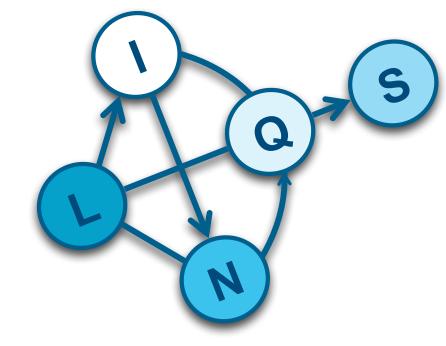


Rounding Guarantees for Message-Passing MAP Inference with Logical Dependencies

Stephen H. Bach,¹ Bert Huang,^{1,2} and Lise Getoor³



University of Maryland, College Park, ²Virginia Tech, ³University of California, Santa Cruz

I. MRFs with Logical Dependencies

 $\operatorname*{arg\,max}_{oldsymbol{x}} oldsymbol{w}^{ op} oldsymbol{\phi}(oldsymbol{x})$

where each variable is Boolean, each parameter is non-negative, and each potential is defined by the truth value of a logical clause:

$$\phi_j(\boldsymbol{x}) \triangleq \left(\bigvee_{i \in I_j^+} x_i\right) \vee \left(\bigvee_{i \in I_j^-} \neg x_i\right)$$

Examples of Dependencies in Logical MRFs

I. Implications

$$\phi_j(\boldsymbol{x}) \triangleq \left(\bigwedge_{i \in I_j^-} x_i\right) \implies \left(\bigvee_{i \in I_j^+} x_i\right)$$

2. Submodular functions

 $\phi_a(\boldsymbol{x}) \triangleq \neg x_1 \lor x_2 \qquad \phi_b(\boldsymbol{x}) \triangleq x_1 \lor \neg x_2$

We refer to such MRFs as *logical MRFs*.

MAP Inference in logical MRFs is NP-hard. [Garey et al., 1976]

We provide rounding guarantees for message-passing approximate MAP inference for logical MRFs

3. Supermodular functions

$$\phi_a(\boldsymbol{x}) \triangleq x_1 \lor x_2 \qquad \phi_b(\boldsymbol{x}) \triangleq \neg x_1 \lor \neg x_2$$

2. Approximate MAP Inference for Logical MRFs

We consider two main approaches to approximate MAP inference:

Local consistency relaxations

Introduce marginal distributions over variable and potential states, then constrain them to only be locally consistent

2. MAX SAT relaxations

View as instance of MAX SAT, and relax as an LP that bounds expected truth value [Goemans and Williamson, 1994]

$$\arg \max_{\boldsymbol{y} \in [0,1]^n} \sum_{j=1}^m w_j \min \left\{ \sum_{i \in I_j^+} y_i + \sum_{i \in I_j^-} (1-y_i), 1 \right\}$$

Round each variable with probability $p_i = \frac{1}{2}y_i^* + \frac{1}{4}$

$\sum_{k=0}^{K_i-1} \mu_i(k) = 1 \qquad \qquad \forall i$

Advantage: Admits highly scalable message-passing algorithms

using the method of conditional probabilities

Advantage: Gives discrete solutions of guaranteed 3/4 quality

3. Equivalence Analysis

Theorem: For any logical MRF, the first-order local consistency relaxation of MAP inference is equivalent to the MAX SAT relaxation of Goemans and Williamson [1994].

Proof Technique:

Analyze the local consistency relaxation as a hierarchical optimization:

$$\max_{\boldsymbol{\mu}\in[0,1]^i}\sum_{j=1}^m \hat{\phi}_j(\boldsymbol{\mu})$$

$$\hat{\phi}_j(oldsymbol{\mu})$$
 =

$$egin{aligned} &= \max_{oldsymbol{ heta}_j \mid (oldsymbol{ heta},oldsymbol{\mu}) \in \mathbb{L}} w_j \sum_{oldsymbol{x}_j} heta_j(oldsymbol{x}_j) \end{aligned}$$

Use the Karush-Kuhn-Tucker conditions to find value of $\hat{\phi}_j(m{\mu})$ for any setting of $m{\mu}$:

$$\hat{\phi}_j(\boldsymbol{\mu}) = w_j \min\left\{\sum_{i=1}^{j} \mu_i + \sum_{i=1}^{j} (1-\mu_i), 1\right\}$$

4. Practical Implications

The equivalence of the two relaxations means that the advantages of each can be combined into a single technique:

I. Solve the local consistency relaxation with any of a number of scalable message-passing algorithms

2. Find a discrete solution of 3/4 quality by applying the rounding procedure of Goemans and Williamson [1994] to the optimal pseudomarginals μ^* .

Scalable message-passing algorithms for finding μ^* include subgradient dual decomposition, the alternating direction method of multipliers (ADMM),

 $\phi_j(\boldsymbol{x}_j)$

Visit the LINQS site at http://linqs.cs.umd.edu or http://linqs.soe.ucsc.edu

Supported by NSF grant no. IIS1218488, and IARPA contract D12PC00337