Crossing State Lines:
Adapting Object-Oriented Frameworks
to Functional Reactive Languages

Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnatiniur

Computer Science Department, Brown University
{di gnatof, greg, sk}@s.brown.edu

Abstract. Functional reactive programming integrates dynamic dataflow with
functional programming to offer an elegant and powerful modekefgressing
computations over time-varying values. Developing realistic applicatiang; h
ever, requires access to libraries, such as thoseuds, that are written in main-
stream object-oriented languages. Previous work has developeghalgeac-
tive interfaces foicui toolkits but has not provided an account of the principles
underlying the implementation strategy.

In this paper, we investigate this problem by studying the adaptation of thetobje
oriented toolkit MrEd to the functional reactive language FrTime. Thethefa
this problem is how to communicate state changes between the application and
the toolkit’s widget objects. After presenting a basic strategy for adaptatien
discuss abstraction techniques based on mixins and macros that alloadapto
numerous properties in many widget classes with minimal code duplicatiis.
results in a wrapper for the entire MrEd toolkit in only a few hundred lines of
code. We also briefly discuss a spreadsheet developed with the resodtikig

1 Introduction

Functional reactive programmingipP) extends a general-purpose functional language
with abstractions for expressing values that change ome.tBy combining the fea-
tures of dataflow and higher-order functional programmirgypports concise, declara-
tive descriptions of reactive and interactive systemss paper specifically uses the lan-
guage FrTime [3] (pronounced “father time”), an embeddihgrrin the DrScheme [7]
programming environment. FrTime pursues a push-drivetuatian strategy that per-
mits incremental program development (e.g., in a reacHenmat loop) formulated atop
the eager semantics of Scheme.

While FRP provides an elegant notation for specifying the computaticore of
systems, application developers need more: they also neusble to use standard li-
braries for graphics, user interfaces, networking, andsd bese libraries have several
important characteristics. First, they tend to be large @etdiled, so it is impractical
to rewrite them. Second, they are maintained by third-pdetelopers, so they should
be integrated with a minimum of modification to enable easyraging. Third, these
libraries—especially foicuis—are often written in object-oriented®) languages.

* This work is partially supported by NSF grant CCR-0305949.

The integration process must therefore handle this styléjdeally exploit it. An im-
portant subtlety is thabo andrFrPlanguages have different notions of state:makes
state explicit but encapsulates it, whereas staterris hidden from the programmer
by the temporal abstractions of the langua@mehow, these two representations of
state must be reconciled.

We have made considerable progress on this integrationgmofor the specific
case ofGuls. The DrScheme environment provides a large and rahuidibrary called
MrEd [8], based on the wxWindows framework, which is used uddDrScheme’s
interface itself. The environment is a good representaiiva library that meets the
characteristics listed above; furthermore, its integrais of immediate practical value.
We have discovered several useful abstractions basethans[2] (classes parameter-
ized over their super-classes) that enable a seamlessatiteg We have further found
that there are patterns to these mixins and abstracted lomer usingnacros[10]. As
a consequence, the adapter for MrEd is under 400 lines of code

This paper may appear on the surface to describe work sitoildre FranTk [14]
and Fruit [4] projects, and in fact the interface we develmpMrEd is similar in spirit
to the ones developed for those systems. However, those stheems focus on the
design of a programmer’s interface for buildiagi applications in a functional reactive
language. In contrast, our work addresses the lower-léugjely orthogonal issue of
importing legacy object-oriented frameworks intorP system. Our primary example
also happens to beul libraries, as these have direct practical applicabilitd ane
sufficiently complex to make an interesting case study. Hewehe ideas we present
are not specific t@ul libraries. If anything, adapting other kinds of librari¢ssld be
even easier, given the highly imperative natureofs.

This paper is organized as follows. First, we present thdampntation of a small
GUl application in MrEd, which we use to illustrate some of thificlilties posed by the
standard object-orientedul programming model. Next we provide a brief overview
of FrTime, whose notion o$ignalsoffers a more natural, declarative mechanism for
modeling state. We then discuss the design philosophy thagrgs our adaptation of
MrEd to a signal-based programming interface. The heati@piper is a description
of our implementation of this interface and of the abstmwithat capture the essence
of the adaptation. We talk briefly about a spreadsheet agjuit built with the adapted
toolkit, then discuss related work and provide concludermarks.

2 GUI Construction with an Object-Oriented Toolkit

We walk through the process of writing a smalli application in MrEd, the stan-
dard Gul library included with the extended object-oriented larggigupported by
DrScheme. MrEd resembles the® Gui libraries of languages like C++ and Java.

The application we develop is a simple timer; it counts sdsdor a user-specified
time, displaying the elapsed time both graphically anduaby. Figure 1 shows the
entire code, which we explain incrementally.

First, we create a window. In MrEd, a normal top-level windewalled arame%?
A new expression constructs an object of a given type with a setiwfad parameters,

1 By convention, class names in DrScheme end with a % sign, suggebfimg-orientation.

(defineframe(new frame%[label " Timer"] [height80] [width 300] [alignment(left top)]))
(definegauge(new gauge¥q parent framé[label" Elapsed Time"][range60]))
(definemessagénew message%parent framé[label" 0 s"] [stretchable-widthirue]))
(defineslider
(newslider% [parent framg[label " Duration (s)"]

[min-value30] [max-valuel 20] [init-value 60]

[callback(A (s € (sendgauge set-rangésendslider get-valug))]))
(definebutton(new button%[parent framé[label" Reset"]

[callback(X (b €) (set! elapsed)))]))

(defineelapsed))
(define (loop)
(when (< elapsedsendslider get-valug) 666 Tmer

(sendgauge set-value elapsgd g'apSEd time: ==
(sendmessage set-labflormat™ ~ Dtjration :
(sleeplyieldl) : 260 —
(set! elapsedaddl elapse) =
(loop)) =

(sendframe show#t)

(loop)

a s" elapsed)

Fig. 1. A simple timer application in Scheme with MrEd, with a screenshot at the |agfet r

in this case the label, dimensions, and alignment. We nesdtergauge and message
widgets as children of the window. The gauge is to displayetapsed time as a colored
bar, and the message to present the same information tigxtual

We then add a slider that lets the user adjust the timer'stidaralhe slider needs
a parent and a label like the other controls, along with a @atghenever the user
adjusts the duration through the slider, we need to updatgahge’s range accordingly.
The toolkit provides aallbackfor this purpose, which lets the application register a
procedure to be executed whenever the user interacts wiitigeety

The last widget is a reset button, which also takes a callpemtedure. In this case,
the callback simply resets the elapsed time to 0. After argdahe widgets, we tell the
window to display itself (and its contents) by invoking feowmethod. We then write
a loop to count out the duration and keep the gauge and messdgets up to date.

Evaluating the GUI Coding Style

This simple example gives a sense of the naturewfprogramming. Even in a mostly
functional language like Scheme, the programming stylerg imperative. In particu-
lar, the need to handle values that change over time foregzrtigrammer to use muta-
tion and other side-effecting operations. The applicatieads to know when its values
change so it can update the properties of widgets, and isrteaegister callbacks so it
can find out when widget properties change and accordinglatepts internal state.

All these callbacks and imperative operations tend to iraved obscure the system'’s
structure and data dependencies. For example, the couffetits gauge and message
depend on the variablgapsed but this relationship is not apparent from the widgets’

definitions. Instead, the loop body is responsible for uipdahe widgets, so we need
to examineit to understand the behavior of all the widgets. Similarlyg tAnge of
the gauge depends on the value of the slider, but gauge’staefidoes not express
this relationship; instead, the slider’s callback invokesthods on the gauge to keep
it up-to-date. In general, when an object’s state dependstarnal mutation, reason-
ing about its behavior requires awareness of all invocattbat target the object. This
structural inversioris a serious impediment to understanding and maintainiagadie.
For example, if a developer adds, modifies, or removes a Witlign he must be sure
to identify and properly update all of its referents.

3 FrTime

Much of the complexity ofsul programming arises from the lack of linguistic support
for modeling values that change over time. This is what r@tass the use of impera-
tive state, with the resulting inversion of program struetand increase in complexity.

The goal of dataflow programming is to support the modelinghainge. Dataflow
languages introduce a conceptsifinals or time-varying values. This idea has been
revived in a recent line of work called functional reactivegramming €RrRp) [6, 13],
which merges dataflow with higher-order functional prognaing. We have developed
an implementation ofrRPfor DrScheme [7] called FrTime [3].

FrTime publishes a signal callegcondswhich represents the current time as an
integral number of seconds. We can project its value at anypent by asking for its
value-now. This returns the current constant integer value of theadigife can also
useseconddo build new signals; for exampleg\{en? secondlglternates betweedrue
andfalse every second.

We can model the elapsed time in our application by computieglifference be-
tween the current value afecondsand its value when the count started. We express
this in code with ¢ secondgvalue-now secondp, where yalue-now seconds re-
turns a constant, and subtracting it freecondyields a new signal that starts@and
increments every second. Because we use signals, the gudomatically keeps
them up-to-date. Otherwise we would need to keep track op#ssage of time (e.g.,
with a timer orsleepcommand) and manually update all the variables that (tisel)
depend on it. These tasks are tedious to perform manuallypimet to errors.

The signals we've described so far are all exampldsetiaviors which mean they
have a value at every point in time after their creation. Bédra correspond naturally
to the values of mangui widgets. For example, a gauge renders a time-varying intege
and a message displays a time-varying string. Likewisedardets the user manipulate
a time-varying integer, and a text field lets him edit a tinagying string.

Signals may also take the formefent sourceshich carry streams of discrete val-
ues calledccurrencesFor example, FrTime’s animation library provides eventrses
calledmouse-clickendkey-strokeswhich carry the mouse clicks and key strokes cap-
tured by a given window. FrTime also provides a collectioreeént-processing com-
binators that are analogous to list-processing routines.ekample filter-e removes
unwanted occurrences from an event stream, wiiég-etransforms each value by
applying a given function.

(defineframe(new ft-frame%[label " Timer"] [width 200] [height80] [visibletrue]))
(defineslider (new ft-slider%l[label " Duration"] [min-valuel5] [max-value50])
(define button(new ft-button%([label " Reset"])
(defineduration‘ (sendslider get—value-))‘)
(definelast-click-time;; initially holds application’s start time

(hold (map-q (sendbutton get-click)s‘ (A (1) (value-nowsecondy)

(value-nowsecondy)
(defineelapsedmin duration(— seconds last-click-tim)§

(definegauge(new ft-gauge%label " Elapsed time:"] | [range duratiof

[parent fram(]z‘ [value elapseblb)

(definemessagénewft—message(’*o[label (format" “a s" elapsed|
[parent framé[min-width50]))

Fig. 2. Implementation of the timer in FrTime

FrTime provides several primitives for converting betwdmhaviors and event
streams. One ishangeswhich consumes a behavior and returns an event source that
emits the new value each time the behavior changes. Cotyehedd consumes an
event source and returns a behavior that reflects the last egeurrence valudjold
also takes an optional initial value to use until the firstrévaccurs. For example, if a
program appliesold to key-strokesthe result is a behavior whose value indicates the
last key pressed.

Widgets like buttons and menu items support interactioough discrete events
rather than manipulation of continuous values. Thus theyespond naturally to Fr-
Time event streams instead of behaviors. We can use staRdEnde operators to con-
struct behaviors from these event streams. For exampla,drstream of button clicks,
we can define a behavior that reflects the time of the last.dlikkexpress this by map-
ping a procedure that projects the current time over theustref clicks (ignoring the
click event’svoid value); holding the resulting stream yields the time of the last click.
We providehold with the program'’s start time, which is the value until thefficlick.
The code is as follows:

(definelast-click-time
(hold (map-e(sendbutton get-clicks(\ (_) (value-nowsecondy)
(value-nowsecondy)

This definition plays an important role in the program showirig. 2, which presents
a FrTime implementation of the timer using the ideas of tldipgr. The new version
is free of callbacks and imperative method invocationgelad, input widgets like the
slider and button provide behaviors and events that reffiectiser’s interactions, and
output widgets like the gauge and message allow the apiplictd provide behaviors
that specify property values for their entire lifespan. Wavda box around code that
participates in the interface between signals and widgets.

4 Adapting MrEd to FrTime

In Sect. 2 we introduced MrEd, an object-oriented toolkit ailding Guls, and pre-
sented a simple example to illustrate some of the difficsllitieposed by the standard
GUI programming model. In Sect. 3 we presented FrTime, a lareytiagt extends
DrScheme with support for first-class signals, and we showed this new feature
provides a suitable abstraction for modeling change, wisieim important problem in
interactiveGul applications. In this section, we put the pieces togethdrsdmow how
to adapt MrEd so that its interface is based on FrTime’s biehstand events.

Recall that we are trying to import a large legacy class fraark in a manner
consistent with the goals set forth in the Introduction. Wehato reuse the existing
implementation as much as possible and perform a minimumasfual adaptation.
In order to minimize the manual effort, we need to uncovetgoas and abstract over
them. In this case, the main problem we must address is howrtonunicate state
changes between the object-oriented and functional veactodels.

The functional reactive world represents state impliditisough time-varying val-
ues, and the dataflow mechanism is responsible for keepitwngistent. In contrast,
the object-oriented world models state with mutable fields] programmers are re-
sponsible for writing methods that keep them consistentpvgsume that the toolkit
implementors have done this correctly, so our job is simplyranslate state changes
from the dataflow program into appropriate method invocegidHowever, sinceul
toolkits also mediate changes coming from the user, theyigea callback mechanism
by which the application can monitor state changes. Thefade between theui and
FrTime must therefore also translate callbacks into sta@ges in the dataflow world.

Not surprisingly, the nature of the adaptation dependsamilynupon the direction
of communication. We classify each widget property aceagdo whether the applica-
tion or the toolkit changes its state. The most interestaec naturally, is when both
of them can change the state. We now discuss each case sgparat

4.1 Application-Mutable Properties

MrEd allows the application to change many of a widget’s prtips, including its
value, label, cursor, margins, minimum dimensions, anetctiability. A widget pro-
vides an accessor and mutator method for each of these pespéut the toolkit never
changes any of them itself, so we classify these propersiéapplication-mutable.”

In a functional reactive setting, we can manipulate timesvay values directly,
so it is natural to model such properties with behaviors. &s@mple, we would use
a behavior to specify a gauge’s value and range and a mesdabel. This sort of
interface renders accessors and mutators unnecessagytisproperty automatically
updates whenever the behavior changes, and the applicaioobserve it by reading
whatever behavior it used for initialization.

To implement a behavior-based interface to such widgeteptigs, the first step
is to derive a subclass from the original MrEd widget. Forregke, we can define a
ft-gauge%rom the MrEd gauge.

(defineft-gauge%
(classgauge%...))

In the new class, we want to provide constructor argumeantstkpect behaviors for all
of the application-mutable properties. In FrTime, behes/extend the universe of val-
ues, and any constant may be taken as a special case of adrdltaat never changes);
i.e., behaviors are supertypes of constants. Thus thecatiplh may safely supply con-
stants for any properties that it wishes not to change. Maedf we use the same
property names as the superclass, then we can constriicgange%exactly as we
would construct an ordinary gauge. This respects the mima@f contravariance for
function subtyping: our extension broadens the types @l legnstructor arguments.

In fact, the DrScheme class system allows us to overrideuperslass’s initializa-
tion arguments, ainit-field s. Of course, the superclass still refers to the originadiel
so its behavior remains unchanged, but this lets us extenddahstructor interface to
permit behaviors. The code to add these initialization ewgyts is as follows:

(init-field value label range vert-margin horiz-margin min-width)

Next, we need code to enforce consistency between theseibetidields and the cor-

responding fields in the superclass. The first step is to paréoiperclass initialization,
using the current values of the new fields as the initial v@foethe old ones. Although
the old and new versions of the fields have the same names,isires ambiguity in the

superclass instantiation expression; in each name/valinetipe name refers to a field
in the superclass, and the value expression uses the ssibdaspe.

(super-instantiate () [label (value-nowlabel)] [range(value-nowrangé] .. .)
(send thisset-valug(value-nowvalue)

(Since there is no initiavaluefield in the superclass, we need to set it separately after
super-class initialization.)

Having set appropriate initial values for the fields, we neeensure that they stay
consistent as the behaviors change. That is, we need tdat@uotanges in state from
the dataflow program to the object-oriented “real world.sTis a central problem in
building an interface between the two models.

The basic idea behind our translation is straightforwaeted: changes in a be-
havior and update the state of the corresponding objectigifiran appropriate method
call. We use the FrTime primitivehangedo detect changes in a behavior and expose
them on an event stream. Then we convert the event streana isévies of method
invocations. This second step is somewhat unusual, sircentthods have side ef-
fects, unlike the operations found in a typical dataflow nioHewever, in this case
we are concerned not wittkefiningthe model but withcommunicatingts state to the
outside world. The effects are therefore both safe (theyalanterfere with the purity
of the model) and necessary (there is no other way to tellgbieaf the world about the
system’s changing state).

The invocation of imperative methods is technically trivigince FrTime is built
atop Scheme, any procedure that updates a signal is freeetotexarbitrary Scheme
code, including operations with side effects. Of coursepvagnarily avoid the practice
of performing side effects in signal processors, since iti¢dead to the violation of
program invariants. As mentioned above, it is safe when ffeets are restricted to
communication with the outside world (as they are in thissgalh particular, we use
the primitivemap-e passing a procedure that invokes the desired method:

(map-e(\ (v) (send thisset-value) (changes valug
(map-e(X (v) (send thisset-label ¥) (changes labg)

Each call above tonap-ecreates a new event stream, whose occurrences all carry the
void value—the return value of the imperative method call—but acempanied by the
method’s side effects. Because the event values axoill they have no meaningful
use within a larger dataflow program.

The above expressions are static initializers in the widlgestses, so they are evalu-
ated whenever the application constructs a new instandeg Jatic initializers allows
the adapter to automatically forward updates without thesldper having to invoke
a method to initiate this. Because the code constructs Isigmhich participate in the
dataflow computation, it therefore has a dynamic effectughout the life of the wid-
get, unlike typical static initializers.

Subtleties Involving Side-Effecting Signals

We have resolved the interface for communicating state gdggfrom the dataflow to
the object-oriented model. However, a more serious conisdire mismatch between
their notions oftiming. In a typical object-oriented program, method invocatians
synchronous, which fixes the ordering of operations withichethread of control. How-
ever, FrTime processes updates according to their datandepeies, which does not
necessarily correspond to a sequential evaluation ordiés.riiakes it difficult for pro-
grammers to reason about when effects occur.

Fortunately, the functional reactive model and interfagedesigned in such a way
as to prevent operations from occurring unpredictably. tMagportantly, there is at
most one signal associated with any given widget propeotyhere is no contention
over who is responsible for keeping it up-to-date. Secqrielyime processes updates
in order of data dependencies, so if one property’s signad¢és on another’s, then it
will be updatedater. If the order of updates were significant, then this wouldrstebe
the “safe” order in which to do things, assuming that the i@pfibn’s data dependencies
reflect similar dependencies in the toolkit.

There is, however, a problem with the strategy describedeaabat is difficult to
diagnose and debug. The symptoms are as follows: at firsprdggam seems to work
just fine. Sometimes it may run successfully to completiothe®times, depending
upon what else is happening, it runs for a while, then sugdamdil seemingly without
explanation the gauge’s properties stop updating whendhaviors change. The point
at which it stops varies from run to run, but there are nevgregiror messages.

The problem results from an interaction with the memory nganaAn ordinaryFrRp
application would use the event source returned bynthp-¢ but in this case we only
care about side effects, so we neglect to save the resute 8iere are no references to
the updating event source, the garbage collector eventredlaims it, and the gauge
stops reacting to changes in the behavior.

To avoid these problems, we define a new abstraction spdlsificaside-effecting
event processors. This abstraction, calledeach-e! works just likemap-¢ except
that it ensures its result will not be collected. It also leridelf to a more efficient

implementation, since it can throw away the results of trec@dure calls instead of
enqueuing them on a new event stream.

Thefor-each-eimplementation stores references to the imperative evesegsors
in a hash table, indexed by the objects they update. It is itapbthat this hash table
hold its keys with weak references so that, if there are neratiferences to the widget,
both it and the event processor may be reclaimed.

4.2 Toolkit-Mutable Properties

Some widget properties are controlled primarily by the wgethe toolkit rather than
the application. For example, when the user resizes a wintt@moolkit adjusts the
locations and dimensions of the widgets inside. Since tipdiGgiion cannot control
these properties directly, the widgets provide accesstads but no mutators. Addi-
tionally, the application may want to be notified of changea property. For example,
when a drawing canvas changes size, the application maytoaegoate its content
or recompute parameters for its scrollbars. For such smeEnaccessor methods alone
are insufficient, and toolkits provide callback interfaeessdescribed in the previous
section. However, we saw that callbacks lead to an impergtiegramming style with
various pitfalls, so we would like to support an alternagyroach.

For such “toolkit-mutable” properties, we can remove thpatelency on callbacks
by adding a method that returns the property’s time-varyialgie as a behavior. For
example, instead of allowing registrati@m-sizeand on-movecallbacks, the toolkit
would provide methods that return behaviors reflecting tiopgrties for all subsequent
points in time.

The implementation of such methods is similar to that fodiapfion-mutable prop-
erties. However, in this case we cannot just override thstiegiget-width get-height
get-x andget-ymethods and make them return behaviors. Though FrTime sibwor
grammers to use behaviors just like constants, an apglicatay need to pass a widget
to a library procedure written in raw Scheme. (For examgle,widget may need to
invoke methods in its superclass, which is implemented ime8®.) If a Scheme ex-
pression invokes an accessor and receives a behaviorjshething FrTime can do to
prevent a type-mismatch error. Since behaviors are sypEstyf constants, overriding
in this manner would violate the principle of covariancefoocedure return values.

To preserve type safety, we must define the new signal-awatbatls so as not
to conflict with the existing ones. We choose the new namesppgrading-b to the
existing names, suggesting the behavioral nature of therrealues. Again, we derive
a subclass of the widget class we want to wrap. For exampiginting with theft-
gauge% we would add methods callegbt-width-b get-heightslget-x-h andget-y-h

We need to determine how to construct the behaviors retusgatiese methods.
We want these behaviors to change with the correspondingetigroperties, and we
know that the widget'®n-sizeor on-movemethod will be called when the properties
change. So, we are now faced with the converse of the prepimidlem—converting a
imperative procedure call into an observable FrTime event.

FrTime provides an interface for achieving this goal, chlteake-event-receiver
This procedure returns two values: an event soeargd a unary procedusend-event

Whenever the application executegiid-eventv), the valuev occurs ore. In the im-
plementationsend-eventsends a message to the FrTime dataflow engine indicating
thatv should occur ore, which leads to/'s being enqueued on the streamesf occur-
rences. By overriding the widget’s callbacks and callimgke-event-receivewe can
create an event source carrying changes to the widget'egres:

(define-valuegwidth-e send-width(make-event-receivgr
(define-valueg(height-e send-heigh{make-event-receivpr
(define/override (on-size w

(superon-size w

(send-width v

(send-height })
;; similarly for position

Once we have the changes to these properties in the form ohEr@vent sources, we
convert them to behaviors witiold:

(define/public (get-width-B (hold width-e(send thisget-width))
(define/public (get-height-b (hold height-gsend thisget-heigh))

4.3 Application- and Toolkit-Mutable Properties

We have discussed how to adapt properties that are mutabééth®r the toolkit or
the application, but many properties require mutabilitybogh the toolkit and the ap-
plication. This need usually arises because there areadevays to change the same
property, or several views of the same information. For epatra text editor provides
scrollbars so the user can navigate a long document, bustirecan also navigate with
the keyboard, in which case the application needs to uptatsdrollbars accordingly.

All widgets that allow user input also provide a way to setihkie from the appli-
cation. Several other properties may be set by either tHkitoo the user:

focus When the user clicks on a widget, it receiiesus(meaning that it hears key
strokes) and invokes itsn-focuscallback method. This is the common mode of
operation, but the application can also explicitly sendifoto a widget. For exam-
ple, when a user makes a choice to enter text, the applicataynautomatically
give the text field focus for the user’s convenience.

visibility The application may hide and show widgets at various stafggasiateractive
computation. Sincehowng a widget also shows all of its descendents, the toolkit
provides aron-enablecallback so the application does not need to track ancestry.
In addition, the user can affect visibility by, for exampbégsing a window, which
hides all of its children.

ability Similar to visibility, the application can selectively dii@ and disable widgets
depending upon their necessity to various kinds of intewacEnabling also works
transitively, so the toolkit invokes then-enablemethod for all children of a newly-
enabled widget.

One might naturally ask, since we have already discusseddadapt application-
and toolkit-mutable properties, why we cannot simply cambthe two adaptation
strategies for these hybrid properties. The reason ishiapplication specifies a prop-
erty’s time-varying value through a behavior, which defittesvalue at every point in
the widget's lifespan. This leaves no gaps for anotheretdispecify the value.

Our solution to this problem is to use event sources in aatdith behaviors. Recall
that in the implementation of toolkit-mutable propertie® first constructed an event
source from callback invocations, then used hold to creathavior. In this case, both
the application and toolkit provide event streams, anceatof holding directly, we
merge the streams and hold the result to determine the fihat:va

(init-field app-focus app-enable app-shpw
(define-valueg(user-focus send-focuémake-event-receivpr
(define/public (has-focus-by

(hold (merge-e app-focus user-fogdysend thishas-focus})
(define/override (on-focus on®

(superon-focus ony

(send-focus on?

This code completely replaces the fragments shown prelyidoisproperties that are
mutable by only the application or the toolkit.

4.4 Immutable Properties

MrEd does not allow certain properties to change once a widggeated. For exam-
ple, every non-window widget has a parent, and it cannot beechérom one parent
to another. In theory, we could build a library atop MrEd inigthwe simulated the
mutability of these properties. However, this would be aigant change to not only
the toolkit’s interface but also its functionality, and weuwld have to implement it our-
selves. Since our goal is to reify the existing toolkit thyhua cleaner interface, we have
not attempted to extend the underlying functionality.

5 Automating the Transformation

We have so far discussed how to replace the imperative amterfo object-oriented
widget classes with a more elegant and declarative one lzasbdhaviors and events.
The problem is that there is a large number of such widgetgeopkrties, and dealing
with all of them by hand is a time-consuming and tedious tabkis we look to reduce
the manual effort by automating as much as possible of tinsfibtamation process.

The reader may have noticed that the code presented in ieysesection is highly
repetitive. There are actually two sources of repetitiohe Tirst is that we need to
perform many of the same adaptations for all of the MrEd widgasses, of which
there are perhaps a dozen. The second is that the code usaaptoeach property is
essentially the same from one property to the next. We nogudsshow to remedy these
two forms of duplication individually, by abstracting fireter multiple widget classes,
then over multiple properties within each class.

5.1 Parameterized Class Extensions

In Sect. 4 we adapted a collection of widget properties bydagsing. Since most of
the code in the subclasses is essentially the same acrosartiework, we would like

to be able to reuse the common parts without copying codethier evords, we would

like a class extension parameterized over its superclass.

The DrScheme object system allows creatiomafins[2, 9], which are precisely
such parameterized subclasses. We write a mixin to encepdhke adaptation of each
property, then apply the mixins to all classes possessiagtbperties. For example,
instead of defining afi-gauge%ike we did before, we define a generic class extension
to adapt a particular property, such as the label:

(define (adapt-label a-widget
(s awicgel
(init-field label)
(super-instantiate () [label (value-nowlabel)])
(for-each-el(changes lab@l(\ (v) (send thisset-label) this)))

In the code snippet above, we box the superclass positioheotlass definition to
highlight that it is a variable rather than the literal nara olass. This parameterization
makes it possible to abstract over the base widget clashasdd apply the adaptation
to multiple widgets.

We write mixins for other properties in a similar manner. &rhere are several
properties common to all widget classes, we compose alleshitimto a single mixin:

(define (adapt-common-properties a-widget
(foldl (A (mixin cl9 (mixin clg) a-widget(list adapt-label adapt-enabling .)))

Although this procedure contains no expliciassdefinitions, it is still a mixin: it ap-
plies a collection of smaller class extensions to the infagsc Thiscompoundmixin
takes a raw MrEd widget class and applies a mixin for eachdstahproperty. The
resulting class provides a consistent FrTime interfaceafbof these properties. For
example, we can use this mixin to adapt several widget dasse

(define pre-gauge%{adapt-common-properties gaugge
(define pre-messageYadapt-common-properties messagg%

We call the resulting widget classes “pre-" widgets becdhsg still await the adapta-
tion of widget-specific properties. Most importantly, eadbget supports manipulation
of a particular kind of value (e.g., boolean, integer, sfyiny either the application or
the toolkit, and the various combinations give rise to défe programmer interfaces.

5.2 A Second Dimension of Abstraction

Mixins allow us to avoid copying code across multiple class¢owever, there is also
code duplication across mixins. In Sect. 4, we develop pwtir adaptation that de-
pend on whether the property is mutable by the applicatlomtaolkit, or both. Once
we determine the proper pattern, instantiating it only inexguidentification of the field

and method names associated with the pattern. Howevercin S&e duplicated the
pattern for each property.

In most programming languages, we would have no choice tedpy code in this
situation. This is because languages don't often provideeehanism for abstracting
over field and method names, as these are program syntaxglnesvyHowever, Scheme
provides amacro systenfil0] with which we can abstract over program syntax. For
example, with application-mutable properties we only neelnow the name of the
field and mutator method, and we can generate an approprigite m

(define-syntax adapt-app-mutable-property
(syntax-rules()
[(- field mutato)
(A (widge)
(classwidget

(init-field field)
(super-instantiate () [field (value-nowfield)])
(for-each-e!(changes fielfl(\ (v) (send thismutator V) this)))]))

With this macro, we can generate mixins for the applicatimitable properties:

(defineadapt-label(adapt-app-mutable-property label set-labg))
(defineadapt-vert-margir{adapt-app-mutable-property vert-margin vert-margij)

Of course, we write similar macros that handle the other tages of mutability and

instantiate them to produce a full set of mixins for all of tireperties found in MrEd’s

widget classes. At this point, we have fully abstracted thaciples governing the

toolkit's adaptation to a functional reactive interfacadaraptured them concisely in
a collection of macros. By instantiating these macros with dppropriate properties,
we obtain mixins that adapt the properties for actual wisigéte compose and apply
these mixins to the original MrEd widget classes, yieldirggvnwidget classes with

interfaces based on behaviors and events.

The ability to compose the generated mixins safely depepds two properties
of the toolkit's structure. Firstly, most properties havstidct names for their fields
and methods and hence are non-interfering by design. Skcamadases where two
propertiesdo share a common entity (for example, the single callbacisizeaffects
the width and height), the disciplined use of inheritance. (ialways callingsuper)
ensures that one adaptation will not conflict with the other.

To save space and streamline the presentation, we havef@ohpbme of the code
snippets in this paper. The full implementation has beelud®d with the DrScheme
distribution since release version 301. We provide a cgtal@adapted widgets in an ap-
pendix. The core contains about 80 lines of macro definitaords300 lines of Scheme
code. This is relatively concise, considering that the Mr&alkit consists of approxi-
mately 10,000 lines of Scheme code, which in turn providemtanface to a 100,000-
line C++ library. Moreover, our strategy satisfies the cidteset forth in the Introduc-
tion: it is a pure interface extension and does not requirdifications to the library.

5.3 Language Dependencies

The abstractions we have presented depend heavily on tiwodeaf DrScheme: mix-
ins and macros. These features have analogs in other laegyUaa instance, Smalltalk
has recently seen a series of workteeits [15], which are similar to mixins and suf-
ficient for our needs. Similarly, C++ programmers have losgdithe template facility
to parameterize classes [17]. Likewise, hygienic macrtesys have been defined for a
variety of languages including C [18], Java [1] and HaskHH][In addition, the use of
macros here could potentially also be simulated using featsuch as meta-classes.

6 A Spreadsheet Application

To evaluate our adapted version of MrEd, we have appliedatealistic spreadsheet
application. The major challenges in building a spreadslreur experience, are im-
plementing a language with its dataflow semantics and magagiarge array of cells.
Fortunately, FrTime makes the linguistic problem reldyiv&raightforward, since we
can reuse its dataflow mechanism to implement update propagdhis leaves the
representation and display of the cell grid.

The core of our spreadsheet user interface is an extensiba bfrEdcanvaswvidget
(which we have not discussed so far). A canvas is a region iohwthe application can
listen to key and mouse events and perform arbitrary drasfrggations. We render the
cell content into a canvas and process mouse events topesédection. When the user
selects a cell, he can enter a formula into a text field, andé¢tected cell receives the
value of the formula.

The functional reactivity helps greatly, for example, inmaging the scrolling of the
grid content. The canvas includes a pair of scrollbars, Wwhicist be configured with
ranges and page sizes. These parameters depend upon ther oficdls that fit within
the physical canvas, which depends upon the size of the saalative to the size of
the cells. The cell size depends in turn upon the font and im&rged when rendering
the text. Since the user can resize the window or change tietfi@se parameters must
be kept up-to-date dynamically. In raw MrEd, we would needchtimage all of the re-
computation by hand, but with the FrTime adaptation, we sirapecify the functional
relationships between the time-varying values, and thewamwidget properties update
automatically. As a result, the code is largely a functispacification of the model of
the spreadsheet; this is absent in a traditional objeented implementation because
of the structural inversion introduced by the use of calisac

As an illustrative example, consider the following snippktode, which shows the
definition of a text field into which the user can type cell folas:

(defineformula
(new ft-text-field%
[label” Formula:"]
[content-gmap-e(A (addr) ‘ (value-now(cell-text(addr—key add})) ‘1)
select-¢)]
| [focus-e select]ef:‘)))

When the user clicks on a cell, the cell’s address appears @avemt stream called
select-e The occurrence of the selection event affdotsnulain two ways. First, the
code in box 1 retrieves the selected cell’s text from the aggbeet; this text becomes
formulds new content. Second, the code in box 2 specifies that smleetents send
focus toformula, allowing the user to edit the text. When the user finishesredénd
presses thenterkey, formulaemits its content on an output event stream; the applica-
tion processes the event and interprets the associate@oeid not shown).

The spreadsheet experiment has proven valuable in seesgats. First, by em-
ploying a significant fragment of the MrEd framework, it hadged us exercise many
of our adapters and establish that the abstractions do metsaly affect performance.
Second, as a representativel program, it has helped us identify several subtleties of
FrRPand the adaptation of state, some of which we have discusgbigipaper. Finally,
the spreadsheet is an interesting application in its owntrgjnce the language of the
cells is FrTime itself, enabling the construction of powégpreadsheet programs.

7 Related Work

The use of dataflow in aul toolkit has been well-studied. The Garnet [11] and Amu-
let [12] projects were two early C++ toolkits that includedation of dataflow. More
recently, the FranTk [14] system adapted the Tk toolkit toaymmmer interface based
on the notions of behaviors and events in Fran [6]. Howewamn K still had a some-
what imperative feel, especially with regard to creationyaflic signal networks, which
required the use of mutation in the application programitf4Ji explored the idea of
purely functional user interfaces, implementing a sigmaded programming interface
atop the Swing [5] toolkit.

All of the previous work is concerned with the problem of dgsing the dataflow
interface for the toolkit, and the emphasis is on the expegdor the application pro-
grammer. We consider this to be fairly well understood. Hmvethe problem of actu-
ally implementing such an interface is less well understddaugh all of these earlier
systems have included a working implementation, we undeddhat their development
has been ad hoc, and the subtle interaction between imyetatilkits and declarative
dataflow systems has not been explained in the literatures, b the best of our knowl-
edge, ours is the first work to address this problem.

8 Conclusions and Future Work

We have explored the problem of adapting a legacy objeentedcul toolkit to an
interface based on the concepts of behaviors and eventsftnactional reactive pro-
gramming. The key to this adaptation is understanding trection in which various
state changes flow: from the application to the toolkit, takit to the application, or
both ways. This depends upon the particular widget propkatwe are adapting.
Since there are many widget properties, many of which aramwomto many wid-
gets, the implementation would ordinarily require a largeoant of code duplication.
However, in Scheme, we are able to distill the adaptatiotstabst abstract essence.
We express this as a set of three macros, which are paransetener the names of the

fields and methods that implement the various propertiesngtentiate these macros to
produce a collection of mixins—class fragments paramegdrawer their superclasses.
By applying these to the base widget classes, we implemerfiatiinterface adaptation
to our functional reactive language.

There are two main directions for future work, which compdsteach other. First,
we plan to continue developing the spreadsheet beyondritsrturesearch-prototype
stage and also to pursue different kinds of applicationss Will help us to evaluate the
FrTime language and our adaptation of the Mrid toolkit. Second, new applications
are likely to require the importation of other legacy franoeks, which will serve to
validate the techniques presented in this paper and alaatest refinements to them.
As we co-opt more libraries, we expect FrTime to become areasingly powerful
platform for application development.

References

1. J. Bachrach and K. Playford. The Java syntactic extend&CM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Applicatjmges 31-42, 2001.

2. G. Bracha and W. Cook. Mixin-based inheritanceA@M SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applicatipages 303—-311, 1990.

3. G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow aillég-value lan-

guage. IrEuropean Symposium on Programmi2g06.

. A. Courtney and C. Elliott. Genuinely functional user interface$idskell Workshop2001.

. R. Eckstein, M. Loy, and D. Woodava Swing O'Reilly, 1997.

6. C. Elliott and P. Hudak. Functional reactive animation. ABM SIGPLAN International
Conference on Functional Programmingages 263-277, 1997.

7. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. KrishnamurthGt&kler, and
M. Felleisen. DrScheme: A programming environment for Schedoernal of Functional
Programming 12(2):159-182, 2002.

8. M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Prograngrtanguages as oper-
ating systemsqf, Revenge of the Son of the Lisp Machine) AGM SIGPLAN International
Conference on Functional Programmingages 138-147, 1999.

9. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixinsAGM SIGPLAN-
SIGACT Symposium on Principles of Programming Langugogeges 171-183, 1998.

10. E. E. Kohlbecker JrSyntactic Extensions in the Programming Language.LifpD thesis,
Indiana University, 1986.

11. B. A. Myers, D. A. Giuse, R. B. Dannenberg, D. S. Kosbie, BEvirg A. Mickish, B. V.
Zanden, and P. Marchal. Garnet: Comprehensive support fphiga, highly interactive
user interfacesComputer 23(11):71-85, 1990.

12. B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A. Fandy, B. D. Kyle, A. Mick-
ish, A. Klimovitski, and P. Doane. The Amulet environment: New model€ffective user
interface software developmentEEE Transactions on Software Engineerir&B(6):347—
365, 1997.

13. H. Nilsson, A. Courtney, and J. Peterson. Functional reactvgr@mming, continued. In
ACM SIGPLAN Workshop on Haskellages 51-64, 2002.

14. M. Sage. FranTk: A declarative GUI language for HaskelAG@M SIGPLAN International
Conference on Functional Programmingages 106-117, 2000.

15. N. Schrli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composalikeaf behavior.
In European Conference on Object-Oriented Programmpages 248—274, 2003.

(20 %

16. T. Sheard and S. P. Jones. Template meta-programming falhadskProceedings of the
ACM SIGPLAN workshop on Haskghlages 1-16, 2002.

17. M. VanHilst and D. Notkin. Using C++ templates to implement role-batesigns. Inn-
ternational Symposium on Object Technologies for Advanced Softpages 22—-37, 1996.

18. D. Weise and R. Crew. Programmable syntax macrosAdi! SIGPLAN Conference on
Programming Language Design and Implementatjmages 156165, 1993.

Appendix: Adapted User Interface Widgets

ft-frame% These objects implement top-level windows. They suppbdfahe stan-
dard signal-based property interfaces (label, size, ipositocus, visibility, ability,
margins, minimum dimensions, stretchability, and mousklayboard input). As
in the underlyingrame%objects, thdabel property specifies the window's title.

ft-message% These objects contain strings of text that are mutable bypipiication
but not editable by the user. They support all of the standimil-based property
interfaces. In this case, thabel property specifies the content of the message.

ft-menu-item% These objects represent items in a drop-down or pop-up manu.
addition to the standard properties, each widget exposesent stream that fires
whenever the user chooses the item.

ft-button% These objects represent clickable buttons. In additiongstandard prop-
erties, each widget exposes an event stream that fires eaelth® user clicks it.

ft-check-box% These objects represent check-box widgets, whose staitetohge-
tweentrue andfalse with each click. In addition to the standard properties heac
ft-check-box%vidget exposes a boolean behavior that reflects its curtatet § he
application may also specify an event stream whose ocagseset the state.

ft-radio-box% These objects allow the user to select an item from a codieaif
textual or graphical options. In addition to the standamjpprties, eacffi-radio-
box%object exposes a numeric behavior indicating the currdatsen.

ft-choice% These objects allow the user to select a subset of items fistod textual
options. In addition to the standard properties, dachoice%object exposes a list
behavior containing the currently selected elements.

ft-list-box% These objects are similar fbchoice% except that they support an addi-
tional, immutablestyleproperty that can be used to restrict selections to singleto
sets or to change the default meaning of clicking on an itethe@vise, the appli-
cation’s interface is the same as thaftethoice%

ft-slider% These objects implement slider widgets, which allow the tseselect a
number within a given range by dragging an indicator alongekt In addition to
the standard properties, edttslider%object allows the application to specify the
range through a time-varying constructor argument catbegie and it exposes a
numeric behavior reflecting the current value selected byter.

ft-text-field% These objects implement user-editable text fields. In audito the
standard properties, each widget exposes the content witdield as a behav-
ior, as well as an event stream carrying the individual edings. The application
can also specify an event stream whose occurrences repkatext field content.

