
The Design and Implementation of

a Dataflow Language for Scriptable Debugging∗†

Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro,

Shriram Krishnamurthi, Steven P. Reiss

Computer Science Department

Brown University

115 Waterman Street, Providence, RI 02912, USA

January 17, 2006

Abstract

Debugging is a laborious, manual activity that often involves the repetition of common operations. Ideally,

users should be able to describe these repetitious operations as little programs. Debuggers should therefore be pro-

grammable, orscriptable. The operating environment of these scripts, however, imposes interesting design challenges

on the programming language in which these scripts are written.

This paper presents our design of a language for scripting debuggers. The language offers powerful primitives

that can precisely and concisely capture many important debugging andcomprehension metaphors. The paper also

describes a pair of debuggers, one for Java and the other for Scheme, built in accordance with these principles. The

paper includes concrete examples of applying this debugger to programs.

1 Introduction

Debugging is a laborious part of the software development process. Its unpleasantness is exacerbated by many con-

temporary debuggers, which offer only primitive capabilities. Indeed, even with the growing sophistication of visual

programming environments, the underlying debugging toolsremain fairly primitive.

Debugging is a complex activity because there is often a gooddeal of knowledge about a program that is not

explicitly represented in its execution. For instance, imagine a programmer trying to debug a large data structure that

appears not to satisfy an invariant. He might set a breakpoint, examine a value, compare it against some others and,

∗This research was partially supported by NSF grant CCR-0305949.
†A preliminary version of this paper appeared in the 19thIEEE International Conference on Automated Software Engineering (ASE 2004) [24].

not finding a problem, resume execution, perhaps repeating this process dozens of times. This is both time-consuming

and dull; furthermore, a momentary lapse of concentration may cause him to miss the bug entirely.

The heart of automated software engineering lies in identifying such repetitive human activities during software

construction and applying computational power to ameliorate them. For debuggers, one effective way of eliminating

repetition is to make themscriptable, so users can capture common patterns and reuse them in the future. The problem

then becomes one of designing effective languages for scripting debuggers.

Debugging scripts must easily capture the programmer’s intent and simplify the burdensome aspects of the activity.

To do this, they must meet several criteria. First, they mustmatch the temporal, event-oriented view that programmers

have of the debugging process. Second, they must be powerfulenough to interact with and monitor a program’s

execution. Third, they should be written in a language that is sufficiently expressive that the act of scripting does

not become onerous. Finally, the scripting language must bepractical: users should, for instance, be able to construct

program-specificmethods of analyzing and comprehending data. For example, users should be able to create redundant

models of the program’s desired execution that can be compared with the actual execution. This calls for a library ofI /O

and other primitives more commonly found in general-purpose languages than in typical domain-specific languages.

In this paper, we present the design and implementation of aninteractive scriptable debugger called MzTake (pro-

nounced “miz-take”). Predictably, our debugger can pause and resume execution, and query the values of variables.

More interestingly, developers can write scripts that automate debugging tasks, even in the midst of an interactive

session. These scripts are written in a highly expressive language with a dataflow evaluation semantics, which is a

natural fit for processing the events that occur during the execution of a program. In addition, the language has access

to a large collection of practical libraries, and evaluatesin an interactive programming environment, DrScheme.

2 A Motivating Example

Figure 1 shows a Java transcription of Dijkstra’s algorithm, as presented inIntroduction to Algorithms[8]. Recall that

Dijkstra’s algorithm computes the shortest path from a source node to all the other nodes in a graph. It is similar to

breadth-first search, except that it enqueues the nodes according to the totaldistancenecessary to reach them, rather

than by the number ofsteps. The length of the shortest path to a node (so far) is stored intheweightfield, which is

initialized to the floating point infinity. The algorithm relies on the fact that the shortest-path estimate for the node with

the smallest weight is provably optimal. Accordingly, the algorithm removes that node from the pool (viaextractMin),

then uses this optimal path to improve the shortest path estimate of adjacent nodes (viarelax). The algorithm makes

use of a priority queue, which we also implemented.

Figure 2 shows a concrete input graph (whereS, at location〈100, 125〉, denotes the source from which we want to

compute distances) and the output that results from executing this algorithm on that graph. The output is a set of nodes

for which the algorithm was able to compute a shortest path. For each node, the output presents the node’s number, its

coordinates, and its distance from the source along the shortest path.

2

c l a s s D i j k s t r a S o l v e r {

pub l i c HashMap b a c k t r a c e =new HashMap () ;

p r i v a t e P r i o r i t y Q u e u e q =new P r i o r i t y Q u e u e () ;

pub l i c D i j k s t r a S o l v e r (D i rec tedGraph graph ,

Node s o u r c e){

s o u r c e . we igh t = 0 . 0 ;

q . addA l l (g raph . getNodes ()) ;

whi le (! q . isEmpty ()) {

Node node = (Node) q . e x t r a c t M i n () ;

L i s t s u c c e s s o r s = graph . ge tSuccsOf (node) ;

f o r (I t e r a t o r s u c c I t = s u c c e s s o r s . i t e r a t o r () ;

s u c c I t . hasNext () ;)

r e l a x (node , (Node) s u c c I t . nex t ()) ;

}

System . ou t . p r i n t l n (” R e s u l tb a c k t r a c e :\ n” +

b a c k t r a c e . keySet ()) ;

}

pub l i c vo id r e l a x (Node o r i g i n , Node d e s t){

double can d id a teWe ig h t =

o r i g i n . we igh t + o r i g i n . d i s t a n c e T o (d e s t) ;

i f (can d id a teWe ig h t< d e s t . we igh t) {

d e s t . we igh t = can d id a teWe ig h t ;

b a c k t r a c e . pu t (des t , o r i g i n) ;

}

}

}

Figure 1: Implementation of Dijkstra’s Algorithm

3

2

41 5

6

3

S

Result backtrace:

[[node 1 : x 150 y 100 weight 55],

[node 2 : x 150 y 150 weight 55],

[node 3 : x 200 y 100 weight 105]]

Figure 2: Sample Input and Output

As we can see, this output is incorrect. The algorithm fails to provide outputs for the nodes numbered4, 5 and6,

even though the graph is clearly connected, so these are a finite distance fromS.

Since the implementation of Dijkstra’s algorithm is a direct transcription from the text (as a visual comparison

confirms), butwe implemented the priority queue, we might initially focus our attention on the latter. Since checking

the overall correctness of the priority queue might be costly and difficult, we might first try to verify a partial correct-

ness criterion. Specifically, if we callextractMinto remove two elements in succession, with no insertions in-between,

the second element should be at least as large as the first.

Unfortunately, most existing debuggers make it difficult toautomate the checking of such properties, by requiring

careful coordination between breakpoint handlers. For example, ingdb [28] we can attach conditional breakpoint

handlers—which are effectively callbacks—to breakpoints oninsert andextractMin, and so observe values as they

enter and leave the queue. Figure 3 illustrates the control flow relationship between the target and the debugging script

when we use callbacks to handle events. Starting at the top left, the target program runs for a while until it reaches the

extractMinfunction; control then shifts to the debugger, which invokes the callback. The callback makes a decision

to either pause or resume the target. Eventually, the targetcontinues and runs until it reaches the breakpoint on the

extractMin function for a second time. If we are monitoring a temporal property, such as the ordering of elements

taken out of a priority queue, the decision to pause or resumethe target on the second interruption will depend on

data from the first callback invocation. Observe that, for the program on the left, it is natural to communicate data

between the parts of execution, because it consists of one single thread of control. In contrast, the “program” on the

right is broken up into many disjoint callback invocations,so we need to use mutable shared variables or other external

channels to communicate data from one invocation to the next.

All this is simply to check for pairs of values. Ideally, we want to go much further than simply checking pairs.

In fact, we often want to create a redundant model of the execution, such as mirroring the queue’s intended behavior,

and write predicates that check the program against this model. Upon discovering a discrepancy, we might want

to interactively explore the cause of failure. Moreover, wemight find it valuable to abstract over these models and

4

Figure 3: Control Flow of Program and Script

5

predicates, both to debug similar errors later and to build more sophisticated models and predicates as the program

grows in complexity.

In principle, this is what scriptable debugging should accomplish well. Unfortunately, this appears to be difficult

for existing scriptable debuggers. For example, Coca [12] offers a rich predicate language for identifying interesting

data and points in the execution, but it does not offer a facility for relating values across different points in time,

so the programmer would still need to monitor this criterionmanually. UFO [4] supports computation over event-

streams, but does not support interaction. Dalek [26] is interactive and offers the ability to relate execution across

time, but provides limited abstractions capabilities, so we could not use it to build the predicates described in this

paper. In general, existing scriptable debuggers appear tobe insufficient for our needs; we discuss them in more detail

in section 11.

This paper presents our new language and infrastructure that address the weaknesses found in existing debuggers.

In section 3, we describe the goals and observations that have guided our work, and in section 4, we introduce the

dataflow language FrTime (pronounced “father time”), on topof which we have built MzTake. We reflect on lessons

learned from this example in section 6. In Section 7 and Section 8, we describes the design and the implementation,

respectively. Section 9 discusses strategies to control the execution of a target program. Section 10 provides additional,

illustrative examples of the debugger’s use.

3 Desiderata

We believe that users fundamentally view debugging as a temporal activity with the running program generating a

stream of events (entering and exiting methods, setting values, and so on). They use constructs such as breakpoints to

make these events manifest and to gain control of execution,at which point they can inspect and set values before again

relinquishing control to the target program. To be maximally useful and minimally intrusive, a scriptable debugger

should view the debugging process just as users do, but make it easy to automate tedious activities.

Concretely, the scripting language must satisfy several important design goals.

1. While debuggers offer some set of built-in commands,users often need to define problem-specific commands. In

the preceding example, we wanted to check the order of elements extracted from a queue; for other programs, we

can imagine commands such as “verify that this tree is balanced”. While obviously a debugger should not offer

commands customized to specific programs, it should providea powerful enough language for programmers to

capture these operations easily. Doing so often requires a rich set of primitives that can model sophisticated

data, for instance to track the invariants of a program’s data.

2. Programs often contain implicit invariants. Validatingthese invariants requires maintaining auxiliary data struc-

tures strictly for the purpose of monitoring and debugging.In our example, although Dijkstra’s algorithm

depends on nodes being visited in order of weight, there is nodata structure in the program that completely

6

captures the ordered list of nodes (a priority heap satisfiesonly a weaker ordering relation). Lacking a good de-

bugging framework, the developer who wants to monitor monotonicity therefore needs to introduce explicit data

structures into the source. These data structures may change the space- and time-complexity of the program,

so they must be disabled during normal execution. All these demands complicate maintenance and program

comprehension. Ideally,a debugger should support the representation of such invariants outside the program’s

source. (In related work, we explain why approaches like contractsand aspects [3] are insufficient.)

3. Debugging is often a process of generating and falsifyinghypotheses.Programmers must therefore have a

convenient way to generate new hypotheses while running a program. Any technique that throws away the

entire debugging context between each attempt is disruptive to this exploratory process.

4. Since the target program is a source of events and debugging is an event-oriented activity,the scripting language

must be designed to act as a recipient of events. In contrast, traditional programming languages are designed

for writing programs that are “in control”—i.e., they determine the primary flow of execution, and they provide

cumbersome frameworks for processing events. This poses a challenge for programming language design.

5. As a pragmatic matter,debuggers should have convenient access to the richI /O facilities provided by modern

consolesso they can, for instance, implement problem-specific interfaces. A custom language that focused

solely on the debugging domain would invariably provide only limited support for such activities. In contrast,

the existence of rich programming libraries is important for the widespread adoption of a debugging language.

To accomplish these goals, a debugging language must address a conflict central to all language design: balancing

the provision of powerful abstractions with restrictions that enable efficient processing. This has been a dominant

theme in the prior work (see section 11). Most prior solutions have tended toward the latter, while this paper begins

with a general-purpose language, so as to explore the space of expression more thoroughly. This results in some loss

of machine-level efficiency, but may greatly compensate forit by saving users’ time. Furthermore, the functional style

we adopt creates opportunities for many traditional compiler optimizations.

4 The FrTime Programming Language

Instead of implementing our debugging language from scratch, we have built it atop the language FrTime—a dataflow

language (with Lisp-based syntax) that supports stateful operations and provides a library of data structures and prim-

itives for most common programming activities [7]. The language is inspired by work on Functional Reactive Pro-

gramming [13], whose motivation is to allow declarative expression of reactive systems.

The motivation for FrTime is easy to explain with a simple example. Most programming languages have a library

primitive for accessing the current time. A variable that holds the response from this primitive is, however, assigned

only when the primitive returns; the value becomes outdatedas execution continues, unless the program explicitly

7

Figure 4: Screenshots of FrTime in Action

performs operations to keep the value current. In contrast,FrTime provides built-in support fortime-varying values,

calledbehaviors, that automatically update with the passage of time. For instance, the expressionsecondsis a built-in

behavior whose value updates every second in lockstep with the system clock.

Any expression that uses a time-varying value itself becomes time-varying. For instance, the expression (even?

seconds) changes every time the value ofsecondschanges (i.e., every second), alternating between the values true

and false. The implementation of FrTime is responsible for automatically tracking dependencies between primitive

signals and expressions that depend on them, ordering thesedependencies, forcing fresh computation, and propagating

values whenever they change. Behaviors can take valueundefined, which acts as a bottom. Any operation applied to

undefinedalso returnsundefined.

FrTime offers run-time support through the DrScheme programming environment [15]. Firstly, the rich libraries

of DrScheme are available for FrTime, and are automaticallylifted to the time domain, so they recompute when

their arguments update. Secondly, the DrScheme prompt recognizes behaviors and automatically updates the display

of their values as they change over time. Figure 4 shows the same DrScheme session, displaying several FrTime

expressions, captured (untouched) twenty-five seconds apart. The expressions we evaluated have not changed, but

their answers have—the last three digits of the Unix time progressed from “663” to “688”, and the displayed values

updated accordingly. Indeed, values returned from FrTime expressions are animated, correctly representing their

time-varying nature.

In addition to behaviors, FrTime also hasevents. Whereas behaviors have a value at any point in time, events are

discrete: for instance, the eventkey-strokesis an infinite stream that yields a new value every time a key ispressed.

FrTime provides a set of functional combinators that process event-streams; for instance,hold converts event-streams

into behaviors by consuming an event-stream and returning abehavior whose value is always the most recent value in

the stream. Thus, (hold key-strokes’none-yet) is a behavior whose value is initially the symbol ’none-yet and, from

the first keystroke onwards, the value of the last key pressed.

FrTime upholds a number of guarantees about a program’s execution, including the order in which it processes

8

(definec (start-vm"DijkstraTest"))

(definequeue(jclassc PriorityQueue))

(define inserts

(trace ((queue. jdot . add) . jloc . entry)

(bind (item) (item. jdot . weight))))

(defineremoves

(trace ((queue. jdot . extractMin) . jloc . exit)

(bind (result) (result . jdot . weight))))

(defineviolations

(not-in-order(merge-e removes(inserts. -=> . ’reset))))

(define latest-violation(hold violationsfalse))

(define(nv)

(set-running-e! (violations. -=> . false)))

Figure 5: Monitoring the Priority Queue

events and the space required to do so:

• Ordering of event processing: Since FrTime must listen to multiple concurrent event sources and recompute

various signals in response, we might worry about the possibility of timing and synchronization issues. For

example, if signala depends on signalb, we would like to know that FrTime will not recomputea using an out-

of-date value fromb. Fortunately, FrTime’s recomputation algorithm is aware of dataflow dependencies between

signals and updates them in a topological order, starting from the primitive signals and working towards their

dependents.

• Space consumption: FrTime only remembers the current values of behaviors and the most recent occurrences

of events. Thus, if the program’s data structures are bounded, then the program can run indefinitely without

exhausting memory. If the application needs to maintain histories of particular event streams, it can use Fr-

Time primitives likehistory-eor accum-bfor this purpose. The application writer must apply these operations

explicitly and should therefore be aware of their cost.

The interested reader can learn more about the language froma companion paper [7] or by experimenting with the

implementation, which is part of the DrScheme distribution.

5 Debugging the Motivating Example

We are now ready to return to our example from section 2. As we explained previously, our implementation of Dijk-

stra’s algorithm employs a priority queue coded by us. In addition, we noted that our implementation ofDijkstraSolver

is a direct transcription of the pseudocode in the book. We hypothesized that the bug might be in the implementation

of the priority queue, and that we should therefore monitor its behavior. Recall that the partial correctness property we

wanted to verify was that consecutive pairs of elements extracted from the queue are in non-decreasing order.

9

29.5

29.5

15.3 40.6

15.3 40.6

(15.3 40.6)

(+inf.0 55.9)

55.9

55.9

(+inf.0 55.9)

+inf.0

(75.1 +inf.0)

+inf.075.1

75.1

(’reset 75.1)

55.9

’reset

’reset

29.5

’reset

’reset

(40.6 ’reset) ...

inserts

(inserts . −=> . ’reset)

violations

(history−e ... 2)

removes

(merge−e removes ...)

Figure 6: Event Streams

Figure 5 presents a debugging script that detects violations of this property. In the script, the variablec is bound to

a debugging session forDijkstraTest, a class that exercises the implementation of Dijkstra’s algorithm. The invocation

of start-vm initiates the execution of the Java Virtual Machine (JVM) on this class, and immediately suspends its

execution pending further instruction.

The expression (jclass c PriorityQueue) creates a FrTime proxy for thePriorityQueueclass in Java. Since Java

dynamically loads classes on demand, this proxy is a time varying value: its value isundefinedat first, and stays so

until the class is loaded into theJVM. The operatorjclass treats its second argument specially:PriorityQueueis not a

variable reference, but simply the name of the target class.In Lisp terminology,jclass is aspecial form. So arejdot

(which returns the value of a field) andjloc (which selects a location within a method).

Next, we install tracing around the methodsadd andextractMinof the priority queue. Atracepointis a FrTime

event-stream specifically designed for debugging: the stream contains a new value every time the Java program’s

execution reaches the location marked by the tracepoint. Concretely, the expression

(define inserts

(trace ((queue. jdot . add) . jloc . entry)

(bind (item) (item. jdot . weight))))

installs a tracepoint at the entry of theaddmethod ofqueue.1 The result oftrace is an event stream of values. There is

an event on the stream each time the target program reaches theaddmethod. To generate the values in the stream, the

trace construct evaluates its body; this body is re-evaluated foreach event. In this instance, we use thebind construct

to reach into the stack of the target, find the value of the variableitem (in the target), and bind it to the identifieritem

(in the body of thebind). In turn, the body of thebind extracts theweightfield from this item. This weight becomes

the value of the event.

The identifierinsertsis therefore bound to a FrTime event-stream consisting of the weights of all nodes inserted

1Here and in the rest of this paper, we use the infix notation supported by FrTime: (x . op . y) is the same as (op x y) in traditional Lisp syntax.

10

(define(not-in-order e)

(filter-e

(match-lambda

[(’ reset) false]

[(’ reset) false]

[(previous current) (> previous current)])

(history-e e2)))

Figure 7: The Monitoring Primitive

(define inserters

(inserts. ==> . insert-in-model))

(defineremovers

(removes. ==> . remove-from-model))

(definemodel

(accum-b(merge-e inserters removers)

(convert-queue-to-list(bind (q) q))))

Figure 8: The Redundant Model

into the priority queue. The identifierremovesis bound correspondingly to the weights of nodes removed from the

queue byextractMin.

We initially want to perform a lightweight check that determines whether consecutiveremoves (not separated by

an insert) are non-decreasing. To do this, we merge the two event-streams,insertsandremoves. Since we are only

interested in consecutive, uninterrupted removals, the monitor resets upon each insertion. The following FrTime code

uses the combinator-=> to map the values in theinsertsstream to the constant ’reset, which indicates that the monitor

should reset:

(merge-e removes(inserts. -=> . ’reset))

The result of this expression is illustrated in Figure 6. In this graph, time flows towards the right, so earlier events

appear to the left. Each circle represents one event occurrence on the corresponding stream. The first three lines show

the streams we just discussed:inserts, removes, and the mappedinserts. The fourth timeline of the figure shows that

the merge-eexpression evaluates to an event-stream whose events are inthe order they are encountered during the

run. The insert events have been mapped to the constant, while the remove events are represented by the weight of the

node.

The last two timelines in Figure 6 depict the next two streamscreated by the script. The merged stream is passed

to the core monitoring primitive,not-in-order, shown in Figure 7. This useshistory-eto extract the two most recent

values from the stream and processes each pair in turn. It filters out those pairs that do not exhibit erroneous behavior,

namely when one of the events is a ’reset or when both events reflect extracted weights that are in the right order. The

result is a stream consisting of pairs of weights where the weightier node is extracted first, violating the desired order.

We call this streamviolations.

The FrTime identifierlatest-violationis bound to a behavior that captures the last violation (using the FrTime

combinatorhold). If the priority queue works properly, this behavior will retain its initial value,false (meaning “no

violation so far”). If it ever changes, we want to pause theJVM so that we can examine the context of the violation.

11

To do this, we use the primitiveset-running-e!, which consumes a stream of boolean values. Callingset-running-e!

launches the execution of the target program proper, and it will keep on consuming future events on the given stream:

when an event with the valuefalse occurs theJVM pauses, after which, when an event with a true value occurs the JVM

resumes.2 Since we anticipate wanting to observe numerous violations, we define the (concisely named) abstraction

nv, which tells theJVM to run until thenext violation occurs.

At the interactive prompt, we type (nv). Soon afterward, theJVM stops, and we query the value oflatest-violation:

> (nv)

short pause

> latest-violation

(+inf.0 55.90169943749474)

This output indicates that the queue has yielded nodes whoseweights are out of order. This confirms our suspicion

that the problem somehow involves the priority queue.

Continuing Exploration Interactively

To identify the problem precisely, we need to refine our modelof the priority queue. Specifically, we would like to

monitor the queue’s complete black-box behavior, which might provide insight into the actual error.

With the JVM paused, we enter the code in figure 8 to the running FrTime session. This code duplicates the

priority queue’s implementation using a sorted list. While slower, it provides redundancy by implementing the same

data structure through an entirely different technique, which should help identify the true cause of the error.3

We now explain the code in figure 8. The identifiermodelis bound to a list that, at every instant, consists of the

elements of the queue in sorted order. We decompose its definition to improve readability. The valueinsertersis an

event-stream of FrTime procedures that insert the values added to the priority queue into the FrTime model (==>

applies a given procedure to each value that occurs in an event-stream); similarly,removersis bound to a stream of

procedures that remove values from the queue. The code

(accum-b(merge-e inserters removers)

(convert-queue-to-list(bind (q) q)))

merges the two streams of procedures usingmerge-e, and usesaccum-bto apply the procedures to the initial value of

the model.accum-baccumulates the result as it proceeds, resulting in an updated model that reflects the application

of all the procedures in order.accum-breturns a behavior that reflects the model after each transformation. We must

2In Scheme, any value other thanfalse is true.
3Since the property we are monitoring depends only on the nodes’ weights, not their identities, the model avoids potential ordering discrepancies

between equally-weighted nodes.

12

initialize the model to the current content of the queue. Theuser-defined procedureconvert-queue-to-list(elided here

for brevity) convertsq’s internal representation to a list.

Having installed this code and initialized the model, we resume execution withnv. At the next violation, we

interactively apply operations to compare the queue’s content against its FrTime model (the list). We find that the

queue’s elements are not in sorted order while those in the model are. More revealingly, the queue’s elements are not

the same as those in the model. A little further study shows that the bug is in our usage of the priority queue: we have

failed to account for the fact that the assignment todest.weightin relax (figure 1)updatesthe weights of nodes already

in the queue. Because the queue is not sensitive to these updates, what it returns is no longer the smallest element

in the queue. (Of course, these steps—of observing the discrepancy between the model and the phenomenon, then

mapping it to actual understanding—require human ingenuity.)

On further reading, we trace the error to a subtle detail in the description of Dijkstra’s algorithm in Cormen, et

al.’s book [8, page 530]. The book permits the use of a binary heap (which is how we implemented the priority queue)

for sparse graphs, but subsequently amends the pseudocode to say that the assignment todest.weightmust explicitly

invoke a key-decrement operation. Our error, therefore, was not in the implementation of the heap, but in using the

(faster) binary heap implementation without satisfying its (stronger) contract.

6 Reflections on the Example

While progressing through the example, we encounter severalproperties mentioned in the desiderata that make FrTime

a good substrate for debugging. We review them here, point bypoint.

1. The DrScheme environment allows the user to keep and reuseabstractions across interactive sessions. For

instance, to monitor the priority queue, we define procedures such asnot-in-order andconvert-queue-to-list.

Such abstractions, which manipulate program data structures in a custom fashion, may be useful in finding

and fixing similar bugs in the future. They can even become part of the program’s distribution, assisting other

users and developers. In general, debugging scripts can capture some of theontologyof the domain, which is

embedded (but not always explicated) in the program.

2. We discover the bug by monitoring an invariant not explicitly represented in the program. Specifically, we keep

a sorted list that mirrors the priority queue, and we observethat its behavior does not match the expectations of

Dijkstra’s algorithm. However, the list uses a linear time insertion procedure, which eliminates the performance

benefit of the (logarithmic time) priority queue. Fortunately, by expressing this instrumentation as a debugging

script, we cleanly separate it from the program’s own code, and hence we incur the performance penalty only

while debugging.

3. The interactive console of DrScheme, in which FrTime programs run, enables users to combine scripting with

traditional interactive debugging. In the example, we firstprobe the priority queue at a coarse level, which

13

narrows the scope of the bug. We then extend our script to monitor the queue in greater detail. This ability

to explore interactively saves the programmer from having to restart the program and manually recreate the

conditions of the error.

4. The dataflow semantics of FrTime makes it well suited to actas a recipient of events and to keep models in a

consistent state, even as the script is growing. During the execution of the Dijkstra solver, FrTime automatically

propagates information from the variablesinsertsandremovesto their dependents, theviolationsvariable and the

set-running-e! directive. Also, when we add the variablemodel, FrTime keeps it synchronized withviolations

without any change to the previous code.

5. The libraries of FrTime are rich enough to communicate with external entities. The programmer also has access

to the programming constructs of DrScheme (higher-order functions, objects, modules, pattern-matching, etc.),

which have rigorously defined semantics, in contrast to the ad-hoc constructs that populate many scripting

languages. Further, since FrTime has access to all the libraries in DrScheme [15], it can generate visual displays

and so on, as we will see in section 10.1.

7 Design

The design of MzTake contains four conceptual layers that arise naturally as a consequence of the goals set forth in

the desiderata (Section 3).

First, we need abstractions that capture the essential functionality of a debugger. These are: observing a program’s

state, monitoring its control path, and controlling its execution. MzTake captures them as follows:bind retrieves

values of program variables,trace installs trace points, andset-running-e! lets the user specify an event stream that

starts and stops the program.

Second, we need a way to navigate the runtime data structuresof the target program. For a Java debugger, this

means providing a mechanism for enumerating fields and looking up their values.

Third, and most importantly, we need to be able to write scripts that serve as passive agents. Most general-purpose

languages are designed to enable writing programs that control the world, starting with a “main” that controls the order

of execution. In contrast, a debugging script has no “main”:it cannot anticipate what events will happen in what order,

and must instead faithfully follow the order of the target program’s execution. Therefore we believe that a semantic

distance between the scripting language and the kind of target language we are addressing is a necessary part of the

solution.4 Since the script’s execution must be driven by the arrival ofvalues from the program under observation, a

dataflow language is a natural choice.

Once we have chosen a dataflow evaluation semantics, we must consider how broad the language must be. It

is tempting to create a domain-specific debugging language that offers only a small number of primitives, such as

4Our work additionally introduces asyntacticdifference when the target language is Java, but this can be papered over by a preprocessor.

14

<debug-expr> ::= (bind (<var> . . .) <expr> . . .)

| (trace <expr> <expr>)

| (set-running-e!<expr>)

<inspect-expr> ::= (start-vm<expr>)

| (jclass<expr> <name>)

| (jloc <expr> <loc-expr>)

| (jdot <expr> <name>)

<loc-expr> ::= <number> | entry| exit

<frtime-expr> ::= (map-e<expr> <expr>)

| (filter-e<expr> <expr>)

| (merge-e<expr> . . .)

| (accum-b<expr> <expr>)

| (changes<expr>)

| (hold <expr> <expr>)

| (value-now<expr>)

| seconds

| key-strokes

| (lambda (<var> . . .) <expr> . . .)

| (<expr> . . .)

| (if <expr> <expr> <expr>)

| ... ; other Scheme expressions

<expr> ::= <debug-expr>

| <inspect-expr>

| <frtime-expr>

Figure 9: MzTake Grammar

15

those we have introduced here. Unfortunately, once the script has gained control, it may need to perform arbitrary

computational tasks, access libraries for input/output, and so forth. This constant growth of tasks makes it impractical

to build and constantly extend this domain-specific language, and furthermore it calls into question the strategy of

restricting it in the first place. In our work, we therefore avoid the domain-specific strategy, though we have tried to

identify the essential elements of such a language as a guideto future language designers.

Having chosen a general-purpose strategy, we must still identify the right dataflow language. Our choice in this

paper is informed by one more constraint imposed by debugging: the need to extend and modify the dataflow compu-

tation interactively without interrupting execution. Among dataflow languages, this form of dynamicity appears to be

unique to FrTime.

We present the grammar of the MzTake language in Figure 9. Thegrammar is presented in layers, to mirror the

above discussion. The first layer, represented by<debug-expr>, presents the most essential language primitives. The

second layer, consisting of<inspect-expr> and<loc-expr>, represents primitives for obtaining information about the

target program. The third layer describes the FrTime language.

8 Implementation

The examples we have seen so far describe a debugger for Java programs. However, the same principles of scriptable

debugging should apply to most control-driven, call-by-value programming languages, with changes to take into ac-

count the syntactic and semantic peculiarities of each targeted language. To investigate the reusability of our ideas,we

have implemented a version of MzTake for Scheme [21] also.

Not surprisingly, both the Java and Scheme versions share the design of the debugging constructstrace, bind, and

set-running-e!. They differ in the operators they provide for accessing values in the language: because FrTime’s data

model is closer to Scheme’s than to Java’s, the Java version of the debugger requires ajdot operator to dereference

values, but the Scheme version does not need the equivalent.Furthermore, because Java (mostly) names every major

syntactic entity (such as classes and methods) whereas Scheme permits most values to be anonymous, the two flavors

differ in the way they specify syntactic locations.

8.1 Java

The overall architecture of the Java debugger is shown in Figure 10.

On the left, we have the target Java program running on top of the virtual machine. The Java standard provides

a language-independent debugging protocol called the JavaDebug Wire Protocol (JDWP), designed to enable the

construction of out-of-process debuggers. We have adapteda JDWP client implementation in Ruby [1] to DrScheme

by compiling its machine-readable description ofJDWPpackets. We use this implementation to connect to the virtual

machine overTCP/IP.

16

Figure 10: MzTake Architecture for Debugging Java

On the right of the figure, we have the stack of programming languages that we used to implement the debugger.

FrTime is implemented on top of DrScheme, the debugging language is implemented on top of FrTime, and debugging

scripts are themselves implemented in the debugging language.

The communication between the low-level debugger and the script proceeds in three stages. The first stage trans-

latesJDWP packets to a callback interface, the second dispatches these callbacks to their respective tracepoints, and

the third translates them to FrTime event occurrences.

The second of these stages must handle subtleties introduced because theJDWPdoes not provide guarantees about

the order in which messages arrive. For example, the following is a legal but troublesome sequence of messages. First,

MzTake sends a message requesting a new tracepointB. While MzTake waits for a reply, the target program reaches

an existing tracepoint,A, generating an event that appears on the port before the virtual machine’s reply to the request

to installB. MzTake must either queue the trace atA while awaiting the acknowledgment ofB or dispatch theA trace

concurrently; it does the latter.

A trickier situation arises when a trace event atB appears even before the acknowledgment of installing that tra-

cepoint. This is problematic because every trace event is tagged with a label that identifies which tracepoint generated

it. This label is generated by theJDWPand communicated in the tracepoint installation acknowledgment. Therefore,

until MzTake receives this acknowledgement, it cannot correctly interpret trace events labeled with a new tag. In this

case, MzTake is forced to queue these events, and revisits the queue upon receipt of an acknowledgment.

We also need to translate the event callbacks into FrTime’s event streams. Each usage oftrace becomes associated

with a callback. When the target reaches the traced location,its callback evaluates thetraceexpression’s body and adds

the result to FrTime’s queue of pending events. It then postson a semaphore to awaken the FrTime evaluator thread

and waits. The event’s value automatically propagates to all expressions that refer to thetrace statement, directly or

indirectly, in accordance with FrTime’s dataflow semantics. When the FrTime dataflow graph reaches quiescence, the

evaluator posts on a semaphore, which releases the callbackthread and subsequently resumes the Java process. This

17

provides synchronization between the debugging script andthe debugged program. If the Java target program uses

multiple threads, MzTake handles each event in a stop-the-world manner, to ensure that the script observes a consistent

view of the program’s state.

We found that theJDWPprovides most of the functionality needed to build a scriptable debugger. Beyond imple-

menting the packets and the dispatching as we mentioned above, we also needed to write two more components. The

first was to duplicate Java’s scoping rules in the implementation of bind: looking upx at a location first finds a local

variable, if any, otherwise the field namedx in the enclosing class, then in the super class, and so on. Thesecond was

to cache the results ofJDWPqueries pertaining to the fields of classes and the line numbers of methods, and flush the

cache whenever the cached value might be invalidated; this is necessary to achieve both quick startup and acceptable

runtime performance.

There are some other debugging events and inspection functions available in MzTake that we mentioned very

briefly, or not at all, during the example. These include facilities for traversing the stack, enumerating local variables,

and so on. There are also other events and functionality available through theJDWP that are not accessible in the

debugger, such as class-loading and unloading events, static initializers, etc. What we have described so far is a

conservative minimal extension of the programming language FrTime; it is easy to continue in the same vein to

include support for the remaining events.

The inspection functions we provide pertain only to the datapresent in the target. We might like to reflect on the

program’s syntactic structure as well, for example to traceall assignments to a variable or all conditional statements.

However, theJDWPdoes not provide support for such inspection, so we would need to build it on our own. In a sense,

such capabilities are orthogonal to our work, since dataflowoffers no new insight on processing of static syntax trees.

The quality of theJDWP implementation varied across virtual machines, and many versions were prone to crashes;

we tested against the SunJVM, the IBM JVM, and the BlackdownJVM, ultimately settling on the Sun implementation.

8.2 Scheme

The Scheme version employs source annotation. We instrument the Scheme program so that it mirrors the functionality

of a process under the control of a debugger. The annotation mirrors the content of the lexical environment and

introduces a procedure that determines when to invoke the debugger.

For example, suppose the original target program contains the expression

(define(id x) x)

(id 10)

The output of the annotator would be (approximately)

18

(defineenv empty)

(define(id x)

(set!env(cons(list "x" x) env))

(invoke-debugger1 15 env)

(begin0 ;; perform steps in order, then return value of the first expression

x

(set!env(rest env))))

(invoke-debugger2 1 env)

(id 10)

When the annotated version executes, theenvvariable recreates the lexical environment. In particular, it tracks the

namesof variables in conjunction with their values, enabling inspection. Theinvoke-debuggerprocedure receives

source location information (e.g., the arguments2 and 1 refer to line two, column one). Each invocation of the

procedure tests whether a tracepoint has been installed at that location and accordingly generates an event.

There are several important details glossed over by this simplified notion of annotation. We discuss each in turn:

thread-safety This annotation uses a mutable global variable for the environment. The actual implementation instead

uses thread-local store.

tail-calls This annotation modifies the environment at the end of the procedure, thereby destroying tail-call behavior.

The actual implementation usescontinuation-marks[6], which are specifically designed to preserve tail-callsin

annotations.

communication This annotation appears to invoke a procedure namedinvoke-debuggerthat resides in the program’s

namespace. Because FrTime runs atop the DrScheme virtual machine, the target Scheme program and the

MzTake debugging environment share a common heap. Therefore, the annotation actually introduces a reference

to thevalueof the debugging procedure, instead of referring to it by name.

The procedureinvoke-debuggergenerates a FrTime event upon reaching a tracepoint, and then waits on a semaphore.

From there, the evaluation of the script proceeds as in the Java case, since both implementations share the same FrTime

evaluation engine. When the evaluation reaches quiescence,it releases the semaphore.

The implementation is available from

http://www.cs.brown.edu/research/plt/software/mztake/

8.3 Performance

We analyze the performance of the Dijkstra’s algorithm monitor shown in figures 5 and 7. This example has a high

breakpoint density (approximately 500 events per millisecond), so the time spent monitoring dominates the overall

19

computation. In general, the impact of monitoring depends heavily on breakpoint density, and on the amount of

processing performed by each breakpoint. All time measurements are for a 1.8GHzAMD Athlon XP processor running

Sun’sJVM version 1.4 for Linux.

We measure the running time of the the Dijkstra’s algorithm monitor shown in figures 5 and 7, when it executes

in the Java version of the debugger. Excluding theJVM startup time, it takes 3 minutes 42 seconds to monitor one

million heap operations (eitheradd or extractMin), which represents 2.217 milliseconds per operation. We partition

this time into four parts: First, the virtual machine executes the call to eitheradd or extractMin(0.002 milliseconds

per operation). Second, theJDWP transmits the context information, FrTime decodes it, and FrTime schedules the

recomputation (1.364 milliseconds per operation). Third,FrTime evaluates the script which monitors the partial

correctness property, in figure 5 (0.851 milliseconds per operation).

According to these measurements, nearly one-third of the debugging time is devoted toJDWP encoding and de-

coding and to the context-switch. This is consistent with the penalty we might expect for using an out-of-process

debugger. The time spent in FrTime can, of course, be arbitrary, depending on the complexity of the monitoring and

debugging script.

In the Scheme implementation, the target and the debugger execute in the same process (while still preserving

certain process-like abstractions [16]). As a result, whereas the Java implementation incurred a high context-switch

cost, but no per-statement cost, the Scheme implementationincurs a small cost for each statement, but no operating

system-level cost for switching contexts. Per operation, the annotation introduces a 0.126 milliseconds overhead.

Thanks to the absence of a cross-process context-switch, dispatching an event costs 0.141 milliseconds per operation

(compared with 1.3 milliseconds in the Java version of the debugger). The remaining times stay the same.

Obviously, MzTake is not yet efficient enough for intensive monitoring; we discuss this issue briefly in section 12.

A two millisecond response time is, however, negligible when using MzTake interactively.

9 Controlling Program Execution

Debuggers not only inspect a program’s values, but sometimes also control its execution. Some of the abstractions

we defined in our running example were of the former kind (not-in-order, convert-queue-to-list). In contrast, we also

defined a custom-purpose rule for deciding when to execute and when to pause, namely the functionnv.

Thesestart-stop policiesrepresent a general pattern of debugger use. These policiescan differ in subtle but

important ways, especially when the same line has several breakpoints, each with its own callback. The start-stop

policy used by most scripted debuggers consists of running the callbacks in order of their creation, until one of them

requests a pause. Once this happens, the remaining breakpoints on the same line are not executed at all.

One might wonder, is this the right rule for all applications? In particular, preventing the execution of the subse-

quent callbacks creates a dependency between breakpoints (if the first breakpoint decides to suspend the execution, the

second does not get to run at all). These dependencies are problematic if these breakpoints monitor implicit invariants

20

(definebreakpoints(make-hash-table’equal))

(define(break location callback)

(let ([prev-breakpoint

(if (hash-table-contains? breakpoints location)

(hash-table-get breakpoints location)

(trace locationtrue))])

(hash-table-put! breakpoints location

(prev-breakpoint

. ==> .

(lambda (i) (if i (callback) false))))))

(define(resume)

(set-running-e!

(apply merge-e(hash-table-values breakpoints))))

Figure 11: A Typical Start-Stop Policy

(definebreakpoints empty)

(define(break location callback)

(set!breakpoints

(cons(trace location(callback))

breakpoints)))

(define(resume)

(set-running-e!

(apply merge-e breakpoints)))

Figure 12: A Different Start-Stop Policy

or implicit data structures, as we did during the example. During our debugging session, we created a mirror model of

the queue so that it would elucidate the problem with the state of the real queue. In order to be of any debugging help,

the model and the state must remain synchronized. If the event that detected the state violation prevented the execution

of the event that updates the model, the program and model would cease to be synchronized. Worse, this would happen

exactly when we need to look at the model, namely when we beginto explore the context of the violation.

By using a combination of first class events andset-running-e!, it is easy to define start-stop policies which are

both custom-purpose and reusable. We implement the problematic start-stop policy just described with the code in

figure 11. In the code,breakpointsis a hash table that maps locations to event streams. Thebreak function sets or

adds a breakpoint on a given line. The first time it is called ona given location, it installs atrace handler at that

location, which simply sends the valuetrue on the event stream each time the target program reaches thatlocation.

On subsequent invocations, it accumulates a cascade of events where each event is subordinate to the event that was

in that location previously. When the execution of the targetprogram reaches one of the locations, the script invokes

each callback function in the cascade until the first one thatreturns false. The condition (if i . . .) ensures that the other

callbacks are not called afterwards.

With MzTake, it is straightforward to define a different policy. Figure 12 shows the code for a break policy that

executes all the breakpoints at one location before pausingthe target program.

21

Figure 13: Spanning trees computed correctly (left), without detecting cycles (middle), and without sorting edges

(right)

10 Additional Examples

In this section, we present some additional examples that further illustrate the power of our language.

10.1 Minimum Spanning Trees

Because MzTake has the full power of FrTime, users can take advantage of existing libraries to help them understand

programs. For example, the FrTime animation library allowsspecification of time-varying images (i.e., image behav-

iors) that respond to events. Since MzTake generates eventsby tracing program execution, users can visualize program

behavior by appropriately connecting these events to the animation library.

An intuitive visual representation can be an effective way of gaining insight into a program’s (mis)behavior. More-

over, many programs lend themselves to natural visualizations. For example, we consider the problem of computing

the Minimum Spanning Tree (MST) for a collection of points in the plane. (This example is based on the actual

experience of one of the authors, in the context of writing a heuristic to solve the traveling-salesman problem.)

A simple greedy algorithm for theMST works by processing the edges in order of increasing length,taking each

edge if and only if it does not introduce a cycle. Though the algorithm is straightforward, the programmer might forget

to do something important, such as checking for cycles or first sorting the edges by length.

The programmer could write code to isolate the source of sucherrors, but a simple visualization of the program’s

output is much more telling. In Figure 13, we show visualizations of three versions of anMST program. On the left,

we show the correctMST, in the middle, an edge set computed without cycle detection, and on the right, what happens

if we forget to sort the edges.

In Figure 14, we show the debugging script that implements this visualization. Its salient elements are:

tree-start-event occurs each time the program begins computing a newMST, yielding an empty edge list

tree-edge-eventoccurs each time the algorithm takes a new edge, adding the new edge to the list

22

(definetree-start-event

(trace ((tsp. jdot . mst) . jloc . entry)

(bind () (lambda (prev) empty))))

(definetree-edge-event

(trace ((tsp. jdot . mst) . jloc . 80)

(bind (e)

(lambda (prev)

(cons(make-edge(e . jdot . v1)

(e . jdot . v2))

prev)))))

(definetree

(accum-b(merge-e tree-start-event

tree-edge-event)

empty))

(display-lines tree)

Figure 14: RecordingMST Edges

tree builds a model of the tree by accumulating transformations from these event-streams, starting with an empty tree

display-lines displays the current tree

Though we have not shown the implementation of theMST algorithm, one important characteristic is that it does

not maintain the set of edges it has taken: it only accumulates thecostof the edges and keeps track of which vertices

are reachable from each other. In building an explicit modelof the tree, our script highlights an important capability of

our debugging system—it can capture information about the program’s state that is not available from the program’s

own data structures. To implement the same functionality without a scriptable debugger, the user would need to amend

the program to make it store this extra information.

10.2 A Statistical Profiler

Because our scripting language can easily monitor a program’s execution, it should be relatively simple to construct

a statistical profiler. Such a profiler uses a timer to periodically poll the program. Each time the timer discharges, the

profiler records which procedure was executing and then re-starts the timer. The summary of this record provides an

indication of the distribution of the program’s execution time across the procedures.

MzTake provides a global time-varying value calledwhere, which represents the current stack trace of the target

23

(definepings(make-hash-table’equal))

((changeswhere)

. ==> . (match-lambda [(line function context rest. . .)

(hash-table-increment! pings(list function context))]

[(void)]))

(defineticks(changes(quotient milliseconds50)))

(set-running-e! (merge-e(ticks. -=> . false)

(ticks. -=> . true)))

Figure 15: A Statistical Profiler

process. It is a list of symbolic locations starting with thecurrent line and ending with the location of themainfunction.

The value ofwhere is updated any time the execution of the target is suspended,either bytrace or byset-running-e!.5

Figure 15 useswhere to implement a statistical profiler that records the top two stack frames at each poll. First, we

instantiate a hash table to map stack contexts to their count. Next, each time thewhere behavior changes, we capture

the current context and pattern-match on it usingmatch-lambda. If the context contains at least a line, a function, and

a caller function, we trim the context down to the function name and its caller and increment the count in the hash table.

Then we bindticks to a stream that sends an event every 50 milliseconds. Finally, we useset-running-e! to suspend

the target at each tick. We want to resume the target soon after a pause, but how soon is soon enough? We want to

leave just enough time so that the evaluation engine correctly updates the hash table before resuming the target, but no

more. Recall thatset-running-e! synchronizes with the evaluation of the script, so that it waits until all dependencies

are fully recomputed before consuming the next event on its input stream. With that in mind, we usemerge-eto create

a stream containing two nearly-simultaneous events: thefalse tick is followed by atrue tick immediately afterwards.

The synchronization ensures thatset-running-e! will not consume thetrue tick until the data flow consequences of

thefalse ticks are completely computed.

This code only gathers profiling information. The script needs to eventually report this information to the user.

There are two options: to wait until the program terminates (which the debugger indicates using an event), or to report

it periodically based on clock ticks or some other condition. (The latter is especially useful when profiling a reactive

program that does not terminate.) Both of these are easy to implement using FrTime’s time-sensitive constructs.

5We also have another behaviorwhere/ss(for where with single stepping) which updates at every step of the execution. This is usefulfor scripts

that want to process the entire trace of the target. However,where/ssis disabled by default, for performance reasons.

24

11 Related Work

There are two main branches of research that relate to our work and from which we have drawn inspiration. We

describe these in turn: first, programmable debugging, and second, program monitoring and instrumentation.

Dalek [26] is a scripted debugger built atopgdb that generates events corresponding to points in the program’s

execution. Each event is associated with a callback procedure that can, in turn, generate other events, thus simulating

a dataflow style of evaluation. When the propagation stabilizes, Dalek resumes program execution.

MzTake has several important features not present in Dalek.A key difference that a user would notice is that we

rely on FrTime to automatically construct the graph of dataflow dependencies, whereas in Dalek, the programmer must

construct this manually. Dalek’s events are not first-classvalues, so programmers must hard-wire events to scripts, and

therefore cannot easily create reusable debugging operations such asnot-in-order.

In Dalek, each event handler can suspend or resume the execution of the target program, but these can contradict

each other. Dalek applies a fixed rule to arbitrate these conflicts, in contrast with the variety of start-stop rules we

discussed in section 9. Indeed, using a stream as the guard expression highlights the power of using FrTime as the

base language for the debugger, since we can reconstruct Dalek’s policy in our debugger: the code shown in figure 11

is in fact Dalek’s policy. This design addresses an important concern raised in an analysis of Dalek by Crawford, et

al. [10].

The Acid debugger [29] provides the ability to respond to breakpoint commands and step commands with small

programs written in a debugging script language very close to C. Deet [18] provides a scripting language based on

Tcl/Tk along with a variety of the graphical facilities. Dispel [20] defines its own ad-hoc language. Generalized path

expressions [5] specify break conditions as regular repressions applied to event traces. The regular expressions are

augmented with predicate that can check for base-value relations. In these projects, the programmer must respond to

events through callbacks, and there is no notion of a dataflowevaluation mechanism. Each retains the inspection and

control mechanism of command-prompt debuggers.

DUEL [17] extendsgdb with an interpreter for a language intended to be a superset of C. It provides several

constructs, such as list comprehensions and generators, for inspecting large data structures interactively. However, it

does not address how to control the target program or how to respond to events generated during the execution.

The Coca debugger by Ducassé [12] offers a conditional breakpoint language based on Prolog. Coca uses the

backtracking evaluation mechanism of Prolog to identify potentially problematic control and data configurations dur-

ing the execution, and brings these to the user’s attention.As such, Prolog predicates serve as both the conditional

breakpoint language and the data-matching language. However, since each predicate application happens in isolation

from the other, there is no way to accumulate a model of the execution as it happens through time, such as constructing

a trace history or building an explicit representation of anMST (as we have done in this paper).

Like Coca, on-the-fly query-based debugging [22, 23] enables users to interactively select heap objects. The

objects are specified using aSQL-like language evaluated using an efficient on-line algorithm. It does not offer a

25

sophisticated scripting mechanism. Like Coca, this approach does not support relating data between points in time.

Parasight [2] allows users to insert C code at tracepoint locations. The C code is compiled and inserted into the

running target program’s process in a way that has minimal performance impact. The inserted code must, however,

adopt a callback-style to respond to events. While adapting the running program has performance benefits, it also com-

plicates the process of using more expressive languages to perform monitoring and debugging (and indeed, Parasight

does not tackle this issue at all, using the same language forboth the target program and the scripts).

Alamo [19], like Parasight, instruments binary objects with in-process C code. While the scripts do not take the

shape of callbacks, they must manually implement a programming pattern that simulates a coroutine (which is handled

automatically in FrTime by the evaluation mechanism). TheUFO debugger [4] extends Alamo with a rich pattern-

matching syntax over events in terms of the target language’s grammar. While MzTake offers a rich, general-purpose

language for processing event-streams,UFO efficiently handles the special case of list comprehension followed by

folding.

There are several projects for monitoring program execution, as Dias and Richardson’s taxonomy describes [11].

Monitors differ from debuggers by virtue of not being interactive, and most do not provide scripting facilities. Instead,

many of these systems have better explored the trade-offs between expressiveness, conciseness and efficiency in the

specification of interesting events. MzTake simply relies on the powerful abstractions of FrTime to filter events, but at

the cost of efficiency.

We have argued that the debugging code should remain outsidethe program’s source code, to avoid complicating

maintenance and introducing time- and space-complexity penalties. The debugging script is thus a classic “concern”

that warrants separation from the core program. We could useaspect-like mechanisms [3] to express this separation.

However, using them for our purposes would not be straightforward. Most implementations of aspect mechanisms rely

on static compilation, which makes it impossible to change the set of debugging tasks on-the-fly. More importantly,

most of them force the debugging script and main program to bein the same language, making it difficult to use more

expressive languages for scripting. We therefore view these mechanisms as orthogonal to our work, and as possible

routes for implementing our debugging language; in particular, MzTake would benefit from the “quantification” [14]

provided by aspects.

Smith [27] proposes a declarative language for expressing equality constraints between the programmer’s model

and the execution trace. We can view this as an aspect-like system in which the aspects are not restricted to the original

target language. Smith’s language relies on a compiler to generate an instrumented program that maintains the model

incrementally. Unfortunately, the compiler has not been implemented and, as the paper acknowledges, developing an

implementation would not be easy.

Contracts [25] also capture invariants, but they too sufferfrom the need for static compilation. In addition, data

structures sometimes obey a stronger contract in a specific context than they do normally. For instance, in our running

example, priority heaps permit keys to change, which means there is no a priori order on a key’s values. As we saw,

26

however, Dijkstra’s algorithm initializes keys to∞ and decreases them monotonically; importantly, failure todo so

results in an error. The topicality of the contract means it should not be associated with the priority heap in general.

Finally, unit testing frameworks provide a mechanism for checking that output from a function matches the ex-

pected answer. With respect to debugging, unit testing suffers from the same limitations as contracts. Namely, they

operate statically and only along interface lines.

12 Conclusion and Future Work

We have presented the design and implementation of a scriptable, interactive debugger, and shown several instances

of its application. The scripting language has sufficient library support to permit construction of a wide variety of

applications including monitors and visualizations, and is powerful enough to make these concise to express. Along

the way, we have demonstrated that MzTake can provide program-specific views of rich data, and can easily monitor

implicit invariants.

MzTake does impose a burden on developers: to use it, they must learn a new language. This seems unavoidable

for the reasons we have discussed in this paper. Indeed, morethan the syntactic obstacles, the greater leap is to adjust

to the dataflow programming model. Fortunately, the prevalence of event-driven software systems suggests a growing

importance for dataflow languages in the future, so this investment has the potential to reap benefits in other domains

as well.

The Scheme version of MzTake has been available for downloadsince September 2004. The debugger has gathered

some interest from the Scheme community. A number of people have downloaded it, and we have received enthusiastic

feedback from several users.

In the future, we intend to use MzTake to specify temporal contracts on programs. It is typical for libraries to

have restrictions on which function can be called at a given time, or in which order the functions can be called. For

verification purposes, these temporal contracts are usually specified in terms of finite state machines. We expect that

the data flow model can provide a more natural way of specifying them.

Another avenue of future work involves bringing the syntax and data model of the scripting language in the Java

version of the debugger closer to Java. One possibility would be to use the Frappé system [9], a Java implementation

of functional reactive programming that bears some similarity to FrTime.

We currently offer only weak ways of addressing program points. We would like to improve addressing in two

ways. First, we intend to exploit the insights developed in aspect-oriented programming by adopting theirpointcut

descriptors. We would also like to avoid using line- and column-numbers,which are extremely brittle syntactically. It

is possible that languages for querying semi-structured data can provide a foundation for this.

27

Acknowledgements

We thank the functional reactive programming group at Yale University, particularly John Peterson, Antony Courtney

and Paul Hudak, for useful discussions. Thanks to Daniel Silva and John Clements who helped with the implementa-

tion. Thanks to the anonymous reviewers for helping improvethe quality of our presentation. We also thank Manos

Renieris, Philip Klein and Kathryn Doiron for their comments.

References

[1] The Ruby JDWP project.http://rubyforge.org/projects/rubyjdwp/.

[2] Ziya Aral and Ilya Gertner. High-level debugging in Parasight. In Proceedings of the ACM SIGPLAN and

SIGOPS Workshop on Parallel and Distributed Debugging, pages 151–162. ACM Press, 1988.

[3] Aspect oriented programming (article series).Communications of the ACM, 44(10), October 2001.

[4] Mikhail Auguston, Clinton Jeffery, and Scott Underwood. A framework for automatic debugging. InAutomated

Software Engineering, pages 217–222, 2002.

[5] Bernd Bruegge and Peter Hibbard. Generalized path expressions: A high level debugging mechanism. In

Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on High-level Debugging, pages

34–44, 1983.

[6] John Clements and Matthias Felleisen. A tail-recursivemachine with stack inspection.ACM Transactions on

Programming Languages and Systems, 26(6):1029–1052, 2004.

[7] Gregory H. Cooper and Shriram Krishnamurthi. Embeddingdynamic dataflow in a call-by-value language. In

European Symposium on Programming, 2006.

[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. McGraw-Hill,

1997.

[9] Antony Courtney. Frapṕe: Functional reactive programming in Java. InPractical Aspects of Declarative Lan-

guages, pages 29–44. Springer-Verlag, March 2001.

[10] R. H. Crawford, R. A. Olsson, W. W. Ho, and C. E. Wee. Semantic issues in the design of languages for

debugging. InProceedings of the International Conference on Computer Languages, pages 252–261, 1992.

[11] Marcio de Sousa Dias and Debra J. Richardson. Issues on software monitoring. Technical report, ICS, 2002.

[12] Mireille Ducasśe. Coca: an automated debugger for C. InProceedings of the 21st International Conference on

Software Engineering, pages 504–513, 1999.

28

[13] Conal Elliott and Paul Hudak. Functional reactive animation. InProceedings of the International Conference on

Functional Programming, pages 263–277, 1997.

[14] Robert Filman and Daniel P. Friedman. Aspect-orientedprogramming is quantification and obliviousness. In

Workshop on Advanced Separation of Concerns, October 2000.

[15] Robert Bruce Findler, John Clements, Cormac Flanagan,Matthew Flatt, Shriram Krishnamurthi, Paul Steckler,

and Matthias Felleisen. DrScheme: A programming environment for Scheme.Journal of Functional Program-

ming, 12(2):159–182, 2002.

[16] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias Felleisen. Programming languages

as operating systems (or, Revenge of the Son of the Lisp Machine). InACM SIGPLAN International Conference

on Functional Programming, pages 138–147, September 1999.

[17] Michael Golan and David R. Hanson. DUEL - a very high-level debugging language. InProceedings of the

USENIX Annual Technical Conference, pages 107–118, Winter 1993.

[18] David R. Hanson and Jeffrey L. Kom. A simple and extensible graphical debugger. InProceedings of the

USENIX Annual Technical Conference, pages 183–174, 1997.

[19] Clinton Jeffery, Wenyi Zhou, Kevin Templer, and Michael Brazell. A lightweight architecture for program

execution monitoring. InSIGPLAN Notices, volume 33, pages 67–74, 1998.

[20] Mark Scott Johnson. Dispel: A run-time debugging language.Computer Languages, 6:79–94, 1981.

[21] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on the algorithmic language Scheme.ACM

SIGPLAN Notices, 33(9), October 1998.

[22] Raimondas Lencevicius. On-the-fly query-based debugging with examples. InProceedings of the Fourth Inter-

national Workshop on Automated Debugging, 2000.

[23] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Dynamic query-based debugging ofobject-oriented

programs.Automated Software Engineering, 10(1):39–74, 2003.

[24] Guillaume Marceau, Gregory H. Cooper, Shriram Krishnamurthi, and Steven P. Reiss. A dataflow language for

scriptable debugging. InIEEE International Conference on Automated Software Engineering, 2004.

[25] Bertrand Meyer.Eiffel: The Language. Prentice-Hall, 1992.

[26] Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho.Dalek: A GNU, improved programmable debugger.

In Proceedings of the Usenix Technical Conference, pages 221–232, 1990.

29

[27] Douglas R. Smith. A generative approach to aspect-oriented programming. InInternational Conference on

Generative Programming and Component Engineering, volume 3286, pages 39–54, 2004.

[28] Richard M. Stallman.GDB Manual (The GNU Source-Level Debugger). Free Software Foundation, Cambridge,

MA, third edition, January 1989.

[29] Phil Winterbottom. Acid, a debugger built from a language. InProceedings of the USENIX Annual Technical

Conference, pages 211–222, January 1994.

30

