The Design and Implementation of

a Dataflow Language for Scriptable Debuggding

Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro,
Shriram Krishnamurthi, Steven P. Reiss
Computer Science Department
Brown University
115 Waterman Street, Providence, RI 02912, USA

January 17, 2006

Abstract

Debugging is a laborious, manual activity that often involves the repetiticcommon operations. Ideally,
users should be able to describe these repetitious operations as littlenpsoddabuggers should therefore be pro-
grammable, oscriptable The operating environment of these scripts, however, imposesstitereesign challenges
on the programming language in which these scripts are written.

This paper presents our design of a language for scripting debugtieeslanguage offers powerful primitives
that can precisely and concisely capture many important debuggingoanprehension metaphors. The paper also
describes a pair of debuggers, one for Java and the other for 8¢beitt in accordance with these principles. The

paper includes concrete examples of applying this debugger to pregram

1 Introduction

Debugging is a laborious part of the software developmemtgss. Its unpleasantness is exacerbated by many con-
temporary debuggers, which offer only primitive capalgtit Indeed, even with the growing sophistication of visual
programming environments, the underlying debugging toeisain fairly primitive.

Debugging is a complex activity because there is often a gtead of knowledge about a program that is not
explicitly represented in its execution. For instance,gma a programmer trying to debug a large data structure that

appears not to satisfy an invariant. He might set a breakpexamine a value, compare it against some others and,

*This research was partially supported by NSF grant CCR-8305
A preliminary version of this paper appeared in the 18#€ International Conference on Automated Software Engingdrse 2004) [24].



not finding a problem, resume execution, perhaps repedtisgtocess dozens of times. This is both time-consuming
and dull; furthermore, a momentary lapse of concentratiag oause him to miss the bug entirely.

The heart of automated software engineering lies in idgntif such repetitive human activities during software
construction and applying computational power to ameleotaem. For debuggers, one effective way of eliminating
repetition is to make themcriptablg so users can capture common patterns and reuse them irihe fihe problem
then becomes one of designing effective languages fortsaigdebuggers.

Debugging scripts must easily capture the programmegsitrand simplify the burdensome aspects of the activity.
To do this, they must meet several criteria. First, they mach the temporal, event-oriented view that programmers
have of the debugging process. Second, they must be povesrfuigh to interact with and monitor a program’s
execution. Third, they should be written in a language thatuifficiently expressive that the act of scripting does
not become onerous. Finally, the scripting language muptéetical: users should, for instance, be able to construct
program-specifienethods of analyzing and comprehending data. For exarmgses should be able to create redundant
models of the program’s desired execution that can be cadpeith the actual execution. This calls for a library faf
and other primitives more commonly found in general-puedasguages than in typical domain-specific languages.

In this paper, we present the design and implementation oftaractive scriptable debugger called MzTake (pro-
nounced “miz-take”). Predictably, our debugger can pauskrasume execution, and query the values of variables.
More interestingly, developers can write scripts that m#te debugging tasks, even in the midst of an interactive
session. These scripts are written in a highly expressivguage with a dataflow evaluation semantics, which is a
natural fit for processing the events that occur during tleeetion of a program. In addition, the language has access

to a large collection of practical libraries, and evaluatesn interactive programming environment, DrScheme.

2 A Motivating Example

Figure 1 shows a Java transcription of Dijkstra’s algoritlaspresented imtroduction to Algorithmg¢8]. Recall that
Dijkstra’s algorithm computes the shortest path from a seunode to all the other nodes in a graph. It is similar to
breadth-first search, except that it enqueues the nodesdangao the totabistancenecessary to reach them, rather
than by the number ddteps The length of the shortest path to a node (so far) is stor¢ldeimeightfield, which is
initialized to the floating point infinity. The algorithm et on the fact that the shortest-path estimate for the ndttie w
the smallest weight is provably optimal. Accordingly, thgagithm removes that node from the pool (@stractMin),
then uses this optimal path to improve the shortest patmatgiof adjacent nodes (viaelax). The algorithm makes
use of a priority queue, which we also implemented.

Figure 2 shows a concrete input graph (wh€rat location(100, 125), denotes the source from which we want to
compute distances) and the output that results from exegtitis algorithm on that graph. The output is a set of nodes
for which the algorithm was able to compute a shortest pathekch node, the output presents the node’s number, its

coordinates, and its distance from the source along theéestqrath.



class DijkstraSolver {

public HashMap backtrace =ew HashMap ();

private PriorityQueue q =new PriorityQueue ();

public DijkstraSolver(DirectedGraph graph,
Node source){
source .weight = 0.0;
g.addAll(graph.getNodes ());

while (1q.isEmpty ()) {
Node node = (Node)q.extractMin ();
List successors = graph.getSuccsOf(node);
for (Iterator succlt = successors.iterator ();
succlt.hasNext(); )
relax (node, (Node)succlt.next());
}
System.out. printin("Resultbacktrace\n” +

backtrace .keySet());

public void relax(Node origin, Node dest)
double candidateWeight =
origin.weight + origin.distanceTo(dest);
if (candidateWeight< dest.weight) {
dest.weight = candidateWeight;

backtrace.put(dest, origin);

Figure 1: Implementation of Dijkstra’s Algorithm




1 3 4 5

Resul t backtrace:

[[node 1 : x 150 y 100 wei ght 55],
[node 2 : x 150 y 150 wei ght 55],
[node 3 : x 200 y 100 wei ght 105]]

Figure 2: Sample Input and Output

As we can see, this output is incorrect. The algorithm failprovide outputs for the nodes numbered and6,
even though the graph is clearly connected, so these argeadisfance front.

Since the implementation of Dijkstra’s algorithm is a dir&ranscription from the text (as a visual comparison
confirms), butve implemented the priority queue, we might initially focus @ttention on the latter. Since checking
the overall correctness of the priority queue might be gaatld difficult, we might first try to verify a partial correct-
ness criterion. Specifically, if we cadktractMinto remove two elements in succession, with no insertiorziuveen,
the second element should be at least as large as the first.

Unfortunately, most existing debuggers make it difficulatdomate the checking of such properties, by requiring
careful coordination between breakpoint handlers. Fomgia, ingdb [28] we can attach conditional breakpoint
handlers—which are effectively callbacks—to breakpointsnsert and extractMin and so observe values as they
enter and leave the queue. Figure 3 illustrates the contrelritlationship between the target and the debugging script
when we use callbacks to handle events. Starting at the fipphle target program runs for a while until it reaches the
extractMinfunction; control then shifts to the debugger, which inmkiee callback. The callback makes a decision
to either pause or resume the target. Eventually, the tamygtnues and runs until it reaches the breakpoint on the
extractMinfunction for a second time. If we are monitoring a temporaparty, such as the ordering of elements
taken out of a priority queue, the decision to pause or resinme¢arget on the second interruption will depend on
data from the first callback invocation. Observe that, far pnogram on the left, it is natural to communicate data
between the parts of execution, because it consists of agéeghread of control. In contrast, the “program” on the
right is broken up into many disjoint callback invocatioss,we need to use mutable shared variables or other external
channels to communicate data from one invocation to the next

All this is simply to check for pairs of values. Ideally, we mtdo go much further than simply checking pairs.
In fact, we often want to create a redundant model of the di@tusuch as mirroring the queue’s intended behavior,
and write predicates that check the program against thissmddpon discovering a discrepancy, we might want

to interactively explore the cause of failure. Moreover, wight find it valuable to abstract over these models and



Pr Debugger

extractMi breakpoint

condition

extractMi breakpoint

condition

se)

Figure 3: Control Flow of Program and Script




predicates, both to debug similar errors later and to buitdensophisticated models and predicates as the program
grows in complexity.

In principle, this is what scriptable debugging should aepbsh well. Unfortunately, this appears to be difficult
for existing scriptable debuggers. For example, Coca [#2f®a rich predicate language for identifying interegtin
data and points in the execution, but it does not offer aifadibr relating values across different points in time,
so the programmer would still need to monitor this criterioanually. UFO [4] supports computation over event-
streams, but does not support interaction. Dalek [26] isradtive and offers the ability to relate execution across
time, but provides limited abstractions capabilities, soaould not use it to build the predicates described in this
paper. In general, existing scriptable debuggers appédz iwsufficient for our needs; we discuss them in more detail
in section 11.

This paper presents our new language and infrastructuradidaess the weaknesses found in existing debuggers.
In section 3, we describe the goals and observations that dxaided our work, and in section 4, we introduce the
dataflow language FrTime (pronounced “father time”), onadprhich we have built MzTake. We reflect on lessons
learned from this example in section 6. In Section 7 and 8e@&j we describes the design and the implementation,
respectively. Section 9 discusses strategies to conga@htbcution of a target program. Section 10 provides additjo

illustrative examples of the debugger’s use.

3 Desiderata

We believe that users fundamentally view debugging as adesthpctivity with the running program generating a
stream of events (entering and exiting methods, settingegaland so on). They use constructs such as breakpoints to
make these events manifest and to gain control of execwtiarhich point they can inspect and set values before again
relinquishing control to the target program. To be maxignakeful and minimally intrusive, a scriptable debugger
should view the debugging process just as users do, but rmaésyi to automate tedious activities.

Concretely, the scripting language must satisfy severpbmant design goals.

1. While debuggers offer some set of built-in commanggrs often need to define problem-specific commadnds
the preceding example, we wanted to check the order of elisregtracted from a queue; for other programs, we
can imagine commands such as “verify that this tree is baldhd&Vhile obviously a debugger should not offer
commands customized to specific programs, it should pravidewerful enough language for programmers to
capture these operations easily. Doing so often requiréshaset of primitives that can model sophisticated

data, for instance to track the invariants of a program’a.dat

2. Programs often contain implicit invariants. Validatthgse invariants requires maintaining auxiliary datacstru
tures strictly for the purpose of monitoring and debugging.our example, although Dijkstra’s algorithm

depends on nodes being visited in order of weight, there idata structure in the program that completely



captures the ordered list of nodes (a priority heap satisfigsa weaker ordering relation). Lacking a good de-

bugging framework, the developer who wants to monitor momiaity therefore needs to introduce explicit data

structures into the source. These data structures may etthagspace- and time-complexity of the program,

so they must be disabled during normal execution. All thesaahds complicate maintenance and program
comprehension. Ideallg debugger should support the representation of such iamgsioutside the program’s

source (In related work, we explain why approaches like contracid aspects [3] are insufficient.)

3. Debugging is often a process of generating and falsiffiyigotheses.Programmers must therefore have a
convenient way to generate new hypotheses while runninggram. Any technique that throws away the

entire debugging context between each attempt is diseiptithis exploratory process.

4. Since the target program is a source of events and delguiggin event-oriented activitthe scripting language
must be designed to act as a recipient of evefriscontrast, traditional programming languages are aesig
for writing programs that are “in control’—i.e., they determa the primary flow of execution, and they provide

cumbersome frameworks for processing events. This podeall@rnge for programming language design.

5. As a pragmatic mattedebuggers should have convenient access to the fickacilities provided by modern
consolesso they can, for instance, implement problem-specific fatess. A custom language that focused
solely on the debugging domain would invariably provideydithited support for such activities. In contrast,

the existence of rich programming libraries is importamttfe widespread adoption of a debugging language.

To accomplish these goals, a debugging language must addoemflict central to all language design: balancing
the provision of powerful abstractions with restrictiohsitt enable efficient processing. This has been a dominant
theme in the prior work (see section 11). Most prior solugibave tended toward the latter, while this paper begins
with a general-purpose language, so as to explore the spagpr@ssion more thoroughly. This results in some loss
of machine-level efficiency, but may greatly compensatétfioy saving users’ time. Furthermore, the functional style

we adopt creates opportunities for many traditional coengptimizations.

4 The FrTime Programming Language

Instead of implementing our debugging language from skrate have built it atop the language FrTime—a dataflow
language (with Lisp-based syntax) that supports statgfetations and provides a library of data structures and-prim
itives for most common programming activities [7]. The laage is inspired by work on Functional Reactive Pro-
gramming [13], whose motivation is to allow declarative egsion of reactive systems.

The motivation for FrTime is easy to explain with a simplerexde. Most programming languages have a library
primitive for accessing the current time. A variable thaldsahe response from this primitive is, however, assigned

only when the primitive returns; the value becomes outdatedxecution continues, unless the program explicitly



[T clad rScheme ™ ==l

File Edit Show Language Scheme Special Help

Scheme T [=][=][5]

File Edit Show Language Scheme Special Help

(:z:;% ‘::Sfep Q, Check S\fnmxl ’Execufel @Breqkl (:z:;% ‘::Sfep Q, Check S\fnmxl ’Execufel @Breqkl
Welcome to DrScheme, version 205, & Welcome to DrScheme, version 205, &
Language: FrTime. Language: FrTime.

> seconds > seconds

1068177663 1068177688

> {even? seconds) > {even? seconds)

#f #t

> clock > clock

"20:227:43 14-10-03" "20:28:08 14-10-03"

> ¢sin (/ milliseconds 10000.0)) > ¢sin (/ milliseconds 10000.0))

-0.9742268249417414 7 0D.591142808312077 7

I} I}
11:2 Reod.ﬂ'WrHeD not running 11:2 Reod.ﬂ'WrHeD not running

Figure 4: Screenshots of FrTime in Action

performs operations to keep the value current. In contFaime provides built-in support faime-varying values
calledbehaviors that automatically update with the passage of time. Faaint®, the expressiaecondss a built-in
behavior whose value updates every second in lockstep etbytstem clock.

Any expression that uses a time-varying value itself besotime-varying. For instance, the expressiexagh?
secondschanges every time the value écondshanges (i.e., every second), alternating between thevalue
andfalse. The implementation of FrTime is responsible for autonadlyctracking dependencies between primitive
signals and expressions that depend on them, orderingdkepsedencies, forcing fresh computation, and propagating
values whenever they change. Behaviors can take waildefinedwhich acts as a bottom. Any operation applied to
undefinedalso returnaindefined

FrTime offers run-time support through the DrScheme pnogméng environment [15]. Firstly, the rich libraries
of DrScheme are available for FrTime, and are automatidéthd to the time domain, so they recompute when
their arguments update. Secondly, the DrScheme prompgméss behaviors and automatically updates the display
of their values as they change over time. Figure 4 shows thme $arScheme session, displaying several FrTime
expressions, captured (untouched) twenty-five seconds. apae expressions we evaluated have not changed, but
their answers have—the last three digits of the Unix time prsged from “663” to “688”, and the displayed values
updated accordingly. Indeed, values returned from FrTirgressions are animated, correctly representing their
time-varying nature.

In addition to behaviors, FrTime also hagents Whereas behaviors have a value at any point in time, eveats ar
discrete: for instance, the evekay-strokess an infinite stream that yields a new value every time a kgyéssed.
FrTime provides a set of functional combinators that pre@&nt-streams; for instand®ld converts event-streams
into behaviors by consuming an event-stream and returnb@havior whose value is always the most recent value in
the stream. Thushld key-strokesnone-yet) is a behavior whose value is initially the symbabhe-yet and, from
the first keystroke onwards, the value of the last key pressed

FrTime upholds a number of guarantees about a program’siegacincluding the order in which it processes



(definec (start-vm" DijkstraTest")) (defineviolations

(definequeug(jclassc PriorityQueug) (not-in-order(merge-e remove@nserts. -=> . 'reset))))
(definelatest-violation(hold violationsfalse))

(defineinserts (define (nV)

(trace ((queue. jdot . add) . jloc . entry)

(bind (item) (item. jdot . weighy)))

(set-running-e! (violations. -=> . false)))

(defineremoves
(trace ((queue. jdot . extractMin . jloc . exit)

(bind (resul)) (result. jdot . weigh))))

Figure 5: Monitoring the Priority Queue

events and the space required to do so:

e Ordering of event processing Since FrTime must listen to multiple concurrent event sesrand recompute
various signals in response, we might worry about the poisgibf timing and synchronization issues. For
example, if signah depends on signal, we would like to know that FrTime will not recompugeusing an out-
of-date value fronb. Fortunately, FrTime’s recomputation algorithm is awardaiaflow dependencies between
signals and updates them in a topological order, startio the primitive signals and working towards their

dependents.

e Space consumption FrTime only remembers the current values of behaviors hedhtost recent occurrences
of events. Thus, if the program’s data structures are balinthen the program can run indefinitely without
exhausting memory. If the application needs to maintaitohiiss of particular event streams, it can use Fr-
Time primitives likehistory-eor accum-bfor this purpose. The application writer must apply theserafions

explicitly and should therefore be aware of their cost.

The interested reader can learn more about the languageaffrmmpanion paper [7] or by experimenting with the

implementation, which is part of the DrScheme distribution

5 Debugging the Motivating Example

We are now ready to return to our example from section 2. Asxpéa@ed previously, our implementation of Dijk-
stra’s algorithm employs a priority queue coded by us. Iritaag we noted that our implementation BfjkstraSolver

is a direct transcription of the pseudocode in the book. Wothesized that the bug might be in the implementation
of the priority queue, and that we should therefore monttobehavior. Recall that the partial correctness propeety w

wanted to verify was that consecutive pairs of elementseted from the queue are in non-decreasing order.



inserts . °

295 55.9
removes — o . . . . =
15.3 40.6 29.5 75.1 +inf.0 55.9
(inserts . —=> . ’reset) . °
‘reset ‘reset
(merge—e removes ...) o o . . ° . . .
15.3 40.6 ’reset 29.5 ’reset 75.1 +inf.0 55.9
(history—e ... 2) ° . . . ° ° ° -
(15.340.6) (40.6 "reset) «es (reset75.1) (75.1 inf.0) (+inf.0 55.9)
violations °
(+inf.0 55.9)

Figure 6: Event Streams

Figure 5 presents a debugging script that detects vioktbthis property. In the script, the varialiés bound to
a debugging session f@rjkstraTest a class that exercises the implementation of Dijkstrajedhm. The invocation
of start-vminitiates the execution of the Java Virtual Machirme’nt) on this class, and immediately suspends its
execution pending further instruction.

The expressionj¢lass c PriorityQueué creates a FrTime proxy for tHeriorityQueueclass in Java. Since Java
dynamically loads classes on demand, this proxy is a timginguvalue: its value isindefinedat first, and stays so
until the class is loaded into thiem. The operatojclasstreats its second argument specialyiorityQueueis not a
variable reference, but simply the name of the target cliaskisp terminology,jclassis aspecial form So aregdot
(which returns the value of a field) afidc (which selects a location within a method).

Next, we install tracing around the methaatdd andextractMinof the priority queue. Aracepointis a FrTime
event-stream specifically designed for debugging: theastreontains a new value every time the Java program’s

execution reaches the location marked by the tracepointci@tely, the expression

(defineinserts
(trace ((queue. jdot . add) . jloc . entry)
(bind (item) (item. jdot . weighd)))

installs a tracepoint at the entry of tadd method ofqueue* The result otrace is an event stream of values. There is
an event on the stream each time the target program reach@ddimethod. To generate the values in the stream, the
trace construct evaluates its body; this body is re-evaluate@#doh event. In this instance, we use ibired construct

to reach into the stack of the target, find the value of theatdgitem (in the target), and bind it to the identifigem

(in the body of thebind). In turn, the body of théind extracts theveightfield from this item. This weight becomes
the value of the event.

The identifierinsertsis therefore bound to a FrTime event-stream consistingefatlights of all nodes inserted

IHere and in the rest of this paper, we use the infix notatiopetgd by FrTime: X. op . y) is the same ap x ) in traditional Lisp syntax.

10



(defineinserters

(define (not-in-order § (inserts. ==> . insert-in-mode))

(filter-e (defineremovers

(match-lambda (removes ==> . remove-from-modg)

[( reset _) false]

[(-"reset) false] (definemodel
[(previous current (> previous curren) (accum-b(merge-e inserters removers
(history-e €2))) (convert-queue-to-listhind (q) g))))
Figure 7: The Monitoring Primitive Figure 8: The Redundant Model

into the priority queue. The identifisemovesds bound correspondingly to the weights of nodes removeah fitoe
gueue byextractMin

We initially want to perform a lightweight check that deténes whether consecutivemove (not separated by
aninserf) are non-decreasing. To do this, we merge the two everdgraggnsertsandremoves Since we are only
interested in consecutive, uninterrupted removals, theitmioresets upon each insertion. The following FrTime code
uses the combinates=> to map the values in thasertsstream to the constantset, which indicates that the monitor

should reset:
(merge-e remove@nserts. -=> . 'reset))

The result of this expression is illustrated in Figure 6. His tgraph, time flows towards the right, so earlier events
appear to the left. Each circle represents one event ocmai@n the corresponding stream. The first three lines show
the streams we just discussedserts removesand the mappethserts The fourth timeline of the figure shows that
the merge-eexpression evaluates to an event-stream whose events tre ander they are encountered during the
run. The insert events have been mapped to the constang tlthitemove events are represented by the weight of the
node.

The last two timelines in Figure 6 depict the next two streamsited by the script. The merged stream is passed
to the core monitoring primitivepot-in-order, shown in Figure 7. This usédsstory-eto extract the two most recent
values from the stream and processes each pair in turnelsfibiut those pairs that do not exhibit erroneous behavior,
namely when one of the events israset or when both events reflect extracted weights that are ingheorder. The
result is a stream consisting of pairs of weights where thghtier node is extracted first, violating the desired order
We call this streamviolations

The FrTime identifiedatest-violationis bound to a behavior that captures the last violation (uie FrTime
combinatorhold). If the priority queue works properly, this behavior widltain its initial valuefalse (meaning “no

violation so far”). If it ever changes, we want to pause ke so that we can examine the context of the violation.

11



To do this, we use the primitiveet-running-e!, which consumes a stream of boolean values. Cadlatgrunning-e!
launches the execution of the target program proper, anil keep on consuming future events on the given stream:
when an event with the valdelse occurs thesvm pauses, after which, when an event with a true value occam/th
resumes. Since we anticipate wanting to observe numerous violatimesdefine the (concisely named) abstraction
nv, which tells thesvm to run until thenextviolation occurs.

At the interactive prompt, we typ@&y). Soon afterward, thevm stops, and we query the valuelafest-violation

> (nv)

> latest-violation

(+inf.0  55.90169943749474)

This output indicates that the queue has yielded nodes whiegghts are out of order. This confirms our suspicion

that the problem somehow involves the priority queue.

Continuing Exploration Interactively

To identify the problem precisely, we need to refine our madehe priority queue. Specifically, we would like to
monitor the queue’s complete black-box behavior, whichhhfiyovide insight into the actual error.

With the JvM paused, we enter the code in figure 8 to the running FrTimdasesd his code duplicates the
priority queue’s implementation using a sorted list. Whilaer, it provides redundancy by implementing the same
data structure through an entirely different techniquégctvishould help identify the true cause of the efror.

We now explain the code in figure 8. The identifirodelis bound to a list that, at every instant, consists of the
elements of the queue in sorted order. We decompose itstiefito improve readability. The valuasertersis an
event-stream of FrTime procedures that insert the valudedtb the priority queue into the FrTime model=£>
applies a given procedure to each value that occurs in art-etretam); similarlyremoversis bound to a stream of

procedures that remove values from the queue. The code

(accum-b(merge-e inserters removers

(convert-queue-to-listbind (q) g)))

merges the two streams of procedures usirggge-gand usesiccum-hto apply the procedures to the initial value of
the model.accum-baccumulates the result as it proceeds, resulting in an egdabdel that reflects the application

of all the procedures in ordeaccum-breturns a behavior that reflects the model after each tremsttion. We must

2|n Scheme, any value other théalse is true.
3Since the property we are monitoring depends only on the fogights, not their identities, the model avoids potentialeing discrepancies

between equally-weighted nodes.

12



initialize the model to the current content of the queue. T$er-defined procedummnvert-queue-to-ligelided here
for brevity) convertgy's internal representation to a list.

Having installed this code and initialized the model, weures execution witmv. At the next violation, we
interactively apply operations to compare the queue’sergragainst its FrTime model (the list). We find that the
gueue’s elements are not in sorted order while those in thdehare. More revealingly, the queue’s elements are not
the same as those in the model. A little further study showasttie bug is in our usage of the priority queue: we have
failed to account for the fact that the assignmerdest.weighin relax (figure 1)updateghe weights of nodes already
in the queue. Because the queue is not sensitive to theséegpedat it returns is no longer the smallest element
in the queue. (Of course, these steps—of observing the giccy between the model and the phenomenon, then
mapping it to actual understanding—require human ingenuity

On further reading, we trace the error to a subtle detail endbscription of Dijkstra’s algorithm in Cormen, et
al.'s book [8, page 530]. The book permits the use of a binagph(which is how we implemented the priority queue)
for sparse graphs, but subsequently amends the pseudacsa that the assignment dest.weighmust explicitly
invoke a key-decrement operation. Our error, therefore, med in the implementation of the heap, but in using the

(faster) binary heap implementation without satisfyirsy(#itronger) contract.

6 Reflections on the Example

While progressing through the example, we encounter sepeapérties mentioned in the desiderata that make FrTime

a good substrate for debugging. We review them here, poipbbyt.

1. The DrScheme environment allows the user to keep and ehsteactions across interactive sessions. For
instance, to monitor the priority queue, we define proceslsteh asiot-in-order and convert-queue-to-list
Such abstractions, which manipulate program data strestir a custom fashion, may be useful in finding
and fixing similar bugs in the future. They can even becomegfahe program’s distribution, assisting other
users and developers. In general, debugging scripts caaresgpme of th@ntologyof the domain, which is

embedded (but not always explicated) in the program.

2. We discover the bug by monitoring an invariant not exgligepresented in the program. Specifically, we keep
a sorted list that mirrors the priority queue, and we obs#raeits behavior does not match the expectations of
Dijkstra’s algorithm. However, the list uses a linear timedrtion procedure, which eliminates the performance
benefit of the (logarithmic time) priority queue. Fortungtey expressing this instrumentation as a debugging
script, we cleanly separate it from the program’s own code, leence we incur the performance penalty only

while debugging.

3. The interactive console of DrScheme, in which FrTime paots run, enables users to combine scripting with

traditional interactive debugging. In the example, we figibe the priority queue at a coarse level, which

13



v

narrows the scope of the bug. We then extend our script totovothie queue in greater detail. This ability
to explore interactively saves the programmer from havingestart the program and manually recreate the

conditions of the error.

. The dataflow semantics of FrTime makes it well suited toaach recipient of events and to keep models in a

consistent state, even as the script is growing. Duringxbeidion of the Dijkstra solver, FrTime automatically
propagates information from the variabiesertsandremovego their dependents, tholationsvariable and the
set-running-e! directive. Also, when we add the variabteode] FrTime keeps it synchronized witholations

without any change to the previous code.

. The libraries of FrTime are rich enough to communicaté wkternal entities. The programmer also has access

to the programming constructs of DrScheme (higher-ordectfans, objects, modules, pattern-matching, etc.),
which have rigorously defined semantics, in contrast to @ constructs that populate many scripting
languages. Further, since FrTime has access to all theiéibria DrScheme [15], it can generate visual displays

and so on, as we will see in section 10.1.

Design

The design of MzTake contains four conceptual layers tHaearaturally as a consequence of the goals set forth in

the desiderata (Section 3).

First, we need abstractions that capture the essentididmadity of a debugger. These are: observing a program’s

state, monitoring its control path, and controlling its @xon. MzTake captures them as followlsind retrieves

values of program variablegace installs trace points, anget-running-e! lets the user specify an event stream that

starts and stops the program.

Second, we need a way to navigate the runtime data struatéitbs target program. For a Java debugger, this

means providing a mechanism for enumerating fields andhgpokp their values.

Third, and most importantly, we need to be able to write sstipat serve as passive agents. Most general-purpose

languages are designed to enable writing programs thatat&im¢ world, starting with a “main” that controls the order

of execution. In contrast, a debugging script has no “matré¢annot anticipate what events will happen in what order,

and must instead faithfully follow the order of the targebgmam’s execution. Therefore we believe that a semantic

distance between the scripting language and the kind oétdagguage we are addressing is a necessary part of the

solution? Since the script's execution must be driven by the arrivaladfies from the program under observation, a

dataflow language is a natural choice.

Once we have chosen a dataflow evaluation semantics, we msider how broad the language must be. It

is tempting to create a domain-specific debugging langulagiedffers only a small number of primitives, such as

40Our work additionally introduces syntacticdifference when the target language is Java, but this camajperpd over by a preprocessor.

14



<debug-expr = (bind (<var>...)<expr>...)
| (trace <expr> <expr>)

| (set-running-e! <expr>)

<inspect-expr = (start-vm<expr>)
| (jclass<expr> <name>)
| (jloc <expr> <loc-expr>)

| (jdot <expr> <name>)
<loc-expr> = <number> | entry| exit

<frtime-expr> = (map-e<expr> <expr>)
(filter-e <expr> <expr>)
(merge-e<expr> ...)
(accum-b<expr> <expr>)
(changes<expr>)

(hold <expr> <expr>)

|
|
|
|
|
| (value-now<expr>)
|  seconds
| key-strokes
| (lambda(<var>...) <expr>...)
| (<expr>...)
| (if <expr> <expr> <expr>)
| ... other Scheme expressions
<expr> = <debug-expr
|  <inspect-expr

| <frtime-expre>

Figure 9: MzTake Grammar

15



those we have introduced here. Unfortunately, once thetdtais gained control, it may need to perform arbitrary
computational tasks, access libraries for input/outpad, so forth. This constant growth of tasks makes it imprattic
to build and constantly extend this domain-specific languaad furthermore it calls into question the strategy of
restricting it in the first place. In our work, we thereforeoal/the domain-specific strategy, though we have tried to
identify the essential elements of such a language as a tufdeure language designers.

Having chosen a general-purpose strategy, we must stiitifgehe right dataflow language. Our choice in this
paper is informed by one more constraint imposed by debggdite need to extend and modify the dataflow compu-
tation interactively without interrupting execution. Amgdataflow languages, this form of dynamicity appears to be
unique to FrTime.

We present the grammar of the MzTake language in Figure 9.gfdmamar is presented in layers, to mirror the
above discussion. The first layer, representeecdgbug-expr, presents the most essential language primitives. The
second layer, consisting efinspect-expr and<loc-expr>, represents primitives for obtaining information abowt th

target program. The third layer describes the FrTime laggua

8 Implementation

The examples we have seen so far describe a debugger forrdgvams. However, the same principles of scriptable
debugging should apply to most control-driven, call-byuesprogramming languages, with changes to take into ac-
count the syntactic and semantic peculiarities of eacletadjanguage. To investigate the reusability of our ideas,
have implemented a version of MzTake for Scheme [21] also.

Not surprisingly, both the Java and Scheme versions shamettign of the debugging construtrgce, bind, and
set-running-el. They differ in the operators they provide for accessingealin the language: because FrTime’s data
model is closer to Scheme’s than to Java’s, the Java vers$ithre alebugger requiresjdot operator to dereference
values, but the Scheme version does not need the equivalaenhermore, because Java (mostly) names every major
syntactic entity (such as classes and methods) wheream8giermits most values to be anonymous, the two flavors

differ in the way they specify syntactic locations.

8.1 Java

The overall architecture of the Java debugger is shown iarEig0.

On the left, we have the target Java program running on topeotirtual machine. The Java standard provides
a language-independent debugging protocol called the Dabaig Wire ProtocolpwP), designed to enable the
construction of out-of-process debuggers. We have adaptewp client implementation in Ruby [1] to DrScheme
by compiling its machine-readable descriptionnbfvp packets. We use this implementation to connect to the Virtua

machine overcr/IP.

16



Script| |Script| |[Script

Debugger
Target FrTime
Java VM tcp/lp . DrScheme
JDWP server » JDWP client

Figure 10: MzTake Architecture for Debugging Java

On the right of the figure, we have the stack of programminguages that we used to implement the debugger.
FrTime is implemented on top of DrScheme, the debuggingdagg is implemented on top of FrTime, and debugging
scripts are themselves implemented in the debugging lajegua

The communication between the low-level debugger and thiptgroceeds in three stages. The first stage trans-
latesipwP packets to a callback interface, the second dispatches tiatibacks to their respective tracepoints, and
the third translates them to FrTime event occurrences.

The second of these stages must handle subtleties intrdthecause thebwpdoes not provide guarantees about
the order in which messages arrive. For example, the fafigug a legal but troublesome sequence of messages. First,
MzTake sends a message requesting a new tracepoithile MzTake waits for a reply, the target program reaches
an existing tracepoint4, generating an event that appears on the port before theMmachine’s reply to the request
to install B. MzTake must either queue the tracedawhile awaiting the acknowledgment &f or dispatch thed trace
concurrently; it does the latter.

A trickier situation arises when a trace eventaaippears even before the acknowledgment of installing taat t
cepoint. This is problematic because every trace evenggethwith a label that identifies which tracepoint generated
it. This label is generated by th®wpP and communicated in the tracepoint installation acknogneeint. Therefore,
until MzTake receives this acknowledgement, it cannotastily interpret trace events labeled with a new tag. In this
case, MzTake is forced to queue these events, and revisitpiuie upon receipt of an acknowledgment.

We also need to translate the event callbacks into FrTinvestestreams. Each usagetgfce becomes associated
with a callback. When the target reaches the traced locatsorgliback evaluates thece expression’s body and adds
the result to FrTime’s queue of pending events. It then pasta semaphore to awaken the FrTime evaluator thread
and waits. The event’s value automatically propagates! xakessions that refer to theace statement, directly or
indirectly, in accordance with FrTime’s dataflow semantidhen the FrTime dataflow graph reaches quiescence, the

evaluator posts on a semaphore, which releases the catlv@ed and subsequently resumes the Java process. This

17



provides synchronization between the debugging scriptthadiebugged program. If the Java target program uses
multiple threads, MzTake handles each event in a stop-tirtdunanner, to ensure that the script observes a consistent
view of the program’s state.

We found that thepwp provides most of the functionality needed to build a schigalebugger. Beyond imple-
menting the packets and the dispatching as we mentionee abvevalso needed to write two more components. The
first was to duplicate Java’s scoping rules in the implententaf bind: looking upx at a location first finds a local
variable, if any, otherwise the field nameth the enclosing class, then in the super class, and so onséldond was
to cache the results abwp queries pertaining to the fields of classes and the line nterdfenethods, and flush the
cache whenever the cached value might be invalidated;gisgessary to achieve both quick startup and acceptable
runtime performance.

There are some other debugging events and inspection dascéivailable in MzTake that we mentioned very
briefly, or not at all, during the example. These includelfées for traversing the stack, enumerating local varabl
and so on. There are also other events and functionalityadNaithrough theilbwp that are not accessible in the
debugger, such as class-loading and unloading events; istitiblizers, etc. What we have described so far is a
conservative minimal extension of the programming languBglime; it is easy to continue in the same vein to
include support for the remaining events.

The inspection functions we provide pertain only to the ga&sent in the target. We might like to reflect on the
program’s syntactic structure as well, for example to tratassignments to a variable or all conditional statements
However, thesbwpPdoes not provide support for such inspection, so we would tebuild it on our own. In a sense,
such capabilities are orthogonal to our work, since datafiffers no new insight on processing of static syntax trees.

The quality of thesbwrimplementation varied across virtual machines, and marsioes were prone to crashes;

we tested against the Suawm, the IBM JvMm, and the Blackdownvm, ultimately settling on the Sun implementation.

8.2 Scheme

The Scheme version employs source annotation. We instititiree8cheme program so that it mirrors the functionality
of a process under the control of a debugger. The annotatimorsithe content of the lexical environment and
introduces a procedure that determines when to invoke thegder.

For example, suppose the original target program conthmsxpression
(define(id x) x)
(id 10)

The output of the annotator would be (approximately)

18



(defineenv empty
(define(id x)
(set!env(cons(list " x" x) eny))
(invoke-debugget 15 eny
(beginO ;; perform steps in order, then return value of the first esgicn
X
(set!env(rest eny)))
(invoke-debugge? 1 eny
(id 10)
When the annotated version executes,dhevariable recreates the lexical environment. In partigutaracks the
namesof variables in conjunction with their values, enablingpestion. Theinvoke-debuggeprocedure receives
source location information (e.g., the argumentand 1 refer to line two, column one). Each invocation of the
procedure tests whether a tracepoint has been installadtdbtation and accordingly generates an event.

There are several important details glossed over by thiplgied notion of annotation. We discuss each in turn:

thread-safety This annotation uses a mutable global variable for the enmitent. The actual implementation instead

uses thread-local store.

tail-calls This annotation modifies the environment at the end of theqatore, thereby destroying tail-call behavior.
The actual implementation usesntinuation-mark$6], which are specifically designed to preserve tail-calls

annotations.

communication This annotation appears to invoke a procedure nameaike-debuggethat resides in the program’s
namespace. Because FrTime runs atop the DrScheme virtdlimea the target Scheme program and the
MzTake debugging environment share a common heap. Therdfierannotation actually introduces a reference

to thevalueof the debugging procedure, instead of referring to it by @am

The procedurévoke-debuggegenerates a FrTime event upon reaching a tracepoint, anavéits on a semaphore.
From there, the evaluation of the script proceeds as in theeckse, since both implementations share the same FrTime
evaluation engine. When the evaluation reaches quiescéneleases the semaphore.

The implementation is available from

http://ww. cs. brown. edu/ research/ pl t/sof t war e/ net ake/

8.3 Performance

We analyze the performance of the Dijkstra’s algorithm rtmmshown in figures 5 and 7. This example has a high

breakpoint density (approximately 500 events per millisgt), so the time spent monitoring dominates the overall

19



computation. In general, the impact of monitoring depenelavlly on breakpoint density, and on the amount of
processing performed by each breakpoint. All time measentsrare for a 1.8GH&gMD Athlon XP processor running
Sun’sivm version 1.4 for Linux.

We measure the running time of the the Dijkstra’s algorithonitor shown in figures 5 and 7, when it executes
in the Java version of the debugger. Excluding the startup time, it takes 3 minutes 42 seconds to monitor one
million heap operations (eithedd or extractMir), which represents 2.217 milliseconds per operation. Vvgtioa
this time into four parts: First, the virtual machine exesuthe call to eitheadd or extractMin(0.002 milliseconds
per operation). Second, th®wP transmits the context information, FrTime decodes it, anifirie schedules the
recomputation (1.364 milliseconds per operation). Thikdlime evaluates the script which monitors the partial
correctness property, in figure 5 (0.851 milliseconds perafion).

According to these measurements, nearly one-third of theglgng time is devoted tobwp encoding and de-
coding and to the context-switch. This is consistent with pienalty we might expect for using an out-of-process
debugger. The time spent in FrTime can, of course, be arpitlapending on the complexity of the monitoring and
debugging script.

In the Scheme implementation, the target and the debuggeutxin the same process (while still preserving
certain process-like abstractions [16]). As a result, wherthe Java implementation incurred a high context-switch
cost, but no per-statement cost, the Scheme implementatians a small cost for each statement, but no operating
system-level cost for switching contexts. Per operatibe, dnnotation introduces a 0.126 milliseconds overhead.
Thanks to the absence of a cross-process context-swigtatdhing an event costs 0.141 milliseconds per operation
(compared with 1.3 milliseconds in the Java version of tHaudger). The remaining times stay the same.

Obviously, MzTake is not yet efficient enough for intensivermtoring; we discuss this issue briefly in section 12.

A two millisecond response time is, however, negligible whising MzTake interactively.

9 Controlling Program Execution

Debuggers not only inspect a program’s values, but somstafs® control its execution. Some of the abstractions
we defined in our running example were of the former kinadit{in-order, convert-queue-to-li3t In contrast, we also
defined a custom-purpose rule for deciding when to executevéien to pause, namely the functiown

Thesestart-stop policiesepresent a general pattern of debugger use. These pdiiesliffer in subtle but
important ways, especially when the same line has seveeakppoints, each with its own callback. The start-stop
policy used by most scripted debuggers consists of runtiegallbacks in order of their creation, until one of them
requests a pause. Once this happens, the remaining bretskpnithe same line are not executed at all.

One might wonder, is this the right rule for all applicati@nks particular, preventing the execution of the subse-
guent callbacks creates a dependency between breakpbihtsf{rst breakpoint decides to suspend the execution, the

second does not get to run at all). These dependencies dlematic if these breakpoints monitor implicit invariants

20



(define breakpointdmake-hash-tableequal))

(define (break location callback
(let ([prev-breakpoint
(if (hash-table-contains? breakpoints locatjon

(hash-table-get breakpoints locatipn

(trace locationtrue))]) (define breakpoints empjy
(hash-table-put! breakpoints location (define (break location callback
(prev-breakpoint (set! breakpoints
L==> (cons(trace location (callback)
(lambda (i) (if i (callbacK false)))))) breakpoint3))
(define (resumég (define (resumg
(set-running-e! (set-running-e!
(apply merge-dhash-table-values breakpointy (apply merge-e breakpoini3
Figure 11: A Typical Start-Stop Policy Figure 12: A Different Start-Stop Policy

or implicit data structures, as we did during the exampleriiuour debugging session, we created a mirror model of
the queue so that it would elucidate the problem with the=sihthe real queue. In order to be of any debugging help,
the model and the state must remain synchronized. If the #vaidetected the state violation prevented the execution
of the event that updates the model, the program and modédlwease to be synchronized. Worse, this would happen
exactly when we need to look at the model, namely when we kegiplore the context of the violation.

By using a combination of first class events aad-running-e, it is easy to define start-stop policies which are
both custom-purpose and reusable. We implement the praltilestart-stop policy just described with the code in
figure 11. In the codehreakpointsis a hash table that maps locations to event streams.biidak function sets or
adds a breakpoint on a given line. The first time it is calledaggiven location, it installs &ace handler at that
location, which simply sends the valtigie on the event stream each time the target program reachelo¢hsion.

On subsequent invocations, it accumulates a cascade dkevbere each event is subordinate to the event that was
in that location previously. When the execution of the taggeggram reaches one of the locations, the script invokes
each callback function in the cascade until the first onerttatns false. The conditioiif  ...) ensures that the other
callbacks are not called afterwards.

With MzTake, it is straightforward to define a different myli Figure 12 shows the code for a break policy that

executes all the breakpoints at one location before patisetarget program.

21



[-Te. | (. L= - TS . B

— —X

Figure 13: Spanning trees computed correctly (left), withdetecting cycles (middle), and without sorting edges
(right)

10 Additional Examples

In this section, we present some additional examples thttefuillustrate the power of our language.

10.1 Minimum Spanning Trees

Because MzTake has the full power of FrTime, users can takandage of existing libraries to help them understand
programs. For example, the FrTime animation library allepscification of time-varying images (i.e., image behav-
iors) that respond to events. Since MzTake generates dwetriacing program execution, users can visualize program
behavior by appropriately connecting these events to theadion library.

An intuitive visual representation can be an effective wigaining insight into a program’s (mis)behavior. More-
over, many programs lend themselves to natural visuadiaati For example, we consider the problem of computing
the Minimum Spanning TreewsT) for a collection of points in the plane. (This example isdth®n the actual
experience of one of the authors, in the context of writingartstic to solve the traveling-salesman problem.)

A simple greedy algorithm for thesT works by processing the edges in order of increasing lengking each
edge if and only if it does not introduce a cycle. Though tlgeeathm is straightforward, the programmer might forget
to do something important, such as checking for cycles drdoding the edges by length.

The programmer could write code to isolate the source of sadhrs, but a simple visualization of the program’s
output is much more telling. In Figure 13, we show visual@as of three versions of ansT program. On the left,
we show the correatisT, in the middle, an edge set computed without cycle detectind on the right, what happens
if we forget to sort the edges.

In Figure 14, we show the debugging script that implemerissvilsualization. Its salient elements are:
tree-start-event occurs each time the program begins computing amew;, yielding an empty edge list

tree-edge-eventoccurs each time the algorithm takes a new edge, adding theage to the list

22



(definetree-start-event
(trace ((tsp. jdot . ms) . jloc . entry)
(bind () (lambda (prev) empty)))
(definetree-edge-event
(trace ((tsp. jdot . ms) . jloc . 80)
(bind ()
(lambda (prev)
(cons(make-edgée . jdot . v1)
(e.jdot . v2)
prev)))))
(definetree
(accum-b(merge-e tree-start-event
tree-edge-eveht
empty)
(display-lines treg

Figure 14: RecordingnsT Edges

tree builds a model of the tree by accumulating transformatioosfthese event-streams, starting with an empty tree
display-lines displays the current tree

Though we have not shown the implementation of s algorithm, one important characteristic is that it does
not maintain the set of edges it has taken: it only accumsiltiecostof the edges and keeps track of which vertices
are reachable from each other. In building an explicit modighe tree, our script highlights an important capability o
our debugging system—it can capture information about tbgnam’s state that is not available from the program'’s
own data structures. To implement the same functionalithiouit a scriptable debugger, the user would need to amend

the program to make it store this extra information.

10.2 A Statistical Profiler

Because our scripting language can easily monitor a pragraxecution, it should be relatively simple to construct

a statistical profiler. Such a profiler uses a timer to pedatlf poll the program. Each time the timer discharges, the
profiler records which procedure was executing and themamtsghe timer. The summary of this record provides an
indication of the distribution of the program’s executiémé across the procedures.

MzTake provides a global time-varying value call@tere, which represents the current stack trace of the target

23



(define pings(make-hash-tableequal))

((changesvhere)
.==> . (match-lambda [(line function context rest..)

(hash-table-increment! pind#ist function contex)]

[ (void)]))
(defineticks (changegquotient milliseconds0)))

(set-running-e! (merge-g(ticks. -=> . false)

(ticks.-=> . true)))

Figure 15: A Statistical Profiler

process. Itis a list of symbolic locations starting with tuerent line and ending with the location of tmiainfunction.
The value ofwhereis updated any time the execution of the target is suspemitbdy bytrace or by set-running-e'.°
Figure 15 usewhereto implement a statistical profiler that records the top tteals frames at each poll. First, we
instantiate a hash table to map stack contexts to their colextt, each time therhere behavior changes, we capture
the current context and pattern-match on it usimgtch-lambda. If the context contains at least a line, a function, and
a caller function, we trim the context down to the functiomeand its caller and increment the count in the hash table.
Then we bindicksto a stream that sends an event every 50 milliseconds. ¥imal useset-running-e! to suspend
the target at each tick. We want to resume the target soonafiause, but how soon is soon enough? We want to
leave just enough time so that the evaluation engine cdynegtiates the hash table before resuming the target, but no
more. Recall thaset-running-e! synchronizes with the evaluation of the script, so that itsvantil all dependencies
are fully recomputed before consuming the next event omjtstistream. With that in mind, we usgerge-do create
a stream containing two nearly-simultaneous eventsfaketick is followed by atrue tick immediately afterwards.
The synchronization ensures ttsat-running-e! will not consume therue tick until the data flow consequences of
thefalse ticks are completely computed.
This code only gathers profiling information. The script a®éo eventually report this information to the user.
There are two options: to wait until the program terminatesi¢h the debugger indicates using an event), or to report
it periodically based on clock ticks or some other conditiffhe latter is especially useful when profiling a reactive

program that does not terminate.) Both of these are easydieiment using FrTime’s time-sensitive constructs.

5We also have another behavishere/sgfor where with single steppifgvhich updates at every step of the execution. This is ugefidcripts

that want to process the entire trace of the target. Howexreare/sss disabled by default, for performance reasons.

24



11 Related Work

There are two main branches of research that relate to ol ama from which we have drawn inspiration. We
describe these in turn: first, programmable debugging, acdrsl, program monitoring and instrumentation.

Dalek [26] is a scripted debugger built atgpb that generates events corresponding to points in the progra
execution. Each event is associated with a callback praedtiat can, in turn, generate other events, thus simulating
a dataflow style of evaluation. When the propagation stas|iDalek resumes program execution.

MzTake has several important features not present in D#iekey difference that a user would notice is that we
rely on FrTime to automatically construct the graph of dataflependencies, whereas in Dalek, the programmer must
construct this manually. Dalek’s events are not first-cladses, so programmers must hard-wire events to scripds, an
therefore cannot easily create reusable debugging opesatuch asot-in-order.

In Dalek, each event handler can suspend or resume the xeolithe target program, but these can contradict
each other. Dalek applies a fixed rule to arbitrate theseictmfin contrast with the variety of start-stop rules we
discussed in section 9. Indeed, using a stream as the guaression highlights the power of using FrTime as the
base language for the debugger, since we can reconstruet’®pblicy in our debugger: the code shown in figure 11
is in fact Dalek’s policy. This design addresses an impartancern raised in an analysis of Dalek by Crawford, et
al. [10].

The Acid debugger [29] provides the ability to respond tcakpoint commands and step commands with small
programs written in a debugging script language very closgé.tDeet [18] provides a scripting language based on
Tcl/Tk along with a variety of the graphical facilities. [Pisl [20] defines its own ad-hoc language. Generalized path
expressions [5] specify break conditions as regular repas applied to event traces. The regular expressions are
augmented with predicate that can check for base-valugareda In these projects, the programmer must respond to
events through callbacks, and there is no notion of a datafl@luation mechanism. Each retains the inspection and
control mechanism of command-prompt debuggers.

DUEL [17] extendsgdb with an interpreter for a language intended to be a supefs€t & provides several
constructs, such as list comprehensions and generatoiasfiecting large data structures interactively. Howewer
does not address how to control the target program or howstmrel to events generated during the execution.

The Coca debugger by Ducésfl2] offers a conditional breakpoint language based ofoBroCoca uses the
backtracking evaluation mechanism of Prolog to identiffeptially problematic control and data configurations dur-
ing the execution, and brings these to the user’s attentdansuch, Prolog predicates serve as both the conditional
breakpoint language and the data-matching language. Howsuace each predicate application happens in isolation
from the other, there is no way to accumulate a model of theuian as it happens through time, such as constructing
a trace history or building an explicit representation ofvesT (as we have done in this paper).

Like Coca, on-the-fly query-based debugging [22, 23] ersmahkers to interactively select heap objects. The

objects are specified usings®pL-like language evaluated using an efficient on-line algaonit It does not offer a

25



sophisticated scripting mechanism. Like Coca, this apgrates not support relating data between points in time.

Parasight [2] allows users to insert C code at tracepoirdtions. The C code is compiled and inserted into the
running target program’s process in a way that has minimdbpmaance impact. The inserted code must, however,
adopt a callback-style to respond to events. While adapti@gunning program has performance benefits, it also com-
plicates the process of using more expressive languagesfarim monitoring and debugging (and indeed, Parasight
does not tackle this issue at all, using the same languadmtbrthe target program and the scripts).

Alamo [19], like Parasight, instruments binary objectshwit-process C code. While the scripts do not take the
shape of callbacks, they must manually implement a programpattern that simulates a coroutine (which is handled
automatically in FrTime by the evaluation mechanism). Tir® debugger [4] extends Alamo with a rich pattern-
matching syntax over events in terms of the target langgagga@mmar. While MzTake offers a rich, general-purpose
language for processing event-streamwso efficiently handles the special case of list comprehensidioved by
folding.

There are several projects for monitoring program exenyig Dias and Richardson’s taxonomy describes [11].
Monitors differ from debuggers by virtue of not being intetige, and most do not provide scripting facilities. Instea
many of these systems have better explored the trade-dffseba expressiveness, conciseness and efficiency in the
specification of interesting events. MzTake simply reliegiee powerful abstractions of FrTime to filter events, but at
the cost of efficiency.

We have argued that the debugging code should remain odk&de&ogram’s source code, to avoid complicating
maintenance and introducing time- and space-complexitalfies. The debugging script is thus a classic “concern”
that warrants separation from the core program. We coul@spgect-like mechanisms [3] to express this separation.
However, using them for our purposes would not be straigivdied. Most implementations of aspect mechanisms rely
on static compilation, which makes it impossible to chargeset of debugging tasks on-the-fly. More importantly,
most of them force the debugging script and main program fa bee same language, making it difficult to use more
expressive languages for scripting. We therefore viewettmechanisms as orthogonal to our work, and as possible
routes for implementing our debugging language; in padiciizTake would benefit from the “quantification” [14]
provided by aspects.

Smith [27] proposes a declarative language for expressinglily constraints between the programmer’'s model
and the execution trace. We can view this as an aspect-lgtersyin which the aspects are not restricted to the original
target language. Smith’s language relies on a compilernemgge an instrumented program that maintains the model
incrementally. Unfortunately, the compiler has not beeplamented and, as the paper acknowledges, developing an
implementation would not be easy.

Contracts [25] also capture invariants, but they too suffemn the need for static compilation. In addition, data
structures sometimes obey a stronger contract in a speaiftext than they do normally. For instance, in our running

example, priority heaps permit keys to change, which mdas®tis no a priori order on a key’s values. As we saw,

26



however, Dijkstra’s algorithm initializes keys t& and decreases them monotonically; importantly, failurddeso

results in an error. The topicality of the contract meanbkdigd not be associated with the priority heap in general.
Finally, unit testing frameworks provide a mechanism foeating that output from a function matches the ex-

pected answer. With respect to debugging, unit testingesuffom the same limitations as contracts. Namely, they

operate statically and only along interface lines.

12 Conclusion and Future Work

We have presented the design and implementation of a dulépiateractive debugger, and shown several instances
of its application. The scripting language has sufficiebtdry support to permit construction of a wide variety of
applications including monitors and visualizations, angawerful enough to make these concise to express. Along
the way, we have demonstrated that MzTake can provide pregpecific views of rich data, and can easily monitor
implicit invariants.

MzTake does impose a burden on developers: to use it, theylears a new language. This seems unavoidable
for the reasons we have discussed in this paper. Indeed,tharehe syntactic obstacles, the greater leap is to adjust
to the dataflow programming model. Fortunately, the prex@eof event-driven software systems suggests a growing
importance for dataflow languages in the future, so thisstment has the potential to reap benefits in other domains
as well.

The Scheme version of MzTake has been available for dowisioae September 2004. The debugger has gathered
some interest from the Scheme community. A number of peaple Hownloaded it, and we have received enthusiastic
feedback from several users.

In the future, we intend to use MzTake to specify temporaltme@mts on programs. It is typical for libraries to
have restrictions on which function can be called at a givme tor in which order the functions can be called. For
verification purposes, these temporal contracts are yssgdicified in terms of finite state machines. We expect that
the data flow model can provide a more natural way of spedfifiem.

Another avenue of future work involves bringing the syntad data model of the scripting language in the Java
version of the debugger closer to Java. One possibility dbelto use the Fragpsystem [9], a Java implementation
of functional reactive programming that bears some sitityléo FrTime.

We currently offer only weak ways of addressing program fsoinVe would like to improve addressing in two
ways. First, we intend to exploit the insights developedspeat-oriented programming by adopting themintcut
descriptors We would also like to avoid using line- and column-numbessich are extremely brittle syntactically. It

is possible that languages for querying semi-structuréa ckan provide a foundation for this.

27



Acknowledgements

We thank the functional reactive programming group at Yahéversity, particularly John Peterson, Antony Courtney

and Paul Hudak, for useful discussions. Thanks to Daniga%ihd John Clements who helped with the implementa-

tion.

Thanks to the anonymous reviewers for helping impiieequality of our presentation. We also thank Manos

Renieris, Philip Klein and Kathryn Doiron for their comment

References

[1]
(2]

The Ruby JDWP projecht t p: // rubyf or ge. or g/ proj ect s/ rubyj dwp/ .

Ziya Aral and llya Gertner. High-level debugging in Psight. InProceedings of the ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debuggpages 151-162. ACM Press, 1988.

[3] Aspect oriented programming (article serie€pmmunications of the ACM4(10), October 2001.

[4]

[5]

Mikhail Auguston, Clinton Jeffery, and Scott Underwoadiiframework for automatic debugging. Automated

Software Engineeringpages 217-222, 2002.

Bernd Bruegge and Peter Hibbard. Generalized path exjmes: A high level debugging mechanism. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engimg&ymposium on High-level Debuggipages
34-44,1983.

[6] John Clements and Matthias Felleisen. A tail-recursngchine with stack inspectioPACM Transactions on

[7]

Programming Languages and Syste21y(6):1029-1052, 2004.

Gregory H. Cooper and Shriram Krishnamurthi. Embeddiggamic dataflow in a call-by-value language. In

European Symposium on Programmi2g06.

[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald LefRiMntroduction to Algorithms McGraw-Hill,

1997.

[9] Antony Courtney. Frapg Functional reactive programming in Java.Fractical Aspects of Declarative Lan-

[10]

[11]

[12]

guagespages 29-44. Springer-Verlag, March 2001.

R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E. Wee. Setitaissues in the design of languages for
debugging. IfProceedings of the International Conference on Computaiguagespages 252—-261, 1992.

Marcio de Sousa Dias and Debra J. Richardson. Issuesftwese monitoring. Technical report, ICS, 2002.

Mireille Ducas€&. Coca: an automated debugger for CPmceedings of the 21st International Conference on

Software Engineeringpages 504-513, 1999.

28



[13] Conal Elliott and Paul Hudak. Functional reactive aaiion. InProceedings of the International Conference on

Functional Programmingpages 263277, 1997.

[14] Robert Filman and Daniel P. Friedman. Aspect-orieqigmramming is quantification and obliviousness. In
Workshop on Advanced Separation of Conce@tober 2000.

[15] Robert Bruce Findler, John Clements, Cormac Flanalyetthew Flatt, Shriram Krishnamurthi, Paul Steckler,
and Matthias Felleisen. DrScheme: A programming envirarirfie Scheme.Journal of Functional Program-
ming 12(2):159-182, 2002.

[16] Matthew Flatt, Robert Bruce Findler, Shriram Krishnathi, and Matthias Felleisen. Programming languages
as operating systems (or, Revenge of the Son of the Lisp MaphinACM SIGPLAN International Conference
on Functional Programmingpages 138-147, September 1999.

[17] Michael Golan and David R. Hanson. DUEL - a very highdkdebugging language. IRroceedings of the
USENIX Annual Technical Conferengmages 107-118, Winter 1993.

[18] David R. Hanson and Jeffrey L. Kom. A simple and extelesiraphical debugger. IRroceedings of the
USENIX Annual Technical Conferengages 183-174, 1997.

[19] Clinton Jeffery, Wenyi Zhou, Kevin Templer, and Michdrazell. A lightweight architecture for program
execution monitoring. IIBIGPLAN Noticesvolume 33, pages 67-74, 1998.

[20] Mark Scott Johnson. Dispel: A run-time debugging laage. Computer Language$:79-94, 1981.

[21] Richard Kelsey, William Clinger, and Jonathan ReescigP report on the algorithmic language ScherA€M
SIGPLAN Notices33(9), October 1998.

[22] Raimondas Lencevicius. On-the-fly query-based deimgpgith examples. IfProceedings of the Fourth Inter-
national Workshop on Automated Debuggi@g00.

[23] Raimondas Lencevicius, Ursdtle, and Ambuj K. Singh. Dynamic query-based debugginglgéct-oriented
programs. Automated Software Engineerint(1):39-74, 2003.

[24] Guillaume Marceau, Gregory H. Cooper, Shriram Krighnethi, and Steven P. Reiss. A dataflow language for

scriptable debugging. IEEEE International Conference on Automated Software Eegjiimg 2004.
[25] Bertrand MeyerEiffel: The LanguagePrentice-Hall, 1992.

[26] Ronald A. Olsson, Richard H. Crawford, and W. Wilson Halek: A GNU, improved programmable debugger.
In Proceedings of the Usenix Technical Conferemeages 221-232, 1990.

29



[27] Douglas R. Smith. A generative approach to aspechtegk programming. Innternational Conference on

Generative Programming and Component Engineeriimjume 3286, pages 39-54, 2004.

[28] Richard M. StallmanGDB Manual (The GNU Source-Level Debuggénee Software Foundation, Cambridge,
MA, third edition, January 1989.

[29] Phil Winterbottom. Acid, a debugger built from a langea In Proceedings of the USENIX Annual Technical
Conferencepages 211-222, January 1994.

30



