
6
Planar Straight-Line Drawing

Algorithms

Luca Vismara

6.1 Introduction . 193
6.2 Preliminaries . 195

Planar Drawings • Convex Drawings • Connectivity

6.3 Real-Coordinate Drawings . 197
6.4 Grid Drawings . 198
6.5 Canonical Orderings . 199
6.6 Shift Method . 202

Construction • Implementation • Refinements and Variations

6.7 Realizer Method . 212
Realizers • Barycentric Representation • Implementation •

Refinements and Variations

Acknowledgment . 220
References . 221

6.1 Introduction

Planar straight-line drawings have been an early subject of investigation in combinatorial
mathematics. A classic result states that every planar graph admits a planar straight-line
drawing. Namely, if a graph can be drawn with no crossings using edges of arbitrary shape
(e.g., polygonal lines or curves), then it can be drawn with no crossings using only straight-
line edges (see Figure 6.1). The proof of this result was independently discovered by Steinitz
and Rademacher [SR34], Wagner [Wag36], Fary [Fár48], and Stein [Ste51].

All the above classic constructions focus on establishing the existence of planar straight-
line drawings but do not address the area of the drawing or the arithmetic precision required
for representing the coordinates of the vertices. Indeed, following the constructions in these
papers one obtains drawings of area exponential in the length of the shortest edge, which
are unsuitable in practice.

Algorithms for constructing planar straight-line grid drawings, where the edges have
integer coordinates, were developed by de Fraysseix, Pach, and Pollack [dFPP90] (shift
method) and by Schnyder [Sch90] (realizer method). They independently showed that
every n-vertex planar graph has a planar straight-line grid drawing with O(n) height and
O(n) width, resulting in O(n2) area. These bounds are asymptotically tight in the worst
case as can be shown with the example of Figure 6.2.

Convex drawings are planar straight-line drawings where all the faces are drawn as convex
polygons (see Figure 6.1(c)). We say that a planar graph is convex planar if it admits a
convex drawing. In another classic work, Tutte [Tut60, Tut63] showed how to construct a

193

194 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

(a)

s

t

w

u

v

z

(b)

s
t

w

u

v

z

(c)

s
t

w

u

v

z

Figure 6.1 Examples of planar drawings of the same graph: (a) planar drawing with
curved edges; (b) planar straight-line drawing; (c) planar convex drawing.

convex planar drawing of every triconnected planar graph. His method places the vertices
of the external face on an arbitrary convex polygon and computes the coordinates of the
remaining vertices by solving a system of linear equations.

The rest of this chapter is organized as follows. Basic definitions are introduced in
Section 6.2. Tutte’s classic algebraic method for convex drawings is presented in Section 6.3.
Area bounds for planar straight-line grid drawings computed by the shift method and by
the realizer method are summarized in Section 6.4. Canonical orderings of planar graphs
are discussed in Section 6.5. Section 6.6 describes the shift method and Section 6.7 describes
the realizer method.

For further details on the subject of planar drawings of graphs, we refer the reader to the
book by Nishizeki and Rahman [NR04] and the survey by Di Battista and Frati [DF13].
See also the work by Cruz and Garg [CG95] for a declarative approach to the construction
of planar drawings.

6.2. PRELIMINARIES 195

Figure 6.2 Planar straight-line grid drawing of graph S5 consisting of five nested cycles
of four vertices. This drawing has height 9 and width 9. In general, graph Sk has 4k vertices
and requires height and width proportional to k in any planar-straight-line grid drawing.

6.2 Preliminaries

6.2.1 Planar Drawings

In the context of this chapter, a drawing of a graph G is a mapping of each vertex v of G
to a distinct point P (v) = (vx, vy) of the plane1 and of each edge (u, v) of G to a simple
Jordan curve with endpoints P (u) and P (v). A straight-line drawing is a drawing in which
every edge is mapped to a straight-line segment; more formally, a straight-line drawing is
an injective function f : v ∈ V → (vx, vy) ∈ R2.

A drawing is planar if no two edges intersect, except, possibly, at common endpoints.
A graph is planar if it has a planar drawing. Two planar drawings of a planar graph G
are equivalent if, for each vertex v, they have the same circular clockwise sequence of edges
incident with v. Hence, the planar drawings of G are partitioned into equivalence classes.
Each of those classes is called an embedding of G. An embedded planar graph (also plane
graph) is a planar graph with a prescribed embedding. A triconnected planar graph has a
unique embedding, up to a reflection. A planar drawing divides the plane into topologically
connected regions delimited by cycles; these cycles are called faces. The external face is
the cycle delimiting the unbounded region; all the other faces are internal. Two equivalent
planar drawings have the same faces. Hence, one can refer to the faces of an embedding. A
vertex or edge of a plane graph is said to be external if it belongs to the external face, and
internal otherwise.

A maximal planar graph is a planar graph with the maximal number of edges, i.e., adding
an edge between any two vertices destroys its planarity. Note that in a maximal planar graph
all faces consist of three edges. An outerplanar graph is a planar graph that admits a planar
drawing with all its vertices on the same (say, the external) face; such a drawing is called
an outerplanar drawing.

Let G be a plane graph; the dual graph G∗ of G is defined as follows: (i) each face f of
G has a dual vertex f∗ in G∗; (ii) each vertex v of G has a dual face v∗ in G∗; (iii) let e be

1We will use interchangeably (vx, vy) and (x(v), y(v)) to denote the coordinates of P (v).

196 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

an edge of G and let f1 and f2 be the two faces of G incident with e (note that f1 and f2
may not be distinct); e has a dual edge e∗ = (f∗1 , f

∗
2) in G∗.

6.2.2 Convex Drawings

A polygon is a finite set of segments such that every segment endpoint is shared by exactly
two segments and no subset of segments has the same property. A polygon is simple if there
is no pair of nonconsecutive segments sharing a point. A simple polygon is convex if its
interior is a convex set. A simple polygon is strictly convex if its interior is a strictly convex
set, i.e., no 180◦ angle is allowed. A convex drawing of a planar graph G is a planar straight-
line drawing of G in which all faces are drawn as convex polygons (see Figure 6.3(a)). A
strictly convex drawing of a planar graph G is a planar straight-line drawing of G in which
all faces are drawn as strictly convex polygons (see Figure 6.3(b)). A planar graph is said
to be (strictly) convex planar if it admits a (strictly) convex drawing.

(a)

(b)

Figure 6.3 (a) A convex drawing of a biconnected planar graph G. (b) A strictly convex
drawing of a biconnected planar graph G.

6.2.3 Connectivity

We recall some basic definitions on connectivity. A separating k-set of a graph is a set
of k vertices whose removal disconnects the graph; separating 1-sets and 2-sets are called
cutvertices and separation pairs, respectively. A graph is k-connected if it contains more
than k vertices and no separating (k − 1)-set; 1-connected, 2-connected, and 3-connected

6.3. REAL-COORDINATE DRAWINGS 197

graphs are called connected , biconnected , and triconnected , respectively. A separating edge
of a graph is an edge whose removal disconnects the graph.

The biconnected components of a connected graph (also called blocks) are its maximal
biconnected subgraphs and its separating edges. The triconnected components of a bicon-
nected graph G are defined as follows [HT73].

If G is triconnected, then G itself is the unique triconnected component of G. Otherwise,
let {u, v} be a separation pair of G. We partition the edges of G into two disjoint subsets
E1 and E2, |E1| ≥ 2, |E2| ≥ 2, such that the subgraphs G1 and G2 induced by them have
only vertices u and v in common. Graphs G′1 = G1 + (u, v) and G′2 = G2 + (u, v) are
called the split graphs of G with respect to {u, v} (multiple edges are allowed); edge (u, v)
in G′1 and G′2 is called a virtual edge. Dividing G into split graphs G′1 and G′2 is called
splitting. Reassembling split graphs G′1 and G′2 into G, is called merging. Note that only
split graphs that resulted from the same splitting operation can be merged together. We
continue the splitting process recursively on G′1 and G′2 until no further splitting is possible.
Each resulting graph is either a triconnected simple graph, or a set of three multiple edges
(called “triple bond” in [HT73]), or a cycle of length three (called “triangle” in [HT73]).
The triconnected components of G are obtained from these graphs by merging the “triple
bonds” into maximal sets of multiple edges (called “bonds” in [HT73]), and the “triangles”
into maximal simple cycles (called “polygons” in [HT73]). When merging “triple bonds” into
“bonds” and “triangles” into “polygons,” virtual edges with both endvertices in common
are removed; we refer to the remaining virtual edges at the end of the merging process as
the virtual edges of the triconnected components. Note that, although the graphs obtained
at the end of the splitting process depend on the order of the splittings, the triconnected
components of G are unique. See [HT73] for further details.

In the rest of the chapter, we denote by n, m, and l the number of vertices, edges, and
faces of a plane graph, respectively; we always assume n ≥ 3. Unless otherwise specified,
graphs are assumed to be simple, i.e., without self-loops and multiple edges. Often, we do
not distinguish between a vertex (edge) of G and the point (segment) representing it.

We recall Euler’s formula, which holds for every plane graph, and two bounds for the
number of edges and faces of a plane graph (the equalities hold for maximal planar graphs),
which easily follow from it:

n+ l = m+ 2 (6.1)

m ≤ 3n− 6 (6.2)

l ≤ 2n− 4 (6.3)

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the plane; the Manhattan distance
between P1 and P2 is defined as |x1 − x2|+ |y1 − y2|.

A w×h integer grid is a grid of integer points of width w and height h; note that a w×h
integer grid contains (w+1)× (h+1) integer points. A grid drawing is an injective function
f : v ∈ V → (vx, vy) ∈ Z2. The area of a grid drawing is the number of integer points
contained in the smallest integer grid containing the drawing. In the rest of the chapter,
we will often omit “integer” before “grid” for brevity.

6.3 Real-Coordinate Drawings

In a classic paper, Tutte [Tut60, Tut63] presented a method for constructing strictly convex
drawings of triconnected plane graphs by solving a system of linear equations that place
each internal vertex at the barycenter of its neighbors. Hence, this method is referred to as
the barycenter method .

198 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Initially, the vertices of the external face are placed at the vertices of a strictly convex
polygon, P . We refer to the vertices not on the external face as internal vertices.

For a vertex v, let N(v) be the set of neighbors of v and d(v) the degree of v, i.e.,
d(v) = |N(v)|. The position of an internal vertex v is determined by the following linear
equations:

x(v) =
1

d(v)

∑
w∈N(v)

x(w) (6.4)

y(v) =
1

d(v)

∑
w∈N(v)

y(w) (6.5)

Tutte showed that the above system of linear equations admits a unique solution that
corresponds to a strict convex drawing of the graph. An example of a drawing constructed
with the barycenter method is shown in Figure 6.4.

Figure 6.4 Planar convex drawing obtained with Tutte’s barycenter method. Drawing
created by the PIGALE tool (see Chapter 18).

Combinatorial characterizations of convex and strictly convex planar graphs and meth-
ods for constructing convex and strictly convex drawings appear in papers by Tutte [Tut60,
Tut63], Thomassen [Tho80, Tho84], Chiba, Yamanouchi, and Nishizeki [CYN84], Chiba,
Onoguchi, and Nishizeki [CON85], and Djidjev [Dji95]. Note that the above methods com-
pute drawings with real coordinates for the vertices.

6.4 Grid Drawings

The drawings generated by Tutte’s algorithm presented in Section 6.3 exhibit some draw-
backs:

6.5. CANONICAL ORDERINGS 199

• they require high-precision real arithmetic relative to the size of the input graph,
and therefore cannot be used even for graphs of moderate size; and

• in the produced drawings, the ratio of the largest distance to the smallest distance
between vertices is very large (exponential in the size of the graph), i.e., vertices
are represented by arbitrarily close points, or, equivalently, if the graph is drawn
on an integer grid, then the grid has exponential size.

Motivated by these drawbacks, Rosenstiehl and Tarjan [RT86] posed the question whether
every planar graph has a planar straight-line drawing on an O(nk)×O(nk) integer grid for
some fixed constant k, where n is the number of vertices of the graph. As we will see, the
question was answered in the positive and various algorithms were presented over the years.
Selected algorithms are summarized in Table 6.1.

[CP95, dFPP90] (2n− 4)× (n− 2) shift

[CN98]
⌊
2
3 (n− 1)

⌋
× 4

⌊
2
3 (n− 1)

⌋
− 1 shift

[Bra08]
⌈
4
3n
⌉
×
⌈
2
3n
⌉

shift

[Sch90]
(2n− 5)× (2n− 5)

realizer
(n− 2)× (n− 2)

Table 6.1 Width and height of the drawing achieved by selected planar straight-line grid
drawing algorithms that use the shift method or the realizer method. We denote with n
the number of vertices of the graph.

The algorithms listed in Table 6.1 are designed for drawing maximal plane graphs but
can actually be used to draw general plane graphs: it is sufficient to transform the input
plane graph into a maximal plane graph by adding a linear number of extra edges, draw the
resulting graph, and then remove the segments corresponding to the extra edges from the
obtained drawing. These algorithms are based on two different methods, called the shift
method and the realizer method , and are described in Sections 6.6 and 6.7, respectively.

6.5 Canonical Orderings

In this section, we recall the definitions of canonical ordering of maximal plane graphs, as
given by de Fraysseix, Pach, and Pollack [dFPP90], and of triconnected plane graphs, as
given by Kant [Kan96].

DEFINITION 6.1 Let G be a maximal plane graph with n vertices, and let u0, u1, u2
be the external vertices of G in counterclockwise order. A canonical ordering of G (see
Figure 6.5) is an ordering v1, . . . , vn of the vertices of G such that the following conditions
are verified:

1. v1 = u1, v2 = u2.

2. For 3 ≤ k ≤ n, let Gk be the plane subgraph of G induced by vertices v1, . . . , vk
and let Ck be the external face of Gk. Vertex vk is on face Ck. Also, if k < n,
vertex vk has at least one neighbor in G−Gk.

200 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

3. For each 3 ≤ k ≤ n−1, subgraph Gk is biconnected and internally maximal (i.e.,
all internal faces of Gk are triangles).

4. vn = u0.

LEMMA 6.1 [dFPP90] Each maximal plane graph has a canonical ordering, which can
be computed in linear time and space.

A canonical ordering of G yields an incremental construction of graph G starting from
edge (v1, v2). In step k (3 ≤ k ≤ n), vertex vk and the edges between vk and its neighbors
in Ck−1 are added to the current graph Gk−1. For each 3 ≤ k ≤ n, we denote by v1 =
w1, w2, . . . , wt = v2 the sequence of vertices of Ck−1, when traversed in clockwise order.
For the sake of enhancing intuition, we visualize w2, . . . , wt−1 as arranged from left to right
above (v1, v2) in the plane. For each 3 ≤ k ≤ n, let wp, . . . , wq be the subsequence of
vertices of Ck−1 that are adjacent to vk (note that p+ 1 may be equal to q). After vk has
been added to Gk−1, vertices wp+1, . . . , wq−1 (if any) are no longer external; we say that
vertex vk covers these vertices.

A canonical ordering v1, . . . , vn of graph G defines a spanning tree of graph G−{v1, v2},
called cover tree, which consists of all edges (u, v) such that u covers v. We set vn as the root
of the cover tree. Thus, the children of a vertex u in the cover tree are the vertices covered
by u. (See Figure 6.6.) We define the cover forest associate with a canonical ordering as
its cover tree together with the single-vertex trees v1 and v2.

The definition of canonical ordering can be generalized to triconnected plane graphs
as follows. A biconnected plane graph G is said to be internally triconnected if for any
separation pair {u, v} of G, u and v are external vertices and each connected component
of G \ {u, v} contains an external vertex; in other words, G is internally triconnected if
and only if the graph obtained from G by adding a new vertex and connecting it to all the
external vertices of G is triconnected.

DEFINITION 6.2 Let G be a triconnected plane graph with n vertices, (u1, u2) be an
external edge of G, and u0 6= u1, u2 be an external vertex of G. A canonical ordering of
G is an ordering v1, . . . , vn of the vertices of G that can be partitioned into subsequences
V1, . . . , Vh, where Vk = {vsk , . . . , vsk+dk}, 1 ≤ k ≤ h, 1 = s1 < s2 < · · · < sh < sh+1 = n+1,
dk = sk+1 − sk − 1, such that the following conditions are verified:

1. v1 = u1, v2 = u2, and V1 = {v1, v2}.
2. Let Gk be the plane subgraph of G induced by V1 ∪ · · · ∪ Vk, 1 ≤ k ≤ h, and Ck

be the external face of Gk. For each 2 ≤ k ≤ h − 1, one of the following cases
occurs:

(a) Vk = {vsk} is a vertex of Ck (and has at least one neighbor in G−Gk);

(b) Vk = {vsk , . . . , vsk+dk} is a subpath of Ck, and each vertex vi, sk ≤ i ≤
sk + dk, has degree two in Gk (and has at least one neighbor in G−Gk).

3. Each subgraph Gk, 2 ≤ k ≤ h− 1, is biconnected and internally triconnected.

4. vn = u0 and Vh = {vn}.

LEMMA 6.2 [Kan96] Each triconnected plane graph has a canonical ordering, which
can be computed in linear time and space.

6.5. CANONICAL ORDERINGS 201

v1 v2

v17

v14

v12

v13

v10

v11
v9

v8

v6

v5

v4

v7

v3

v18

v15

v16

Figure 6.5 A canonical ordering of a maximal plane graph.

v1 v2

v17

v14

v12

v13

v10

v11
v9

v8

v6

v5

v4

v7

v3

v18

v15

v16

Figure 6.6 Cover tree induced by a canonical ordering of a maximal plane graph. The
edges of the tree are drawn with thick lines.

202 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

6.6 Shift Method

de Fraysseix, Pach, and Pollack [dFPP90] presented an algorithm for constructing a planar
straight-line drawing of an n-vertex maximal plane graph on the (2n − 4) × (n − 2) grid.
The algorithm is summarized as follows:2

• the vertices are placed on the grid one at a time following a canonical ordering
(see Definition 6.1) of the input graph;

• at each step, the contour of the drawing of the current graph satisfies certain
invariants that involve restrictions on the slopes of the contour edges;

• when a vertex is placed on the grid, some of the previously placed vertices are
shifted leftward and some others are shifted rightward to accommodate the new
vertex while maintaining the contour invariants and the planarity of the current
drawing.

6.6.1 Construction

We now give a detailed description of the algorithm. Let G be an n-vertex maximal plane
graph, and let v1, . . . , vn be a canonical ordering of G. We denote by P (v) = (x(v), y(v))
the current position of vertex v on the grid. For each vertex v, we maintain the set of
vertices that need to be shifted whenever v is shifted; we denote this set by L(v).

As described in Section 6.5, for each 3 ≤ k ≤ n, we denote by v1 = w1, w2, . . . , wt = v2
the sequence of vertices Ck−1 (the external face of graph Gk−1) when traversed in clockwise
order, and by wp, . . . , wq the subsequence of vertices of Ck−1 that are adjacent to vertex vk.
We call wp the left attachment of vk and wq the right attachment of vk. Note that vertices
wp+1, . . . , wq−1 are covered by vk.

For two grid points P1 = (x1, y1) and P2 = (x2, y2), we denote by µ(P1, P2) the inter-
section of the line with slope +1 passing through P1 and the line with slope −1 passing
through P2 (see Figure 6.7), i.e.,

µ(P1, P2) =

(
x2 + x1 + y2 − y1

2
,
x2 − x1 + y2 + y1

2

)
(6.6)

Note that if the Manhattan distance between P1 and P2 is even, then µ(P1, P2) is a grid
point.

Initially, we set P (v1) = (−1, 0), P (v2) = (1, 0), and P (v3) = (0, 1), i.e., we draw G3 as
a triangle Γ3; we also define shift sets L(vi) = {vi}, 1 ≤ i ≤ 3.

For each 4 ≤ k ≤ n, we assume that a planar straight-line grid drawing Γk−1 of Gk−1
has been constructed in such a way that the following contour conditions hold (see Fig-
ure 6.8):

1. P (v1) = (−((k − 1)− 2), 0) and P (v2) = ((k − 1)− 2, 0);

2. x(w1) < x(w2) < · · · < x(wt−1) < x(wt);

3. each segment P (wi)P (wi+1), 1 ≤ i ≤ t− 1, has slope either +1 or −1.

Note that, by Condition 3, the Manhattan distance between any two vertices of Ck−1 is
even; thus, µ(P (wp), P (wq)) is a grid point.

2Our description of the algorithm, which uses left shifts and right shifts, is slightly different from the
one given in [dFPP90], which uses only right shifts, but is conceptually equivalent.

6.6. SHIFT METHOD 203

P1

µ(P1, P2)

P2

Figure 6.7 Definition of point µ(P1, P2) as the intersection of the line with slope +1
passing through P1 and the line with slope −1 passing through P2.

w1 = v1

wt - 1 w2

wt = v2

wp

wq

Figure 6.8 Schematic illustration of a drawing of Γk−1 that satisfies the contour condi-
tions, i.e., the external face is drawn as a polygon consisting of a horizontal edge and a
chain of segments with slope +1 or −1 between endpoints P (v1) = (−((k − 1)− 2), 0) and
P (v2) = ((k − 1)− 2, 0).

w1 = v1 wt = v2

wt - 1 w2

wp
wq

vk

Figure 6.9 Schematic illustration of the addition of vertex vk to drawing Γk−1 to obtain
drawing Γk. Contour vertices w1, . . . , w+ p (black-filled) are shifted by one unit to the left
and contour vertices wq, . . . , wt (white-filled) are shifted by one unit to the right. When a
contour vertex is shifted, we also shift all the vertices in its shift set (not shown). Finally,
vertex vk is placed at point µ(P (wp), P (wq)). Drawing Γk satisfies the contour conditions,
i.e., the external face is drawn as a polygon consisting of a horizontal edge and a chain of
segments with slope +1 or −1 between endpoints P (v1) = (−k−2, 0) and P (v2) = (k−2, 0).

We now show how to add point P (vk) to Γk−1 and obtain a planar straight-line drawing
Γk of Gk (see Figure 6.9):

204 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Step 1 For each v ∈
⋃p
i=1 L(wi), set x(v) = x(v)− 1. This step translates leftward by

1 the vertices of the external face from w1 to the left attachment wp of vk plus
all the other vertices in the shift sets of these vertices.

Step 2 For each v ∈
⋃t
i=q L(wi), set x(v) = x(v) + 1. This step translates rightward

by 1 the vertices of the external face from the right attachment vq of vk to wt
plus all the other vertices in the shift sets of these vertices.

Step 3 Set P (vk) = µ(P (wp), P (wq)). This step places vertex vk so that it can be
joined with straight-line edges to its neighbors.

Step 4 Set L(vk) = {vk} ∪ (
⋃q−1
i=p+1 L(wi)). This step defines shift set L(vk) as the

union of vk and the shift sets of the vertices covered by vk.

Steps 1, 2, and 3 ensure that points P (wp), . . . , P (wq) are all visible from P (vk), i.e.,
segments P (vk)P (wi), p ≤ i ≤ q, can be added to Γk−1 without introducing crossings.
Conditions 1–3 above are clearly satisfied in Γk. By Step 4, we obtain inductively that each
set L(u) is the subtree of the cover forest rooted at vertex u. Thus, sets L(w1), . . . , L(wt),
form a partition of the vertices of Gk−1. It remains to prove that the shift operations in
Steps 1 and 2 preserve the planarity of Γk−1, and this is done in the following lemma.

LEMMA 6.3 Let Γj be a planar straight-line drawing of Gj , as described above, and let
v1 = w′1, w

′
2, . . . , w

′
t′ = v2 be the sequence of vertices of Cj . Let s be an index such that

1 ≤ s ≤ t′. If, for each 1 ≤ i ≤ s (resp., s ≤ i ≤ t′), we shift the vertices in L(w′i) leftward
(resp., rightward) by a positive integer number ρ, then the resulting straight-line drawing
is still planar.

Proof: By induction on j. For Γ3 the lemma is trivially true. We now suppose that the
lemma is true for Γj−1, j ≥ 4, and prove that it is true for Γj . We use the notation from the
algorithm description above; namely, v1 = w1, w2, . . . , wt = v2 is the sequence of vertices of
Cj−1, and wp and wq are the leftmost and rightmost neighbors of vj in Cj−1, respectively.
We denote by ζ the difference between the number of vertices of Cj−1 and the number of
vertices of Cj , i.e., ζ = (q − p− 1)− 1 ≥ −1. Thus, we have:

t′ = t− ζ

w′i =


wi for i = 1, . . . , p

vj for i = p+ 1

wi+ζ for i = p+ 2, . . . , t′

Note, in particular, that w′p+2 = wq. We prove the claim for the rightward shift; the proof
for the leftward shift is symmetric.

If s > p + 2, then vj and its neighbors wp, . . . , wq in Cj−1 do not move. Thus, by the
induction hypothesis, Γj is planar.

If s ≤ p, then vj and its neighbors wp, . . . , wq in Cj−1 shift rigidly rightward by ρ. Thus,
by the induction hypothesis, Γj is planar.

If s = p+1, we apply the induction hypothesis to Γj−1 with s = p+1; thus, the planarity
of Γj−1 is preserved. Vertex vj and its neighbors wp+1, . . . , wq in Cj−1 shift rigidly rightward
by ρ, while wp does not move. Point P (wp) is clearly still visible from points P (vj) and
P (wp+1), and thus, Γj is planar.

If s = p+ 2, we apply the induction hypothesis to Γj−1 with s = q; thus, the planarity of
Γj−1 is preserved. Vertex vj and its neighbors wp, . . . , wq−1 in Cj−1 do not move, while wq

6.6. SHIFT METHOD 205

shifts rightward by ρ. Point P (wq) is clearly still visible from points P (vj) and P (wq−1),
and thus Γj is planar. 2

In the end, we obtain a planar straight-line drawing of G in which P (v1) = (−(n− 2), 0)
and P (v2) = (n − 2, 0). By Condition 3 above, P (vn) = (0, n − 2). Therefore, G is drawn
on the (2n− 4)× (n− 2) grid.

Figures 6.10 through 6.19 show several steps of the execution of the algorithm on the
graph and canonical ordering of Figure 6.5. The final drawing is shown in Figure 6.20.

6.6.2 Implementation

A straightforward implementation of the shift method results in an O(n2)-time algorithm.
In their paper, de Fraysseix, Pach, and Pollack [dFPP90] were able to reduce this time bound
to O(n log n). An optimal O(n)-time implementation of the shift method was presented by
Chrobak and Payne [CP95], and this is the implementation we describe below.

The crucial observation is that, when vertex vk is placed on the grid, it is not necessary
to know the exact positions of wp and wq. If their y-coordinates and their x-offset, i.e.,
x(wq)−x(wp), are known, then y(vk) and the x-offset between vk and wp can be computed;
namely, by Eq. 6.6, we have

y(vk) =
x(wq)− x(wp) + y(wq) + y(wp)

2
, (6.7)

x(vk)− x(wp) =
x(wq)− x(wp) + y(wq)− y(wp)

2
. (6.8)

The algorithm consists of three phases. In the first phase, we compute a canonical
ordering of the input graph. In the second phase, we add vertices one at a time, according
to that canonical ordering: for each added vertex vk, we compute its y-coordinate and x-
offset x(vk) − x(wp), update the x-offset of wq (from its previous value x(wq) − x(wq−1))
to x(wq)− x(vk), and possibly update the x-offset of wp+1. In the third phase, we suitably
traverse the graph starting from v1 and compute the final x-coordinates of the vertices by
accumulating offsets.

We now describe the data structure used to implement the algorithm. For each 4 ≤ k ≤ n,
the family of sets L(w1), . . . , L(wt) for vertices w1, . . . , wt of Ck−1 can be viewed as an
ordered forest F of trees L(wi) rooted at vertex wi, 1 ≤ i ≤ t. When vertex vk is added
and set L(vk) is created (see Step 4 above), a new tree L(vk) of F is created out of trees
L(wp+1), . . . , L(wq−1) by making vk the parent of wp+1, . . . , wq−1 (in this order from left
to right). A standard way to represent an ordered forest F is by means of a binary tree
T : the roots of the trees of F are all considered siblings; the root of T corresponds to the
root of the first tree of F ; if nT is a node of T corresponding to a node nF of F , then the
left child of nT corresponds to the leftmost child of nF (if any), and the right child of nT
corresponds to the next sibling of nF (if any).

In our context, the root of T corresponds to v1 = w1, its right child corresponds to w2, its
right child’s right child corresponds to w3, and so on; thus, the rightmost leaf corresponds to
wt = v2. Tree L(wi), 1 ≤ i ≤ t, is represented by the node corresponding to wi and its left
subtree. The subtree of T rooted at the node corresponding to wi represents

⋃
j≥i L(wj).

For brevity, in the rest of the section, we refer with the same symbol to a vertex of G, the
corresponding node of F , and the corresponding node of T .

If u is an ancestor of v in T , the x-offset between v and u is defined as ∆x(v, u) =
x(v) − x(u). If u is the parent of v, we simply use the term x-offset of v and the symbol
∆x(v). With each vertex v of G, we store the following information:

206 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v2 v1

v9
v8

v6

v5
v4 v7

v3

Figure 6.10 Drawing Γ9 of graph G9 which consists of vertices v1, v2, . . . , v9.
v9 v6

v1 v2

v8 v5

v4

v7

v3

Figure 6.11 Preparing to add vertex v10 to drawing Γ9. Vertex v10 has left attachment
v9 and right attachment v4: the black-filled vertices are shifted to the left by one unit; the
gray-filled vertices do not move; and the white-filled vertices are shifted to the right by one
unit.

v1 v2

v10

v9
v8

v6

v5
v4

v7
v3

Figure 6.12 Addition of vertex v10 and its incident edges, which yields drawing Γ10.
Vertex v10 covers vertices v8, v7, and v3.

v1 v2

v9
v8 v6

v5
v4

v7
v3

v10
v11

Figure 6.13 Drawing Γ11 obtained by adding vertex v11 and its incident edges after
shifting the black-filled vertices to the left and the white-filled vertices to the right. Vertex
v11 covers vertex v5.

6.6. SHIFT METHOD 207

v11

v1 v2

v9
v8 v6

v5
v4

v7
v3

v10 v12

Figure 6.14 Drawing Γ12.

v11

v1 v2

v9
v8 v6

v5
v4 v7

v3

v10 v12

v13

Figure 6.15 Drawing Γ13.

v11

v1 v2

v9
v8 v6

v5
v4 v7

v3

v10
v12

v13

v14

Figure 6.16 Drawing Γ14.

208 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v6

v1

v9

v4 v7

v13

v14 v15

v5

v2

v3

v11
v12

v16

v10

v8

Figure 6.17 Drawing Γ16. Note that we have skipped drawing Γ15. Also, here and in the
next two figures we do not fill the vertices to denote the amount of shifting.

v1 v2

v17

v15

v13

v9
v8

v3
v4

v5
v6

v11

v10 v12

v14
v16

v7

Figure 6.18 Drawing Γ17.

v1 v2

v18
v17

v11
v9

v8 v6
v5

v4 v7
v3

v10
v12

v13

v14 v15
v16

Figure 6.19 Drawing Γ18 of the graph of Figure 6.5.

6.6. SHIFT METHOD 209

v 1
7

v 1
1

v 1

v 2

v 9

v 8

v 6

v 5

v 4

v 7

v 3

v 1
0

v 1
2

v 1
3

v 1
4

v 1
5

v 1
6

v 1
8

Figure 6.20 Planar straight-line grid drawing of the graph of Figure 6.5 constructed
with the shift method by de Fraysseix, Pach, and Pollack (Algorithm MaximalShift shown
in Figure 6.21). The graph has n = 18 vertices and the drawing has width 2n− 4 = 32 and
height n− 2 = 16. Note that the drawing is the same as that of Figure 6.19 except that it
has been rotated counterclockwise by 90 degrees and the grid lines have been omitted for
better readability.

210 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

• ∆x(v), the x-offset of v;

• y(v), the y-coordinate of v;

• left(v), the left child of v in T ;

• right(v), the right child of v in T .

The pseudo-code of the algorithm, which we call MaximalShift, is given in Figure 6.21. The
first phase of the algorithm consists of line 1. The second phase consists of lines 2–30; note
that, on line 23, the right child of wq−1, which before the insertion of vk was wq, is set to nil
since now wq−1 6∈ Ck and wq is the right child of vk. The third phase consists of lines 31–
32, where the x-coordinate of v1 is set to 0 and recursive procedure AccumulateOffset is
called. The pseudo-code of procedure AccumulateOffset is given in Figure 6.22. It performs
a preorder visit of T and computes the x-coordinate of each vertex v 6= v1 of G as the sum
of the x-coordinate of the parent of v in T and the x-offset of v (line 1).

The following theorem summarizes the area bound and computational complexity of the
shift method.

Theorem 6.1 [dFPP90, CP95] Let G be a maximal plane graph with n vertices. The
shift method computes a planar straight-line drawing of G on the (2n− 4)× (n− 2) grid in
O(n) time and space.

Proof: We refer to Algorithm MaximalShift, shown in Figure 6.21. Clearly, the x-
coordinate of each vertex v 6= v1 of G can be computed by adding the x-offset ∆x(v, v1)
between v and v1 to the x-coordinate x(v1) of v1 (the root of T). Thus, we only have to
prove that those x-offsets are correct at the end of the second phase of the algorithm. Note
that the only steps of the algorithm where the x-offsets of some vertices of the current graph
Gk−1 are modified are those on lines 7–8 and on lines 26–29.

For the “stretch” step on lines 7–8, we recall that the subtree T (wi) of T rooted at wi rep-
resents

⋃
j≥i L(wj); thus, incrementing ∆x(wi) increments the x-offset between each vertex

of T (wi) and v1, i.e., correctly shifts all vertices in
⋃
j≥i L(wj) rightward, or, equivalently,

all vertices in
⋃
j<i L(wj) leftward.

During the “adjust” step on lines 26–29, only ∆x(wq) and possibly ∆x(wp+1) are modi-
fied. Note that, after the insertion of vk, wp is still an ancestor of both wq and wp+1 in T :
namely, vk is the parent of wp+1 and wq, and wp is the parent of vk. We now prove that
the values of ∆x(wq, wp) and ∆x(wp+1, wp) are not modified by the insertion of vk.

• After the insertion of vk we have ∆x(wq, wp) = ∆x(wq, vk) + ∆x(vk, wp) =
∆x(wq) + ∆x(vk), which, by the choice of ∆x(wq) on line 26, is clearly equal to
the value of ∆x(wq, wp) before the insertion of vk, computed on line 10.

• If p + 1 6= q, after the insertion of vk we have ∆x(wp+1, wp) = ∆x(wp+1, vk) +
∆x(vk, wp) = ∆x(wp+1) + ∆x(vk), which, by the choice of ∆x(vp+1) on line 28,
is clearly equal to the value of ∆x(wp+1) before the insertion of vk.

It follows that, for each vertex v 6= v1 ∈ Gk−1, x-offset ∆x(v, v1) is not modified during
the “adjust” step. Hence, algorithm MaximalShift is a correct implementation of the shift
method.

As for its space and time complexity, the data structure used to implement the algorithm
clearly takes O(n) space. By Lemma 6.1, the first phase takes O(n) time and space. The
time complexity of the body (lines 6–29) of the main for loop is dominated by the compu-
tation of ∆x(wq, wp) on line 10, which takes O(deg(vk)); thus, by Eq. 6.2, the second phase
globally takes O(n) time. The third phase clearly takes O(n) time since at the end of the
second phase T has n nodes. 2

6.6. SHIFT METHOD 211

Input: A maximal plane graph G with n vertices
Output: A planar straight-line drawing of G on the (2n− 4)× (n− 2) grid

1: compute a canonical ordering v1, . . . , vn of G
2: (∆x(v1), y(v1), left(v1), right(v1))← (0, 0,nil , v3)
3: (∆x(v3), y(v3), left(v3), right(v3))← (1, 1,nil , v2)
4: (∆x(v2), y(v2), left(v2), right(v2))← (1, 0,nil ,nil)
5: for 4 ≤ k ≤ n do
6: /* stretch the L(wp)-to-L(wp+1) and L(wq−1)-to-L(wq) gaps */
7: ∆x(wp+1)← ∆x(wp+1) + 1
8: ∆x(wq)← ∆x(wq) + 1
9: /* compute ∆x(wq, wp) */

10: ∆x(wq, wp)← ∆x(wp+1) + · · ·+ ∆x(wq)
11: /* compute ∆x(vk) and y(vk); see Eqs. 6.8 and 6.7 */
12: ∆x(vk)← (∆x(wq, wp) + y(wq)− y(wp))/2
13: y(vk)← (∆x(wq, wp) + y(wq) + y(wp))/2
14: /* add vk to T */
15: right(wp)← vk
16: if p+ 1 6= q then
17: left(vk)← wp+1

18: else
19: left(vk)← nil
20: end if
21: right(vk)← wq
22: if q − 1 6= p then
23: right(wq−1)← nil
24: end if
25: /* adjust ∆x(wq) and ∆x(wp+1) */
26: ∆x(wq)← ∆x(wq, wp)−∆x(vk)
27: if p+ 1 6= q then
28: ∆x(wp+1)← ∆x(wp+1)−∆x(vk)
29: end if
30: end for
31: x(v1)← 0
32: AccumulateOffset(v1,x(v1))

Figure 6.21 Algorithm MaximalShift.

Input: A vertex v of T and an integer x
1: if v 6= nil then
2: x(v)← x+ ∆x(v)
3: AccumulateOffset(left(v),x(v))
4: AccumulateOffset(right(v),x(v))
5: end if

Figure 6.22 Procedure AccumulateOffset.

212 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

6.6.3 Refinements and Variations

Chrobak and Nakano [CN98] and Brandenburg [Bra08] refined the shift method by de Frays-
seix, Pach, and Pollack [dFPP90], thus reducing the area of the drawing.

In the original shift method [dFPP90], we have seen that at each step the drawing satisfies
the contour conditions. In the refinement by Chrobak and Nakano [CN98], these conditions
are relaxed: x(wi) ≤ x(wi+1), 1 ≤ i ≤ t − 1 and the equality may hold only when y(wi) <
y(wi+1). Thus, each contour segment P (wi)P (wi+1) belongs to one of the following four
types:

vertical x(wi) = x(wi+l) and y(wi) < y(wi+l);

upward x(wi) < x(wi+l) and y(wi) < y(wi+l);

horizontal x(wi) < x(wi+l) and y(wi) = y(wi+l);

downward x(wi) < x(wi+l) and y(wi) > y(wi+l).

The presence of vertical contour segments allows to avoid some shifts, thus obtaining a more
compact drawing. The authors present a new combinatorial structure, called a domino
chain, which allows to partition the vertices into stable and unstable; a stable vertex vk can
be added to Gk−1 with edge (wp, vk) drawn as a vertical segment and no shift is necessary.
Namely, the method avoids making any shifts in approximately n

3 steps and results in a
drawing of size

⌊
2
3 (n− 1)

⌋
× 4

⌊
2
3 (n− 1)

⌋
− 1.

Brandenburg further improves the shifting strategy and also rotates the drawing to choose
the best base edge. This refinement of the shift method results in a drawing of size

⌈
4
3n
⌉
×⌈

2
3n
⌉
. Also, this height and width are necessary if the drawing is constrained to be enclosed

by an isosceles right-angled triangle.
Kant [Kan96] presents an algorithm based on the shift method for constructing convex

drawings of triconnected plane graphs on the (2n− 4)× (n− 2) grid. The size of the grid
is reduced to (n− 2)× (n− 2) in a successive algorithm by Chrobak and Kant [CK97].

6.7 Realizer Method

An alternative method for drawing maximal planar graphs on an integer grid was presented
by Schnyder [Sch90]. The origins of the approach can be found in [Sch89], where it was
used to characterize planar graphs as the graphs whose incidence relation is the intersection
of at most three total orders3 (see Theorems 4.1 and 6.2 of [Sch89]).

6.7.1 Realizers

DEFINITION 6.3 A realizer of a maximal plane graph G is a triplet of rooted directed
spanning trees of G with the following properties4 (see Figure 6.23):

3 More formally, a graph G = (V,E) is planar if and only if the order dimension of the poset (V ∪E,≺),
where incidence relation ≺ is defined by v ≺ e⇔ v ∈ V, e ∈ E, v ∈ e, is at most 3. The order dimension
of a poset is the minimum cardinality of its realizers. A realizer of a poset (X,≺) is a nonempty set of
total orders on X whose intersection is ≺.
4This definition of a realizer of a maximal plane graph is slightly different from the one given in [Sch90],
as we consider also the external edges; our definition allows to reduce the number of special cases and
to generalize the concept of realizer to triconnected plane graphs.

6.7. REALIZER METHOD 213

1. In each spanning tree, the edges of G are directed from children to parent.

2. The sinks (roots) of the spanning trees are the three external vertices of G.

3. Each internal edge of G is contained in one spanning tree.

4. Each external edge of G is contained in two spanning trees and it has different
directions in the two trees.

5. Consider the edges of G with the directions they have in the three spanning trees
(the external edges are considered twice):

(a) Each non-sink vertex v of G has exactly three outgoing edges; the circular
order of the outgoing edges around v induces a circular order of the spanning
trees around v; all the non-sink vertices of G have the same circular order
of the spanning trees.

(b) For each vertex of G, the incoming edges that belong to the same span-
ning tree appear consecutively between the outgoing edges of the other two
spanning trees (for the sink of each spanning tree the first and last incoming
edges are coincident with the two outgoing edges).

6. For the sink of each spanning tree, all the incoming edges belong to that spanning
tree.

v1 v2

v10

v9

v7
v6

v8

v5

v4

v3

Figure 6.23 A realizer of a maximal plane graph whose vertices are numbered according
to a canonical ordering. The edges are thick for the green spanning tree, medium for the
blue spanning tree, and thin for the red spanning tree. Note the 2-colored edges on the
external face.

Let Tb, Tg, and Tr be the spanning trees forming a realizer of a maximal plane graph G
(see Figure 6.23). We assign a color to the edges of G contained in Tb, Tg, and Tr, say, blue,
green, and red, respectively. In the figures, we use dark grey for blue, light grey for green,
and medium grey for red. According to Property 3 of the realizers, each internal edge of

214 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

G is assigned one color and is said to be 1-colored, while the three external edges of G are
assigned two colors and are said to be 2-colored.

In the proof of the following lemma, we present a mechanism for constructing a realizer
of a maximal plane graph G based on a canonical ordering of G; this is different from the
mechanism based on edge labelings presented in [Sch90].

LEMMA 6.4 Each maximal plane graph has a realizer, which can be computed in linear
time and space.

Proof: Let G be a maximal plane graph. A realizer of G can be constructed by assigning
colors and directions to the edges of G as follows:

1. a canonical ordering of G is computed;

2. v1, v2, and vn are the sinks of the blue, green, and red tree, respectively;

3. (v1, v2) is an outgoing blue edge for v2 and an outgoing green edge for v1;

4. for each 3 ≤ k ≤ n, let cl, . . . , cr be the consecutive neighbors of vk on Ck−1
from left to right; (vk, cl) is an outgoing blue edge for vk; (vk, cr) is an outgoing
green edge for vk; each edge (vk, ci), l < i < r, is an outgoing red edge for ci (see
Figure 6.23);

5. (vn, v1) is also an outgoing red edge for v1, and (vn, v2) is also an outgoing red
edge for v2.

Note that v1 has no outgoing blue edge, v2 has no outgoing green edge, and vn has no
outgoing red edge. Besides, for each 3 ≤ k ≤ n, the following invariants hold for Gk:

• vk has exactly one outgoing blue edge, exactly one outgoing green edge, and no
outgoing red edge; the outgoing blue edge precedes the outgoing green edge in
the clockwise circular order of the edges of Ck, and all the (possible) incoming
red edges are incident with vertices of Ck−1;

• for every vertex of Ck the (possible) incoming blue edge of Ck follows the (pos-
sible) incoming green edge of Ck in the clockwise circular order of the edges of
Ck;

• no vertex of Ck−1 has an outgoing blue or green edge incident with vk;

• every vertex of Ck−1 with no neighbor in G − Gk has exactly one outgoing red
edge, while every vertex of Ck−1 with neighbors in G−Gk has no outgoing red
edge;

• Gk contains no cycle such that a common color is assigned to all its edges.

All the properties of a realizer easily follow from these invariants. By Lemma 6.1, the above
construction can be carried out in linear time and space. 2

From the construction in the proof of Lemma 6.4, it follows that, for every realizer of a
maximal plane graph G, all internal edges of G are 1-colored, while the three external edges
are 2-colored. Also, for each vertex of G, the colors of the three outgoing edges appear in the
following counterclockwise circular order: blue, green, red. Set {b, g, r} will be considered
accordingly ordered in the rest of the chapter.

In the rest of the section, we consider a maximal plane graph G equipped with a realizer
{Tb, Tg, Tr}. We denote v1, v2, and vn by sb, sg, and sr, respectively. For each vertex v of
G, the blue path pb(v) is the path of G along Tb from v to sb. In the same way, we define the
green path pg(v) as the path of G along Tg from v to sg and the red path pr(v) as the path

6.7. REALIZER METHOD 215

of G along Tr from v to sr. Note that pi(si), i ∈ {b, g, r}, is a degenerate path consisting
only of si. The subpath of pi(v), i ∈ {b, g, r}, from v to the ancestor u of v in Ti is denoted
by pi(v, u). The parent of vertex v in Ti, i ∈ {b, g, r}, is denoted by par i(v). The lowest
common ancestor of vertices u and v in Ti, i ∈ {b, g, r}, is denoted by lcai(u, v).

LEMMA 6.5 For each vertex v of G, pb(v), pg(v), and pr(v) have only vertex v in
common.

Proof: W.l.o.g., suppose, for a contradiction, that pb(v) and pg(v) have a vertex u in
common, and that pb(v, u) − {u, v} and pg(v, u) − {u, v} have no vertex in common with
each other and with pr(v). Vertex u has both a blue and a green incoming edge; thus, by
Property 6 of the realizers, we have u 6= sb, sg. Let R be the subgraph of G bounded by
pb(v, u) and pg(v, u); from the circular order of the outgoing edges at v, we have that pb(v, u)
(resp., pg(v, u)) follows the boundary of R counterclockwise (resp., clockwise). Thus, by
Property 5 of the realizers at u and by the planarity of G, par b(u) ∈ R (the same is true
for parg(u)). Still by the planarity of G, pb(par b(u)) leaves R at a vertex w; two cases are
possible: (i) w ∈ pg(v, u)− {u, v}, but this contradicts Property 5 of the realizers at w, or
(ii) w ∈ pb(v, u), but this contradicts the acyclicity of Tb. 2

v1 v2

v10

v9

v7
v6

v8

v5

v4

v3

Figure 6.24 The blue (medium), green (thick), and red (thin) paths for vertex v9 and
corresponding blue (medium shaded), green (dark shaded) and red (light shaded) regions of
vertex v9. The coordinates of v9 in the barycentric representation are the number of faces
in the blue, green, and red region, respectively, i.e., (4, 2, 9).

For each vertex v of G, the blue region Rb(v) is the subgraph of G bounded by pg(v), pr(v)
and (sg, sr). In the same way, the green region Rg(v) is the subgraph of G bounded by pb(v),
pr(v) and (sr, sb), and the red region Rr(v) is the subgraph of G bounded by pb(v), pg(v)
and (sb, sg) (see Figure 6.24). Note that Rb(sg) = Rb(sr) is a degenerate region consisting
only of (sg, sr). In the same way, Rg(sr) = Rg(sb) = (sr, sb) and Rr(sb) = Rr(sg) = (sb, sg).

216 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

LEMMA 6.6 Let u and v be two distinct vertices of G. If u ∈ Rk(v), k ∈ {b, g, r}, then
Rk(u) ⊂ Rk(v).

Proof: W.l.o.g, we assume k = r. Two cases are possible: (i) u 6∈ pb(v) ∪ pg(v),
or (ii) u ∈ pb(v) ∪ pg(v). We consider only the first case; the second is similar. By the
planarity of G and by Property 5 of the realizers, pb(u) has no vertex in common with pg(v),
and pg(u) has no vertex in common with pb(v). Thus, the region Rr(v)−Rr(u) bounded by
pb(u, lcab(u, v)), pg(u, lcag(u, v)), pb(v, lcab(u, v)), and pg(v, lcag(u, v)) is nonempty; hence,
Rr(u) ⊂ Rr(v). 2

Note that, for each k ∈ {b, g, r}, the inclusion partial order of the k-regions induces a
partial order on the vertices of G defined by u ≺k v ⇔ Rk(u) ⊂ Rk(v). Partial order ≺k is
represented by tree Tk, k ∈ {b, g, r} of the realizer of G. Also, for each edge (u,w) and each
vertex v 6= u,w of G, by the planarity of G, (u,w) is in some region Rk(v), k ∈ {b, g, r};
hence, u ≺k v and w ≺k v. Any choice of three linear extensions of ≺b, ≺g, and ≺r,
produces a realizer of the poset defined in footnote (3) on page 212.

6.7.2 Barycentric Representation

DEFINITION 6.4 A barycentric representation of a graph G = (V,E) is an injective
function f : v ∈ V → (vb, vg, vr) ∈ Z3 that satisfies the following conditions:

1. For each vertex v of G, vb + vg + vr = c, where c is a constant dependent on G.

2. For each edge (u,w) and each vertex v 6= u,w of G, there exists a coordinate i ∈
{b, g, r} such that vi > ui and vi > wi.

One can view vb, vg, and vr as barycentric coordinates of vertex v. Note that these
coordinates have a purely combinatorial meaning.

LEMMA 6.7 A barycentric representation f : v ∈ V → (vb, vg, vr) of a graph G = (V,E)
is a planar straight-line drawing of G on plane b+ g + r = c in Z3.

Proof: Let π be the plane in Z3 defined by equation b + g + r = c. By Condition 1 of
Definition 6.4, all vertices of G are mapped to points of π. In order to prove the planarity
of the straight-line drawing, we must prove the following:

• No two vertices are mapped to the same point of π. By definition, since f is injective.

• No vertex overlaps an edge. Let (u,w) be an edge ofG and let max i = max{ui, vi}, i ∈
{b, g, r}. Let λb be the line of π defined by equation b = max b, i.e., the line of
π passing through the endpoint of segment f(u)f(w) with maximum b-coordinate
and perpendicular to the b axis. Lines λg and λr are defined in a similar way, and,
together with λb, identify a (closed) triangle T containing f(u)f(w). Suppose, for
a contradiction, that there exists a vertex v 6= u,w of G such that f(v) overlaps
f(u)f(w). Clearly, f(v) is contained by T , i.e., vi ≤ max i, for each i ∈ {b, g, r}. But
this contradicts Condition 2 of Definition 6.4.

• No two edges cross. Let e1 = (u,w) and e2 = (x, y) be two nonincident edges of G,
and let T1 and T2 be the two (closed) triangles containing f(u)f(w) and f(x)f(y),

6.7. REALIZER METHOD 217

respectively, identified as above. Suppose, for a contradiction, that f(u)f(w) and
f(x)f(y) cross. Then, either T1 contains f(x) or f(y), or T2 contains f(u) or f(v).
But this again contradicts Condition 2 of Definition 6.4.

2

Lemma 6.7 implies that only a planar graph can have a barycentric representation. For
each vertex v of G, we denote by lb(v), lg(v), and lr(v) the number of faces in Rb(v), Rg(v),
and Rr(v), respectively. Note that 0 ≤ lb(v), lg(v), lr(v) ≤ 2n− 5 and

lb(v) + lg(v) + lr(v) = 2n− 5.

We have that these values yield barycentric coordinates (see Figures 6.24 and 6.25), as
shown by the following lemma.

LEMMA 6.8 Let G = (V,E) be a maximal plane graph equipped with a realizer. Func-
tion f : v ∈ V → (lb(v), lg(v), lr(v)) is a barycentric representation of G.

Proof: The injectivity of f follows from Lemma 6.6. Condition 1 of Definition 6.4 is
trivially satisfied since for each vertex v, vb + vg + vr = 2n − 5. As for Condition 2, let
(u,w) and v 6= u,w be an edge and a vertex of G, respectively. W.l.o.g., let u ∈ Rr(v); by
the planarity of G, w ∈ Rr(v), as well. By Lemma 6.6, Rr(u) ⊂ Rr(v) and Rr(w) ⊂ Rr(v).
Hence, vr > ur and vr > wr. 2

Let Γ be the planar straight-line drawing resulting from the barycentric representation of
Lemma 6.8. By that lemma and by Lemma 6.7, Γ is a planar straight-line drawing of G on
plane b+ g + r = 2n− 5 in Z3. In particular, vertices sb, sg, and sr are mapped to points
(2n−5, 0, 0), (0, 2n−5, 0), and (0, 0, 2n−5), respectively. A planar straight-line drawing of
G on the (2n− 5)× (2n− 5) grid in Z2 can be obtained by projecting Γ, e.g., by dropping,
for each vertex v, the red coordinate vr, as illustrated in Figure 6.26.

As for the time and space complexity, by Lemma 6.4, a realizer of G can be constructed
in linear time and space. The coordinates of the vertices of G can also be computed in
linear time and space.

It is possible to obtain more compact drawings by relaxing the constraints imposed on
the vertex coordinates by Definition 6.4. Given two ordered pairs (a, b) and (c, d), the >lex

relation is defined by (a, b) >lex (c, d)⇔ a > c ∨ (a = c ∧ b > d).

DEFINITION 6.5 A weak barycentric representation of a graph G = (V,E) is an injec-
tive function f : v ∈ V → (vb, vg, vr) ∈ Z3 that satisfies the following conditions:

1. For each vertex v of G, vb + vg + vr = c, where c is a constant dependent on G.

2. For each edge (u,w) and each vertex v 6= u,w of G, there exist two consecutive
coordinates i and j in the circularly ordered set {b, g, r} such that (vi, vj) >lex (ui, uj)
and (vi, vj) >lex (wi, wj).

The following lemma can be proved similarly to Lemma 6.7 and implies that only a
planar graph can have a weak barycentric representation.

LEMMA 6.9 [Sch90] A weak barycentric representation f : v ∈ V → (vb, vg, vr) of a
graph G = (V,E) is a planar straight-line drawing of G on plane b+ g + r = c in Z3.

218 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v1 = (15, 0, 0) v2= (0, 15, 0)

v10= (0, 0, 15)

v9= (4, 2, 9)

v7= (5, 5, 5)

v6= (1, 11, 3)

v8= (7, 1, 7)

v5= (11, 2, 2)

v4= (3, 10, 2)

v3= (7, 7, 1)

Figure 6.25 Barycentric coordinates obtained from a realizer.

v1

v2

v10

v9

v7

v6

v5

v4

v3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

v8

Figure 6.26 Planar straight-line grid drawing obtained from the barycentric coordinates
of Figure 6.25 by dropping the third (red) coordinate. The horizontal and vertical axes are
shown reversed to maintain the visual correspondence with the drawing of Figure 6.25.

6.7. REALIZER METHOD 219

For each vertex v of G, we denote by nb(v), ng(v), and nr(v) the number of ver-
tices in Rb(v) − pr(v), Rg(v) − pb(v), and Rr(v) − pg(v), respectively. Note that 0 ≤
nb(v), ng(v), nr(v) ≤ n− 2 and nb(v) + ng(v) + nr(v) = n− 1.

LEMMA 6.10 Let u and v be two distinct vertices of G, and let i and j be two consecutive
coordinates in the circularly ordered set {b, g, r}. If u ∈ Ri(v), then (ni(v), nj(v)) >lex

(ni(u), nj(u)).

Proof: W.l.o.g, we assume i = r and thus j = b. Two cases are possible:

1. u 6∈ pg(v); by Lemma 6.6, Rr(u) ⊂ Rr(v), and thus pg(u) is in Rr(v); since u ∈ pg(u),
we have u 6∈ Rr(u)−pg(u) while u ∈ Rr(v)−pg(v); thus, Rr(u)−pg(u) ⊂ Rr(v)−pg(v);
hence, nr(v) > nr(u);

2. u ∈ pg(v); two subcases are possible:

(a) Rr(u)− pg(u) ⊂ Rr(v)− pg(v); hence, nr(v) > nr(u);

(b) Rr(u)− pg(u) = Rr(v)− pg(v) (this subcase occurs if par b(u) = par b(v)); hence,
nr(v) = nr(u); however, u ∈ Rb(v) and u 6∈ pr(v); by the same argument used
for Case 1, nb(v) > nb(u).

Thus, (nr(v), nb(v)) >lex (nr(u), nb(u)). 2

LEMMA 6.11 Let G = (V,E) be a maximal planar graph equipped with a realizer.
Function f : v ∈ V → (nb(v), ng(v), nr(v)) is a weak barycentric representation of G.

Proof: Injectivity of f follows from Lemma 6.10. Condition 1 of Definition 6.5 is trivially
satisfied, since, for each vertex v, vb + vg + vr = n − 1. As for Condition 2, let (u,w) and
v 6= u,w be an edge and a vertex of G, respectively. W.l.o.g., let u ∈ Rr(v); by the
planarity of G, w ∈ Rr(v), as well. Hence, by Lemma 6.10, (vr, vb) >lex (ur, ub) and
(vr, vb) >lex (wr, wb). 2

6.7.3 Implementation

Let Γ be the straight-line drawing of G resulting from the weak barycentric representation
of Lemma 6.11. By that lemma and by Lemma 6.9, Γ is a planar straight-line drawing of G
on plane b+ g+ r = n− 1 in Z3. In particular, vertices sb, sg, and sr are mapped to points
(n− 2, 1, 0), (0, n− 2, 1), and (1, 0, n− 2), respectively. A planar straight-line drawing of G
on the (n− 2)× (n− 2) grid in Z2 can be obtained by projecting Γ, e.g., by dropping, for
each vertex v, the red coordinate vr.

We now consider the time and space complexity. By Lemma 6.4, a realizer of G can be
constructed in linear time and space. Next, we show that the coordinates for the vertices
of G can be computed in linear time and space. In particular, we show how to compute,
for each vertex v of G, coordinate vr; coordinates vb and vg can be computed similarly.

From the planarity of G and Property 5 of the realizers, it follows that, for each vertex
u 6= v ∈ Rr(v), (i) the subtree Tr(u) of Tr rooted at u is contained by Rr(v), and (ii) pr(u)
has exactly one vertex w in common with pb(v) ∪ pg(v) (note that u ∈ Tr(w)).

First, we compute, for each vertex v of G, the number of its descendants in Tr, including
v itself, and store it in variable numdescr(v); this can be done by a postorder visit of Tr.

220 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Second, we compute, for each vertex v of G, the number of its ancestors in Tg, including v
itself, and store it in variable numancg(v); this can be done by a preorder visit of Tg. Finally,
we compute, for each vertex v of G,

∑
w∈pb(v) numdescr(w) and

∑
w∈pg(v) numdescr(w); this

can be done by a preorder visit of Tb and Tg, respectively.
For each vertex v of G, the number nr(v) of vertices in Rr(v)− pg(v), i.e., coordinate vr,

is given by the expression∑
w∈pb(v)

numdescr(w) +
∑

w∈pg(v)

numdescr(w)− numdescr(v)− numancg(v)

It follows that the coordinates for the vertices of G can be computed by a constant number
of traversals of Tb, Tg, and Tr, and thus globally in O(n) time. Furthermore, the additional
variables used in the tree traversals clearly take O(n) space.

Thus, we obtain the following theorem that summarizes the area bound and computa-
tional complexity of the realizer method.

Theorem 6.2 [Sch90] Let G be a maximal plane graph with n vertices. The realizer
method computes a planar straight-line drawing of G on the (n− 2)× (n− 2) grid in O(n)
time and space.

6.7.4 Refinements and Variations

Zhang and He [ZH03] discovered some new properties of Schnyder’s realizers and were able
to further reduce the grid size (in most cases).

Di Battista, Tamassia, and Vismara [DTV99] extend the realizer method to construct in
linear time a convex grid drawing of a triconnected plane graph on the (f − 1) × (f − 1)
grid, where f is the number of faces of the graph. The same result had been claimed by
Schnyder and Trotter [ST92] without proof and is independently obtained by Felsner [Fel01]
with different techniques. A method that further improves the grid size was developed by
Bonichon, Felsner, and Mosbah [BFM07].

Acknowledgment

Roberto Tamassia contributed to the writing of this chapter.

REFERENCES 221

References

[BFM07] Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex drawings of
3-connected plane graphs. Algorithmica, 47:399–420, 2007.

[Bra08] Franz J. Brandenburg. Drawing planar graphs on 8
9n

2 area. Electronic Notes in
Discrete Mathematics, 31:37–40, 2008.

[CG95] I. F. Cruz and A. Garg. Drawing graphs by example efficiently: Trees and planar
acyclic digraphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc.
GD ’94), volume 894 of Lecture Notes Comput. Sci., pages 404–415. Springer-
Verlag, 1995.

[CK97] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs.
Internat. J. Comput. Geom. Appl., 7(3):211–223, 1997.

[CN98] Marek Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs.
Comput. Geom. Theory Appl., 11:29–54, 1998.

[CON85] N. Chiba, K. Onoguchi, and T. Nishizeki. Drawing planar graphs nicely. Acta
Inform., 22:187–201, 1985.

[CP95] M. Chrobak and T. Payne. A linear-time algorithm for drawing planar graphs.
Inform. Process. Lett., 54:241–246, 1995.

[CYN84] N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex draw-
ings of planar graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in
Graph Theory, pages 153–173. Academic Press, New York, NY, 1984.

[DF13] Giuseppe Di Battista and Fabrizio Frati. Drawing trees, outerplanar graphs,
series-parallel graphs, and planar graphs in a small area. In J. Pach, editor,
Thirty Essays on Geometric Graph Theory, pages 121–166. 2013.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

[Dji95] H. N. Djidjev. On drawing a graph convexly in the plane. In R. Tamassia and
I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture Notes
Comput. Sci., pages 76–83. Springer-Verlag, 1995.

[DTV99] G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of
disjoint paths. Algorithmica, 23(4):302–340, 1999.

[Fár48] I. Fáry. On straight lines representation of planar graphs. Acta Univ. Szeged.
Sect. Sci. Math., 11:229–233, 1948.

[Fel01] Stefan Felsner. Convex drawings of planar graphs and the order dimension of
3-polytopes. Order, 18:19–37, 2001.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

[Kan96] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16:4–32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R.
Tamassia).

222 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing. World Scien-
tific, 2004.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orienta-
tions of planar graphs. Discrete Comput. Geom., 1(4):343–353, 1986.

[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, pages 138–148, 1990.

[SR34] E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder.
Julius Springer, Berlin, Germany, 1934.

[ST92] W. Schnyder and W. T. Trotter. Convex embeddings of 3-connected plane graphs.
Abstracts of the AMS, 13(5):502, 1992.

[Ste51] S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2(3):464–466, 1951.

[Tho80] C. Thomassen. Planarity and duality of finite and infinite planar graphs. J.
Combin. Theory Ser. B, 29(2):244–271, 1980.

[Tho84] C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R.
Murty, editors, Progress in Graph Theory, pages 43–69. Academic Press, New
York, NY, 1984.

[Tut60] W. T. Tutte. Convex representations of graphs. Proceedings London Mathemat-
ical Society, 10(38):304–320, 1960.

[Tut63] W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society,
13(52):743–768, 1963.

[Wag36] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 46:26–32, 1936.

[ZH03] Huaming Zhang and Xin He. Compact visibility representation and straight-line
grid embedding of plane graphs. In Algorithms and Data Structures, volume 2748
of Lecture Notes in Computer Science, pages 493–504. Springer, 2003.

