Salus

Seny Kamara - Microsoft Research
Payman Mohassel – U. of Calgary
Ben Riva – Tel Aviv U.
Cooperation without Trust

Alice

Eve

Bob

\(f(x,y,z) \)
Cooperation without Trust

- Examples
 - Data mining
 - Negotiations
 - Electronic Voting
 - Auctions
 - Exchanges
 - Distributed constraint satisfaction & optimization
 - Location privacy
 - Bioinformatics
 - Electronic commerce
 - Healthcare
 - ...

Cooperation without Trust

- **Q**: how do we achieve this?

Diagram:
- Trusted Party
- NDAs
- Arrows indicating interaction between parties
Secure Function Evaluation

\[f(x, y, z) \approx x y z \]
SFE is Great!

- Really powerful
 - Solves large number of problems that occur in practice
 - Can be combined with other techniques to solve even more problems

- We can do it for *any* function!
 - negotiations, data mining, search, ...

- We have many protocols with different properties
 - 30 years’ worth of MPC research

- **Q:** So why aren’t we using this on a daily basis?
SFE is Too Slow!

- Early work on SFE was theoretical
- Researchers recognized its importance
 - But didn’t know how to make it practical yet
- It was dismissed as pie-in-the-sky
 - Similar to how FHE is perceived today
Why is SFE so Expensive?

• Bottlenecks (in 2SFE):
 o Malicious behavior: ZK proofs to make sure Garbler does not cheat
 • Cut & Choose [Malka-Nisan-Pinkas-Sella04, Mohassel-Franklin06, Kiraz-Schoehnmakers06, Lindell-Pinkas07, Woodruff07]
 o Circuit size: $O(\text{size of circuit})$ work to garble and evaluate circuit
 • Free XOR [Kolesnikov-SchneiderS08]
 o Oblivious transfer: $O(|y|)$ number of 1-out-of-2 oblivious transfers
 • OT Extension [Ishai-Kilian-Nissim-Petrank03]
 o Memory: need to load and process $O(\text{size of circuit})$ gates
 • Pipelined Execution [Huang-Evans-Katz-Malka11, Malka11]
SFE Frameworks

- Fairplay
 - Implementations of 2PC & MPC
- FairplayPF
 - Implementation of private function evaluation using UCs
- VIFF
 - Sharing-based MPC & real-life use-case
- Sharemind
 - Sharing-based MPC for data analytics
- TASTY
 - Mixed MPC framework (sharing + garbled circuits)
- Fast Garbled Circuits
 - Highly-optimized garbled circuit framework
- VMCrypt
 - Highly-optimized garbled circuit framework with pipelined execution
Inherent Limitations of SFE

• Linear work
 - All protocols require $O(|C|)$ work from each party
 - Circuits can be very large
 - AES $\approx 30,000$ gates
 - Edit distance (50 char strings) $\approx 250,000$ gates
 - Dot product (255 dims over 64-bit field) ≈ 30 million gates

• Fairness
 - Either all parties get output or none do
 - Fairness is impossible in general [Cleve86]

• Symmetric work
 - All parties do same amount of work
 - MPC-based systems will not scale if parties are heterogeneous
Server-Aided SFE
Server-Aided SFE

SFE

Server-aided SFE
Server-Aided SFE

- [Asharov-Jain-Lopez-Alt-Tromer-Vaikuntanathan-Wichs12]
 - Protocol based on FHE
 - From $O(\text{size of circuit + size of input}) \Rightarrow O(\text{size of input})$
 - Mostly of theoretical interest

- [K.-Mohassel-Raykova12]
 - Protocol based on garbled circuits
 - $O(\text{size of circuit + size of input}) \Rightarrow O(\text{size of input})$
 - Of practical interest but...
 - Limitations!
 - Assumes parties do not collude with server
 - Removing this implies general-purpose sub-linear 2PC
 - One party does $O(\text{size of circuit})$ work
 - Reducing this implies non-interactive secure delegation
Is Server-Aided SFE Practical?
Salus

• Server-aided SFE framework
 o Fairplay circuit format
 o New (fair) protocols
 • vs. malicious servers
 • vs. covert servers
 o Pipelined execution (new approach for malicious setting)
 o Free XOR
 o Batched Peikert-Vaikuntanathan-Waters OT
Garbled Circuits [Yao82]

1. $GC(C) \Rightarrow (\tilde{C}, sk, dk)$
2. $GI(sk, x) \Rightarrow \tilde{x}$

1. $Eval(\tilde{C}, \tilde{x}) \Rightarrow z$
2. $Decode(dk, z) \Rightarrow C(x)$
Garbled Circuits [Yao82]

- What happens if evaluator cheats?
 - Garbled circuits have a verifiability property
Garbled Circuits [Yao82]

- What if Garbler cheats?
 - Zero-knowledge proofs [GMW87]
 - Cut-and-choose [MNSP04,MF06,LP07,W07,...]
 - Send many garbled circuits
 - Evaluator asks Garbler to open some and verifies them
 - Evaluates the rest and outputs majority
Cut-and-Choose [MNPS04,MF06,LP07]

Garbler

\((\tilde{C}, ..., \tilde{C})\)
Open 1/2

\((sk, ..., sk)\)

\((\tilde{x}, ..., \tilde{x}) \& EQ(\tilde{x}, ..., \tilde{x})\)

Evaluator

1. Verify all \(\tilde{x}\) are equal
2. Evaluate remaining \(\tilde{C}\)
3. Output majority bits

\(C(x)\)
Server-Aided C-&-C [K.-Mohassell-Raykova12]

1. Eval(\(\tilde{C}, \tilde{x}, \tilde{y}\)), ... , Eval(\(\tilde{C}, \tilde{x}, \tilde{y}\))
2. How does the Server take majority?
 1. **Oblivious-MAJ**(\(\tilde{z}, ..., \tilde{z}\))
Protocol 1

- **Input equality checking**
 - [Mohassel-Franklin06, Lindell-Pinkas07]: $O(s^2 \cdot n)$ based on hash functions
 - [Woodruff07]: $O(s \cdot n)$ but based on expander graphs
 - [Lindell-Pinkas11-shelat-Shen11]: $O(s \cdot n)$ based on ZK and WI proofs (exps)
 - **Our work**: $O(s \cdot n)$ based only on hash functions

- **Oblivious majority**
 - [K.-Mohassel-Raykova12]: based on polynomial evaluation & interpolation
 - **Our work**: based only on symmetric encryption

- **Pipelined execution**
 - [HEKM11,Malka11]: does not work vs malicious adversaries
 - **Our work**: new pipelined exec for cut-and-choose [Kreuter-shelat-Shen12]
Protocol 2

- Server garbles circuits & P1 verifies and evaluates
- Problem #1: fairness
 - Hash-based mechanism
- Problem #2: garbled input delivery
 - Distributed OT
 - XOR secret sharing & hash functions
Experiments
Functionalities

• AES
 o with $|K| = 128$ and $|m| = 128$
 o 31 512 gates
 o 13 904 non-XOR gates

• Edit Distance
 o $|x| = |y| = 50$ and 8-bit characters
 o 254 930 gates
 o 94 472 non-XOR gates
Protocol 1

<table>
<thead>
<tr>
<th></th>
<th>2P-AES</th>
<th>4P-AES</th>
<th>Edit Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PKSS09]</td>
<td>1114s</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>[selat-Shen11]</td>
<td>192s w/o comm.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Protocol 1</td>
<td>45s (4x-24x)</td>
<td>46s</td>
<td>240s</td>
</tr>
</tbody>
</table>

- **Note**: time is independent of number of parties!
Protocol 2 (Covert)

<table>
<thead>
<tr>
<th></th>
<th>2P-AES</th>
<th>4P-AES</th>
<th>Edit Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PKSS09]</td>
<td>60s</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Protocol 2</td>
<td>9.12s (6x)</td>
<td>14.8s</td>
<td>33.5s</td>
</tr>
</tbody>
</table>
Thanks