaring function, and interpreter gives us
another implementation of the ES5 language. We can therefore test
it against the ES5 conformance suite (test262.ecmascript.org).
In addition, whenever we find interesting examples on the Web—
such as those of section 2—we add those to our own test suite. We

5 There are other details of the objects shown that are not germane to this
example; we will discuss objects more fully in section 4.



Chapter Passed Total Percent passed
07 Lexical Conventions 648 715 90%
08 Types 163 184 89%
09 Type Conversions 102 136 75%
10 Execution Contexts 349 377 93%
11 Expressions 1178 1326 89%
12 Statements 448 532 84%
13 Function Definitions 208 236 88%
14 Programs 22 24 92%
15 Built-in Objects 5039 8076 62%
Totals 8157 11606 70%

Figure 3. The full test suite

Chapter Passed Total Percent passed
07 Lexical Conventions 78 78 100%
08 Types 12 12 100%
09 Type Conversions 0 0 N/A
10 Execution Contexts 181 181 100%
11 Expressions 156 156 100%
12 Statements 60 60 100%
13 Function Definitions 104 104 100%
14 Programs 2 2 100%
15 Built-in Objects 44 53 83%
Totals 637 646 98%

Figure 4. Tests designed specifically for strict mode

therefore constantly improve S5 to attain conformance. In practice,
most of our effort is concentrated in implementing desugaring and
the environment: once we attained a reasonable coverage of the
language’s primary features, the definition of the core language
stabilized and we have seldom needed to change it. Indeed, the core
language has changed only twice in the past year (starting when
conformance was below 50%).

Our current coverage of ES5 conformance tests is shown, by
chapter, in figure 3. (The first six chapters only provide context
for the rest of the spec, and are thus not testable.) The test suite
is dominated by tests of built-in objects (like Regexp and Date), of
which we have implemented only 60%. This explains our failure rate
in chapter 15, which tests built-in objects. A number of failures in the
other chapters are entirely due to our adherence to strict mode. Tests
for the semantics of getters, setters, and eval are present throughout
the test suite, but are mostly focused in section 8.2 (which tests
built-in operations on objects) and chapter 10 (which tests the use
of the correct scope when using one of the eval operations).

Some parts of the test suite are explicitly marked as being for
strict mode. This matters because many features behave differently
in strict and non-strict mode. On the strict mode tests, we achieve
perfect results excepting built-in objects (figure 4). As the reader
will notice, however, we pass more than just the strict-mode tests.
In part, this is because some tests produce the same results in both
modes. In addition, though S5 is technically only for strict mode,
we have built some extensions for non-strict features that have
restricted or nonexistent strict semantics: e.g., the various modes of
eval (section 5.3 of this paper), and the with operator. Indeed, the
non-strict features included in S5 are some of the harder and more
interesting ones, such as those that interact with scoping.

4. Objects with Getters and Setters
Designing the semantics of S5 and the corresponding desugaring
function involves a number of design decisions. The semantics
is supposed to represent the “core” of JavaScript, the definition of
which is ultimately a combination of aesthetic and engineering trade-

offs. We illustrate the tradeoffs by showing the decisions we made
in modelling and implementing the full range of object features in
JavaScript, split across the semantics of S5 and desugaring.

4.1 Mutable Records
We proceed by presenting small examples of JavaScript, followed by
a continually growing semantics that models the features from the
JavaScript program. We start simply, with mutable records mapping
string keys to values:

1 var o = {foo : "init"};
2 o.foo; // evaluates to "init"
3 o.bar; // evaluates to undefined
4 o.bar = "defined";
5 o.bar; // evaluates to "defined"
6 o.["f" + "oo"] = "changed";
7 o.["fo" + "o"]; // evaluates to "changed"

Object literals (enclosed in {}) create mutable objects. Assign-
ment and lookup can both take arbitrary strings (o.foo is sugar
for o["foo"]). When looking up a property that isn’t present, the
special undefined value results. When assigning a property that isn’t
present, it is added to the object. A simple store-based semantics
can capture this functionality:

v := r | str | undefined
e := v | {str1:e1, · · ·} | e[e] | e[e = e]

θ := {str1:v1, · · ·}
Θ := · | r : θ,Θ
E := • | {str1:v1, · · ·, str:E, · · ·strn:en} | E[e] | v[E]

| E[e = e] | v[E = e] | v[v = E]

Θ; e→ Θ; e

(E-Compat) Θ;E[e]→ Θ′;E[e′]
when Θ; e⇒ Θ′; e′

Θ; e⇒ Θ; e

(E-Object) Θ; θ ⇒ r : θ,Θ; r r fresh
(E-GetField) Θ; r[str]⇒ Θ; v

when Θ(r) = {· · · str:v, · · ·}
(E-NoField) Θ; r[str]⇒ Θ; undefined

when Θ(r) = {str':v, · · ·}
and str 6∈ {str', · · · }

(E-SetField) Θ; r[str = v']⇒ Θ′; v′

when Θ(r) = {· · · str:v, · · ·}
and Θ′ = Θ[r/{· · · str:v', · · ·} ]

(E-AddField) Θ; r[str = v]⇒ Θ′; v
when Θ(r) = {str':v', · · ·}
and str 6∈ {str', · · · }
and Θ′ = Θ[r/{str:v,str':v', · · ·} ]

We use this small calculus to introduce the notation of this paper.
Expressions e can be object literals, with string literals as names and
expressions as properties; lookup expressions, where both object and
name position are expressions; and assignment expressions, where
again all pieces are expressions. Values v can be object references r,
strings str, or the special value undefined. Objects whose properties
are all values, rather than expressions, are written θ. Object stores Θ
map references to these value-objects. Finally, evaluation contexts
E enforce left-to-right evaluation of expressions.

To evaluate expressions, we use the ⇒ relation over active
expressions. E-Object takes fully-evaluated object literals θ and adds
them to the object store Θ, performing an allocation. E-GetField



checks that a property with the provided string name is present,
and yields the corresponding value, with lookup in the object store
written Θ(r). E-NoField evaluates to undefined if the property isn’t
present. E-SetField replaces a value with a new one if it is present,
changing Θ to Θ′, with replacement of an object at a particular
location written Θ[r/θ]. E-AddField adds a new property entirely if
no such property is present in assignment, also yielding a new Θ′.

λJS Contrast λJS has functional records along with ref and deref

expressions, in the style of ML; S5 has only mutable records. One
lesson from the desugaring function implemented for λJS was that
separating these features merely led to more verbose compiled code,
not any increase in understanding. Because mutable records have
a well-understood semantics and more closely match JavaScript’s
behavior, we use them instead in S5. �

4.2 Accessor Properties
This tiny calculus models mutable records, which are only a small
part of the behavior of JavaScript’s objects. In particular, getters
and setters (known as accessors) are a significant addition in ES5.
They extend the behavior of assignment and lookup expressions on
JavaScript objects. If a property has a getter defined on it, rather
than simply returning the value in property lookup, a getter function
is invoked, and its return value is the result of the lookup:

1 var timesGotten = 0;
2 var o = {get x() { timesGotten++; return 22; }};
3 o.x; // calls the function above, evaluates to 22
4 timesGotten; // is now 1, due to the increment
5 o.x; // calls the function again, still evaluates to 22
6 timesGotten; // is now 2, due to another increment

Similarly, if a property has a setter defined on it, the setter function
is called on property update. The setter function gets the assigned
value as its only argument, and its return value is ignored:

1 var foo = 0;
2 var o = {set x(v) { foo = v; }, get x() { return foo; }};
3 o.x = 37; // calls the function above (with v=37)
4 foo; // evaluates to 37
5 o.x; // evaluates to 37

The first thing these examples tell us is that there are two kinds of
properties we need to model: simple values, and accessors that have
one or both of a getter and a setter. Property lookup and assignment
expressions perform the appropriate action based on what kind of
property is present. In our semantics, we introduce two kinds of
property, and change objects to refer to contain one or the other
(this corresponds to property descriptors in section 8.10 of the
spec). We introduce functions and applications as well, using . . .
to indicate elided, previously-defined definitions, and shading to
indicate altered parts of the production.

v := . . . | func (x,· · ·) { e }

pe := [value:e] | [get:e, set:e]

pv := [value:v] | [get:v, set:v]

p := pv | []
e := . . . | {str1: pe1 , · · ·} | e(e, · · ·) | x
θ := {str1: pv1 , · · ·}

Θ := . . .

Ep := [value:E] | [get:E, set:e] | [get:v, set:E]

E := . . . | {str1: pv1 , · · ·, str:Ep , · · ·strn: pen }

| E(e, · · ·) | v(v1,· · ·E,e1,· · ·)

Since the kind of property descriptor determines what the lookup
or assignment expression does, we split apart these features in

our semantics. We define a relation, Θ; r[str] ⇓ p, that yields the
appropriate property descriptor, or the empty descriptor [], for a
given reference and string:

Θ; r[str] ⇓ p

Θ(r) = {· · · str:pv, · · ·}
Θ; r[str] ⇓ pv

Θ(r) = {str':pv, · · ·}
str 6∈ {str', · · · }
Θ; r[str] ⇓ []

We can then define lookup and assignment relative to this:

Θ; e⇒ Θ; e

(E-Object) as before

(E-GetField)
Θ; r[str] ⇓ [value:v]

Θ; r[str]⇒ Θ; v

(E-Getter)
Θ; r[str] ⇓ [get:vg, set:v]

Θ; r[str]⇒ Θ; vg()

(E-NoField)
Θ; r[str] ⇓ []

Θ; r[str]⇒ Θ; undefined

(E-SetField)6

Θ; r[str] ⇓ [value:v]

Θ(r) = {· · · str:[value:v], · · ·}
Θ′ = Θ[r/{· · · str:[value:v'], · · ·} ]

Θ; r[str = v']⇒ Θ′; v′

(E-AddField)

Θ; r[str] ⇓ []

Θ(r) = {str':pv, · · ·}
Θ′ = Θ[r/{str:[value:v], str':pv, · · ·} ]

Θ; r[str = v']⇒ Θ′; v′

(E-Setter)
Θ; r[str] ⇓ [get:vg, set:vs]

Θ; r[str = v']⇒ Θ; vs(v')

(E-App) Θ; func(x1, · · ·) { e }(v1, · · ·)
⇒ Θ; e[x1/v1, · · · ]

We can thus summarize the behavior of getters and setters.
If the property is an accessor in lookup, the getter function is
called (E-Getter). If it is an accessor in assignment, the setter is
called with the assigned value passed as an argument (E-Setter). In
other cases, behavior is the same as before, just with raw values
changed to property descriptors with a value attribute, and the check
for missing properties is now implicit in ⇓ []. The rewriting to
use ⇓ makes the setting rules a touch more verbose, but will be
invaluable in the next section, so we introduce it here. Finally, to
fully evaluate these terms, we include application, which performs
capture-avoiding substitution of values for identifiers. This small
semantics is adequate to capture the essence of the examples
presented so far.

4.3 Object-Oriented JavaScript
Consider this program:

1 var o = {
2 // The property _x stores data shared between
3 // these two functions
4 get x() { return this._x + 1; },
5 set x(v) { this._x = v * 2; }

6 The first two antecedents here are redundant. In the next section, for a rule
similar to this one, they are not, so we present the rule this way for contrast.



6 };
7 o.x = 5; // calls the set function above (with v=5)
8 o._x; // evaluates to 10, because of assignment in setter
9 o.x; // evaluates to 11, because of addition in getter

We see that the functions have access to the target object of the
assignment or lookup, via this. But JavaScript also has prototype
inheritance. Let’s start with an object called parent, and make it the
prototype of another object using the Object.create() method:

1 var parent = {
2 get x() { return this._x + " was gotten"; },
3 set x(v) { this._x = v; }
4 };
5 var child = Object.create(parent);
6 child.x = "set value"; // Sets... what exactly?
7 parent._x; // evaluates to undefined
8 child._x; // evaluates to "set value"
9 parent.x; // evaluates to "undefined was gotten"

10 child.x; // evaluates to "set value was gotten"

Here, JavaScript is passing the object in the lookup expression
into the function, for both property access and update. This is in
contrast to if it passed in the prototype object itself (parent in the
example above). Something else subtle is going on, as well. Recall
that before, when an update occurred on a property that wasn’t
present, JavaScript simply added it to the object. Now, on property
update, we see that the assignment traverses the prototype chain
to check for setters before adding it to the top level object. This is
fundamentally different than JavaScript without accessors, where
assignment never considered prototypes. Our semantics thus needs
to do three new things:

• define prototypes on objects;
• traverse the prototype chain to look for properties; and,
• pass the correct this argument to getters and setters.

Prototypes Prototypes aren’t properties7—they can’t be accessed
with property lookup—but are instead object attributes. We add a
special attribute space to objects for the prototype:

e := . . . | { [proto:e] str:pe, · · ·}
θ := . . . | { [proto:v] str:pv, · · ·}
E := . . . | { [proto:E] str:pe, · · ·}

Note that now, providing an implementation of Object.create

from section 15.2.3.5 of the specification is straightforward. Its core
is just this function (using a few obvious, but yet-to-be introduced
features):

func(prototype) {
if(typeof prototype !== "object") { throw TypeError() }
else { {[proto: prototype]} }

}

This is our first example of translating a spec feature into an
S5 program, rather than modelling it directly in the semantics.
We choose to add the object attribute proto as a minimal feature.
Then, we use it to implement Object.create to avoid polluting our
semantics with type tests and non-essential features. The essence of
the semantics is the prototype attribute; with that, we can implement
this and several other features of the spec.

λJS Contrast λJS did not have attributes on objects, and instead
encoded the prototype as a property. Compare these two (abbrevi-
ated) desugarings of {"a-prop": 42}:

7 Though some browsers providing access to the prototype through a field
named __proto__, this is not the intent of the specification.

{[proto: %ObjectProto]},
"a-prop":
[ value:42 ] }

{"__proto__": %ObjectProto,
"a-prop": 42 }

S5 λJS

The λJS desugaring admits JavaScript programs that look up the
string "__proto__", while the semantics doesn’t allow this. This
mismatch doesn’t come up in most test suites, but it is still not a
faithful representation of the underlying semantics. In S5, properties
and attributes are separate and each fill a specific role, removing this
inelegance. �

To model prototype inheritance, we need to augment ⇓. Finding
a property is unchanged aside from the addition of proto. To yield
the empty descriptor [], the property must not be present and the
proto must be undefined. Finally, if the property isn’t present, but a
prototype object is, the prototype is consulted:

Θ; r[str] ⇓ p

Θ(r) = {[proto:v]· · · str:pv, · · ·}
Θ; r[str] ⇓ pv

Θ(r) = {[proto:undefined] str':pv, · · ·}
str 6∈ str' · · ·

Θ; r[str] ⇓ []

Θ(r) = {[proto:r'] str':pv, · · ·}
str 6∈ str' · · · Θ; r'[str] ⇓ p

Θ; r[str] ⇓ p

λJS Contrast λJS uses an explicit small-step reduction for proto-
type lookup:

{· · · proto :vp, · · ·}[str] → (deref vp)[str]

In contrast, S5 abstracts prototype lookup into ⇓. Since the semantics
of S5 needs prototype lookup for both property assignment and
property access, this abstraction allows the definition of prototype
lookup to be identical and shared between these two forms in the ⇓
relation. �

Accessors and this If we leave the rules as they are (with the minor
addition of prototypes), they will look up the correct properties, but
won’t pass the this argument to the getter and setter functions. This
is easily remedied: the reference r in the lookup or assignment
expression is precisely the correct this argument to pass to the
function. This minor change is all that’s required:

Θ; e⇒ Θ; e

. . .

(E-Getter)
Θ; r[str] ⇓ [get:vg, set:v]

Θ; r[str]⇒ Θ; vg( r )

(E-Setter)
Θ; r[str] ⇓ [get:vg, set:vs]

Θ; r[str = v']⇒ Θ; vs( r ,v')

Accessors and the arguments Object Thus far, accessors have had
a distinguished position as functions within special properties on
objects. In reality, any ES5 function can be used as a getter or a
setter. To ensure that this is allowed in S5, we need to handle one



final wrinkle. The specification mandates that each function bind a
special variable called arguments to an object which is populated
with all of the parameter values at the time of application. When a
getter is invoked during property lookup, it is handed an argument
object with no parameters. Setters have the value stored in the 0th
argument. For example:

1 var x = "init";
2 var f = function() { x = arguments["0"]; };
3 var o = Object.create({}, { "fld": {get: f, set: f} });
4 o.fld; // evaluates to undefined
5 x; // evaluates to undefined
6 o.fld = "setter";
7 x; // evaluates to "setter"
8 f("function call");
9 x; // evaluates to "function call"

To accomplish this, we add a distinguished position holding
an arguments object to property access and assignment statements.
We write the modified expressions as e[e]e and e[e=e]e. When
desugaring, we add an expression that constructs the appropriate
arguments object for these expressions. Figure 6 shows how the
arguments object position is propagated to the invocation for both
getters and setters.

4.4 Configuring, Enumerating, and Extending
Having discussed the interesting parts of object lookup, we now
briefly dwell on the details that are needed to create a semantics
specifically for ES5. ES5 has a few more attributes that allow for
greater control over access to properties and affect objects’ behavior.
A simple example:

1 var o = {};
2 o.x = "add x";
3 Object.preventExtensions(o);
4 o.y = "add y";
5 o.y; // evaluates to undefined
6 o.x; // evaluates to "add x"
7 o.x = "change x";
8 o.x; // evaluates to "change x"

Object.preventExtensions makes subsequent property updates to
o unable to add new properties. Existing properties can be changed,
however. There is another object attribute, extensible, that is a flag
for whether new properties can be added to an object or not. Only
addition is prevented; existing properties can still be changed, as
evidenced by the assignment to "change x" above.

As another example, the Object.freeze() method can also
affect access to properties by both making new additions impossible
and preventing all further changes to properties:

1 var o = {};
2 o.x = "add x";
3 Object.freeze(o);
4 o.y = "add y";
5 o.y; // evaluates to undefined
6 o.x; // evaluates to "add x"
7 o.x = "change x";
8 o.x; // evaluates to "add x"

Here, the assignment to "change x" doesn’t affect the x property at
all; it retains the value it had before the freeze. For the most fine-
tuned control, ES5 provides Object.defineProperty. This built-in
can change data properties to accessors and vice versa:

1 var tmp1, tmp2 = "tmp2 init";
2 var o = {
3 x: "x init",
4 get y() { return "y getter";},
5 set y(v) { tmp2 = v; }
6 };

7 // defineProperty can change a data property to accessor...
8 Object.defineProperty(o, "x", {
9 get: function() { return "in getter"; },

10 set: function(v) { tmp1 = v; }
11 });
12 o.x; // evaluates to "in getter", rather than "x init"
13 o.x = "change x";
14 o.x; // evaluates to "in getter", unchanged by assignment
15 tmp1; // evaluates to "change x", set in setter
16 // and vice versa...
17 Object.defineProperty("y", {value: "y data", writable: true});
18 o.y; // evaluates to "y data", not "y getter"
19 o.y = "set y";
20 o.y; // evaluates to "set y"
21 tmp2; // evaluates to "tmp2 init", never set in setter

It can also have interesting effects on iteration:

1 var o = {x: "foo", y: "bar", z: "baz"};
2 for(var i in o) { print(i); }
3 // prints "foo", "bar", "baz"
4 Object.defineProperty(o, "y", {enumerable: false});
5 for(var i in o) { print(i); }
6 // prints "foo", "baz"

It can also alter properties to prevent any future changes of these
kinds:

1 var o = {x: "foo"};
2 Object.defineProperty(o, "x", {configurable: false});
3 Object.defineProperty(o, "x", {
4 set: function(v) { o._x = v; }
5 });
6 // Error, can't change non-configurable property

In summary, there are six different attributes a property can have.
We have already addressed value, get, and set, but they can also have
writable, enum, and config. There’s also another attribute needed
for objects, extensible. In the full specification, objects’ attribute
lists have been augmented, and properties now always have one
of two forms: a data property with writable and value attributes,
or an accessor property with set and get attributes. Both kinds of
properties have enum and config attributes.

The attributes writable and extensible change the way the expres-
sions we’ve shown so far evaluate. In particular, writable must be
true to either update a property or add a new one (if the property
exists on the prototype somewhere), and extensible must be true
to extend the object with the property. These new constraints are
shown in the final definition of property access figure 6. This shows
another way—in addition to setters—in which property assignment
must consider prototypes.

To accompany all these attributes, we’ve added five new kinds of
expressions. We can access object attributes with e[<o>], and update
them with e[<o> = e]. This lets us set, for example, extensible to
false. Similarly, property attributes can be accessed with e[e<a>]
and updated with e[e<a> = e], in order to perform the operations
defineOwnProperty requires. The semantics of these new opera-
tions is in figure 5.

These operators manipulate attributes at a low level, while ES5
specifies a number of high-level property-altering methods (such
as Object.seal, Object.freeze, and Object.create). Rather than
express each of these methods as its own special-purpose reduction
step, we define them in the environment as functions that apply
combinations of the low-level operators.

Maintaining Invariants Operations that prevent future changes,
like freeze and seal, are designed for security. The specification
of these operations was carefully defined to be monotonic; an
application that restricts the object’s behavior cannot be undone.
For example, once freeze sets the configurable attribute to false, it
cannot be reset to true. We have a choice of implementation for



Θ; e→Θ Θ; e

E-GetObjAttr
Θ(r) = {[· · · o : v · · ·] str:pv, · · ·}

Θ; r[<o>]→Θ Θ; v
E-SetObjAttr

Θ(r) = {[· · · o : vo · · ·] str:pv, · · ·}
Θ′ = Θ[r/{[· · · o : v · · ·] str:pv, · · ·} ]

Θ; r[<o> = v]]→Θ Θ′; v

E-GetPropAttr
Θ(r) = {av · · ·str:[· · · a : v · · ·], · · ·}

Θ; r[str<a>]→Θ Θ; v
E-SetPropAttr

Θ(r) = {av · · ·str:[· · · a : va · · ·], · · ·}
Θ′ = Θ[r/{av · · ·str:[· · · a : v · · ·], · · ·} ]

okupdate([· · · a : va · · ·], a, v)

Θ; r[str<a> = v]→Θ Θ′; v

Figure 5. Manipulating object attributes

Θ; e→Θ Θ; e

E-GetField
Θ; r[str] ⇓ [· · · value:v · · ·]

Θ; r[str]va →Θ Θ; v

E-Getter
Θ; r[str] ⇓ [· · · get:vg · · ·]

Θ; r[str]va →Θ Θ; vg(r,va)
E-NoField

Θ; r[str] ⇓ []

Θ; r[str]va →Θ Θ; undefined

E-SetField

Θ(r) = {pv · · · str:[· · · value:v', writable:true], · · ·}
Θ′ = Θ[r/{pv · · · str:[· · · value:v, writable:true], · · ·} ]

Θ; r[str=v]va →Θ Θ′; v

E-Setter
Θ; r[str] ⇓ [· · · set:vs · · ·]

Θ; r[str]va →Θ Θ; vs(r,va)

E-AddField

Θ(r) = {[extensible:true · · ·] str':av, · · ·} Θ; r[str] ⇓ []

Θ′ = Θ[r/{[extensible:true · · ·] str:[config:true, enum:true, value:v, writable:true], str':av, · · ·} ]

Θ; r[str=v]va →Θ Θ′; v

E-ShadowField

Θ(r) = {[extensible:true · · ·] str':av, · · ·} Θ; r[str] ⇓ [· · · writable:true · · ·]
Θ′ = Θ[r/{[extensible:true · · ·] str:[config:true, enum:true, value:v, writable:true], str':av, · · ·} ]

str 6∈ str' · · ·
Θ; r[str=v]va →Θ Θ′; v

Figure 6. Property access and assignment



Figure 7. Statecharts diagram of okupdate. If configurable is true,
then any transition is allowed. If writable is true, then either the
value or the writable property can be changed, but writable can only
be changed to false. No other changes are allowed. The diagram is
presented relative to the specification’s algorithms; in S5, all of the
edges correspond to uses of E-SetPropAttr.

these restrictions. We could simply have an attribute assignment
with no checking in the semantics, and desugar all of the checks.
Alternatively, we could build the restrictions into the semantics.

One of the goals of S5 is to be a useful tool for analyses of
security properties. Since these are security-relevant properties,
building them into the semantics gives a richer set of invariants to
S5 programs than just having them in desugared expressions alone.
Thus, we choose to encapsulate these restrictions in the okupdate
function of E-SetPropAttr, which checks that for a given property
descriptor, the potential change is allowed. Miller describes the
invariants in a state diagram, shown in figure 7.8 The diagram is a
more concise description of a long listing of the many combinations
of six attributes that need to be considered.

5. Environments and Modelling Eval
The full specification of desugaring is quite long, so we don’t
attempt to describe it in its entirety. Instead, we focus on how it
maps JavaScript identifiers and scopes to S5 environments, and a
particularly interesting use case: eval.

8 Figure taken from wiki.ecmascript.org/doku.php?id=es3.1:
attribute_states, reproduced from wiki.ecmascript.org under provi-
sions of the Creative Commons License.

5.1 Desugaring JavaScript
The end goal of desugaring is to produce an S5 program from
JavaScript source; in theory, this is simply a function:

desugar-complete : eJS → eS5

For a number of reasons, it is useful to break desugaring up into two
pieces:

1. A function from JavaScript programs to open S5 terms contain-
ing free variables;

2. an S5 term that contains a hole (a context C), which contains all
the bindings needed by the open term.

Then, the composition of the context with the open term produces
a (closed) S5 program that corresponds to the initial JavaScript
program. So we have:

desugar-complete(eJS) = Cenv 〈desugarJeJSK〉
This strategy has a number of benefits. First, a practical concern:

we can change the implementation of the environment term without
changing the definition of desugaring. Since different implementa-
tions of JavaScript can have different provided built-in functionality,
like the implementation on a server versus the implementation in a
browser, this strategy allows us to change the environment for these
differing scenarios while keeping the core desugaring the same. Sec-
ond, code that is evaluated with JavaScript’s eval operator needs to
run in slightly altered environments from the environment calling
eval. This separation allows us to make desugar a metafunction
that is usable in the semantics because it has no baked-in notion of
which environment should be used.

5.2 Compiling JavaScript Identifiers
JavaScript identifiers get their meaning in the specification from
scope objects [4, Section 8.12], which (roughly) map names to
values. At any given point of execution of a JavaScript program,
there is a current scope object which can be consulted on each
variable dereference to yield the appropriate value, and which can
be updated on each variable assignment. Further, the specification
allows scope objects to be combined into scope chains, so that one
scope object can defer lookups to another if it doesn’t have a binding
for a variable itself.

For the most part, scope objects behave just as lexical scope
would. Indeed, their arduous and detailed specification seems unnec-
essary, given that they seem like a mere implementation decision for
lexical scope. However, in a few places, scope objects truly differ
from how traditional lexical scope behaves. To accommodate these
cases, we desugar JavaScript to S5 programs with explicit scope
objects in order to capture all of JavaScript’s details.

Global Scope Most of the time, it is impossible for a JavaScript
program to obtain a reference to an actual scope object, allowing for
a wealth of possible compiling strategies that would emulate scope
objects’ behavior without implementing them as bona fide JavaScript
objects. However, in the case of global scope, JavaScript code can
access and alter a scope object with both variable dereferences and
with object operations. This means that the identifiers that appear in
the source of the JavaScript program might “look” like free variables
to a naı̈ve recursive descent, but in fact be defined once they are
used:

1 function foo() { xyz = 52; }
2 this["x" + "yz"] = "assigned via object assignment";
3 foo();
4 xyz === 52 && this["xyz"] === 52 // evaluates to true

The converse is also true: a variable may appear to be bound, but in
fact throw an error when it is accessed at runtime:



1 this.xyz = 52;
2 xyz; // evaluates to 52
3 delete this["xyz"];
4 xyz; // throws ReferenceError exception

In order to accommodate these cases, desugar converts all JavaScript
identifiers into object lookups on the S5 identifier %context:

desugarJxK = %context["x"]

Then, our desugaring needs to ensure that the correct binding for
%context is always present.

Implementing Contexts A binding for %context needs to hold
values corresponding to each identifier in the current context, and
correctly delegate to outer contexts for identifiers that are unbound
in the current context. The specification describes this chain of
delegation by saying that each environment record (context) has a
“possibly null reference to an outer Lexical Environment” [4, Section
10.2]. This sounds similar to prototype inheritance; we’ve found
that a prototype-based chain of objects is an acceptable fit for such
a chain of delegation.9

We’ll proceed by example to show the development of contexts.
Imagine a simple strategy:

function() {
var x = NaN;
return function() {

var y; y = x; return y;
}

}

desugars to

func() {
let (%context = {[proto: %global]
"x" : [value: undefined, #writable: true] })

%context["x" = %context["NaN"]];
func() {

let (%context = {[proto: %context]
"y" : [value: undefined, writable: true] })

%context["y" = %context["x"]];
%context["y"]

}
}

That is, in this strategy, the var gets a property on the %context
object, and x is desugared into a lookup for that property, while
x = v is desugared into an assignment to that property. This leads to
correct behavior for this example, and we can see how the prototype
chain allows for delegated access to the x variable declared in the
outer function. Indeed, the inner function quite literally “closes over
its context,” lexically capturing the binding for %context used as the
proto of the inner %context object. We also see that the root of the
chain is %global, so the reference to the identifier NaN will find the
"NaN" property on %global.

This desugaring, however, isn’t quite right. Assignments don’t
do quite the right thing across scope, and the error behavior with
respect to the global object isn’t quite correct either. This example
demonstrates the unbound identifier problem:

1 (function() { return x; })();
2 // yields ReferenceError: x is not defined

But our desugaring strategy would return undefined here, since that’s
the result of the missed object lookup in the desugared expression,
%context["x"].

9 We aren’t entirely happy with this decision, but the mapping of scope
objects to prototype inheritance is so close that it provides an obvious choice.

λJS Contrast λJS desugared all JavaScript variables directly into
λJS variables bound to first-class references. This strategy works for
almost all programs, but failed to capture this subtlety of the global
scope object. �

A different example manifests the assignment problem:

function() {
var x = 0;
var g = function() { x = x + 1; };
g(); return x;

}

desugars to

func() {
let (%context = {[proto: %global]
"x" : [value: undefined, #writable: true],
"g" : [value: undefined, #writable: true] })

%context["x" = 0];
%context["g" = func() {

let (%context = {[proto: %context]})
%context["x" = %context["x"] + 1]

}]
%context["g"](); %context["x"]

}

Here, the result of calling the defined function should be 1: the
increment to the outer variable x should be applied during the call to
the function bound to g. But the desugaring will add a binding to the
inner %context upon the assignment to the "x" property, rather than
changing the outer context. The return at the end will lookup x in a
context that still has it bound to 0, resulting in the wrong answer.

Accessors provide an answer to both dilemmas. We can allow
context objects to hold a getter/setter pair that stores and updates
a value in a separate map. Then, if a property is absent, the right
accessor function will be called higher up on the prototype chain,
rather than resulting in a property addition. For the global scope
issue, we can add an accessor for each unbound identifier that throws
the appropriate exception (if the property hasn’t become present
yet). The assignment scope problem is solved with:

function() {
var x = 0;
var g = function() { x = x + 1; };
g(); return x;

}

desugars to

func() {
let (%store = {[extensible: true, proto: null]})
let (%context = {[proto: %global]
"x" : [get: func() { %store["x"] },

set: func(v) { %store["x" = v] }],
"g" : [get: func() { %store["g"] },

set: func(v) { %store["g" = v] }] })
%context["x" = 0];
%context["g" = func() {

let (%context = {[proto: %context]})
%context["x" = %context["x"] + 1]

}]
%context["g"](); %context["x"]

}

And the global environment has a special kind of context:



Strict Context Strict String Direct Strict Semantics
No No No No
No No Yes No
No Yes No Yes
No Yes Yes Yes
Yes No No No*
Yes No Yes Yes*
Yes Yes No Yes
Yes Yes Yes Yes

Figure 9. Deciding when to eval with strict semantics

(function() { return z; })();

desugars to

let (%globalContext = {[proto: null]
"z": [get: func() {

if (hasProperty(%global, "z")) { %global["z"] }
else { throw "ReferenceError" }

},
set: func(v) { %global["z" = v] }]})

let (%context = %globalContext)
func() {

let (%context = {[proto: %globalContext]})
%context["z"]

}

Since only a syntactically appearing identifier can cause such a
reference error, this strategy will work if we can always statically
determine all the identifiers that might be free, which is a simple
check of the apparent free variables in the ES5 source. The identifier
might be defined by the time the actual access happens, so the check
for the property being present on %global at that time is important.

These two techniques—using accessors for mutable variables,
and building up predefined accessors for possibly-unbound global
identifiers—are the necessary pieces for building up environment
desugaring. There are a few other details to handle, like the conver-
sion from the properties of an arguments object to the environment
itself, and exceptional constructs like typeof, but overall, we find
these patterns to be sufficient for encoding all of JavaScript’s scope
behavior, including the slightly awkward global scope and all the
behavior of eval.

5.3 Eval in ES5
ES5 has four variants of eval, and there are eight different calling
configurations that determine which of the variants to use. They
differ based on two JavaScript features: whether the call to eval

is “direct” and whether the argument is in “strict mode”. Figure 8
shows an example of each of the four different types. First we will
explain how a program chooses a mode, then explain what each of
the modes means.

Mode Determination A use of eval is direct rather than indirect
when the program uses the identifier eval in the application rather
than some other reference. Compare the call on line 7 in the top
two examples to the call on line 8 in the bottom row (and the
corresponding binding of indirect on line 2). The “direct call”
is referred to in the specification as a use of the eval operator, as
opposed to the eval function. This is viscerally distasteful as it breaks
normal notions of substitutability for the identifier eval, but it is the
way of JavaScript.

In the examples given, strictness is enforced on the evaluated
string by prepending 'use strict'; to the evaluated string. This
directive instructs the JavaScript runtime to use “strict” semantics

for the body of the eval. Prepending this directive is just one way to
ensure that the expression evaluates strictly; the surrounding context
can also declare itself to be in strict mode, and cause direct calls to
eval to be strict. Bizarrely, indirect calls will not be strict in a strict
context, unless the strict directive is included in the string.

1 'use strict';
2 eval("var x = y; x");
3 // has strict semantics for the eval
4 var indirect = eval;
5 indirect("var x = y; x");
6 // non-strict semantics, despite 'use strict' above

This leads to the truth table in figure 9, whose rightmost column
states whether strict semantics should be used for the eval or not.
The leftmost column denotes whether block of code in which the
eval appears has a 'use strict' directive; the Strict String column
represents whether the evaled string has a 'use strict' directive;
and the Direct column represents whether the call is direct. The two
perhaps unexpected cases, corresponding to the above example, are
highlighted.

The Modes’ Semantics First, let us understand the semantics of
each of the four modes. The crucial distinction is that the directness
of the call determines which scope eval reads variables from and
the strictness determines which scope eval creates variables in. The
test cases in figure 8 distinguish these cases.

In a Direct, Non-Strict eval, the current scope is used for both
reading and creating new variables. The var x in the eval code
creates a new variable on the inner function’s scope object, so it can
be read afterwards at x === "inner". The value of y comes from
the same scope, giving both t and x the value "inner".

In a Direct, Strict eval, the current scope is used for reading
variables, but new variable bindings are not reflected on the calling
scope. The variable creation var x does create a new variable, but it
isn’t visible after the eval, so x is still "outer", its previous value.
The value of y still reads from the local context, giving t the value
"inner".

In an Indirect, Non-Strict eval, the global scope is used for
reading variables, and new variable bindings are reflected on the
global scope. We see that now, y gets its "globaly" value from the
global object, and var x has added a new binding on the global scope
object, effectively assigning global.x to "global". In addition, this
scope is the only one affected; x in the function still resolves to
"outer", the value from the outer function.

In an Indirect, Strict eval, the global scope is used for reading,
and no new variables escape. We see that t gets the value "outer"

because y refers to global scope, but no new binding is reflected on
global from the var x statement.

Implementing Mode Detection To correctly determine which
mode should be used for eval, we first need to desugar expressions
so that they have information about their strictness. To do so, we
enhance desugaring to include a binding for the special variable
#strict:

desugarJ'use strict'; e;K =
let (#strict = true) desugarJeK

Second, we need to know if a call is direct or not. To do this,
we desugar instances of applications of the token eval to a call to
a function, %maybeDirectEval, that uses the context to determine if
this is indeed a direct use:

desugarJeval(e, · · ·)K =
let (%args = makeArgumentsObjectJe, · · ·K)

%maybeDirectEval(%this, %args, %context, #strict)

Then, %maybeDirectEval can check if the binding on the current
context is the global one, and determine whether the call should be
considered direct or not. In addition, it receives the #strict flag to
determine whether the call should be in strict mode.



Non-Strict Strict

Direct

1 var global = this;
2 global.y = "globaly";
3 (function () {
4 var x = "outer";
5 return function () {
6 var y = "inner";
7 var t = eval("var x = y; y;");
8 global.x === undefined // true
9 x === "inner" // true

10 t === "inner" // true
11 }
12 })()();

1 var global = this;
2 global.y = "global";
3 (function () {
4 var x = "outer";
5 return function () {
6 var y = "inner";
7 var t = eval("'use strict'; var x = y; y;");
8 global.x === undefined; // true
9 x === "outer"; // true

10 t === "inner"; // true
11 }
12 })()();

Indirect

1 var global = this;
2 var indirect = eval;
3 global.y = "globaly";
4 function () {
5 var x = "outer";
6 return function () {
7 var y = "inner";
8 var t = indirect("var x = y; y;");
9 global.x === "global" // true

10 x === "outer" // true
11 t === "global" // true
12 }
13 })()();

1 var global = this;
2 var indirect = eval;
3 global.y = "global";
4 (function () {
5 var x = "outer";
6 return function () {
7 var y = "inner";
8 var t = indirect("'use strict'; var x = y; y;");
9 global.x === undefined; // true

10 x === "outer"; // true
11 t === "global"; // true
12 }
13 })()();

Figure 8. The four kinds of eval in JavaScript

Implementing the Semantics The crucial observation for our
implementation is that we have reified all of the information about
JavaScript’s environments into scope objects that the desugaring and
environment can manipulate. If we take a JavaScript string and only
apply desugar to it, it is simply an open term. To get the different
eval semantics right, we need to somehow provide bindings to the
new expression we get from applying desugar. In the style of Racket
and E [12, 13], we convert a value from the programming language
into an environment for the new expression; we choose objects.
That is, the eval operator in our semantics takes an additional object
parameter that specifies its environment.

Our implementation of eval thus relies on creating the correct
object to use for an environment. For convenience, we define a
function %makeGlobalEnv that creates a new object with all the
bindings in the default environment. Then, we implement a function,
%configurableEval, that takes a context to evaluate in, and a string to
eval. It then augments the standard environment with two contexts,
%strictCxt and %nonstrictCxt, and desugars the expression in the
environment with those bindings:

1 let %configurableEval = func(context, toEval) {
2 let (env = %makeGlobalEnv()) {
3 env["%strictCxt" = {[proto: context, extensible: true,]}];
4 env["%nonstrictCxt" = context];
5 desugarJ toEval, env K
6 }
7 }

The binding for %strictCxt creates a new scope object, so any
bindings added there won’t affect the context passed in. Since the
proto of the new context points to the provided one, any existing
bindings will still be readable. The binding for %nonstrictCxt uses
the provided context explicitly, so any additions performed inside
the eval will be reflected on that scope as seen by the calling code.

The final bit of subtlety is that desugar is strictness-aware. When
desugar works on a strict-mode program, it wraps it in a let-binding
for the strict context. It also does the analogous binding for non-
strict mode (we don’t show the definition of %defineVar here, which

adds bindings to the provided context):

desugarJ'use strict'; var x;K =
let (#strict = true)

let (%context = %strictCxt) %defineVar(%context, "x")

desugarJvar x;K =
let (#strict = false)

let (%context = %nonstrictCxt) %defineVar(%context, "x")

Thus, the desugaring provides explicit hooks that the implementation
of %configurableEval relies on to hand off the correct environment.
With these pieces in place, it’s easy to define direct and indirect
eval:

1 let %directEval = func(context, toEval, strict) {
2 %configurableEval(context, toEval, strict) }
3 let %indirectEval = func(toEval, strict) {
4 %configurableEval(%globalContext, toEval, strict) }

The %directEval function is called from %maybeDirectEval when a
direct call is made, and %indirectEval is called from the built-in eval

property of the global object. The inner function, %configurableEval,
can use its strictness parameter to determine whether or not to create
a wrapper environment with new bindings. The key difference is
that %directEval passes the current scope, while %indirectEval always
hands off the special global context, which we saw in section 5.2.
The careful construction of contexts and desugaring allows us to
give an account of eval and its interactions with strict mode.

6. Related Work
JavaScript Semantics Our closest point of comparison is λJS [7],
which too is an engineered semantics. However, neither major
contribution of this paper is covered by λJS. It does not handle
getters and setters because they were not a part of the JavaScript
language at the time its semantics was defined. As a result, its object
model is also not set up to admit them easily. In addition, λJS chose
to elide eval.



There are several other existing semantics for various “cores” of
JavaScript, and formalizations of fragments of the language used for
analyses and proof of the language. Many of these were developed
before the ES5 specification was released [1, 2, 9, 11, 17]. None of
those semantics are tested against a real-world test suite.

Considerably less work has been done to formalize ES5 specifi-
cally. Taly et al. presented a semantics for a subset of strict mode,
dubbed SESlight (SES stands for Secure ECMAScript) which they
used to build a verification tool [15]. They acknowledge that SESlight

differs in crucial ways from ES5, and implement a strategy for em-
ulating SESlight on top of ES5, acknowledging that there does not
exist “any rigorous proof of correctness for [the emulation] yet.”
Their semantics was chosen for its security properties rather than
for detailed conformance to the specification; in contrast, our mo-
tivation is conformance. We also note that our semantics for ES5
could provide a basis for such a proof of correctness.

Recently, Hedin and Sabelfeld have presented information-flow
control results based on a core of ES5 that lacks a few features,
including getters and setters, and the control operators try-finally and
break [8]. They state that “the simplifications and omissions have
been chosen to not exclude any information flow challenges...Rather,
we envision that extension to the full language is possible without
further technical development” [8, page 5]. It is unclear whether
this statement is true, since leaving out control-flow operations
can have a significant impact on the verification of information
flow properties. Since our semantics covers the whole (strict mode)
language, tools built atop S5 will not need such (risky) disclaimers.

Objects with Properties and Attributes Maffeis et al. [11] allude
to the possibility of extending their semantics (which was pre-ES5)
with getters and setters, stating “The semantics can be modularly
extended to user-defined getters and setters, which are part of
JavaScript 1.5 but not in the ECMA-262 standard”. They do not
show how to do so in their work.

The technique of passing an object as a self reference to a getter
comes from Di Gianantonio et al. [3], who used the technique for
method invocation. Their semantics uses a small-step relation to
carry the self reference to the method invocation through prototype
lookup; we use a big-step relation for prototype lookup, followed by
a small step to an application. This big-step semantics for member
finding is found in other object calculi that model inheritance, like
CLASSICJAVA and Featherweight Java [6, 10]. We are not aware of
any work that combines these features into a semantic account of
getters and setters, which are a feature of objects in many scripting
languages, like Python, Ruby, and Lua.

Implementing Eval Queinnec describes a strategy for macro-
expanding S-expressions into Lisp programs in a denotational
style [14]. The expansion he describes is quite similar to our E-
Eval, in that it expands a richer syntax to a simpler one in place, and
then proceeds with evaluation. Queinnec defines a pure evaluator
over expanded Scheme programs (pure-meaning), a function for
environment creation create-standard-env, and a function for
adding new bindings to the environment, enrich. His pure-meaning
function corresponds to our reduction relation→, but is denotational,
rather than operational. We use bindings of %context to hand the
shared, and possibly extended, environment to evaled code, rather
than immutably copying it.

Wand and Friedman discuss a reflective tower of evaluators as
well [16]. They describe their evaluator in terms of an environment,
a continuation, and a store. Our environment is much the same, and
ends up being shared between the outer code and the evaluated code.
Our continuation is stored implicitly in the evaluation context, and
our store is, like Wand’s, unchanged during the internal evaluation.
This work reifies the scope used in the target language into the

binding of %context, while their work has a special operation that
reifies the current environment into a first-class value.

Racket and E have a similar strategy for implementing eval. In
both languages, the eval operator requires an explicit parameter
containing the bindings it should use for variables. In E, this
is called a scope, with slots for variables [12]. In Racket, eval
expects a namespace parameter [13]. Both languages have first-
class reifications of their environment, so any program can have
complete control over the execution of new code. However, neither
has formalized their semantics in the fashion shown in this paper.
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A. Appendix: The Rest of S5
We’ve gradually introduced how we model ES5 objects. This section
introduces the rest of the operational semantics of S5. Its syntax
appears in figure 11, and the full definition of the semantics is
presented incrementally throughout this section.

A.1 The Shape of Evaluation
A term in S5’s semantics is a 3-tuple. The store, σ, maps locations
to values v. Object references r map to object literals θ in a separate,
dedicated object store Θ. Finally, terms contain expressions e, which
describe computations on σ, and Θ.

We split the reduction relation → into four categories, corre-
sponding to which portions of the term is manipulated. The four
categories are syntactically distinguished by the type of term they
work over, and the compatible closure of each is a reduction over
σΘ; e. E-Eval uses all portions of the term, and is thus a fifth kind
of top-level expression. These four compatible closures are shown,
along with E-Eval, in figure 12:

1. E-Compat is the traditional compatible closure over the ⇒
relation, which works entirely within evaluation contexts, and
does not modify or inspect the variable store (σ), or the object
store (Θ).

2. E-EnvStore is the compatible closure of the→σ relation, which
may manipulate the variable store, but not the object store. This
relation also replaces the expression in the current evaluation
context E.

3. E-Objects is the compatible closure of→Θ, which manipulates
the object store, but not variable store. It also manipulates
expressions only within the current evaluation context.

4. E-Control is the compatible closure of→e, which handles the
abnormal control flow operators like throw and break. E-Control
reductions may manipulate the entire expression, rather than
just the entire evaluation context, since they need to perform
nonlocal operations, like carrying values from a deeply nested
throw to its corresponding catch block.

5. E-Eval uses the desugar metafunction on its first argument
(which must be a string), to produce an S5 expression for further
evaluation. It also creates a new location in the store, σ, for each
property on the object referenced by its second argument. These
fresh locations are substituted into the body of the expression,
giving the invoker of eval complete control of the evaluated
expression’s lexical bindings.10

A.2 Types of Reductions
Object Reductions The rules in figures 5, 6, 13, and 19 show all
the reductions for objects, written with the→Θ sub-relation. The
motivation and explanation of these reductions is in section 4.

We include here the definition for deleting fields (figure 13),
which we elided in the main body of the paper. Configurable
properties can be deleted, and the expression results in true. If
a non-existent property is deleted, the object is unchanged and the
expression evaluates to false.

We also omitted a discussion of three object attributes earlier:
class, primval and code, which are included in figure 11. Objects
hold an internal class attribute that is a string representation of their
prototype. Constructors that wrap primitive values, like Number and
String, store the primitive that they wrap in the primval attribute.

10 Note that we assume the all strings str are valid variables x; this is true
in our implementation (though our parser may not recognize some tokens
as identifiers). Suitable restrictions can be placed on the allowed strings in
eval environment objects (e.g. no spaces) for particular applications; such
considerations are routine to build on top of the semantics presented here.

r := object references
l := locations
v := null | undefined | str | num | true | false

| r | func(x, · · ·) { e }

These expressions also appear in λJS

e := v | x | l | x:= e | op1(e) | op2(e,e)
| e(e, · · · ) | e;e | let (x = e) e
| if (e) { e } else { e }

| label: x e | break x e | err v
| try e catch x e | try e finally e | throw e

From eval on extend or replace constructs from λJS:
| eval(e,e)
| {ae str:pe,· · ·} object literals
| e[<o>] | e[<o> = e] object attributes
| e[e<a>] | e[e<a> =e] property attributes
| props(e) property names
| e[e]e | e[e=e]e | e[delete e] properties

o := class | extensible | proto | code | primval
a := writable | config | value | enum

ae := [class:e, extensible:e, proto:e, code:e, primval:e]
av := [class:v, extensible:v, proto:v, code:v, primval:v]
pe := [config:e, enum:e, value:e, writable:e]

| [config:e, enum:e, get:e, set:e]
pv := [config:v, enum:v, value:v, writable:v]

| [config:v, enum:v, get:v, set:v]
p := pv | []

op1 := string->num | typeof | log | prim->bool | · · ·
op2 := string-append | + | ÷ | > | · · ·
θ := {[av] str:pv,· · ·}
σ := · | σ, l : v
Θ := · | Θ, r : θ
Eae := [class:E′

, extensible:e, proto:e, code:e, primval:e]
| [class:v, extensible:E′

, proto:e, code:e, primval:e]
| [class:v, extensible:v, proto:E′

, code:e, primval:e]
| [class:v, extensible:v, proto:v, code:E′

, primval:e]
| [class:v, extensible:v, proto:v, code:v, primval:E′

]

Epe := [config:E′
, enum:e, value:e, writable:e]

| [config:v, enum:E′
, value:e, writable:e]

| [config:v, enum:v, value:E′
, writable:e]

| [config:v, enum:v, value:v, writable:E′
]

| [config:E′
, enum:e, get:e, set:e]

| [config:v, enum:E′
, get:e, set:e]

| [config:v, enum:v, get:E′
, set:e]

| [config:v, enum:v, get:v, set:E′
]

E′ := • | E′
:= e | v:= E′ | op1(E′

) | op2(E′, e) | op2(v,E′
)

| E′
(e, · · · ) | v(v, · · ·E′, e, · · · ) | E′

; e | v; E′

| let (x = E′
) e | if (E′

) { e } else { e }
| throw E′ | eval(E′

,e) | eval(v,E′
)

| {Eae str:pe,· · ·}
| {av str1 : pv, · · ·strx : Epe, strn : pe, · · ·}
| E′

[<o>] | E′
[<o> = e] | v[<o> = E′

]

| E′
[e<a>] | v[E′

<a>]
| E′

[e<a> =e] | v[E′
<a> =e] | v[v<a> =E′

]

| props(E′
)

| E′
[e]e | v[E′

]
e | v[v]E

′

| E′
[delete e] | v[delete E′

]

| E′
[e=e]e | v[E′

=e]e | v[v=E′
]
e | v[v=v]E

′

E := E′ | label: x E | break x E
| try E catch e | try E finally e

F := E′ | label: x F | break x F (Exception Contexts)
G := E′ | try G catch e (Local Jump Contexts)

Figure 11. Syntax for S5



Θ; r[str] ⇓ p

P-GetPropFound
Θ(r) = {av · · · str:pv, · · ·}

Θ; r[str] ⇓ pv
P-GetPropNotFound

Θ(r) = {[· · · proto:null · · ·] str':pv, · · ·}
str 6∈ str' · · ·

Θ; r[str] ⇓ []

P-GetPropProto

Θ(r) = {[· · · proto:rp · · ·] str':pv', · · ·}
str 6∈ str' · · · Θ; rp[str] ⇓ p

Θ; r[str] ⇓ p

Figure 10. Attribute lookup through prototypes

Θ; e→Θ Θ; e

E-DeleteFound

Θ(r) = {av str1 : pv1, · · · str: [· · · configurable: true · · ·], strn : pvn, · · · }

Θ′ = Θ[r/{av str1 : pv1, · · · , strn : pvn, · · · } ]

Θ; r[delete str]→Θ Θ′; true

E-DeleteNotFound

Θ(r) = {av str1 : pv1, · · · }

str 6∈ {str1, · · · }
Θ; r[delete str]→Θ Θ; false

Figure 13. Deleting fields

σΘ; e→ σΘ; e

E-Compat σΘ;E 〈e〉 → σΘ;E 〈e′〉 when e⇒ e′

E-EnvStore σΘ;E 〈e〉 → σ′Θ;E 〈e′〉 when σ; e→σ σ′; e′

E-Objects σΘ;E 〈e〉 → σΘ′;E 〈e′〉 when Θ; e→Θ Θ′; e′

E-Control σΘ; e→ σΘ; e′ when e→e e′

E-Eval σΘ;E 〈eval(str,r)〉 →
σ′Θ;E 〈desugarJstrK[str1/l1, · · · ]〉
where Θ(r) = {av str1: [value:v1]· · ·}
and σ′ = σ, l1 : v1, · · ·
and l1, · · · fresh in σ, desugarJstrK

Figure 12. Top-level reductions

Functions in ES5 are actually objects that contain an internal code
attribute. We store S5 func values in the code attribute of desugared
ES5 functions.

λJS Contrast In λJS, class, primval, and code were like proto:
they were properties on objects with special names. Special care
needed to be taken to avoid exposing them to the JavaScript program
in property iterations like for-in loops. Much like with proto, we put
these values into distinguished attributes to remove this overloaded
use of properties. �

Local Reductions The local reductions of the ⇒ relation in
figure 14 are mostly standard. Primitive operations op1 and op2
delegate to a δ function that works over pure values. Figure 15
shows a portion of the δ function, and some of the errors it can
throw. The if statement and sequencing are routine. We note that
eval refers to the currently undefined metafunction desugar; we
return to desugar and its interaction with eval in section 5.3.

e⇒ e

E-Op1 op1(v)⇒ δ1(op1, v)
E-Op2 op2(v1,v2)⇒ δ2(op2, v1, v2)

E-IfTrue if (true) { e1 } else { e2 }⇒ e1

E-IfFalse if (false) { e1 } else { e2 }⇒ e2

E-SeqPop v; e⇒ e

Figure 14. Expression-local reductions

δ1 : op× v = v + err v

δ(typeof, r) = "object"

δ(typeof, null) = "object"

δ(typeof, undefined) = "undefined"

δ(typeof, num) = "number"

δ(typeof, str) = "string"

· · ·

δ2 : op× v × v = v + err v

δ(string-append, str1, str2) = str1 ^ str2
δ(string-append, num, str) = err "num-string-append"

δ(string-append, r, str) = err "obj-string-append"

· · ·

Figure 15. A portion of the δ function



σ; e→σ σ; e

E-Assign σ; l:=v →σ σ[l/v]; v
E-Loc σ; l→σ σ;σ(l)
E-Let σ; let (x = v)e→σ σ, l : v; e[x/l]

where l fresh in σ, e, v
E-Apply σ; func(x1,· · ·, xn) { e }(v1,· · ·,vn)

→σ σ, l1 : v1, · · · , ln : vn; e[x1/l1, · · · , xn/ln]
where l1, · · · , ln fresh in σ, e, v1, · · · , vn

Figure 16. Variable store reductions

Variable Store Reductions The reductions that affect the variable
store in the→σ are shown in figure 16. Assignment replaces the
value in the store at the location of lwith the new value. Replacement
is written σ[l/v]. In E-Let, we allocate a fresh location, bind it to
the value of the binding in σ, and use capture-avoiding substitution
(written e[x/v]), to replace instances of the variable with the new
location. On application with E-App, fresh locations are created for
each formal argument with the appropriate values in the store, and
the formal arguments are replaced with the appropriate locations via
substitution.11

λJS Contrast λJS had explicity ref and deref operators. S5 cre-
ates references implicitly, which experience shows is a default that
leads to more understandable desugared code. A simple check for
assignable variables can recover guarantees about immutability that
are lost by implicitly creating new locations. �

Control Flow Reductions The rules for control flow are detailed
and somewhat subtle, but completely unchanged from [7, figure
10], modulo a new definition of evaluation contexts for the new
expressions in S5.

A.3 Reflection: A Design Tradeoff
Our semantics up to this point is adequate for modelling JavaScript’s
objects but for one omission: reflecting on property names. In ES5,
we can request all the property names of an object, and also ask
about the presence of properties anywhere on the prototype chain:

1 var o = {x: "something", y: "something else"};
2 var o2 = Object.create(o);
3 Object.getOwnPropertyNames(o); // evaluates to [”x”, ”y”]
4 Object.getOwnPropertyNames(o2); // evaluates to []
5 "x" in o2; // true
6 o2.hasOwnProperty("x"); // false

Adding support for reflective operators like .keys requires some
thought, since it needs to provide a way to compute over a structured
form of data: the set of property names. We considered two main
approaches: keeping the state of the computation in a term, and
returning a structured value of some kind.

Folding within a Term Building up the computation in the term
is attractive as it yields a clean semantics at first glance. Figure 18
shows a potential semantics that uses this strategy. The names
syntactic form takes a function in its second position, and folds
it over all of the string names of the object. From this primitive,
we could write computations that build up lists, check for property
presence, etc.

If all we needed was an interpeter and a semantics, we would be
happy with this semantics. However, we have started building several
additional tools on top of S5, so names would need to fit into all
those frameworks as well. In particular, we use a CPS transformation
to simplify control flow. Performing a CPS transformation on names

11 We use a style for allocation similar to Chapter 9 of Felleisen et al. [5].

is anything but straightforward; the easiest solution is to make a
new, CPS-names syntactic form with two extra positions that carries
success and exception continuations along with it:

names([str1, · · ·],vf,vi,vsuccess,vfailure)

Along with this, there would need to be new reduction steps for
the CPS-names, so that each invocation of vf could be passed a
suitable continuation. This is hardly an elegant solution, as it requires
having a separate CPS-interpreter step for names, so we looked for
alternatives. Having a form that returns a value with all of the string
names inside it would be ideal, but what kind of value should be
returned?

Creating a Value The natural choice for concretely representing
the set of property names would be a list or a sequence. The
semantics of S5 we’ve presented so far hasn’t included sequences
or lists; objects and functions are the only structured values. If
we were to add sequences, we would need to add operators over
sequences. Further, sequences have no meaning in JavaScript, so our
compiling process would need to avoid ever exposing sequences to
JavaScript programs, creating a greater divide between the semantics
and JavaScript.

A less natural choice would be to allocate a new object, and
populate its properties in some well-known way with the strings
from the object being reflected on. For example, we could choose
the strings "0", "1", etc, and rely on the incrementing and number to
string operations in the rest of the semantics to perform lookups into
the newly allocated object. This roughly lines up with the JavaScript
convention of having “array-like” objects with numeric properties.

For now, we’ve chosen to allocate a new object, using the props
rule in figure 19. Given a different compiling strategy that leveraged
lists and sequences more, this choice could be different. In the
current construction, in exchange for one slightly complicated rule,
we avoid growing the semantics with a construct that is dissonant
with the essence of JavaScript.

λJS Contrast λJS has a stateful δ-function that handles property
iteration by keeping track of an iterator on subsequent uses. To keep
the type of the δ function simple, S5 makes property reflection a
part of the full reduction relation over objects. �



e→e e

E-Throw E 〈throw v〉 →e E 〈err v〉
E-Catch E 〈try F 〈err v〉 catch e〉 →e E 〈e(v)〉

E-Uncaught-Exception F 〈err v〉 →e err v
E-Finally-Error E 〈try F 〈err v〉 finally e〉 →e E 〈e; err v〉

E-Finally-Break E 〈try G 〈break x v〉 finally e〉 →e E 〈e; break x v〉
E-Catch-Pop E 〈try v catch e〉 →e E 〈v〉

E-Finally-Pop E 〈try v finally e〉 →e E 〈e; v〉
E-Break E 〈label: x G 〈break x v〉〉 →e E 〈v〉

E-Break-Pop E 〈label: x1 G 〈break x2 v〉〉 →e E 〈break x2 v〉
when x1 6= x2

E-Label-Pop E 〈label: x v〉 →e E 〈v〉
E-Break-Break E 〈break x1 G 〈break x2 v〉〉 →e E 〈break x2 v〉

Figure 17. Abnormal control flow reductions

E-NamesInit
Θ(r) = {av str1:pv1, · · ·}

Θ; names(r,vf,vi)→ Θ; names([str1, · · ·],vf,vi)
E-NamesFinish

Θ; names([],vf,vi)→ Θ; vi

E-NamesPop
Θ; names([str1, str2 · · ·],vf,vi)→ Θ; names([str2 · · ·],vf,vf(vi, str1))

Figure 18. A false start at iterating over field names

Θ; e→Θ Θ; e

E-GetPropNames
Θ(r) = {pv str0:v0, · · · strn:vn}

Θ; props[r]→Θ Θ;


 extensible:false,

proto:null,
code:undefined,
primval:undefined

 0:

 config:false,
enum:false,
value:str1,
writable:false

 · · · n:
 config:false,

enum:false,
value:strn,
writable:false




Figure 19. Reflecting on property names


