
Crossing State Lines:
Adapting Object-Oriented Frameworks

to Functional Reactive Languages?

Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnamurthi

Computer Science Department, Brown University
{dignatof, greg, sk}@cs.brown.edu

Abstract. Functional reactive programming integrates dynamic dataflow with
functional programming to offer an elegant and powerful model forexpressing
computations over time-varying values. Developing realistic applications, how-
ever, requires access to libraries, such as those forGUIs, that are written in main-
stream object-oriented languages. Previous work has developed functional reac-
tive interfaces forGUI toolkits but has not provided an account of the principles
underlying the implementation strategy.
In this paper, we investigate this problem by studying the adaptation of the object-
oriented toolkit MrEd to the functional reactive language FrTime. The heart of
this problem is how to communicate state changes between the application and
the toolkit’s widget objects. After presenting a basic strategy for adaptation, we
discuss abstraction techniques based on mixins and macros that allow us toadapt
numerous properties in many widget classes with minimal code duplication.This
results in a wrapper for the entire MrEd toolkit in only a few hundred lines of
code. We also briefly discuss a spreadsheet developed with the resultingtoolkit.

1 Introduction

Functional reactive programming (FRP) extends a general-purpose functional language
with abstractions for expressing values that change over time. By combining the fea-
tures of dataflow and higher-order functional programming,it supports concise, declara-
tive descriptions of reactive and interactive systems. This paper specifically uses the lan-
guage FrTime [3] (pronounced “father time”), an embedding of FRPin the DrScheme [7]
programming environment. FrTime pursues a push-driven evaluation strategy that per-
mits incremental program development (e.g., in a read-eval-print loop) formulated atop
the eager semantics of Scheme.

While FRP provides an elegant notation for specifying the computational core of
systems, application developers need more: they also must be able to use standard li-
braries for graphics, user interfaces, networking, and so on. These libraries have several
important characteristics. First, they tend to be large anddetailed, so it is impractical
to rewrite them. Second, they are maintained by third-partydevelopers, so they should
be integrated with a minimum of modification to enable easy upgrading. Third, these
libraries—especially forGUIs—are often written in object-oriented (OO) languages.

? This work is partially supported by NSF grant CCR-0305949.

The integration process must therefore handle this style, and ideally exploit it. An im-
portant subtlety is thatOO andFRP languages have different notions of state:OO makes
state explicit but encapsulates it, whereas state inFRP is hidden from the programmer
by the temporal abstractions of the language. Somehow, these two representations of
state must be reconciled.

We have made considerable progress on this integration problem for the specific
case ofGUIs. The DrScheme environment provides a large and robustGUI library called
MrEd [8], based on the wxWindows framework, which is used to build DrScheme’s
interface itself. The environment is a good representativeof a library that meets the
characteristics listed above; furthermore, its integration is of immediate practical value.
We have discovered several useful abstractions based onmixins[2] (classes parameter-
ized over their super-classes) that enable a seamless integration. We have further found
that there are patterns to these mixins and abstracted over them usingmacros[10]. As
a consequence, the adapter for MrEd is under 400 lines of code.

This paper may appear on the surface to describe work similarto the FranTk [14]
and Fruit [4] projects, and in fact the interface we develop for MrEd is similar in spirit
to the ones developed for those systems. However, those other systems focus on the
design of a programmer’s interface for buildingGUI applications in a functional reactive
language. In contrast, our work addresses the lower-level,largely orthogonal issue of
importing legacy object-oriented frameworks into anFRPsystem. Our primary example
also happens to beGUI libraries, as these have direct practical applicability and are
sufficiently complex to make an interesting case study. However, the ideas we present
are not specific toGUI libraries. If anything, adapting other kinds of libraries should be
even easier, given the highly imperative nature ofGUIs.

This paper is organized as follows. First, we present the implementation of a small
GUI application in MrEd, which we use to illustrate some of the difficulties posed by the
standard object-orientedGUI programming model. Next we provide a brief overview
of FrTime, whose notion ofsignalsoffers a more natural, declarative mechanism for
modeling state. We then discuss the design philosophy that governs our adaptation of
MrEd to a signal-based programming interface. The heart of the paper is a description
of our implementation of this interface and of the abstractions that capture the essence
of the adaptation. We talk briefly about a spreadsheet application built with the adapted
toolkit, then discuss related work and provide concluding remarks.

2 GUI Construction with an Object-Oriented Toolkit

We walk through the process of writing a smallGUI application in MrEd, the stan-
dard GUI library included with the extended object-oriented language supported by
DrScheme. MrEd resembles theOO GUI libraries of languages like C++ and Java.

The application we develop is a simple timer; it counts seconds for a user-specified
time, displaying the elapsed time both graphically and textually. Figure 1 shows the
entire code, which we explain incrementally.

First, we create a window. In MrEd, a normal top-level windowis called aframe%.1

A new expression constructs an object of a given type with a set of named parameters,

1 By convention, class names in DrScheme end with a % sign, suggestingobject-orientation.

(defineframe(new frame%[label"Timer"] [height80] [width300] [alignment’(left top)]))
(definegauge(newgauge%[parent frame] [label"Elapsed Time"] [range60]))
(definemessage(newmessage%[parent frame] [label"0 s"] [stretchable-widthtrue]))
(defineslider

(newslider%[parent frame] [label"Duration (s)"]
[min-value30] [max-value120] [init-value60]
[callback(λ (s e) (sendgauge set-range(sendslider get-value)))]))

(definebutton(newbutton%[parent frame] [label"Reset"]
[callback(λ (b e) (set!elapsed0))]))

(defineelapsed0)
(define(loop)

(when (< elapsed(sendslider get-value))
(sendgauge set-value elapsed)
(sendmessage set-label(format"˜a s" elapsed))
(sleep/yield1)
(set!elapsed(add1 elapsed))
(loop)))

(sendframe show#t)
(loop)

Fig. 1.A simple timer application in Scheme with MrEd, with a screenshot at the lower right

in this case the label, dimensions, and alignment. We next create gauge and message
widgets as children of the window. The gauge is to display theelapsed time as a colored
bar, and the message to present the same information textually.

We then add a slider that lets the user adjust the timer’s duration. The slider needs
a parent and a label like the other controls, along with a range. Whenever the user
adjusts the duration through the slider, we need to update the gauge’s range accordingly.
The toolkit provides acallback for this purpose, which lets the application register a
procedure to be executed whenever the user interacts with a widget.

The last widget is a reset button, which also takes a callbackprocedure. In this case,
the callback simply resets the elapsed time to 0. After creating the widgets, we tell the
window to display itself (and its contents) by invoking theshowmethod. We then write
a loop to count out the duration and keep the gauge and messagewidgets up to date.

Evaluating the GUI Coding Style

This simple example gives a sense of the nature ofGUI programming. Even in a mostly
functional language like Scheme, the programming style is very imperative. In particu-
lar, the need to handle values that change over time forces the programmer to use muta-
tion and other side-effecting operations. The applicationneeds to know when its values
change so it can update the properties of widgets, and it needs to register callbacks so it
can find out when widget properties change and accordingly update its internal state.

All these callbacks and imperative operations tend to invert and obscure the system’s
structure and data dependencies. For example, the contentsof the gauge and message
depend on the variableelapsed, but this relationship is not apparent from the widgets’

definitions. Instead, the loop body is responsible for updating the widgets, so we need
to examineit to understand the behavior of all the widgets. Similarly, the range of
the gauge depends on the value of the slider, but gauge’s definition does not express
this relationship; instead, the slider’s callback invokesmethods on the gauge to keep
it up-to-date. In general, when an object’s state depends onexternal mutation, reason-
ing about its behavior requires awareness of all invocations that target the object. This
structural inversionis a serious impediment to understanding and maintaining the code.
For example, if a developer adds, modifies, or removes a widget, then he must be sure
to identify and properly update all of its referents.

3 FrTime

Much of the complexity ofGUI programming arises from the lack of linguistic support
for modeling values that change over time. This is what necessitates the use of impera-
tive state, with the resulting inversion of program structure and increase in complexity.

The goal of dataflow programming is to support the modeling ofchange. Dataflow
languages introduce a concept ofsignals, or time-varying values. This idea has been
revived in a recent line of work called functional reactive programming (FRP) [6, 13],
which merges dataflow with higher-order functional programming. We have developed
an implementation ofFRP for DrScheme [7] called FrTime [3].

FrTime publishes a signal calledseconds, which represents the current time as an
integral number of seconds. We can project its value at any moment by asking for its
value-now. This returns the current constant integer value of the signal. We can also
usesecondsto build new signals; for example, (even? seconds) alternates betweentrue
andfalseevery second.

We can model the elapsed time in our application by computingthe difference be-
tween the current value ofsecondsand its value when the count started. We express
this in code with (− seconds(value-now seconds)), where (value-now seconds) re-
turns a constant, and subtracting it fromsecondsyields a new signal that starts at0 and
increments every second. Because we use signals, the language automatically keeps
them up-to-date. Otherwise we would need to keep track of thepassage of time (e.g.,
with a timer orsleepcommand) and manually update all the variables that (transitively)
depend on it. These tasks are tedious to perform manually andprone to errors.

The signals we’ve described so far are all examples ofbehaviors, which mean they
have a value at every point in time after their creation. Behaviors correspond naturally
to the values of manyGUI widgets. For example, a gauge renders a time-varying integer,
and a message displays a time-varying string. Likewise, a slider lets the user manipulate
a time-varying integer, and a text field lets him edit a time-varying string.

Signals may also take the form ofevent sources, which carry streams of discrete val-
ues calledoccurrences. For example, FrTime’s animation library provides event sources
calledmouse-clicksandkey-strokes, which carry the mouse clicks and key strokes cap-
tured by a given window. FrTime also provides a collection ofevent-processing com-
binators that are analogous to list-processing routines. For example,filter-e removes
unwanted occurrences from an event stream, whilemap-etransforms each value by
applying a given function.

(defineframe(new ft-frame%[label"Timer"] [width200] [height80] [visibletrue]))
(defineslider (new ft-slider%[label"Duration"] [min-value15] [max-value60])
(definebutton(new ft-button%[label"Reset"])
(defineduration (sendslider get-value-b))
(define last-click-time;; initially holds application’s start time

(hold (map-e (sendbutton get-clicks) (λ () (value-nowseconds)))
(value-nowseconds)))

(defineelapsed(min duration(− seconds last-click-time)))
(definegauge(new ft-gauge%[label"Elapsed time:"] [range duration]

[parent frame] [value elapsed]))

(definemessage(new ft-message%[label (format"˜a s" elapsed)]

[parent frame] [min-width50]))

Fig. 2. Implementation of the timer in FrTime

FrTime provides several primitives for converting betweenbehaviors and event
streams. One ischanges, which consumes a behavior and returns an event source that
emits the new value each time the behavior changes. Conversely, hold consumes an
event source and returns a behavior that reflects the last event occurrence value;hold
also takes an optional initial value to use until the first event occurs. For example, if a
program applieshold to key-strokes, the result is a behavior whose value indicates the
last key pressed.

Widgets like buttons and menu items support interaction through discrete events
rather than manipulation of continuous values. Thus they correspond naturally to Fr-
Time event streams instead of behaviors. We can use standardFrTime operators to con-
struct behaviors from these event streams. For example, from a stream of button clicks,
we can define a behavior that reflects the time of the last click. We express this by map-
ping a procedure that projects the current time over the stream of clicks (ignoring the
click event’svoid value);holding the resulting stream yields the time of the last click.
We providehold with the program’s start time, which is the value until the first click.
The code is as follows:

(define last-click-time
(hold (map-e(sendbutton get-clicks) (λ () (value-nowseconds)))

(value-nowseconds)))

This definition plays an important role in the program shown in Fig. 2, which presents
a FrTime implementation of the timer using the ideas of this paper. The new version
is free of callbacks and imperative method invocations. Instead, input widgets like the
slider and button provide behaviors and events that reflect the user’s interactions, and
output widgets like the gauge and message allow the application to provide behaviors
that specify property values for their entire lifespan. We draw a box around code that
participates in the interface between signals and widgets.

4 Adapting MrEd to FrTime

In Sect. 2 we introduced MrEd, an object-oriented toolkit for building GUIs, and pre-
sented a simple example to illustrate some of the difficulties imposed by the standard
GUI programming model. In Sect. 3 we presented FrTime, a language that extends
DrScheme with support for first-class signals, and we showedhow this new feature
provides a suitable abstraction for modeling change, whichis an important problem in
interactiveGUI applications. In this section, we put the pieces together and show how
to adapt MrEd so that its interface is based on FrTime’s behaviors and events.

Recall that we are trying to import a large legacy class framework in a manner
consistent with the goals set forth in the Introduction. We wish to reuse the existing
implementation as much as possible and perform a minimum of manual adaptation.
In order to minimize the manual effort, we need to uncover patterns and abstract over
them. In this case, the main problem we must address is how to communicate state
changes between the object-oriented and functional reactive models.

The functional reactive world represents state implicitlythrough time-varying val-
ues, and the dataflow mechanism is responsible for keeping itconsistent. In contrast,
the object-oriented world models state with mutable fields,and programmers are re-
sponsible for writing methods that keep them consistent. Wepresume that the toolkit
implementors have done this correctly, so our job is simply to translate state changes
from the dataflow program into appropriate method invocations. However, sinceGUI

toolkits also mediate changes coming from the user, they provide a callback mechanism
by which the application can monitor state changes. The interface between theGUI and
FrTime must therefore also translate callbacks into state changes in the dataflow world.

Not surprisingly, the nature of the adaptation depends primarily upon the direction
of communication. We classify each widget property according to whether the applica-
tion or the toolkit changes its state. The most interesting case, naturally, is when both
of them can change the state. We now discuss each case separately.

4.1 Application-Mutable Properties

MrEd allows the application to change many of a widget’s properties, including its
value, label, cursor, margins, minimum dimensions, and stretchability. A widget pro-
vides an accessor and mutator method for each of these properties, but the toolkit never
changes any of them itself, so we classify these properties as “application-mutable.”

In a functional reactive setting, we can manipulate time-varying values directly,
so it is natural to model such properties with behaviors. Forexample, we would use
a behavior to specify a gauge’s value and range and a message’s label. This sort of
interface renders accessors and mutators unnecessary, since the property automatically
updates whenever the behavior changes, and the applicationcan observe it by reading
whatever behavior it used for initialization.

To implement a behavior-based interface to such widget properties, the first step
is to derive a subclass from the original MrEd widget. For example, we can define a
ft-gauge%from the MrEd gauge.

(defineft-gauge%
(classgauge%. . .))

In the new class, we want to provide constructor arguments that expect behaviors for all
of the application-mutable properties. In FrTime, behaviors extend the universe of val-
ues, and any constant may be taken as a special case of a behavior (that never changes);
i.e., behaviors are supertypes of constants. Thus the application may safely supply con-
stants for any properties that it wishes not to change. Moreover, if we use the same
property names as the superclass, then we can construct anft-gauge%exactly as we
would construct an ordinary gauge. This respects the principle of contravariance for
function subtyping: our extension broadens the types of legal constructor arguments.

In fact, the DrScheme class system allows us to override the superclass’s initializa-
tion arguments, orinit-field s. Of course, the superclass still refers to the original fields,
so its behavior remains unchanged, but this lets us extend the constructor interface to
permit behaviors. The code to add these initialization arguments is as follows:

(init-field value label range vert-margin horiz-margin min-width. . .)

Next, we need code to enforce consistency between these behavioral fields and the cor-
responding fields in the superclass. The first step is to perform superclass initialization,
using the current values of the new fields as the initial values for the old ones. Although
the old and new versions of the fields have the same names, there is no ambiguity in the
superclass instantiation expression; in each name/value pair, the name refers to a field
in the superclass, and the value expression uses the subclass’s scope.

(super-instantiate() [label (value-now label)] [range(value-nowrange)] . . .)
(send thisset-value(value-nowvalue))

(Since there is no initialvaluefield in the superclass, we need to set it separately after
super-class initialization.)

Having set appropriate initial values for the fields, we needto ensure that they stay
consistent as the behaviors change. That is, we need to translate changes in state from
the dataflow program to the object-oriented “real world.” This is a central problem in
building an interface between the two models.

The basic idea behind our translation is straightforward: detect changes in a be-
havior and update the state of the corresponding object through an appropriate method
call. We use the FrTime primitivechangesto detect changes in a behavior and expose
them on an event stream. Then we convert the event stream intoa series of method
invocations. This second step is somewhat unusual, since the methods have side ef-
fects, unlike the operations found in a typical dataflow model. However, in this case
we are concerned not withdefiningthe model but withcommunicatingits state to the
outside world. The effects are therefore both safe (they do not interfere with the purity
of the model) and necessary (there is no other way to tell the rest of the world about the
system’s changing state).

The invocation of imperative methods is technically trivial. Since FrTime is built
atop Scheme, any procedure that updates a signal is free to execute arbitrary Scheme
code, including operations with side effects. Of course, weordinarily avoid the practice
of performing side effects in signal processors, since it could lead to the violation of
program invariants. As mentioned above, it is safe when the effects are restricted to
communication with the outside world (as they are in this case). In particular, we use
the primitivemap-e, passing a procedure that invokes the desired method:

(map-e(λ (v) (send thisset-value v)) (changes value))
(map-e(λ (v) (send thisset-label v)) (changes label))
. . .

Each call above tomap-ecreates a new event stream, whose occurrences all carry the
voidvalue—the return value of the imperative method call—but are accompanied by the
method’s side effects. Because the event values are allvoid, they have no meaningful
use within a larger dataflow program.

The above expressions are static initializers in the widgetclasses, so they are evalu-
ated whenever the application constructs a new instance. Using static initializers allows
the adapter to automatically forward updates without the developer having to invoke
a method to initiate this. Because the code constructs signals, which participate in the
dataflow computation, it therefore has a dynamic effect throughout the life of the wid-
get, unlike typical static initializers.

Subtleties Involving Side-Effecting Signals

We have resolved the interface for communicating state changes from the dataflow to
the object-oriented model. However, a more serious concernis the mismatch between
their notions oftiming. In a typical object-oriented program, method invocationsare
synchronous, which fixes the ordering of operations within each thread of control. How-
ever, FrTime processes updates according to their data dependencies, which does not
necessarily correspond to a sequential evaluation order. This makes it difficult for pro-
grammers to reason about when effects occur.

Fortunately, the functional reactive model and interface are designed in such a way
as to prevent operations from occurring unpredictably. Most importantly, there is at
most one signal associated with any given widget property, so there is no contention
over who is responsible for keeping it up-to-date. Secondly, FrTime processes updates
in order of data dependencies, so if one property’s signal depends on another’s, then it
will be updatedlater. If the order of updates were significant, then this would seem to be
the “safe” order in which to do things, assuming that the application’s data dependencies
reflect similar dependencies in the toolkit.

There is, however, a problem with the strategy described above that is difficult to
diagnose and debug. The symptoms are as follows: at first, theprogram seems to work
just fine. Sometimes it may run successfully to completion. Other times, depending
upon what else is happening, it runs for a while, then suddenly and seemingly without
explanation the gauge’s properties stop updating when the behaviors change. The point
at which it stops varies from run to run, but there are never any error messages.

The problem results from an interaction with the memory manager. An ordinaryFRP

application would use the event source returned by themap-e, but in this case we only
care about side effects, so we neglect to save the result. Since there are no references to
the updating event source, the garbage collector eventually reclaims it, and the gauge
stops reacting to changes in the behavior.

To avoid these problems, we define a new abstraction specifically for side-effecting
event processors. This abstraction, calledfor-each-e!, works just likemap-e, except
that it ensures its result will not be collected. It also lends itself to a more efficient

implementation, since it can throw away the results of the procedure calls instead of
enqueuing them on a new event stream.

Thefor-each-e!implementation stores references to the imperative event processors
in a hash table, indexed by the objects they update. It is important that this hash table
hold its keys with weak references so that, if there are no other references to the widget,
both it and the event processor may be reclaimed.

4.2 Toolkit-Mutable Properties

Some widget properties are controlled primarily by the useror the toolkit rather than
the application. For example, when the user resizes a window, the toolkit adjusts the
locations and dimensions of the widgets inside. Since the application cannot control
these properties directly, the widgets provide accessor methods but no mutators. Addi-
tionally, the application may want to be notified of changes in a property. For example,
when a drawing canvas changes size, the application may needto update its content
or recompute parameters for its scrollbars. For such scenarios, accessor methods alone
are insufficient, and toolkits provide callback interfacesas described in the previous
section. However, we saw that callbacks lead to an imperative programming style with
various pitfalls, so we would like to support an alternativeapproach.

For such “toolkit-mutable” properties, we can remove the dependency on callbacks
by adding a method that returns the property’s time-varyingvalue as a behavior. For
example, instead of allowing registrationon-sizeand on-movecallbacks, the toolkit
would provide methods that return behaviors reflecting the properties for all subsequent
points in time.

The implementation of such methods is similar to that for application-mutable prop-
erties. However, in this case we cannot just override the existingget-width, get-height,
get-x, andget-ymethods and make them return behaviors. Though FrTime allows pro-
grammers to use behaviors just like constants, an application may need to pass a widget
to a library procedure written in raw Scheme. (For example, the widget may need to
invoke methods in its superclass, which is implemented in Scheme.) If a Scheme ex-
pression invokes an accessor and receives a behavior, thereis nothing FrTime can do to
prevent a type-mismatch error. Since behaviors are supertypes of constants, overriding
in this manner would violate the principle of covariance forprocedure return values.

To preserve type safety, we must define the new signal-aware methods so as not
to conflict with the existing ones. We choose the new names by appending-b to the
existing names, suggesting the behavioral nature of the return values. Again, we derive
a subclass of the widget class we want to wrap. For example, continuing with theft-
gauge%, we would add methods calledget-width-b get-height-b, get-x-b, andget-y-b.

We need to determine how to construct the behaviors returnedby these methods.
We want these behaviors to change with the corresponding widget properties, and we
know that the widget’son-sizeor on-movemethod will be called when the properties
change. So, we are now faced with the converse of the previousproblem—converting a
imperative procedure call into an observable FrTime event.

FrTime provides an interface for achieving this goal, called make-event-receiver.
This procedure returns two values: an event sourceeand a unary proceduresend-evente.

Whenever the application executes (send-evente v), the valuev occurs one. In the im-
plementation,send-evente sends a message to the FrTime dataflow engine indicating
thatv should occur one, which leads tov’s being enqueued on the stream ofe’s occur-
rences. By overriding the widget’s callbacks and callingmake-event-receiver, we can
create an event source carrying changes to the widget’s properties:

(define-values(width-e send-width) (make-event-receiver))
(define-values(height-e send-height) (make-event-receiver))
(define/override(on-size w h)

(superon-size w h)
(send-width w)
(send-height h))

;; similarly for position

Once we have the changes to these properties in the form of FrTime event sources, we
convert them to behaviors withhold:

(define/public (get-width-b) (hold width-e(send thisget-width)))
(define/public (get-height-b) (hold height-e(send thisget-height)))
. . .

4.3 Application- and Toolkit-Mutable Properties

We have discussed how to adapt properties that are mutable byeither the toolkit or
the application, but many properties require mutability byboth the toolkit and the ap-
plication. This need usually arises because there are several ways to change the same
property, or several views of the same information. For example, a text editor provides
scrollbars so the user can navigate a long document, but the user can also navigate with
the keyboard, in which case the application needs to update the scrollbars accordingly.

All widgets that allow user input also provide a way to set thevalue from the appli-
cation. Several other properties may be set by either the toolkit or the user:

focus When the user clicks on a widget, it receivesfocus(meaning that it hears key
strokes) and invokes itson-focuscallback method. This is the common mode of
operation, but the application can also explicitly send focus to a widget. For exam-
ple, when a user makes a choice to enter text, the applicationmay automatically
give the text field focus for the user’s convenience.

visibility The application may hide and show widgets at various stages of an interactive
computation. Sinceshowing a widget also shows all of its descendents, the toolkit
provides anon-enablecallback so the application does not need to track ancestry.
In addition, the user can affect visibility by, for example,closing a window, which
hides all of its children.

ability Similar to visibility, the application can selectively enable and disable widgets
depending upon their necessity to various kinds of interaction. Enabling also works
transitively, so the toolkit invokes theon-enablemethod for all children of a newly-
enabled widget.

One might naturally ask, since we have already discussed howto adapt application-
and toolkit-mutable properties, why we cannot simply combine the two adaptation
strategies for these hybrid properties. The reason is that the application specifies a prop-
erty’s time-varying value through a behavior, which definesthe value at every point in
the widget’s lifespan. This leaves no gaps for another entity to specify the value.

Our solution to this problem is to use event sources in addition to behaviors. Recall
that in the implementation of toolkit-mutable properties,we first constructed an event
source from callback invocations, then used hold to create abehavior. In this case, both
the application and toolkit provide event streams, and instead of holding directly, we
merge the streams and hold the result to determine the final value:

(init-field app-focus app-enable app-show)
(define-values(user-focus send-focus) (make-event-receiver))
(define/public (has-focus-b?)

(hold (merge-e app-focus user-focus) (send thishas-focus?)))
(define/override(on-focus on?)

(superon-focus on?)
(send-focus on?))

. . .

This code completely replaces the fragments shown previously for properties that are
mutable by only the application or the toolkit.

4.4 Immutable Properties

MrEd does not allow certain properties to change once a widget is created. For exam-
ple, every non-window widget has a parent, and it cannot be moved from one parent
to another. In theory, we could build a library atop MrEd in which we simulated the
mutability of these properties. However, this would be a significant change to not only
the toolkit’s interface but also its functionality, and we would have to implement it our-
selves. Since our goal is to reify the existing toolkit through a cleaner interface, we have
not attempted to extend the underlying functionality.

5 Automating the Transformation

We have so far discussed how to replace the imperative interface to object-oriented
widget classes with a more elegant and declarative one basedon behaviors and events.
The problem is that there is a large number of such widgets andproperties, and dealing
with all of them by hand is a time-consuming and tedious task.Thus we look to reduce
the manual effort by automating as much as possible of the transformation process.

The reader may have noticed that the code presented in the previous section is highly
repetitive. There are actually two sources of repetition. The first is that we need to
perform many of the same adaptations for all of the MrEd widget classes, of which
there are perhaps a dozen. The second is that the code used to adapt each property is
essentially the same from one property to the next. We now discuss how to remedy these
two forms of duplication individually, by abstracting firstover multiple widget classes,
then over multiple properties within each class.

5.1 Parameterized Class Extensions

In Sect. 4 we adapted a collection of widget properties by sub-classing. Since most of
the code in the subclasses is essentially the same across theframework, we would like
to be able to reuse the common parts without copying code. In other words, we would
like a class extension parameterized over its superclass.

The DrScheme object system allows creation ofmixins[2, 9], which are precisely
such parameterized subclasses. We write a mixin to encapsulate the adaptation of each
property, then apply the mixins to all classes possessing the properties. For example,
instead of defining anft-gauge%like we did before, we define a generic class extension
to adapt a particular property, such as the label:

(define(adapt-label a-widget)
(class a-widget

(init-field label)
(super-instantiate() [label (value-now label)])
(for-each-e!(changes label) (λ (v) (send thisset-label v)) this)))

In the code snippet above, we box the superclass position of the class definition to
highlight that it is a variable rather than the literal name of a class. This parameterization
makes it possible to abstract over the base widget class and thus to apply the adaptation
to multiple widgets.

We write mixins for other properties in a similar manner. Since there are several
properties common to all widget classes, we compose all of them into a single mixin:

(define(adapt-common-properties a-widget)
(foldl (λ (mixin cls) (mixin cls)) a-widget(list adapt-label adapt-enabling. . .)))

Although this procedure contains no explicitclassdefinitions, it is still a mixin: it ap-
plies a collection of smaller class extensions to the input class. Thiscompoundmixin
takes a raw MrEd widget class and applies a mixin for each standard property. The
resulting class provides a consistent FrTime interface forall of these properties. For
example, we can use this mixin to adapt several widget classes:

(definepre-gauge%(adapt-common-properties gauge%))
(definepre-message%(adapt-common-properties message%))
. . .

We call the resulting widget classes “pre-” widgets becausethey still await the adapta-
tion of widget-specific properties. Most importantly, eachwidget supports manipulation
of a particular kind of value (e.g., boolean, integer, string) by either the application or
the toolkit, and the various combinations give rise to different programmer interfaces.

5.2 A Second Dimension of Abstraction

Mixins allow us to avoid copying code across multiple classes. However, there is also
code duplication across mixins. In Sect. 4, we develop patterns for adaptation that de-
pend on whether the property is mutable by the application, the toolkit, or both. Once
we determine the proper pattern, instantiating it only requires identification of the field

and method names associated with the pattern. However, in Sect. 4 we duplicated the
pattern for each property.

In most programming languages, we would have no choice but tocopy code in this
situation. This is because languages don’t often provide a mechanism for abstracting
over field and method names, as these are program syntax, not values. However, Scheme
provides amacro system[10] with which we can abstract over program syntax. For
example, with application-mutable properties we only needto know the name of the
field and mutator method, and we can generate an appropriate mixin:

(define-syntax adapt-app-mutable-property
(syntax-rules()

[(field mutator)
(λ (widget)

(classwidget
(init-field field)
(super-instantiate() [field (value-nowfield)])
(for-each-e!(changes field) (λ (v) (send thismutator v)) this)))]))

With this macro, we can generate mixins for the application-mutable properties:

(defineadapt-label(adapt-app-mutable-property label set-label))
(defineadapt-vert-margin(adapt-app-mutable-property vert-margin vert-margin))
. . .

Of course, we write similar macros that handle the other two cases of mutability and
instantiate them to produce a full set of mixins for all of theproperties found in MrEd’s
widget classes. At this point, we have fully abstracted the principles governing the
toolkit’s adaptation to a functional reactive interface and captured them concisely in
a collection of macros. By instantiating these macros with the appropriate properties,
we obtain mixins that adapt the properties for actual widgets. We compose and apply
these mixins to the original MrEd widget classes, yielding new widget classes with
interfaces based on behaviors and events.

The ability to compose the generated mixins safely depends upon two properties
of the toolkit’s structure. Firstly, most properties have distinct names for their fields
and methods and hence are non-interfering by design. Secondly, in cases where two
propertiesdo share a common entity (for example, the single callbackon-sizeaffects
the width and height), the disciplined use of inheritance (i.e., always callingsuper)
ensures that one adaptation will not conflict with the other.

To save space and streamline the presentation, we have simplified some of the code
snippets in this paper. The full implementation has been included with the DrScheme
distribution since release version 301. We provide a catalog of adapted widgets in an ap-
pendix. The core contains about 80 lines of macro definitionsand 300 lines of Scheme
code. This is relatively concise, considering that the MrEdtoolkit consists of approxi-
mately 10,000 lines of Scheme code, which in turn provides aninterface to a 100,000-
line C++ library. Moreover, our strategy satisfies the criteria set forth in the Introduc-
tion: it is a pure interface extension and does not require modifications to the library.

5.3 Language Dependencies

The abstractions we have presented depend heavily on two features of DrScheme: mix-
ins and macros. These features have analogs in other languages. For instance, Smalltalk
has recently seen a series of work ontraits [15], which are similar to mixins and suf-
ficient for our needs. Similarly, C++ programmers have long used the template facility
to parameterize classes [17]. Likewise, hygienic macro systems have been defined for a
variety of languages including C [18], Java [1] and Haskell [16]. In addition, the use of
macros here could potentially also be simulated using features such as meta-classes.

6 A Spreadsheet Application

To evaluate our adapted version of MrEd, we have applied it toa realistic spreadsheet
application. The major challenges in building a spreadsheet, in our experience, are im-
plementing a language with its dataflow semantics and managing a large array of cells.
Fortunately, FrTime makes the linguistic problem relatively straightforward, since we
can reuse its dataflow mechanism to implement update propagation. This leaves the
representation and display of the cell grid.

The core of our spreadsheet user interface is an extension ofthe MrEdcanvaswidget
(which we have not discussed so far). A canvas is a region in which the application can
listen to key and mouse events and perform arbitrary drawingoperations. We render the
cell content into a canvas and process mouse events to perform selection. When the user
selects a cell, he can enter a formula into a text field, and theselected cell receives the
value of the formula.

The functional reactivity helps greatly, for example, in managing the scrolling of the
grid content. The canvas includes a pair of scrollbars, which must be configured with
ranges and page sizes. These parameters depend upon the number of cells that fit within
the physical canvas, which depends upon the size of the canvas relative to the size of
the cells. The cell size depends in turn upon the font and margins used when rendering
the text. Since the user can resize the window or change the font, these parameters must
be kept up-to-date dynamically. In raw MrEd, we would need tomanage all of the re-
computation by hand, but with the FrTime adaptation, we simply specify the functional
relationships between the time-varying values, and the various widget properties update
automatically. As a result, the code is largely a functionalspecification of the model of
the spreadsheet; this is absent in a traditional object-oriented implementation because
of the structural inversion introduced by the use of callbacks.

As an illustrative example, consider the following snippetof code, which shows the
definition of a text field into which the user can type cell formulas:

(defineformula
(new ft-text-field%

[label"Formula:"]
[content-e(map-e(λ (addr) (value-now(cell-text(addr→key addr)))

1

)
select-e))]

[focus-e select-e]
2

))

When the user clicks on a cell, the cell’s address appears on anevent stream called
select-e. The occurrence of the selection event affectsformula in two ways. First, the
code in box 1 retrieves the selected cell’s text from the spreadsheet; this text becomes
formula’s new content. Second, the code in box 2 specifies that selection events send
focus toformula, allowing the user to edit the text. When the user finishes editing and
presses theenterkey, formulaemits its content on an output event stream; the applica-
tion processes the event and interprets the associated text(code not shown).

The spreadsheet experiment has proven valuable in several respects. First, by em-
ploying a significant fragment of the MrEd framework, it has helped us exercise many
of our adapters and establish that the abstractions do not adversely affect performance.
Second, as a representativeGUI program, it has helped us identify several subtleties of
FRPand the adaptation of state, some of which we have discussed in this paper. Finally,
the spreadsheet is an interesting application in its own right, since the language of the
cells is FrTime itself, enabling the construction of powerful spreadsheet programs.

7 Related Work

The use of dataflow in aGUI toolkit has been well-studied. The Garnet [11] and Amu-
let [12] projects were two early C++ toolkits that included anotion of dataflow. More
recently, the FranTk [14] system adapted the Tk toolkit to a programmer interface based
on the notions of behaviors and events in Fran [6]. However, FranTk still had a some-
what imperative feel, especially with regard to creation ofcyclic signal networks, which
required the use of mutation in the application program. Fruit [4] explored the idea of
purely functional user interfaces, implementing a signal-based programming interface
atop the Swing [5] toolkit.

All of the previous work is concerned with the problem of designing the dataflow
interface for the toolkit, and the emphasis is on the experience for the application pro-
grammer. We consider this to be fairly well understood. However, the problem of actu-
ally implementing such an interface is less well understood. Though all of these earlier
systems have included a working implementation, we understand that their development
has been ad hoc, and the subtle interaction between imperative toolkits and declarative
dataflow systems has not been explained in the literature. Thus, to the best of our knowl-
edge, ours is the first work to address this problem.

8 Conclusions and Future Work

We have explored the problem of adapting a legacy object-orientedGUI toolkit to an
interface based on the concepts of behaviors and events fromfunctional reactive pro-
gramming. The key to this adaptation is understanding the direction in which various
state changes flow: from the application to the toolkit, the toolkit to the application, or
both ways. This depends upon the particular widget propertythat we are adapting.

Since there are many widget properties, many of which are common to many wid-
gets, the implementation would ordinarily require a large amount of code duplication.
However, in Scheme, we are able to distill the adaptation to its most abstract essence.
We express this as a set of three macros, which are parameterized over the names of the

fields and methods that implement the various properties. Weinstantiate these macros to
produce a collection of mixins—class fragments parameterized over their superclasses.
By applying these to the base widget classes, we implement the full interface adaptation
to our functional reactive language.

There are two main directions for future work, which complement each other. First,
we plan to continue developing the spreadsheet beyond its current research-prototype
stage and also to pursue different kinds of applications. This will help us to evaluate the
FrTime language and our adaptation of the MrEdGUI toolkit. Second, new applications
are likely to require the importation of other legacy frameworks, which will serve to
validate the techniques presented in this paper and also to suggest refinements to them.
As we co-opt more libraries, we expect FrTime to become an increasingly powerful
platform for application development.

References

1. J. Bachrach and K. Playford. The Java syntactic extender. InACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Applications, pages 31–42, 2001.

2. G. Bracha and W. Cook. Mixin-based inheritance. InACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications, pages 303–311, 1990.

3. G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-value lan-
guage. InEuropean Symposium on Programming, 2006.

4. A. Courtney and C. Elliott. Genuinely functional user interfaces. InHaskell Workshop, 2001.
5. R. Eckstein, M. Loy, and D. Wood.Java Swing. O’Reilly, 1997.
6. C. Elliott and P. Hudak. Functional reactive animation. InACM SIGPLAN International

Conference on Functional Programming, pages 263–277, 1997.
7. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P.Steckler, and

M. Felleisen. DrScheme: A programming environment for Scheme.Journal of Functional
Programming, 12(2):159–182, 2002.

8. M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Programming languages as oper-
ating systems (or, Revenge of the Son of the Lisp Machine). InACM SIGPLAN International
Conference on Functional Programming, pages 138–147, 1999.

9. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. InACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 171–183, 1998.

10. E. E. Kohlbecker Jr.Syntactic Extensions in the Programming Language Lisp. PhD thesis,
Indiana University, 1986.

11. B. A. Myers, D. A. Giuse, R. B. Dannenberg, D. S. Kosbie, E. Pervin, A. Mickish, B. V.
Zanden, and P. Marchal. Garnet: Comprehensive support for graphical, highly interactive
user interfaces.Computer, 23(11):71–85, 1990.

12. B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A. Faulring, B. D. Kyle, A. Mick-
ish, A. Klimovitski, and P. Doane. The Amulet environment: New models for effective user
interface software development.IEEE Transactions on Software Engineering, 23(6):347–
365, 1997.

13. H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, continued. In
ACM SIGPLAN Workshop on Haskell, pages 51–64, 2002.

14. M. Sage. FranTk: A declarative GUI language for Haskell. InACM SIGPLAN International
Conference on Functional Programming, pages 106–117, 2000.

15. N. Scḧarli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units of behavior.
In European Conference on Object-Oriented Programming, pages 248–274, 2003.

16. T. Sheard and S. P. Jones. Template meta-programming for haskell. In Proceedings of the
ACM SIGPLAN workshop on Haskell, pages 1–16, 2002.

17. M. VanHilst and D. Notkin. Using C++ templates to implement role-baseddesigns. InIn-
ternational Symposium on Object Technologies for Advanced Software, pages 22–37, 1996.

18. D. Weise and R. Crew. Programmable syntax macros. InACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 156–165, 1993.

Appendix: Adapted User Interface Widgets

ft-frame% These objects implement top-level windows. They support all of the stan-
dard signal-based property interfaces (label, size, position, focus, visibility, ability,
margins, minimum dimensions, stretchability, and mouse and keyboard input). As
in the underlyingframe%objects, thelabel property specifies the window’s title.

ft-message% These objects contain strings of text that are mutable by theapplication
but not editable by the user. They support all of the standardsignal-based property
interfaces. In this case, thelabel property specifies the content of the message.

ft-menu-item% These objects represent items in a drop-down or pop-up menu.In
addition to the standard properties, each widget exposes anevent stream that fires
whenever the user chooses the item.

ft-button% These objects represent clickable buttons. In addition to the standard prop-
erties, each widget exposes an event stream that fires each time the user clicks it.

ft-check-box% These objects represent check-box widgets, whose state toggles be-
tweentrue and false with each click. In addition to the standard properties, each
ft-check-box%widget exposes a boolean behavior that reflects its current state. The
application may also specify an event stream whose occurrences set the state.

ft-radio-box% These objects allow the user to select an item from a collection of
textual or graphical options. In addition to the standard properties, eachft-radio-
box%object exposes a numeric behavior indicating the current selection.

ft-choice% These objects allow the user to select a subset of items from alist of textual
options. In addition to the standard properties, eachft-choice%object exposes a list
behavior containing the currently selected elements.

ft-list-box% These objects are similar toft-choice%, except that they support an addi-
tional, immutablestyleproperty that can be used to restrict selections to singleton
sets or to change the default meaning of clicking on an item. Otherwise, the appli-
cation’s interface is the same as that offt-choice%.

ft-slider% These objects implement slider widgets, which allow the user to select a
number within a given range by dragging an indicator along a track. In addition to
the standard properties, eachft-slider%object allows the application to specify the
range through a time-varying constructor argument calledrange, and it exposes a
numeric behavior reflecting the current value selected by the user.

ft-text-field% These objects implement user-editable text fields. In addition to the
standard properties, each widget exposes the content of itstext field as a behav-
ior, as well as an event stream carrying the individual edit events. The application
can also specify an event stream whose occurrences replace the text field content.

