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Social networks provide a rich source of graph drawing problems, because they appear in an
incredibly wide variety of forms and contexts. After sketching the scope of social network
analysis, we establish some general principles for social network visualization before finally
reviewing applications of, and challenges for, graph drawing methods in this area. Other
accounts more generally relating to the status of visualization in social network analysis are
given, e.g., in [Klo81, BKR+99, Fre00, Fre05, BKR06]. Surveys that are more comprehensive
on information visualization approaches, interaction, and network applications from social
media are given in [CM11, RF10, CY10].

26.1 Social Network Analysis

The fundamental assumption underlying social network theory is the idea that seemingly
autonomous individuals and organizations are in fact embedded in social relations and
interactions [BMBL09]. The term social network was coined to delineate the relational
perspective from other research traditions on social groups and social categories [Bar54].

In general, a social network consists of actors (e.g., persons, organizations) and some
form of (often, but not necessarily: social) relation among them. The network structure
is usually modeled as a graph, in which vertices represent actors, and edges represent ties,
i.e., the existence of a relation between two actors. Since traits of actors and ties may be
important, both vertices and edges can have a multitude of attributes. We will use graph
terminology for everything relating to the data model, and social network terminology when
referring to substantive aspects.

While attributed graph models are indeed at the heart of formal treatments, it is worth
noting that theoretically justified data models are not as obvious as it may seem [But09].
In fact, social network analysis is maturing into a paradigm of distinct structural theories
and associated relational methods. General introductions and methodological overviews
can be found in [WB88, WF94, Sco00, CSW05, BE05], a historic account in [Fre04a], and
a comprehensive collection of influential articles in [Fre08].
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Figure 26.1 A sociogram from [Mor53, p. 422] showing a graph with fourteen highlighted
vertices and four clusters.

In social network reseach it is important to clarify whether the networks are considered
dependent or explanatory variables. In the former case the interest is in why and how
networks form the way they do, and in the latter case the interest is in why and how
networks influence other outcomes. For convenience, we will refer to the former as network
theory (studying network formation) and to the latter as network analysis (studying network
effects). A major distinction from non-network approaches is that the unit of analysis is
the dyad, i.e., a pair of actors (may they be linked or not) rather than a monad (a singleton
actor).

The methodological toolbox can be organized into the following main compartments.

Indexing The assignment of values to predetermined substructures of any size. Most
common are vertex, edge, and graph indices such as vertex centrality and graph
centralization [Fre79], but sometimes the interest is also in evaluating larger
substructures (e.g., group centrality) or the distribution of scores (e.g., degree
distribution).

Grouping The identification of substructures and membership in them. Most com-
mon are decomposition into relatively dense subgraphs, partitions into equivalent
positions [Ler05], and, more generally, blockmodeling [DBF05]. Other examples
include subgraph counts (e.g., triad census) and various forms of domination and
brokerage.

Modeling The use of statistical models for assessment and inference. Most common
are modeling attempts to reproduce networks statistics, parameter estimation,
and regression-type analyses.

Concrete examples of such methods are considered later in this chapter. Other important
types of variation arise from special types of data such as longitudinal (temporal), multi-
mode (multiple actor types), multiplex (multiple relation types), or multi-level (hierarchies
of actors) data.
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Figure 26.2 A notational system for sociograms [Mor53, p. 136].

Visualization has been instrumental in the study of social networks from the very begin-
ning, and some historical examples are based on surprisingly sophisticated designs. The
example in Figure 26.1 is from Moreno’s book [Mor53], which is a rich source in this regard.
In fact, he even specified a visual notation standard reproduced in Figure 26.2 (although
neither graphical notation nor labeling are applied fully consistently), and introduced the
terms sociogram (for a graphical representation of a social network) and sociomatrix (for a
matrix representation of a social network).

26.2 Visualization Principles

Let us first establish a frame of reference for social network visualization based on a few
organizing principles. We will then elaborate on various visualization approaches and the
graph drawing problems they pose in Section 26.3.

The utility of a diagram is dependent on purpose and context. The two main purposes of
network visualizations are exploration of data and communication of findings. The potential
of using diagrammatic representations in the research process itself was stressed already by
Moreno.

“A process of charting has been devised by the sociometrists, the sociogram,
which is more than merely a method of presentation. It is first of all a method
of exploration.” [Mor53, p. 95f]

A network diagram should therefore be designed to display the information relevant for an
analytic perspective. As a consequence, there cannot be a single best way of representing
social networks graphically, which in turn creates lots of opportunities for visualization and
algorithm design. For concreteness, we give one striking example.
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26.2.1 Illustrative Example

The following social network study [Kra96] has been used for the same purpose several
times [BRW01, Bra08]. The study was conducted in an internal auditing unit of a large
industrial company when organizational changes introduced by the newly assigned manager
did not improve the unit’s performance.

The formal hierarchy is shown in Figure 26.3(a), where made-up names are used to
identify employees. To assess the internal functioning of the group, employees were asked
who they would turn to for work related questions. The data obtained is an asymmetric
advice network,

Manuel . 0 0 0 0 0 0 0 0 0 0 1 0 0 manager
Charles 1 . 0 1 0 0 0 0 0 0 0 1 0 0
Donna 1 0 . 0 0 0 0 0 0 0 0 1 0 0 supervisors
Stuart 1 1 0 . 0 0 0 0 0 0 0 1 0 0

Bob 0 0 0 1 . 0 1 0 1 0 0 0 0 0
Carol 0 1 0 0 0 . 0 0 0 0 0 0 0 0
Fred 0 0 0 1 0 0 . 0 0 0 0 0 0 0

Harold 0 1 0 0 0 0 0 . 0 0 0 0 0 0 auditors
Sharon 0 0 0 1 0 0 0 0 . 0 0 0 0 0
Wynn 0 1 0 0 0 0 0 0 0 . 0 0 0 0
Kathy 0 0 1 0 0 0 0 0 0 0 . 1 0 1
Nancy 0 0 1 0 0 0 0 0 0 0 0 . 0 0
Susan 0 0 1 0 0 0 0 0 0 0 1 0 . 1 secretaries
Tanya 0 0 1 0 0 0 0 0 0 0 1 1 0 .

and the resulting directed network is shown in Figure 26.3(b). While the data is represented
with clarity, there are no obvious implications. The situation becomes much more compre-
hensible when we understand that the rationale for looking at the advice network is the
identification of an informal work hierarchy. Rearranging the vertices such that a maximum
number of edges is directed upwards (and thus aligns with what can be assumed to be an
informal work hierarchy) as in Figure 26.3(c) yields a strikingly clear picture with a single
relation not in accordance with the informal hierarchy (but the formal): everyone, directly
or indirectly, and including the manager himself, is seeking advice from Nancy, a secretary
that was dismissive of the changes introduced. (Of course, after seeing a picture similar
to this, the manager sat down with her, discussed her reservations and made sure that she
understood his good intentions and the long-term benefits of his plans, thus turning the
situation around.)

26.2.2 Substance, Design, Algorithm

The example above illustrates the importance of considering three key aspects in social
network visualization [BKR+99].

Substance In general, the information to be conveyed in a network visualization is
more than just the underlying graph. The substantive interest of those who
collected network data typically necessitates the inclusion of attributes. More-
over, additional data may have been generated as the result of an analysis. In
the above example, the substance of interest is the informal hierarchy within a
business unit, and only by considering it in the design of the visualization, the
diagram becomes informative. Through the appreciation of relevant substance,
i.e., the application-specific contexts and interests, data visualizations are turned
into information visualizations.
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Figure 26.3 Organizational chart and advice network in a business unit (adapted
from [Kra96]).
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Design Visualization design is the specification of a mapping from an information
space to its graphical representation. The core choices are in assigning graphical
elements such as points, lines, and areas to data objects, and in defining their
graphical attributes such as position, shape, size, color, and so on such that the
information is perceived correctly (effectiveness) and with low cognitive effort
(efficiency).
Many overlapping and contradicting criteria need to be considered. In particu-
lar, Tufte advocates general information design criteria such as parsimony and
accuracy [Tuf83, p. 51]. An important readability criterion is the avoidance of
crossings [PCJ97], although finer distinctions may require more research: in a
statement on the accurate representation of substance,

“The simplest, most efficient construction is one which presents the
fewest meaningless intersections, while preserving the groupings, op-
positions, or potential orders contained in the component . . . ” [Ber83,
p. 271],

Bertin acknowledges implicitly that crossings may also be meaningful. The effi-
ciency of information visualizations, and network visualizations in particular, is
a wide open field. A recent suggestion includes the assessment of cognitive load
in user studies [HEH09].

Algorithm Suitable design is not necessarily realizable. Locally plausible design
choices such as certain desired edge lengths may be interdependent and even
contradicting. In the advice network example, the goal to direct as many edges
upward as possible corresponds to an NP-hard problem (FEEDBACK ARC
SET) and may have multiple solutions of which a visualization will represent
only one. Approximate solutions and non-representative solutions are highly
problematic. If the advice network had been a directed cycle, all cyclic permuta-
tions represent equally good solutions to the upward drawing problem, because
only one edge is pointing downward. Since each time a different actor ends up on
top and only one such permutation is represented, the drawing provides a rather
selective perspective. This is of course not due to the computational complexity
of reversing the least number of edges; even if the advice network has an acyclic
underlying graph, the vertical order is not defined uniquely. Note that in Fig-
ure 26.3(c), all secretaries could have been placed higher than the supervisors of
the two auditing teams without reversing an edge.
Computational complexity as well as existence of solutions, their non-uniqueness,
and the possibility of artifacts therefore place major restrictions on possible de-
signs.

The richness of substantive interests and the need for substance-based designs thus creates
immense potential for graph layout algorithms tailored to social networks.

26.3 Substance-Based Designs

Depending on data, substantive interest, and presentation context, very different designs
are required for effective and efficient exploration and communication of social network
information. Depending on the point of view, this is either a major burden or a horn of
plenty for algorithmic and design challenges.

In this section, we review examples of substance-based designs and corresponding graph
drawing approaches to demonstrate the richness of both, existing approaches and open
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(a) Sympathy and antipathy among players in
an American football team. Layout according
to lineup, though slightly distorted to allow for
straight edges [Mor53]

(b) Passes among players during the FIFA World
Cup 2010 final. Layout according to (assumed)
tactical lineup [PNK10]

(c) Friendship choices among villagers. Layout
in 3D using indegree, outdegree, and a status
attribute as coordinates [Cha50]

(d) Peering among autonomous systems of the
Internet. Radial layout according to degree and
latitude [CAI]

Figure 26.4 Network visualizations in which coordinates are not defined by a graph
drawing algorithm.



812 CHAPTER 26. SOCIAL NETWORKS

problems. Our selection of examples is, of course, heavily biased by their algorithmic
interestingness. Figure 26.4 shows examples for designs we have excluded, because they do
not require graph layout algorithms (although labeling and edge routing may be an issue).

We concentrate on two important analytical concepts (prominence and cohesion), and
two data categories (two-mode and dynamic data). The designs we deal with are largely
based on intuition and plausibility rather than perceptual and cognitive theories and empir-
ical evidence. Among the few attempts to evaluate effectiveness and efficiency of network
visualization design are [Win94, PCJ97, MBK97, HHE07, HEH09].

26.3.1 Prominence

Prominence indices p : V → R≥0 are used to rank the vertices V according to their
structural importance [KB83]. Since there is no unanimity about their conceptual founda-
tions [Fre79, Fri91], numerous such indices exist, and their properties vary tremendously. Al-
though terminology is not well defined and more refined classifications exist [Bor05, BE06],
we distinguish only two groups based on geometric metaphors frequently invoked in their
interpretation.

Status

It is commonplace to differentiate status into “high” and “low,” so that it seems
almost mandatory to exploit this geometric interpretation for network visualizations. Not
surprisingly, the apparent correspondence between substantive and geometric intuition has
been used in the design of network diagrams already in times when no layout algorithms
were available to social scientists. Figure 26.5 shows two historic examples, one with an
extrinsic status attribute, and another with an intrinsic, structural one.

The advice network used for illustration above is an example in which a status hierarchy
is conceived as emerging from an informal advice-seeking relation. Indeed, status is often
analyzed in networks with directed edges, and because of how status indices are defined, the
direction of an edge is generally aligned with the difference in status between the endpoints.

The simplest example of a structural status index is indegree, which was generalized in
numerous ways. Katz [Kat53], for instance, defines status by taking into account all directed
walks ending at a vertex. The status of a vertex v ∈ V in a graph G = (V,E) is defined by
p(v) =

∑
u∈V

(∑∞
k=1(αA)k

)
uv

, where 1/α, 0 < α < 1, is an attenuation factor, and A the

adjacency matrix of G. Recall that the entries (Ak)uv give the number of walks of length k
from vertex u to vertex v. Clearly, we obtain the same ranking as with indegree for very
small α, and attentuation must be large enough to make sure that the sum converges.

A natural class of layout algorithms that can be adapted for status drawings is the
so-called Sugiyama framework, which is described in detail in Chapter 13. Its use was
proposed in [BRW01], where the instantiation employs one-dimensional clustering of status
scores for layer asignment and standard approaches for crossing reduction and horizontal
coordinate assignment. Clustering is necessary since vertical coordinates are fixed and
differences can be quite small, resulting in very close layers between which edges run almost
horizontally. However, clustering worsens another, more general, open problem, namely
how to accomodate intra-layer edges in layered layouts.

Two different approaches are less sensitive to this kind of problem and in addition more
scalable. The first and simpler one is to fix y-coordinates and to determine the x-coordinates
using a one-dimensional layout algorithm [BC03b], possibly taking the fixed dimension into
account [KH05]. The second, more flexible, and likely to be more effective one is based on
constrained optimization of stress using a gradient projection method [DKM09].



26.3. SUBSTANCE-BASED DESIGNS 813

(a) extrinsically defined status [Why43]

(b) structurally defined status [Nor54]

Figure 26.5 Two status diagrams using the high-low metaphor.
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(a) Sociometric choice quar-
tiles [Nor40]

(b) Grant’s background
gradient emphasizing the
center [Nor52]

(c) McKenzie’s board for man-
ual layout [Nor52]

Figure 26.6 Target diagrams in which rings correspond to levels of importance.

Centrality

Similar to indices assessing status, centrality indices also have an immediate geometric
connotation. A large value usually indicates that a vertex is structurally central, and a low
value indicates that it is structurally peripheral. Just how strong, and sometimes confusing,
the relationship between spatial metaphors and formal concepts can be is illustrated by the
controversy of [Cha50, CJ51] about the structural status and location of prominent actors
in the network of Figure 26.4(c).

It is therefore not surprising that centrality-based designs were proposed already in the
1940s. See Figure 26.6 for some historic examples.

While the early designs were not based on an arbitrary index, but on indegree quartiles
(representing four levels of prominence in sociometric choice), they are easily generalized
to exact representation of any vertex centrality index c : V → R. The most frequently
used indices are degree, closeness, and betweenness centrality [Fre79] as well as eigenvector
centrality [Bon72].

Instead of placing vertices anywhere within one of four concentric rings, we can define
their distance from the center of the drawing based on their centrality score, for instance
using radii

r(v) = 1− c(v)−minx∈V c(x)

c0 + maxx,y∈V [c(x)− c(y)]
,

as layout constraints [BKW03], where c0 is an offset creating space in the center and may
depend on the number of highly central vertices. A constrained variant of the Kamada-
Kawai approach (see Chapter 12) using polar coordinates for radial drawings is described
in [Kam89]. In order to include crossings into the objective function, the method of [BKW03]
is based on simulated annealing and, in addition, divided into phases in which more weight
is placed on certain subconfigurations (related to confirmed and unconfirmed relationships).

Due to the radial coordinate constraints, crossings are not only a readability problem,
but also an indication of poor angular distribution. An extreme example of this kind is
presented in Figure 26.7(a), where a cutvertex and a separation pair are clearly visible by
virtue of a circular ordering with few crossings. A second class of radial drawing algorithms
is therefore based on combinatorial approaches that focus on crossing reduction in circular
layouts to determine the angular coordinate (see Chapter 9 and [BB04]). More generally,
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(a) circular [Mit94] (b) radial [BW04]

Figure 26.7 Circular and radial drawing.

approaches for layered layout can be adapted to radial levels (Chapter 13 and [Bac07]).
The most recent approach uses stress minimization with a penalty term [BP11] measuring

deviation from the assigned radii. By increasing the relative weight of the penalty term
during iterative stress reduction, vertices are gradually forced to lie on their respective circle.
While it appears that the less severe restrictions to which intermediate layouts are subjected
may provide an advantage over gradient-projection methods, thorough experimentation is
needed to determine which methods are most practical for centrality layouts.

To explore the differences between various centrality indices, methods extending the com-
parison based on scatterplot matrices [KS04] have been proposed in [DHK+06]. Among
them is a force-directed method for the joint layout of stacked radial drawings of the same
network with varying radial constraints. A visual variational approach to centrality within
a network is introduced in [CCM12].

26.3.2 Cohesion

Cohesion is broadly defined as strong interconnectedness of a group of actors, although the
formal structural definition of interconnectedness may vary according to type of relations
and substantive interest. In the extreme, cohesion is defined in terms of cliques [LP49], but
weaker definitions such as the degree-based cores [Sei83] or connectivity-based λ-sets [BES90]
exist.

In Gestalt Theory [Wer44], the law of proximity suggests that cohesive, and in fact all
types of groups can be represented effectively by placing their members closer to each other
than to other actors. The friendship network of pupils in the 4th grade shown in Figure 26.8,
for instance, is divided according to gender, and this striking correspondence between a ver-
tex attribute and structural cohesion is made evident by spatial separation. However, there
is little empirical evidence whether and which kind of cohesion is represented effectively by
spatial proximity or separation in graphical representations of networks [MBK97, HHE07].

While the clumping of densely connected subgraphs is an implicit objective of force-
directed and spectral layout algorithms (see Chapter 12), a layout algorithm should be
generic and suitable for a range of cohesion measures.

In the previous section we assumed that the result of an analysis, a vertex index c : V → R

representing prominence, is part of the input for a graph drawing algorithm. Similarly, let
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Figure 26.8 Friendship network of a 4th grade school class [Mor53, p. 163]. For graphical
notation see Figure 26.2; note, though, the horizontal line delineating the class and the
missing tick on the edge between NS and MP. The strong homophily effect is conveyed
effectively through spatial separation.

us now assume that a cohesion analysis resulted in a decomposition that can be described
in the following way.

A (hierarchically) clustered graph (G,T ) is a graph G = (V,E) together with a rooted
tree T , the cluster tree, such that the leaves of T correspond to a partition of V and each
inner node is the union of the vertex sets of its children. Consequently, the root corresponds
to the entire vertex set V . A clustered graph (G,T ) is called flat, if T has height one, i.e.,
it is equivalent to a graph G = (V,E) together with a partition of V .

Note that cohesion analysis may result in other types of data. But one example is set
covers of the vertices, which can be viewed as flat clustered graphs with overlapping clusters.
They are equivalent to hypergraphs, which in turn are treated in Section 26.3.3.

Clustered drawings

In an inclusion drawing of a (cluster) tree, vertices are represented as areas, and the
parent-child relation is represented by area inclusion. A straightforward representation of
clustered graphs consists of an inclusion drawing of the cluster tree overlayed on a drawing
of the underlying graph such that vertices are inside their cluster boundaries and edges cross
cluster boundaries at most once. Such a representation is called a clustered drawing , and
at least topologically implements the idea that vertices of the same group belong together.
Figures 26.1 and 26.9 provide examples.

Often, especially when the notion of cohesion and the implicit criteria of general layout
algorithms coincide sufficiently well, clustered drawings are obtained by adding boundary
curves to a layout obtained without consideration of the cluster tree. A typical example
is the application of multidimensional scaling to a distance matrix with the addition of
hierarchical clusters based on connectedness as shown in Figure 26.9(b).

Multidimensional scaling based on stress minimization and, in fact, all force-directed ap-
proaches can be customized to clustered graphs by adding cluster vertices that are connected
to cluster members via short edges, and to other cluster vertices via long edges or even re-
pulsion (e.g., [WM96, PNR08]). Alternatively, cohesion-based proximity can be ensured by
a combination of space-filling and force-directed techniques that explictly consider a cluster
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(a) Multilevel representation of
a clustered graph [EF97]

(b) Clusters outlined in 2D per-
spective projection of 3D draw-
ing [LG66]

(c) 3D drawing of a clus-
tered graph with implicit sur-
faces [BD07]

Figure 26.9 Clustered graphs.

tree [IMMS09]. Edge bundling along the cluster tree has been proposed as a method to
reduce visual clutter [Hol06].

To avoid meaningless crossings, every edge should cross only boundaries of clusters on the
unique path in the cluster tree that connects the leaves containing its endvertices. These
crossings are called necessary. A clustered graph is called c-planar (cluster planar) if it
can be drawn such that, simultaneously, there are no edge-edge crossings (i.e., the graph
is planar) and there are no edge-region crossings (except those necessary) [EFN99]. The
graph in Figure 26.1 is c-planar, although the drawing is not. Whether c-planarity can be
tested efficiently is an interesting open problem [CDB05].

A conceptually different visualization approach is based on clustering via semantic sub-
strates [SA06], where regions are prescribed for vertices belonging to an extrinsically defined
cluster (most often by sharing selected attribute values), and layout is carried out using any
method respecting region boundaries.

Sociomatrices

In addition to the commonly used graph representation, there is also a tradition of
depicting social relations in matrices. To distinguish them from socigrams, Moreno uses the
term sociomatrix [Mor53]. Using the example in Figure 26.10 sociomatrices were advocated,
e.g., in [FK46] (see also the interesting discussion that followed [Mor46, Kat47]), because
they appear to be more effective at visualizing cohesion [GFC05]. Moreover, matrix cells
are well defined and compactly organized locations for information associated with the
edges [vHSD09].

The main degree of freedom is the ordering of rows and columns, and its effect on vi-
sualization is illustrated in Figure 26.11. While Bertin [Ber83] appears to have coined the
term reorderable matrix and reordering is already discussed in [FK46], the idea has been
introduced much earlier [Pet99, Cze09]. Most relevant ordering problems are NP-hard,
though. They have been researched extensively under various names including seriation
and linear layout [DPS02]. Often, the underlying ordering objectives aim at reducing the
span of edges so that well-clustered graphs lead to visible blocks along the diagonal. For a
clustered graph, an optimal ordering can be determined efficiently if the maximum degree
of the cluster tree is bounded by a constant (see, e.g., [BDW99, Bra07]).
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(a) ordered sociomatrix of a signed graph [FK46]
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(b) blocked sociomatrix with edge counts [Lon48]

Figure 26.10 Sociomatrix and block partition.

Figure 26.11 Trade between countries reordered according to a hierachical clustering
(reproduced from [BM04]).
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Figure 26.12 Integration of sociogram with sociomatrices for cohesive subgroups (repro-
duced from [HFM07]).

A system offering coordinated sociogram and sociomatrix views is MatrixExplorer [HF06].
The integrated view exemplified in Figure 26.12 uses both representations simultaneously
and the decision about which representation is used for which subgraph is based on the ob-
servation that matrix representations are especially suitable for dense (sub)graphs [HFM07].
Other augmentations of matrix representations to ease the recognition of paths include [HF07,
SM07], and a matrix representation for layered graphs that has been applied to genealo-
gies [BDF+10].

An integrated representation that is not based on a matrix of adjacencies, but a grid
layout of vertex attribute levels, are PivotGraphs [Wat06]. They generalize attribute-defined
layouts (cf. Figure 26.4(d)) and are particularly suited for the interactive exploration of
associations between vertex attributes and edges.

26.3.3 Two-Mode Networks

The networks considered so far are actually one-mode networks, because their vertices
represent elements of the same mode or category such as persons. Quite frequently, however,
the relation of interest is between elements of different categories such as persons and
groups [Bre74]. Such networks can be represented in rectangular matrices with rows and
columns indexed by the respective categories, and they are referred to as two-mode networks.

Two-mode networks are often visualized like one-mode networks, with different appear-
ances for vertices from the two categories. However, their distinctive characteristic of being
bipartite with a prescribed bipartition of vertices can also guide a layout algorithm.

As a variant of spectral layout for one-mode networks, left and right singular vectors of the
rectangular adjacency matrix (or other matrices derived from it) can be used for coordinates.
An entire family of related techniques is reviewed in [dLM00]. See also [Bre09] for a closely
related analytic technique and [WG98] for a comparison with graphical representations
described in the following subsection.

More combinatorial approaches are those developed for bipartite graphs. These include,
in particular, drawings in which the vertices of the two modes are placed on different parallel
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Figure 26.13 A two-mode network with straight-line edges drawn between attribute ta-
bles of the two node sets, and its one-mode projections drawn with curved edges on the
sides (reproduced from [SJUS08]).

lines (2-level drawings) or, more generally, in separable regions. As usual, graph drawing
research in this area has focused on conditions under which the resulting drawings can be
made planar [Bie98, BKM98, CSW04, DGGL08] and on the difficulty of crossing minimiza-
tion [ZSE05]. It would be interesting to identify criteria for informative visualization of
bipartite graphs.

An example of several methods combining ideas of spatial separation and relative place-
ment are the anchored maps of [Mis07]. While one set of the bipartition is arranged on a
circle, vertices in the other are placed relative to their neighbors. An interesting mixture of
2-layer drawing and tabular representation is exemplified in Figure 26.13.

Hypergraphs

If it makes sense to consider the elements of one of the two modes as subsets of the
other (as with groups and persons such as company boards and directors), a two-mode
network can be treated as a hypergraph. In addition to those associated with the above
bipartite graph model, several other graphical representations are available.

A straightforward variant is the edge standard, which is based on an ordinary layout of
the bipartite graph representation of the hypergraph, but with a different rendering of the
induced star subgraphs that represent hyperedges. This star may be substituted for a tree
to shorten the total length of the hyperedge. For directed hypergraphs, layout constraints
can be used to enable directed edges to be rendered confluently [Mäk90].

Subdivision drawings [KvKS09] are subdivisions of the plane such that each vertex cor-
responds to a region and the set of regions corresponding to a hyperedge is connected.
This requires that the hypergraph has a planar support, i.e., the existence of a planar
graph on the same vertices such that each of the hyperedges of the original hypergraph
induces a connected subgraph. Deciding whether a hypergraph has a planar support is
NP-complete [JP87]. Tree supports, on the other hand, are characterized by the existence
of an elimination ordering in which vertices contained in only one hyperedge, or in a subset
of the hyperedges containing some other vertex, are removed iteratively. The main open
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Figure 26.14 Post-hoc delineation of clusters with polygons (reproduced from [JK04]).

problem is whether the existence of an outerplanar support can be decided in polynomial
time [BvKM+10, BCPS11a]. Supports with more restrictive constraints on the subgraphs
induced by hyperedges are introduced in [BCPS11b].

The more general subset standard yields drawings also known as Euler diagrams [RZF08].
Each hyperedge is represented as a simple closed curve containing exactly the vertices
of that edge. Note that this is also the usual convention for cluster boundaries in flat
overlapping clustered graphs [DGL08]. For the example in Figure 26.14, cluster boundaries
were drawn as convex polygons simply after the underlying graph had been laid out [JK04].
A more comprehensive postprocessing approach is proposed in [CPC09], and a restricted
variant in which hyperedges are drawn as paths through already placed vertices is studied
in [ARRC11]. The resulting visualization looks similar to the familiar metro map designs,
and indeed layout algorithms for metro maps can be used to draw hypergraphs by first
ordering the vertices in each hyperedge [Wol07].

As is common for problems that are difficult on general instances, many variant force-
directed approaches have been devised [BE00, OS07, ST10, SAA09, KZ09]. While most
approaches are based on dummy vertices and/or additional forces for the hyperedges, the
approach of [SAA09] is based on the intersection graph, which is a line graph of the hyper-
graph. It is constructed by creating a vertex for each hyperedge and an edge between any
two of them, if the corresponding hyperedges overlap.

Lattices

Inspired by their use in formal concept analysis [GW98], Galois lattices have been
proposed as an alternative representation for two-mode networks [FW93]. An overview
of the potential of lattices in data analysis and a standard tool, GLAD, are provided by
Duquenne [Duq99].

Figure 26.15 shows an example of a two-mode network represented in a matrix, a bipartite
graph, and a Galois lattice. In the Galois lattice representation, a node simultaneously
represents a subset of women and a subset of events. The women are exactly those attending
all of the corresponding events, and the events are exactly those attended by all of the
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(a) data matrix [DGG41]

1

A BCD E F G H I JK L M N

2 345 6 7 89 10 11 1213141516 17 18

(b) two-layer drawing of bipartite network

(c) lattice representation [FW93]

Figure 26.15 The Southern Women data of Davis, Gardner and Gardner [DGG41] is a
two-mode network of 18 women’s (labeled 1–18) attendance of 14 events (labeled A–N).
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corresponding women. Nodes are ordered by set-inclusion, i.e., for each node the set of
women consists of those encountered on downward paths to the bottom, and the set of
events consists of those encountered on upward paths to the top. A study essentially
concluded that users do understand such diagrams [EDB04].

Approaches for drawing lattices range from layer-constrained force-directed layout in
three dimensions [Fre04b] to enumeration and decomposition approaches [RCE06, BPS11].
See the review in [MH01] for relations with other combinatorial structures.

26.3.4 Dynamics

Temporal aspects are considered explicitly in longitudinal social network analysis. Mostly,
this is concerned with panel data, i.e., cross-sectional states of networks observed at discrete
time points. This is immediate when data is collected in waves. Even when the situation
is more accurately described in terms of relational events (such as phone calls), however,
these are often aggregated over time intervals into cross-sectional graph representations to
ensure applicability of the wide range of methods developed for (static) graphs.

In-between observations or aggregations, the sets of vertices and edges, as well as at-
tribute values may be subject to change. Typical research questions are: how do actor
characteristics affect structural change (social selection), and how do structural conditions
affect actor behavior (social influence)? In addition, the subject of interest may actually be
a process such as the diffusion of information taking place on a (possibly changing) network.

By combinatorial explosion, this leads to numerous problem variants. The variant most
extensively researched in graph drawing, however, focuses on dynamic graphs which consist
of a sequence of interrelated graphs G(1), . . . , G(T ), called states. In social network analysis
these arise from panel data on social structure (network evolution). Research on a streaming
scenario in which a single graph becomes available one edge at a time was initiated only
recently [BBDB+10], but may soon become relevant for dyadic event data.

There are two main scenarios for visualizing dynamic graphs, online and offline dynamic
graph drawing. Layout approaches for these are considered in more detail below. In both
cases, a solution consists of a sequence of layouts, one for each G(t) with t = 1, . . . , T , and
two conflicting criteria are used to evaluate the quality of a solution.

On the one hand, each layout in the sequence should be acceptable with respect to the
criteria of a static graph drawing problem. We refer to this requirement as layout quality,
and assume that the related static layout problem is fixed. On the other hand, the degree
of change between consecutive layouts should be indicative of the degree of change between
the corresponding graphs. This criterion is referred to as layout stability and generally
motivated by preservation of a user’s mental map [MELS95].

Note that the stability requirement applies to the difference between consecutive layouts
and, depending on the visualization media, also to the transition from one layout to the next.
These two aspects are referred to as the logical and the physical update, respectively [Nor96].
Difference metrics for pairs of layouts are treated in [BT00], and animation between layouts
is the subject of [FE02]. The interpolation approach of [BFP07] implements the physical
update as a refinement of the logical update.

Online Scenario

In an online scenario, a dynamic graph is presented one state at a time, and the layout
of a state is to be determined before the next state is known. Stability can therefore only
be introduced with respect to layouts of previous states.

Since iterative layout algorithms are very common in applied graph drawing in gen-
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eral, and social network visualization in particular, a simple approach to online drawing
is the initialization of the layout algorithm for a state with the layout of the previous
state [MMBd05, HEW98]. This is a convenient, though indirect, approach to address the
stability requirement. It does work fairly well when the iterations of the layout algorithm
are used for the physical updates of an animation.

Explicit consideration of stability by defining a layout objective that trades off quality
and stability using a static objective and a difference metric is proposed in the Bayesian
framework of [BW97]. A recent application of this is [FT08]. Since the employed difference
metric is penalizing vertex movement via (weighted) distances from previous positions, this
is a case of what is called anchoring [LMR98].

An unusual variant of online drawing is introduced in [DDBF+99], where drawings of
a state must keep the drawing of the previous state intact, and expectations (rather than
knowledge) about the additional subgraph to accomodate are available. However, this
situation has so far been considered only for descending traversals of trees.

Offline Scenario

In an offline scenario, the input given is a dynamic graph and the output sought
is a layout for each of its states. Except for streaming event data and some applications
involving social networking sites, the offline scenario is the typical scenario in empirical
social network analysis. Since the entire sequence of states is known before any layout
needs to be determined, the layout of a state may be determined with subsequent states in
mind. In other words, we may use knowledge about the future.

Note that methods for online scenarios can be applied in offline scenarios, although at
the possible expense of both quality and stability, but the reverse is generally not possible.

In a recent review [BIM12], three primary approaches to offline dynamic graph drawing
are distinguished:

Aggregation. All graphs in the sequence are aggregated into a single graph that
has one vertex for each actor. The position of each occurrence of vertex in a
state is fixed by the layout of the aggregated graph. Variants of this approach
are considered, e.g., in [BC03a, DG04, MMBd05], and it is referred to as the
flip-book approach in the last reference.

Anchoring. Using auxiliary edges, vertices are connected to immobile copies fixed
to a desired location which may be, for instance, the previous position as in an
online scenario, or a reference position determined from an aggregate layout in
an offline scenario. This approach is used, e.g., in [LMR98, BW97, FT08].

Linking. All graphs in the sequence are combined into a single graph that has one
vertex for each occurrence of an actor, and an edge is created between vertices
representing the same actor in consecutive graphs. A layout of this graph directly
yields positions for all vertex instances in the sequence. This approach is used,
e.g., in [DG04, EKLN04, DHK+06].

Algorithmic experimental evidence [BM12] suggests that, at least for methods based on
stress minimization [GKN04] and general conditions, linking dominates anchoring in terms
of stability and quality. On the other hand, anchoring is computionally cheaper and espe-
cially suited when a dynamic graph has rather persistent global structure. Evidence from
user experiments, on the other hand, is inconclusive about the actual value of stability in
dynamic graph animation [PS08], and even animation itself [APP11].
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Figure 26.16 Five states of the dynamic graph obtained from top-3 choices in Newcomb’s
fraternity data. Layout obtained by stress minimization on an aggregate graph (stable),
initialized by previous layout (no stability), and with linking of consecutive layouts (com-
promise).
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Figure 26.17 Gestaltmatrix of Newcomb’s fraternity data [BN11]. Matrix cells show
evolution of rank (length) and balance (angle) of pairwise nominations. Color on diagonal
indicates average deviation of received nominations from expected value.

Online and offline approaches can be compared using the small multiples in Figure 26.16.
The networks shown form a subset of the famous Newcomb fraternity data [New61]. The
full data are shown in Figure 26.17 using a static matrix-based representation for dynamic
directed graphs that have a numerical edge attribute [BN11].
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26.4 Trends and Challenges

While graphs arising from social networks across application domains exhibit some general
tendencies such as sparseness and local clustering, there is no formal characterization in
terms of structural requirements that delineates this class of graphs from others. Likewise,
the information to be conveyed in a social network visualization differs by available data,
interest, and domain.

Layout of social networks is therefore contingent on many factors, and comparison of
approaches is possible only if scope and purpose are defined precisely. Identification of
practically relevant and pragmatic tasks remains a challenge, though.

Despite the range of approaches presented in this chapter, force-directed methods – much
like in other areas of applied graph drawing – are most commonly used for social network
layout. This is likely because of their generality, simplicity, adaptability, and above all their
availability. While force-directed methods generally perform well in separating clusters in
graphs with varying local density, these methods are particularly troubled by small distances
and skewed degree distributions [BP09]. A fundamental challenge is therefore to identify
representations and layout criteria that allow to deal with such structures [ACL07].

Another very general challenge involves the interplay between methods for hierachical
clustering of graphs and clustered graph layout. Especially for large graphs, hierarchical
clustering is frequently used as a tool in multilevel layout algorithms, but the artifacts
resulting from the choice of clustering or filter methods are not yet understood well (see,
e.g., [JHGH08, vHW08, HN07]).

Two research directions that are more closely related to the type of data (rather than its
properties) encountered in social network analysis are the genuine treatment of two-mode
networks (Section 26.3.3) and visual means to support stochastic network modeling [BIM12].

Finally, there is also at least one example where artistic drawings of social networks
inspired a new graph drawing convention, namely Lombardi drawings [Hob03, DEG+12].

Many software packages are available already for the analysis and visualization of social
networks, and many more are in introduced for specific application domains. Among so-
cial scientists, UCINET [BEF99] is the most widely known. At the time of this writing,
Pajek [BM04] is likely to be the most widely used across all disciplines, and visone [BW04]
the social network analysis tool with the most sophisticated graph drawing features. Other
comprehensive and popular tools include Tulip [Aub04], NodeXL [HSS10], Gephi [BHJ09],
and ORA [CRSC11]. A recent software review can be found in [HvD11], and a comparative
evaluation of some tools is attempted in [XTT+10]. A comprehensive list of software for
social networks is maintained in Wikipedia.1

Very likely the most dominant force driving visualization research on social networks over
the next decade will be online social and other networks derived from social media [Fur10].
This is in part because they combine virtually all the current challenges of size and dynam-
ics with the more specific challenges that arise from multivariate complexity. Moreover,
such research can be of economic relevance, draw large audiences, and make use of easily
accessible data [LPA+09]. It will be exciting to witness whether graph drawing can make
significant contributions to this area and thus challenge currently reigning adaptations of
its oldest methods (see [HB05] for one solid example). An example in this direction is a
layout algorithm for digital social networks tailored to smartphone displays [DLDBI12].

1http://en.wikipedia.org/wiki/Social_network_analysis_software
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of social networks. In Michael Jünger and Petra Mutzel, editors, Graph
Drawing Software, pages 321–340. Springer-Verlag, 2004.

[CAI] CAIDA. Cooperative association for internet data analysis. http://www.
caida.org/research/topology/as_core_network/.

[CCM12] Carlos D. Correa, Tarik Crnovrsanin, and Kwan-Liu Ma. Visual reasoning
about social networks using centrality sensitivity. IEEE Transactions on
Visualization and Computer Graphics, 18(1):106–120, 2012.

[CDB05] Pier Francesco Cortese and Giuseppe Di Battista. Clustered planarity.
In Proceedings of the 21st Annual ACM Symposium on Computational
Geometry (SoCG’05), pages 32–34, 2005.

[Cha50] F. Stuart Chapin. Sociometric stars as isolates. American Journal of
Sociology, 56(3):263–267, 1950.

[CJ51] Joan H. Criswell and Helen Hall Jennings. A critique of Chapin’s “Socio-
metric stars as isolates”. American Journal of Sociology, 57(3):260–264,
1951.

[CM11] Carlos D. Correa and Kwan-Liu Ma. Visualizing social networks. In
Charu C. Aggarwal, editor, Social Network Data Analytics, pages 307–
326. Springer-Verlag, 2011.

[CPC09] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets:
revealing set relations with isocontours over existing visualizations. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1009–1016,
2009.

[CRSC11] Kathleen M. Carley, Jeff Reminga, Jon Storrick, and Dave Columbus.
ORA user’s guide 2011. Technical Report CMU-ISR-11-107, Carnegie
Mellon University, Institute for Software Research, 2011.

[CSW04] Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing
graphs on two and three lines. Journal of Graph Algorithms and Ap-
plications, 8(2):161–177, 2004.



832 CHAPTER 26. SOCIAL NETWORKS

[CSW05] Peter J. Carrington, John Scott, and Stanley Wasserman, editors. Models
and Methods in Social Network Analysis. Cambridge University Press,
2005.

[CY10] Ing-Xiang Chen and Cheng-Zen Yang. Visualization of social networks. In
Handbook of Social Network Technologies and Applications [Fur10], pages
585–610.

[Cze09] Jan Czekanowski. Zur Differentialdiagnose der Neandertalgruppe.
Korrespondenz-Blatt der Deutschen Gesellschaft für Anthropologie, Eth-
nologie and Urgeschichte, 40(6/7):44–47, 1909.

[DBF05] Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj. Generalized
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