
21
Computer Security

Olga Ohrimenko
Brown University

Charalampos
Papamanthou
University of California,

Berkeley

Bernardo Palazzi
Brown University and Italian

National Institute of Statistics

21.1 Introduction . 653
Motivation • Chapter Organization

21.2 Network Monitoring . 656
Intrusion Detection • Traffic Analysis • Internal vs. External
Hosts • Similarity Analysis for Traffic Logs and Scans •

Visualization of Address Space • Visualization of Name
Server Migration

21.3 Border Gateway Protocol . 665
Topology of Autonomous Systems • BGP Monitoring • BGP
Evolution

21.4 Access Control . 668
Rule-Based Access Control • File System Access-Control •

Trust Negotiation • Privacy Settings in Social Networks

21.5 Attack Graphs . 672
Model • Tools

21.6 Private Graph Drawing. 673
Compressed Scanning • Data-Oblivious Drawing Algorithms

Acknowledgments . 675
References . 676

21.1 Introduction

As the number of devices connected to the Internet continues to grow rapidly and software
systems are being increasingly deployed on the Web, security and privacy have become
crucial properties for networks and applications. Because of the complexity and subtlety
of cryptographic methods and protocols, software architects and developers often fail to
incorporate security principles in their designs and implementations. Also, most users
have minimal understanding of security threats. While several tools for developers, system
administrators, and security analysts are available, these tools typically provide information
in the form of textual logs or tables, which are cumbersome to analyze. Thus, in recent years,
the field of security visualization has emerged to provide novel ways to display security-
related information, thus making such information easier to understand.

Securing computers and cyberspace is one of today’s grand challenges for science and
engineering. Computers and networks are under continuous threat from attackers who
want to steal credit card numbers, intellectual property, and other sensitive information.
Also, massive distributed denial of service attacks can impair even the largest of companies
and government organizations.

Computer security research aims at developing methods and associated protocols to an-
alyze and defend against a growing number and variety of attacks. The development of

653

654 CHAPTER 21. COMPUTER SECURITY

security tools is a continuous process that keeps on reacting to newly discovered hardware
and software vulnerabilities and newly deployed technologies.

21.1.1 Motivation

Both the discovery of vulnerabilities and the development of security protocols can be
greatly assisted by visualization. For example, network traffic can be naturally displayed as
a graph whose nodes are hosts and whose edges are associated with packets going from one
host to another. Also, a visual representation of a complex multiparty security protocol can
give experts better intuition of its execution and security properties. Traditionally, instead,
computer security analysts read through large logs produced by applications, operating
systems, and network devices. Inspecting such logs is quite cumbersome and often unwieldy,
even for experts. Motivated by the growing need for automated visualization methods and
tools for computer security, the field of security visualization has recently emerged as an
interdisciplinary community of researchers with its own annual meeting (VizSec).

For basic background on computer security, see the textbook by Goodrich and Tamas-
sia [GT11]. The book by Raffael Marty [Mar08] provides an excellent introduction to
methods and tools for visualizing computer networks to analyze their security.

21.1.2 Chapter Organization

In this chapter, we give a survey of approaches to the visualization of computer security
concepts that use graph drawing techniques. We consider a variety of fundamental security
and privacy issues, focusing on network security, access control, and attack strategies. We
show how graphs can be used as an effective modeling tool in computer security and we
give examples of how several classic graph drawing techniques have been used in current
security visualization prototypes. Finally, we mention an approach for privacy-preserving
drawing in a cloud computing scenario.

Thanks to their versatility, graph drawing techniques are one of the main approaches em-
ployed in security visualization. Indeed, not only computer networks are naturally modeled
as graphs, but also data organization (e.g., file systems) and vulnerability models (e.g., at-
tack trees) can be effectively represented by graphs. In particular, we consider the following
security visualization problems:

1. Network monitoring. (Section 21.2) The visualization of network traffic helps
network administrators identify anomalous patterns, such as scans, worm infec-
tions, and hosts trying to gain unauthorized access to the network. Thus, it is
an effective component of intrusion detection systems. Also, traffic visualization
can be used to identify unusually heavy network activity and quickly track down
machines that generate or receive a large volume of packets. Early detection is
crucial when defending against denial of service attacks. It is also interesting to
monitor and visualize the evolution of highly dynamic services on the Internet,
such as the root name servers.

2. Border gateway protocol (BGP). (Section 21.3) This protocol manages reachabil-
ity between hosts in different Autonomous Systems, i.e., networks controlled by
Internet Service Providers. The visualization of BGP-related information is im-
portant to ensure that routing in the Internet has not changed and has not been
tampered with. In particular, displaying the topology of Autonomous Systems
and the evolution of BGP routing patterns can assist the detection of disruptions
in Internet traffic caused by attacks or router configuration errors.

21.1. INTRODUCTION 655

3. Access control. (Section 21.4) Access to resources on a computer system or net-
work is regulated by organizational policies and enforced with technological mech-
anisms for authentication and authorization. Resources need to be protected not
only from malicious activity by outside attackers but also from accidental disclo-
sure to unauthorized legitimate users. Access control mechanisms for file systems,
databases, and distributed applications are complex and tricky to configure. Vi-
sualization helps both users and administrators gain an intuitive understanding
of the vast set of permissions that are in place in the system and allows them to
efficiently spot sensitive resources that are insufficiently protected. Also, visual-
izing flows of information in a system can help keeping sensitive data private and
defend against the leakage of confidential information. Access control is espe-
cially challenging in distributed environments without centralized administrative
control. An aspect of access control that is gaining increasing importance is the
management of privacy settings by users of a social network.

4. Attack graphs. (Section 21.5) Starting with a vulnerable component of a system,
an attacker can compromise other components to reach the desired goal. Attack
graphs are used to describe dependencies between vulnerabilities in a system.
They characterize the paths through the system that can be followed by an
adversary. The visualization of attack graphs helps computer security analysts
identify and remedy vulnerabilities.

Sections 21.2 through 21.5 are organized around the four security topics mentioned above.
For each topic, we overview visualization tools that employ graph drawing techniques.
Table 21.1.2 classifies the papers surveyed in these sections according to the security topic
addressed and the graph drawing method used.

Force Layered Bipartite Circular Treemap or 3D
Directed Drawing Drawing Drawing Gmap

Network Moni-
toring

[MMK07,
TN00,
GB98,
MMB05,
DSN12]

[YYT+04,
BFN04,
Con07]

[Tol] [DSN12,
BvO09]

[XMB+06]

BGP [BMPP04,
TRNC06]

[TRNC06] [OKB06]

Access Control [MLA12] [MFG+06,
Yee06,
YSTW05]

[HPPT08]

Attack Graphs [NJKJ05,
NJ04]

[CIL+10]

Table 21.1 Classification of the papers on security and privacy visualization surveyed in
this chapter according to the security topic addressed and the graph drawing method used.

Finally, in Section 21.6, we take a different perspective and consider the subject of privacy
protection when a client outsources the task of drawing a graph to a server in the cloud.
We present a technique that provides a high level of privacy, going beyond encryption, and
is computationally efficient.

Chapter 24 overviews related work on the visualization of computer networks.

656 CHAPTER 21. COMPUTER SECURITY

21.2 Network Monitoring

In this section, we overview selected papers on graph-based visualization techniques for
network monitoring. Related work includes, e.g., [FMK+08, MFK+09].

21.2.1 Intrusion Detection

In [TN00], the authors use a combination of force-directed drawing, graph clustering, and
regression-based learning in a system for intrusion detection (see Figure 21.1). Their system
consists of the following components:

• a packet collecting module;

• a graph construction and clustering module;

• a visualization module; and

• an event generation module.

Figure 21.1 Force-directed clustered drawing for intrusion detection (thumbnail of image
from [TN00]).

The authors model the computer network with a graph where the nodes are computers
and the edges are communication links with weight proportional to the network traffic on
that link. The clustering of the graph is performed with a simple iterative method. Initially,
every node forms its own cluster. Next, nodes join clusters that already have most of their
neighbors, breaking ties at random. The resulting graph is a simplified version of traffic
exchanges where entities that communicate often are joined into clusters. Two clusters A
and B are connected by an edge if there is at least one edge between some node of cluster
A and some node of cluster B.

The classic force-directed spring embedder method [Ead84, FR91] is used to determine
the layout of the graph of clusters and of the graph within each cluster. Since forces are
proportional to the weights of the edges, if there is a lot of communication between two
hosts, their nodes are placed close to each other.

Various features of the clustered graph (including statistics on the node degrees, number
of clusters, and internal/external connectivity of clusters) are used to describe the current
state of network traffic and are summarized by a feature vector. Using test traffic samples
and a regression-based strategy, the system learns how to map feature vectors to intrusion

21.2. NETWORK MONITORING 657

detection events. The visualization of the clustered graph can help a security analyst in
assessing the severity of the intrusion detection events generated by the system.

21.2.2 Traffic Analysis

A tool for visualizing the evolution over time of the volume and type of network traffic
using force-directed graph drawing techniques is described in [MMK07] (see Figure 21.2).
Since there are different types of traffic protocols (HTTP, FTP, SMTP, SSH, etc.) and
multiple time periods, this multidimensional data set is modeled by a graph with two types
of nodes: dimension nodes represent traffic protocols and observation nodes represent the
state of a certain host in a given time interval. Edges are also of two types: trace edges link
observation nodes of consecutive time intervals and attraction edges link observation nodes
with dimension nodes and have weight proportional to the traffic of that type.

The layout of the above graph is computed starting with a fixed placement of the di-
mension nodes and then executing a modified version of the Fruchterman-Reingold force-
directed algorithm [FR91] that aims at achieving uniform edge lengths. The authors show
how intrusion detection alerts can be associated with visual patterns in the layout of the
graph.

Figure 21.2 Evolution of network traffic over time (thumbnail of image from [MMK07]):
dimension nodes represent types of traffic and observation nodes represent the state of a
host at a given time.

EtherApe [Tol] shows traffic captured on the network via the pcap interface (Figure 21.3).
A simple circular layout places the hosts around a circle and represents network traffic
between hosts by straight-line edges between them. Each protocol is distinguished by a
different color and the width of an edge shows the amount of traffic. This tool allows to
quickly understand the role of a host in the network and the changes in traffic patterns
over time. Beyond the graphical representation, it is also possible to display detailed traffic
statistics of active ports.

658 CHAPTER 21. COMPUTER SECURITY

Figure 21.3 Traffic monitoring with Etherape (thumbnail of image from [Tol]). The size
of the nodes and the thickness of the edges are proportional to the traffic volume. The color
of an edge denotes the prevalent protocol of the associated traffic.

RUMINT [Con07] system (named after RUMor INTelligence) is a free tool for network
and security visualization (Figure 21.4). It takes captured traffic as input and visualizes it
in various unconventional ways. The most interesting visualization related to graph drawing
is a parallel plot that allows one to see at a glance how multiple packet fields are related.
An animation feature allows to analyze various trends over time.

Figure 21.4 Visualization of an NMAP scan with RUMINT (thumbnail of image
from [Con07]).

21.2. NETWORK MONITORING 659

21.2.3 Internal vs. External Hosts

In [YYT+04], the authors apply a simple bipartite drawing technique to provide a visu-
alization solution for network monitoring and intrusion detection (see Figure 21.5). The
nodes, representing internal hosts and external domains, are placed on three vertical lines.
The external domains that send traffic to some internal host are placed on the left line.
The domains of the internal hosts are placed on the middle line. The external domains that
receive traffic from some internal host are placed on the right line. Each edge represents a
network flow, which is a sequence of related packets transmitted from one host to another
host (e.g., a TCP packet stream). Basically, the layout represents a tripartite graph. The
vertical ordering of the domains along each line is computed by the drawing algorithm with
the goal of minimizing crossings.

The tool uses a slider to display network flows at various time intervals and provides
three views. In the global view, the entire tripartite graph is displayed to show all the
communication between internal and external hosts. In the internal view and domain view,
the tool isolates certain parts of the network, such as internal senders and internal receivers,
and correspondingly displays a bipartite graph. The domain view and internal view are
easier to analyze and provide more details on the network activity being visualized but on
the other hand, the global view produces a high-level overview of the network flows. The
authors apply the tool in various security-related scenarios, such as virus outbreaks and
denial-of-service attacks.

In [BFN04], the authors use a matrix display combined with a simple graph drawing
method in order to visualize the traffic between domains in network and external domains
(see Figure 21.6). To visualize the internal network, the authors use a square matrix: each
entry of the matrix corresponds to a host of the internal network. External hosts are
represented by squares placed outside the matrix, with size proportional to the traffic sent
or received.

Straight-line edges represent traffic between internal and external hosts and can be colored
to denote the predominant direction of the traffic (outgoing, incoming, or bidirectional).
The placement of the squares arranges hosts from subnets of the same size along the same
vertical line and attempts to reduce the number of edge crossings. Further details on the
type of traffic can be also displayed in this tool. For example, vertical lines inside each
square indicate ports with active traffic. This system can be used to visually identify traffic
patterns associated with common attacks, such as virus outbreaks and network scans.

21.2.4 Similarity Analysis for Traffic Logs and Scans

In [GB98], the authors present a technique to visualize log entries obtained by monitoring
network traffic. Each log entry stores a multidimensional vector whose elements correspond
to features of the network traffic, including origin IP, destination IP, and traffic volume. The
authors build a weighted similarity graph for the log entries using a simple distance metric
for two entries given by the sum of the differences of the respective elements. The force-
directed drawing algorithm of [Cha96] is used to compute a 2D drawing of the similarity
graph of the entries, which shows clusters of similar entries (see Figure 21.7). For example,
this visualization allows to focus on entries associated with small clusters, which denote
unusual events that could be associated with anomalous behavior of the network or a security
breach.

The work by [MMB05] considers network scans, often used as the preliminary phase of
an attack. The authors develop a visualization system that shows the relationships between
different network scans (see Figure 21.8). The authors set up a graph where each node

660 CHAPTER 21. COMPUTER SECURITY

Figure 21.5 Global view of network flows using a tripartite graph layout: nodes rep-
resent external domains (on the left and right) and internal domains (in the middle)
and edges represent network flows (packet streams) between domains (thumbnail of im-
age from [YYT+04]).

Figure 21.6 Visualization of internal vs. external hosts using a matrix combined with a
straight-line drawing. Internal hosts correspond to entries of the matrix while external hosts
are drawn as squares placed around the matrix. The size of the square for an external host is
proportional to the amount of traffic from/to that host (thumbnail of image from [BFN04]).

represents a scan and the connection between them is weighted according to some metric
(similarity measure) that is defined for the two scans. Features taken into consideration for
the definition of the similarity measure include the origin IP, the destination IP, and the
time of the connection. To avoid displaying a complete graph, the authors define a minimum
weight threshold, below which edges are removed. The LinLog force-directed layout method
[Noa04] is used for the visualization of this graph. In the drawing produced, sets of similar
scans are grouped together, thus facilitating the visual identification of malicious scans.

21.2. NETWORK MONITORING 661

Figure 21.7 Similarity graph of traffic log entries (thumbnail of image from [GB98]).

Figure 21.8 Similarity graph of network scans (thumbnail of image from [MMB05]).
Nodes represents scans. Only edges with weight (similarity) above a certain threshold are
displayed.

662 CHAPTER 21. COMPUTER SECURITY

21.2.5 Visualization of Address Space

The shift in the address space from IPv4 to IPv6 requires new visualization tools for viewing
network activity [BvO09]. The authors of [BvO09] observe that interesting information can
be drawn from patterns in the number of IPv6 packets that go between same source and
destination addresses. Since the size of each address is 128 bits, it is not trivial to visualize
this information. However, IPv6 addresses are allocated in a standardized hierarchical
manner in order to keep global routing tables efficient. The work of [BvO09] exploits this
assignment pattern to visualize packet information from 4.5 hours of network traffic using
treemaps.

In Figure 21.9, the destination addresses of IPv6 packets are displayed. Each rectangle
is split into levels that represent the hierarchical nature of the addresses. The size of every
rectangle is determined by the number of packets routed to this address. The protocols of
the packets are distinguished with colors, e.g., dark gray represents TCP. This visualization
of the address space can be used to find frequent destinations, sources that have similar
destination behavior, as well as patterns in the type of traffic routed.

Figure 21.9 A treemap visualization of IPv6 source addresses, destination ports, and
packet count of network traces. The colors are used to display the protocol of each packet
(thumbnail of image from [BvO09]).

21.2.6 Visualization of Name Server Migration

Recall that a name server finds the IP address of a domain name queried by a computer. To
find this IP address, a name server queries other name servers, including root servers. A root

21.2. NETWORK MONITORING 663

server is responsible for the root zone of the domain name space. Specifically, root servers
keep a database of the authoritative name servers for the top-level domains (e.g., .com, .edu,
.net, .org, etc.). Since the number of root servers is small and their role is very important
in resolving domain names, each of them is implemented via a number of computers, called
instances, that provide efficiency and resilience for that root server. Hence, when a name
server is trying to answer a query, its request is sent to one of the instances depending
on the status of the routing. Migration happens when the same name server is served by
different instances of the same root server across time.

The authors of [DSN12] describe an animated visualization of migration of name servers
between instances of a single root server, the K-root server. We refer to name servers that
query the K-root server as clients. The migration process is visualized between instances
by measuring the number of clients served and the total number of queries received by
each instance. This information allows to monitor changes in migration patterns and in the
workload of each instance over time. Moreover, it also helps to observe any anomalies in
changes. For example, one instance is suddenly flooded by requests or clients of a specific
Internet Service Provider change root servers in a suspicious pattern.

Two interesting animated visualization techniques are proposed to observe migration
between the instances. Both visualizations are based on a migration graph G where each
node is an instance of the root server and two nodes are connected if migration between
the two is considered to be usual. The first visualization technique, country map, uses a
geography-based layout to show the migration of clients (see Figure 21.10(a)). Each instance
is represented as a bounded region of a distinct color, and its size is proportional to the
number of clients that it currently serves. If two instances are exchanging clients, then they
are adjacent on the map. Unusual migration of clients is represented via a flow traversed
by bubbles with size proportional to the amount of flow. The second visualization, octopus
map, represents instances as circles connected by “tentacles” to show the flow of usual
migration (see Figure 21.10 (b)). The width of a tentacle is proportional to the amount
of flow between the two instances it connects, while the color is related to the colors of
the corresponding instances. Unusual changes are represented by arrows connecting non-
adjacent instances.

Drawing of the first visualization consists of constructing a planar graph from the migra-
tion graph G (if G is not planar already) as a backbone for the final graph. A straight-line
drawing of the backbone preserving its planar topology is drawn in such a way that each
vertex has enough area around it to fit the average number of the clients that it serves in a
given time period. This is achieved by using a spring embedder algorithm [DETT99] where
the charge and the lengths depend on the number of clients an instance and its adjacent
instances serve. For smoother visual transition between time intervals in the animation,
the drawing of the backbone is modified to maximize the angles between adjacent edges.
This step is done by adding new edges to the drawing and using constrained Delaunay
triangulation. The skeleton obtained from this step is then adjusted for each specific time
interval during animation.

Octopus map drawing involves computing a topology for the migration graph G such
that the number of crossings between its edges is minimized. Then a straight-line drawing
for G respecting the computed topology is built. During the animation steps, the vertices
and edges of G are substituted by circles and tentacles, respectively, and any intersections
between the shapes are removed. The challenge is then to scale the drawing to fit into an area
where the animation is projected. For this purpose, a constrained spring embedder [DLR11]
is used to preserve the original planar topology and ensure that no intersections between
the shapes appear.

664 CHAPTER 21. COMPUTER SECURITY

(a)

(b)

Figure 21.10 Snapshots of animations of client migration between instances of the K-
root server. (a) A country map drawing where instances are represented as shapes of
distinct colors and borders signify usual exchanges of clients between the instances. Unusual
migration is displayed via a flow traversed by bubbles of size proportional to the number
of clients migrated. (b) An octopus map drawing of the same data as in the country map
drawing above. Each circle is an instance of the K-root server, a tentacle represents an
expected migration and its width is proportional to the number of clients exchanged, while
a gray arrow shows an unusual migration (thumbnails of images from [DSN12]).

21.3. BORDER GATEWAY PROTOCOL 665

21.3 Border Gateway Protocol

The Border Gateway Protocol (BGP) manages the routing of IP packets across different
Autonomous Systems (AS), which can be informally viewed as collections of hosts under
the same administrative control. In this section, we survey selected visualization methods
for the Border Gateway Protocol that can be used to discover attacks, anomalies, and faults
in the routing network.

21.3.1 Topology of Autonomous Systems

VAST (Visualizing Autonomous System Topology) [OKB06] is a tool that uses 3D straight-
line drawings to display the BGP interconnection topology of Autonomous Systems (see
Figure 21.11). The goal of the tool is to allow security researchers to quickly extract
relevant information from raw routing datasets.

Figure 21.11 Some large autonomous systems in the Internet visualized with VAST
(thumbnail of image from [OKB06]).

VAST employs a quad-tree to show information about an Autonomous System and an
octo-tree to represent relationships between multiple Autonomous Systems. The visualiza-
tion allows users to efficiently detect routing malfunctions and sensitive points, including
the following ones:

• address-space hijacking attacks, where an Autonomous System maliciously sends
routing announcements crafted to attract to itself traffic destined to IP addresses
that belong to a different Autonomous System, e.g., to create alternative versions
of popular websites;

• anomalous routing announcements, which accidentally cause portions of the In-
ternet to become temporarily unreachable; and

• critical portions of the Internet topology, which are essential for its reliable op-
eration.

666 CHAPTER 21. COMPUTER SECURITY

The authors have also developed another tool, called Flamingo, that uses the same graphical
engine as VAST but is used for real-time visualization of network traffic.

21.3.2 BGP Monitoring

BGP Eye [TRNC06] visualizes in real time the status of BGP activity with easy-to-read
layouts (see Figure 21.12) and supports root-cause analysis of BGP anomalies. Its main
objective is to track the healthiness of BGP activity, raise an alert when an anomaly is
detected, and indicate its most likely cause. In particular, the authors show how BGP Eye
can be used to analyze two Internet anomalies. First, they use the tool to study a worm
outbreak, detecting the ASes that contributed the most to the spread of the infection. In the
second use case, BGP Eye visualizes how prefix hijacking affects various ASes and routing
tables over time.

BGP Eye provides two different types of visualization of BGP dynamics:

• The Internet-centric view uses layered straight-line drawings to display the in-
teraction between Autonomous Systems (AS) in terms of BGP announcements
exchanged. The colors indicate the deviation of current values in the system from
the historic ones, allowing to notice any anomalies. Displaying the global view
also helps to track the propagation of a problem through the entire Internet, e.g.,
its growing rate and spreading.

• The Home-centric view, which uses a radial drawing, is designed to present BGP
activity from the perspective of a specific Autonomous System. In this visualiza-
tion, the granularity is increased to the router level. The inner ring contains the
routers of an Autonomous System and the outer ring contains their peer routers,
belonging to other Autonomous Systems. In the outer ring, the layout method
groups together routers belonging to the same Autonomous System and uses a
placement algorithm that reduces the distance between connected nodes.
In Figure 21.12 (b) the size of each AS represents the moving average of the num-
ber of BGP events originated by the AS. The thickness of AS-AS links represents
the number of BGP events traversing this link. The color of lines and nodes gives
information on the deviation of the current sample from its historical trend. The
minimum deviation value is shown with a blue color while red is the maximum
deviation.

21.3.3 BGP Evolution

BGPlay [BMPP04] and iBGPlay provide animated graphs of the BGP routing announce-
ments for a certain IP prefix within a specified time interval (see Figure 21.13). Both
visualization tools are targeted to Internet Service Providers. Each node represents an Au-
tonomous System, and paths are used to indicate the sequence of Autonomous Systems
needed to be traversed to reach a given destination according to a given announcement.
The resulting graphs can be used to discover faults in the links traversed by the traffic flows
and to check the consistency of router configurations.

BGPlay shows the paths to the chosen destination (prefix) that appear in announcements
collected by observation points spread over the Internet. iBGPlay shows data privately
collected by one ISP. The ISP can obtain from iBGPlay visualizations of outgoing paths
from itself to any destination. The drawing algorithm is a modification of the force-directed
approach that aims at optimizing the layout of the paths.

21.3. BORDER GATEWAY PROTOCOL 667

(a)

(b)

Figure 21.12 Visualizations in BGP Eye: (a) Internet-centric view; and (b) Home-centric
view (thumbnails of images from [TRNC06]).

668 CHAPTER 21. COMPUTER SECURITY

Figure 21.13 In BGPlay, nodes represent Autonomous Systems, and paths are sequences
of Autonomous Systems to be traversed to reach the destination (thumbnail of image
from [BMPP04]).

21.4 Access Control

This section considers selected graph-based visualization techniques for several aspects of
access control.

21.4.1 Rule-Based Access Control

The RubaViz system [MFG+06] is a graphical tool for managing and querying rule-based
access control systems (see Figure 21.14). RubaViz makes it easy to answer questions like

“What group has access to which files during a given time span?”

The system constructs a graph whose nodes are subjects (people or processes), groups,
resources, and rules. Directed edges go from subjects/groups to rules and from rules to
resources to display allowed accesses. The layout is straight-line and upward.

21.4.2 File System Access-Control

TrACE [HPPT08] is a tool for visualizing file permissions in the NTFS file system (Fig-
ure 21.15). TrACE allows a user or administrator to gain a global view of the permissions
in a file system, thus simplifying the detection and repair of incorrect configurations leading
to unauthorized accesses.

21.4. ACCESS CONTROL 669

Figure 21.14 The RubaViz system for rule-based access control (thumbnail of image
from [MFG+06]).

Figure 21.15 Visualization of permissions in the NTFS file system with TrACE (thumb-
nail of image from [HPPT08]).

In the NTFS file system, there are three types of permissions:

• explicit permissions are set by each user or members of a group;

• inherited permissions are dynamically inherited from the explicit permissions of
the ancestor folders; and

• effective permissions are obtained by combining the explicit and inherited per-
missions.

670 CHAPTER 21. COMPUTER SECURITY

TrACE uses a treemap layout [JS91] to draw the file system tree and colors the tiles with a
palette denoting various access levels. The size of a tile indicates how much the permissions
of a folder/file differ from those of its parent and children. Advanced properties, such as a
break of inheritance at some folder, are also graphically displayed. The tool makes it easy to
figure out explicit and inherited permissions of which nodes affect the effective permissions
of a given node in the file system tree.

21.4.3 Trust Negotiation

Using a Web service requires an initial setup phase where the client and server enter into a
negotiation to determine the service parameters and the cost by exchanging credentials and
policies. Trust negotiation is a protocol that protects the privacy of the client and server
by enabling the incremental disclosure of credentials and policies. Planning and executing
an effective trust negotiation strategy can be greatly aided by tools that explore alternative
scenarios and show the consequences of possible moves.

In [YSTW05], the authors use a layered upward drawing to visualize automated trust
negotiation (ATN) (Figure 21.16). In a typical ATN session, the client and the server
engage in a protocol that results in the collaborative and incremental construction of a
directed acyclic graph, called trust-target graph. This graph represents credentials (e.g., a
proof that a party has a certain role in an organization) and policies indicating that the
disclosure of a credential by one party is subject to the prior disclosure of a set of credentials
by the other party [WL02]. A tool based on the Grappa system [BML97], a Java port of
Graphviz [EGK+04], is used to generate successive drawings of the trust-target graph being
constructed in an ATN session.

Figure 21.16 Drawing of the trust-target graph generated by a trust negotiation session
(thumbnail of image from [YSTW05]).

21.4. ACCESS CONTROL 671

21.4.4 Privacy Settings in Social Networks

User privacy in social networks is of concern to the users and companies providing this
service. To this end, social networking companies are creating more and more tools to
help users manage their privacy settings. The authors of [MLA12] describe a visual tool
for users of social networks to assess the visibility of their data among their friends in a
more accessible way. The tool parses the data of the user and creates a graph of groups
and subgroups from a list of friends of the user, where friends are split into groups using
modularity optimization. Hence, a node in the final graph represents a group of friends.
The user can then query this graph via zooming or direct queries to see the visibility of his
data among his friends. Authors chose a force-directed approach to display nodes in the
graph, and the color of the nodes represents the privacy level (see Figure 21.17).

(a)

(b)

Figure 21.17 Visualization of privacy settings in a social network. (a) Circles represent
groups of friends that have the same visibility of user’s data and the color shows the pri-
vacy level. (b) The granularity is increased to the level of specific information of a user,
e.g., a phone number, and its visibility among the user’s friends (thumbnails of images
from [MLA12]).

672 CHAPTER 21. COMPUTER SECURITY

21.5 Attack Graphs

21.5.1 Model

Given a network and a database of known vulnerabilities that apply to certain machines of
the network, one can construct a directed graph where each node is a machine (or group
of machines) and an edge denotes how a successful attack on the source machine allows to
exploit a vulnerability on the destination machine. This graph, called attack graph, can be
rather large and complex. Thus, it is essential to use automated tools to analyze attack
graphs.

21.5.2 Tools

A tool for visualizing attack graphs is described in [NJKJ05] (Figure 21.18). The system
clusters machines in order to reduce the complexity of the attack graph (e.g., machines
that belong to the same subnet may be susceptible to the same attack). The Graphviz
tool [EGK+04] is used to produce a layered drawing of the clustered attack graph. Similar
layered drawings for attack graphs are proposed in [NJ04].

Figure 21.18 Visualization of an attack graph (thumbnail of image from [NJKJ05]).

The authors of [CIL+10] describe Navigator, another tool for visualizing attack graphs for
displaying server-side, client-side, credential-based, and trust-based attacks in the network.
Navigator groups machines from the same subnet based on similar vulnerabilities but also
gives an “asset value” to each host that represents the importance level of this host in the
network. To display this information the authors use a modification of the strip treemap
algorithm by [BSW02] (see Figure 21.19). Navigator can display different types of attacks
that can be brought from one entity of the network to another. In Figure 21.19, rectangles
represent host groups of the same subnet and arrows show the steps that the attacker could
take to progress through the network. The background colors of the entities represent the
compromise levels achievable in the displayed attack scenarios. For example, red means that
the root is compromised while green stands for no compromise. The color of the arrows
shows the depth of the attack. The visualization tool can also show how the attack from
one subnet affects the rest of the network.

21.6. PRIVATE GRAPH DRAWING 673

(a)

(b)

Figure 21.19 Visualization of (a) an attack graph with importance levels of the hosts, (b)
multiple attacks between subnets, displayed as a hybrid edge of multiple colors (thumbnails
of images from [CIL+10]).

Given that there are multiple attacks and that the type and the depth of these attacks
can vary, the authors propose a way to aggregate this information into hybrid edges to
avoid clutter (see Figure 21.19(b)). For example, the solid part of an edge shows server-side
attacks, while client-side attacks are displayed as dashed segments.

The authors of [CIL+10] have modified the strip treemap algorithm to achieve visualiza-
tions that are aesthetically pleasing and easier to navigate. Their algorithm sets minimum
width and height for the hosts within a subnet to avoid very long and thin or very short
and wide host representations. Any extra space that is accumulated due to the minimum
rectangle requirements is then propagated and scaled to top layers. The modification also
preserves the order of the hosts when the user zooms in a host group.

21.6 Private Graph Drawing

In previous sections, graph drawing was used to visualize the data in a way that can help
to observe any anomalies in the network, privacy settings, or access control to a filesystem.
The authors of [GOT12] raise instead a privacy concern related to the process of drawing
a graph. With the recent shift of data storage to a cloud-based storage, one can no longer
assume that the input data for a graph drawing algorithm is stored locally. Hence, to draw
a graph, one accesses the data remotely. This raises concerns about the privacy of the
outsourced data. In [GOT12], a new model for graph drawing algorithms is proposed that
fits the cloud computing paradigm and preserves data privacy and its access pattern.

674 CHAPTER 21. COMPUTER SECURITY

Figure 21.20 (a) Input graph and (b) its treemap drawing. (c) Execution of a privacy-
preserving treemap drawing algorithm in the cloud storage model. The algorithm performs
the computation required for the drawing during an Euler tour of the graph. The edge
representation of an Euler tour is stored encrypted remotely. Each edge contains information
about its adjacent nodes, its direction in the Euler tour of the tree (up or down); and a link
to the next edge in the tour (e.g., edge a-b). During the traversal, the algorithm maintains
several variables: unit, the unit length of current rectangle; prevP and prevQ, location of
a previously drawn rectangle; and axis, the direction of the drawing which takes a value
of x or y. When the traversal is going down the tree, each node on the way is assigned x
and y coordinates of its corresponding rectangle, variables P and Q. After reaching a leaf
node the algorithm follows the Euler tour up the tree. The algorithm cannot reveal when
it sees the nodes it has already assigned since it would expose the height and the width of
the tree. Hence, it writes dummy coordinates for all nodes it encounters when going up the
tree, dummy.P and dummy.Q in the figure. (thumbnails of images from [GOT12]).

21.6.1 Compressed Scanning

In the compressed-scanning model, data is stored encrypted on the cloud and is permuted
using a pseudo-random permutation. A graph drawing algorithm is then split into rounds.
During each round, the algorithm scans remotely-stored data related to the graph. For
example, a data item can be a node or an edge of the graph. Once the data item is
retrieved, a small computation, which could potentially modify the item, is performed in
local private memory. The item is then re-encrypted and written back. A small private
memory is used to store information during each round. After each round, the data is
re-permuted according to a new permutation.

The number of rounds is specific to the graph drawing algorithm and does not depend
on the data. The privacy of the model comes from using data encryption and accessing
data in a nonrevealing manner. Note that during each round every data item is read only
once, and a new permutation is created so that nobody observing the access pattern of the
algorithm can deduce information about the graph, including its layout and depth. Hence,
the only information that is leaked from running a graph drawing algorithm is the size of
the graph, but not its topology. An algorithm satisfying this privacy property is said to be
data-oblivious.

21.6. PRIVATE GRAPH DRAWING 675

21.6.2 Data-Oblivious Drawing Algorithms

The authors show how to modify four classical graph drawing algorithms to fit the compressed-
scanning model, including symmetric straight-line drawings and treemaps [JS91], drawings
of trees, dominance drawings of planar acyclic digraphs [DTT92], and ∆-drawings of series-
parallel graphs [BCD+94]. These algorithms work over trees or construct a tree represen-
tation, e.g., spanning trees for acyclic digraphs.

The main technique is based on representing the graph via an Euler tour of the tree,
hence every edge is stored twice and traversal of the tree involves accessing each edge only
once. If the number of nodes in the graph is n, then three algorithms in [GOT12] use
only a constant amount of private storage during each round. While drawing a tree with
bounding rectangles uses log n private memory. For an illustration of the technique applied
to treemap drawings, see the examples in Figure 21.20.

The authors show that graph drawing methods that fit the compressed-scanning model
require T (A)sort(n) accesses to remote data storage. T (A) is the number of rounds specific
to the graph drawing algorithm A and does not depend on n. The factor sort(n) is the
number of rounds that is required to securely order the data according to a new permutation
after each round.

The work of [GS12] expands this line of work and shows how to simulate parallel al-
gorithms data-obliviously using the compresses-scanning model. Given a CRCW PRAM
algorithm B that runs in T (B) steps using a memory of size M and P ≤ M processors, the
authors show how to simulate B sequentially in a data-oblivious fashion in O(T (B)M logM)
accesses to remote data storage. This result can be used to obliviously compute st-
numberings, visibility representations, upward grid drawings, and orthogonal grid drawings
of planar graphs that are stored remotely.

Acknowledgments

This chapter is an extended version of a conference paper on graph drawing methods for
security visualization [TPP09]. Charalampos Papamanthou contributed to this chapter
while he was at Brown University. This work was supported in part by the U.S. National
Science Foundation under grant OCI–0724806. We are indebted to Massimo Rimondini
for detailed comments on an earlier version of this chapter. We also thank Giuseppe Di
Battista, Michael Goodrich, and Ioannis Tollis for useful suggestions.

676 CHAPTER 21. COMPUTER SECURITY

References

[BCD+94] P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis.
How to draw a series-parallel digraph. International Journal of Computa-
tional Geometry and Applications, 4:385–402, 1994.

[BFN04] R. Ball, G. A. Fink, and C. North. Home-centric visualization of net-
work traffic for security administration. In Proceedings of the 2004
ACM Workshop on Visualization and Data Mining for Computer Security,
VizSEC/DMSEC ’04, pages 55–64, New York, NY, USA, 2004. ACM.

[BML97] N. Barghouti, J. Mocenigo, and W. Lee. Grappa: A GRAPh Package in
JAVA. In Giuseppe Di Battista, editor, Graph Drawing, volume 1353 of
Lecture Notes in Computer Science, pages 336–343. Springer Berlin Hei-
delberg, 1997.

[BMPP04] G. Battista, F. Mariani, M. Patrignani, and M. Pizzonia. iBGPlay: A sys-
tem for visualizing the interdomain routing evolution. In Giuseppe Liotta,
editor, Graph Drawing, volume 2912 of Lecture Notes in Computer Science,
pages 295–306. Springer Berlin Heidelberg, 2004.

[BSW02] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2D space to display hierarchies.
ACM Transactions on Graphics, 21(4):833–854, 2002.

[BvO09] D. Barrera and P. C. van Oorschot. Security visualization tools and IPv6
addresses. In Proceedings of the 6th International Workshop on Visualiza-
tion for Computer Security, VizSec ’09, pages 21–26, 2009.

[Cha96] M. Chalmers. A linear iteration time layout algorithm for visualising high-
dimensional data. In Proceedings of the 7th conference on Visualization,
VIS ’96, pages 127–ff., Los Alamitos, CA, USA, 1996. IEEE Computer
Society Press.

[CIL+10] M. Chu, K. Ingols, R. Lippmann, S. Webster, and S. Boyer. Visualizing
attack graphs, reachability, and trust relationships with NAVIGATOR. In
Proceedings of the 7th International Symposium on Visualization for Cyber
Security, VizSec ’10, pages 22–33, New York, NY, USA, 2010. ACM.

[Con07] G. Conti. Security Data Visualization. No Starch Press, San Francisco,
CA, USA, 2007.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DLR11] W. Didimo, G. Liotta, and S. A. Romeo. Topology-driven force-directed
algorithms. In Ulrik Brandes and Sabine Cornelsen, editors, Graph Draw-
ing, volume 6502 of Lecture Notes in Computer Science, pages 165–176.
Springer Berlin Heidelberg, 2011.

[DSN12] G. Di Battista, C. Squarcella, and W. Nagele. How to visualize the K-Root
name server. Journal of Graph Algorithms and Applications, 2012. In print.

[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and sym-
metry display of planar upward drawings. Discrete & Computational Ge-
ometry, 7:381–401, 1992.

[Ead84] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

REFERENCES 677

[EGK+04] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull.
Graphviz and dynagraph – static and dynamic graph drawing tools. In
Michael Jünger and Petra Mutzel, editors, Graph Drawing Software, Math-
ematics and Visualization, pages 127–148. Springer Berlin Heidelberg,
2004.

[FMK+08] F. Fischer, F. Mansmann, D. A. Keim, S. Pietzko, and M. Waldvogel.
Large-scale network monitoring for visual analysis of attacks. In Proceed-
ings of the 5th International Workshop on Visualization for Computer Se-
curity, VizSec, pages 111–118, Berlin, Heidelberg, 2008. Springer-Verlag.

[FR91] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Software: Practice and Experience, 21(11):1129–1164, November
1991.

[GB98] L. Girardin and D. Brodbeck. A visual approach for monitoring logs. In
Proceedings of the 12th Conference on Systems Administration, LISA ’98,
pages 299–308, Berkeley, CA, USA, 1998. USENIX Association.

[GOT12] M. Goodrich, O. Ohrimenko, and R. Tamassia. Graph drawing in the cloud:
Privately visualizing relational data using small working storage. In Graph
Drawing, 2012. To appear.

[GS12] M. Goodrich and J. Simons. More graph drawing in the cloud: Data-
oblivious st-numbering, visibility representations, and orthogonal drawing
of biconnected planar graphs. In Graph Drawing, 2012. Poster.

[GT11] M. Goodrich and R. Tamassia. Introduction to Computer Security.
Addison-Wesley, 2011.

[HPPT08] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia. Effective
visualization of file system access-control. In Proceedings of the 5th In-
ternational Workshop on Visualization for Computer Security, VizSec ’08,
pages 18–25, Berlin, Heidelberg, 2008. Springer-Verlag.

[JS91] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In IEEE Visual-
ization, pages 284–291, 1991.

[Mar08] R. Marty. Applied Security Visualization. Addison-Wesley, 2008.

[MFG+06] J. Montemayor, A. Freeman, J. Gersh, T. Llanso, and D. Patrone. Infor-
mation visualization for rule-based resource access control. In Proceedings
of the 2nd Symposium on Usable Privacy and Security, SOUPS ’06, 2006.

[MFK+09] Florian Mansmann, Fabian Fischer, Daniel A. Keim, Stephan Pietzko, and
Marcel Waldvogel. Interactive analysis of netflows for misuse detection
in large IP networks. In DFN-Forum Kommunikationstechnologien, pages
115–124, 2009.

[MLA12] A. Mazzia, K. LeFevre, and E. Adar. The PViz comprehension tool for
social network privacy settings. In Proceedings of the 8th Symposium on
Usable Privacy and Security, SOUPS ’12, pages 13:1–13:12, New York, NY,
USA, 2012. ACM.

[MMB05] C. Muelder, K. Ma, and T. Bartoletti. A visualization methodology for
characterization of network scans. In Proceedings of the IEEE Workshops
on Visualization for Computer Security, VIZSEC ’05, pages 4–, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

678 CHAPTER 21. COMPUTER SECURITY

[MMK07] F. Mansmann, L. Meier, and D. Keim. Graph-based monitoring of host
behavior for network security. In Proceedings of the 4th International Work-
shop on Visualization for Computer Security, VizSec ’07, 2007.

[NJ04] S. Noel and S. Jajodia. Managing attack graph complexity through visual
hierarchical aggregation. In Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, VizSEC/DMSEC ’04,
pages 109–118, New York, NY, USA, 2004. ACM.

[NJKJ05] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiple coordinated views
for network attack graphs. In Proceedings of the IEEE Workshops on Vi-
sualization for Computer Security, VIZSEC ’05, pages 12–, Washington,
DC, USA, 2005. IEEE Computer Society.

[Noa04] A. Noack. An energy model for visual graph clustering. In Giuseppe Liotta,
editor, Graph Drawing, volume 2912 of Lecture Notes in Computer Science,
pages 425–436. Springer Berlin Heidelberg, 2004.

[OKB06] J. Oberheide, M. Karir, and D. Blazakis. VAST: visualizing autonomous
system topology. In Proceedings of the 3rd International Workshop on
Visualization for Computer Security, VizSec ’06, pages 71–80, New York,
NY, USA, 2006. ACM.

[TN00] J. Tölle and O. Niggemann. Supporting intrusion detection by graph clus-
tering and graph drawing. In Proceedings of 3rd International Workshop
on Recent Advances in Intrusion Detection, RAID ’00, Toulouse, France,
2000.

[Tol] J. Toledo. EtherApe a live graphical network monitor tool.
http://etherape.sourceforge.net/.

[TPP09] R. Tamassia, B. Palazzi, and C. Papamanthou. Graph drawing for security
visualization. In Ioannis G. Tollis and Maurizio Patrignani, editors, Graph
Drawing, volume 5417 of Lecture Notes in Computer Science, pages 2–13.
Springer Berlin Heidelberg, 2009.

[TRNC06] S. T. Teoh, S. Ranjan, A. Nucci, and C. Chuah. BGP eye: a new visu-
alization tool for real-time detection and analysis of BGP anomalies. In
Proceedings of the 3rd International Workshop on Visualization for Com-
puter Security, VizSec ’06, pages 81–90, New York, NY, USA, 2006. ACM.

[WL02] W. H. Winsborough and N. Li. Towards practical automated trust ne-
gotiation. In Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks, POLICY ’02, pages 92–103. IEEE
Computer Society Press, June 2002.

[XMB+06] I. Xydas, G. Miaoulis, P.-F. Bonnefoi, D. Plemenos, and D. Ghazanfar-
pour. 3D graph visualization prototype system for intrusion detection: A
surveillance aid to security analysts. In Proceedings of the 9th International
Conference on Computer Graphics and Artificial Intelligence, 3IA, pages
153–165, 2006.

[Yee06] G. Yee. Visualization for privacy compliance. In Proceedings of the 3rd
International Workshop on Visualization for Computer Security, VizSec
’06, pages 117–122, New York, NY, USA, 2006. ACM.

[YSTW05] D. Yao, M. Shin, R. Tamassia, and W. H. Winsborough. Visualization of
automated trust negotiation. In Proceedings of the IEEE Workshops on
Visualization for Computer Security, VIZSEC ’05, pages 8–, Washington,
DC, USA, 2005. IEEE Computer Society.

REFERENCES 679

[YYT+04] X. Yin, W. Yurcik, M. Treaster, Y. Li, and K. Lakkaraju. VisFlowCon-
nect: netflow visualizations of link relationships for security situational
awareness. In Proceedings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security, VizSEC/DMSEC ’04, pages 26–
34, New York, NY, USA, 2004. ACM.

