19

PIGALE

19.1 Introduction...............coooiiiiiiiiiiiiiiii i, 599
Why GPL? ¢ Chapter Organization

19.2 Data Structuresoooiiiiiiiiiiii 600
The Topological Quasi-Static Model ® Graph Properties

19.3 Basic Graph Algorithms......................oo 603

Depth-First Search ¢ Planarity and Nonplanar Subgraph
Exhibition * Connectivity Tests ® Augmentation of Planar
Graphs * Graph Symmetry and Clustering

19.4 Random Map Generatorscccoevvvviiiia.... 609

19.5 Graph Drawing Algorithms........................... 609
Planar Straight-Line Grid Drawings ® Spring Embedders
* Visibility Drawing and Variants * Contact Drawings ®

Hubert de Fraysseix Spectral Drawings in IR®

CNRS UMR 8557. Paris 19.6 Implementation ... 613
User Interface ¢ File Storage * Macro Recording

Patrice Ossona de Multi-Threaded Server

Mendez 19.7 Interfacing with PIGALE ... 615

CNRS UMR 8557. Paris References ... 617

19.1 Introduction

This chapter gives an overview of the Public Implementa-
oo tion of a Graph Algorithm Library and Editor (Pigale).
e Pigale integrates a graph algorithm library written in C++
v Basvor” and a graph editor based on the Qt© and OpenGL™ li-
- braries. This program runs under Linux, Mac 0S X™ and
lgale Windows™ platforms. It is particularly intended for aca-
demic researchers working on topological graph theory.
Pigale is available under GPL' license and may be downloaded on sourceforge.net at
http://pigale.sourceforge.net. Pigale may be used as a library, as a graph editor or
as a multi-threaded graph algorithm server.
The GNU General Public License is a free, copyleft license for software and other kinds
of works. the GNU General Public License is intended to guarantee your freedom to share

©Copyright Trolltech AS, Norway.

TMOpenGL is a trademark of Silicon Graphics, Inc.; Mac 0S X is a trademark of Apple Inc.; Windows is a
trademark of Microsoft.

1GNU General Public License.

599

600 CHAPTER 19. PIGALE

and change all versions of a program — to make sure it remains free software for all its
users (see http://www.gnu.org/licenses/gpl.html).

The library is built on an original data structure. This data structure optimizes operations
performed on static graphs.

19.1.1 Why GPL?

Free software has the following advantages, which we believe are essential for academic
software:

e It increases the exchanges between research centers and facilitates the integration
of algorithms originating from several contexts into a coherent framework, thus
inducing de facto new standards in the concerned field.

e It increases the visibility of the laboratories’s skills, thus offering a showcase
toward potential industrial partners and allows the development of industrial
software based on well-designed license-free libraries.

e It allows to reduce the economic gap between rich and poor countries and con-
tributes to the competitiveness of local laboratories and companies by reducing
the cost linked to the acquisition of foreign licenses.

e It allows the users to control the source code of sometimes strategic modules
of their projects and suppresses the dramatic dependence on a single software
provider, which ties the users to the perennity and the goodwill of a particular
actor.

19.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 19.2 discusses data structures for
representing graphs and their embeddings. In Section 19.3, we describe fundamental graph
algorithms provided by Pigale. The map generators available in Pigale are outlined in
Section 19.4. In Section 19.5, we present the drawing algorithms supported by Pigale. The
implementation of Pigale, including the graphical interface for creating graphs in Pigale
is illustrated in Section 19.6. Finally, in Section 19.7, we show an example of use of Pigale
as a software libary.

19.2 Data Structures

In this section, we present the graph model and data structures we have developed in
Pigale.

19.2.1 The Topological Quasi-Static Model

Pigale provides two main graph data structures, depending on whether one considers dense
graphs or sparse ones:

e For dense graphs, a matrix is used, which represents the adjacency relation among
vertices or the vertex-edge incidence relation;

e For sparse graphs, either a list of incidences (i.e., a list of all edges with vertex
incidences) or lists of adjacencies for the vertices are used.

19.2. DATA STRUCTURES 601

Although the matrix encoding allows constant-time adjacency testing, it does not allow to
list the edges incident to a vertex in constant time per incident edge. Also, this encoding
needs space quadratic in the number of vertices. As the Pigale software is mainly concerned
with topological graph algorithms, particularly traversal-based algorithms, it has been a
natural choice to consider list encodings of graphs. On the one hand, we shall allow to
input graphs encoded as a list of edge incidences in order to simplify the interface to other
software (see Figure 19.1). On the other hand, the internal representation of graphs is
tailored to fit the types of topological graph algorithms we mainly consider.

L=((57),(5,4),(4,3),(1,3),
(1,2),(2,3),(4,8),(8,7),
(8,5),(8,6),(6,7),(6,5),
(6,4),(4,7))

Figure 19.1 Encoding of a graph by a list of incidences

Internal graph representation is a major issue for the efficiency of graph algorithms.
Although most of the data structures used by graph algorithm libraries are oriented to
fully dynamic graphs, thus offering constant-time insertion and deletion operations, the
Pigale data structure is oriented to quasi-static graphs, that is, graphs on which only few
modifications are done. Moreover, these modifications mainly correspond to a sequence
of additions and (after some computations) of deletions of the added elements. In such a
context, it is of particular interest to index vertices by consecutive integer values from 1 to
n (where n is the order of the graph) and edges by consecutive integer values from 1 to m
(where m is the size of the graph).

Since Pigale is designed to ease the writing of topological graph algorithms, the data
structure is based on the mathematical notion of combinatorial map. A combinatorial map
is a triple (B, T, 0), where B is a set of half-edges, each called a brin (also sometimes called
flag or dart), T is a fixed point free involution of B whose orbits are the edges of the map,
and o is a permutation of B whose orbits are the vertices of the map.

This combinatorial structure is particularly efficient for map traversals. However, edges
and vertices only have an implicit description in this model. This is the reason why Pigale’s
graph description slightly differs from the one of the combinatorial map. The structure
describing maps in Pigale is based on the functions shown in Table 19.1, where V =
{1,...,n} is the index set of the vertices, E = {1,...,m} is the index set of the edges, and
B={-m,...,—1,1,...,m} is the index set of the brins.

602 CHAPTER 19. PIGALE

Note that for technical reasons, the vertex set, the edge set and the brin set are actually
{0,...,n}, {0,...,m} and {—m,...,m}. The operators are extended to 0 with reserved
values cir[0] = acir[0] = vin[0] = pbrin[0] = 0. (see Figure 19.2).

Operator Domain Description

—b B — B brin opposite to b (7(b))

cir[b] B — B brin next to b in circular order (o (b))
acir[b] B — B brin before b in circular order (o~ (b))
|b] B — E edge containing b

vin[b] B —V vertex incident to b

e E — B first brin of edge e

pbrin[v] V — B first brin incident to vertex v

Table 19.1 Functions of the data structure for maps in Pigale.

brin # Cir Acir Vin
—14 13 2 4
—-13 —12 10 6
—12 —11 —13 6
—11 10 —12 6
—10 -9 7 8
-9 -8 —-10 8
-8 7 -9 8
—7 -3 13 4
—6 5 5 2
-5 —4 —4 1
—4 -5 -5 1
-3 2 —7 4
-2 —1 12 5
—1 9 -2 5
1 8 14 7

2 —14 -3 4
3 6 4 3
4 3 6 3
5 —6 —6 2
6 4 3 3
7 -10 -8 8
8 1 1 7
9 12 —1 5
10 —13 —11 6
11 14 8 7
12 -2 9 5
13 —7 —14 4
14 1 1 7

Figure 19.2 Encoding of a graph by a combinatorial map.

19.2.2 Graph Properties

Since in our model vertices, edges and brins are represented by integer values, most of the
properties attached to the elements of the graph will be scalar. In order to reduce the slow
down of calls to constructors and destructors of complex types, it has been decided to favor
scalar properties.

19.3. BASIC GRAPH ALGORITHMS 603

Since the graph structure is a very general abstract one, most algorithms and applications
need more or less specific properties to be added to vertices, edges or brins. It appears that
class derivation, which is suitable in contexts where a limited number of distinct sets of
properties are meaningful, does not work well in our case. This is the reason why we
have opted for a more flexible framework in which properties may be added or suppressed
dynamically. Then only a few subsets of properties have to be distinguished, the subsets
corresponding to coherent views of a graph as a mere graph (i.e., a list of edge to vertex
incidences), a topological graph (where circular orders around the vertices are defined) or
a geometric graph (where vertices have coordinates, labels, colors, ...), leading to three
logical views in Pigale, namely: Graph, TopologicalGraph, and GeometricGraph, of the
set of graph properties stored in a GraphContainer data structure.

19.3 Basic Graph Algorithms

In this section, we describe the implementation of several basic graph algorithms in Pigale.

19.3.1 Depth-First Search

Depth-First Search (DFS) is central to the planarity algorithm implemented in Pigale.
It is responsible for a sensible percentage of the execution time. Thus, the optimization
of this particular algorithm has strong consequences on the efficiency of other important
algorithms.

One of the main characteristics of DFS is that the DFS-tree it builds is traversed several
times and that the tree/cotree partition it induces is intensively used in the planarity
testing algorithm. For these reasons, it appeared that an efficient optimization stands
in the renumbering of the vertices and the edges of the graph using the following scheme
(see Figure 19.3):

e the vertices are numbered 1,...,n in the order of first discovery by the DF'S;

e the tree edges are numbered 1,...,n — 1 in the order of first traversal by the
DFS. Precisely, brin i is adjacent to the parent of vertex (i + 1) and brin —i is
adjacent to vertex (i + 1);

e the cotree edges are numbered n, ..., m in order opposite to the order in which
their low incidences are met by the DFS. The positive brin is incident to the
lower vertex according to tree order.

From the above numbering, it follows that a traversal of the edges in DF'S order may be
simulated using a simple for (e=1; e<n; e++) loop. Also, testing if an edge belongs to the
tree is performed by a simple (e<n) test.

19.3.2 Planarity and Nonplanar Subgraph Exhibition

The linear-time planarity testing algorithm implemented in Pigale is based on the charac-
terization by de Fraysseix and Rosenstiehl [FR85, FR82, FR83a, FR83b] and its improve-
ment [FOdAMRO06, FOdM12, Fra08]. This algorithm is currently the fastest-implemented
planarity testing algorithm [BCPDO04].

A linear-time algorithm to find a Kuratowski subdivision in a nonplanar graph (see Fig-
ure 19.4) has been implemented in Pigale, based on a theoretical characterization of DFS
cotree-critical graphs [FOdMO01la, FOdM02, FOdMO03].

604 CHAPTER 19. PIGALE

Figure 19.4 A Kuratowski subdivision in a nonplanar graph.

This algorithm relies on the concept of DFS cotree-critical graphs, which is a by-product
of our planarity testing algorithms. Roughly speaking, a DFS cotree-critical graph is a
simple graph of minimum degree 3 having a DFS tree, such that any nontree (i.e., cotree)
edge is critical, in the sense that its deletion would lead to a planar graph. A first study of
DF'S cotree-critical graphs appeared in [FR83a], where it is proved that a DFS cotree-critical
graph is either isomorphic to K5 or includes a subdivision of K3 3 and no subdivision of K.

The algorithm consists of two steps:

1. Extraction of a DFS cotree-critical subgraph by a case analysis algorithm; and
2. Extraction of a Kuratowski subdivision from the DFS cotree-critical subgraph.

19.3. BASIC GRAPH ALGORITHMS 605

Step 2 is performed by an algorithm whose simplicity contrasts with the complexity of
its theoretical justification (which relies on the full characterization of DFS cotree-critical
graphs proved in [FOdMO03]. This algorithm roughly works as follows:

e [t first computes the set of the critical edges of a graph, using the property that
a tree edge is critical if and only if it belongs to a fundamental cycle of length 4
of some cotree edge to which it is not adjacent.

e Then, three pairwise non-adjacent non-critical edges are found to complete a
Kuratowski subdivision isomorphic to K3 3.

Figure 19.5 Finding a minimal subset of nonplanar edges. On the right is a Bezier
drawing of the planar graph obtained after deletion of the computed set of nonplanar edges.

This algorithm is the central routine of a heuristic for exhibiting an inclusion-minimal
set of edges whose deletion ensures the planarity of the graph (see Figure 19.5).

19.3.3 Connectivity Tests

Based on properties of regular orientations of planar graphs, Pigale offers a linear-time
algorithm to test whether a planar graph is 3-connected and a linear-time algorithm to
test whether a maximal planar graph is 4-connected [FOdMO01b, FOdM04, FOdMO01d]. The
study of graphs by means of special orientations is relatively recent. For instance, bipolar
orientations have become a basic tool in many graph drawing problems [OdM94, FOAMR95].

Constrained orientations (i.e., orientations with bounded indegrees) lead to new charac-
terizations of connectivity for planar undirected graphs. Although standard 3-connectivity
testing algorithms for planar graphs are heavily related to planarity testing algorithms (see
[HT73, Tar74] and PQ-tree algorithms), the algorithm in Pigale assumes that the input
graph is already embedded in the plane so the problem drastically reduces to the acyclic-
ity testing of a particular orientation. Concerning the 4-connectivity testing of a maximal
planar graph, the use of an indegree bounded orientation was already used in [CE91] to
enumerate triangles. In Pigale, the use of a specific orientation allows to further simplify
the algorithm. The 4-connectivity test itself also reduces to an acyclicity test. It should be
noted that no special data structure is used for these algorithms since in the planar case
the acyclicity of an orientation can be efficiently tested using a dual topological sort.

606 CHAPTER 19. PIGALE

19.3.4 Augmentation of Planar Graphs

Figure 19.6 Augmentation of a 3-connected planar graph.

Constrained orientations have many applications [FOdM94a, FMOdMR95] (see also above).
These orientations are a basic tool in solving combinatorial problems that preserve topolog-
ical properties [FOdMO01d]. Planar augmentations are a simple example of such problems.

Augmentation problems are concerned with the addition of dummy edges to a graph in
order to obtain some connectivity or maximality properties. For instance, the problem of
finding the minimum number of edges to augment a graph to a biconnected graph has been
solved in [ET76]. If the original graph is planar and if it is required to preserve the planarity,
the problem is NP-complete [Kan93]. Triangulating a biconnected graph while minimizing
the maximum degree has also been proved to be an NP-complete problem.

Pigale offers several optimal augmentation algorithms, including a linear-time algorithm
for augmenting a 3-connected planar graph to a maximal planar graph (see Figure 19.6)
that increases the degree of any vertex of the graph by no more than 6 (which is optimal)
[FOdM95, FOdM94b)].

19.3.5 Graph Symmetry and Clustering

Figure 19.7 Finding a symmetry of a graph.

19.3. BASIC GRAPH ALGORITHMS 607

Based on spectral analysis [FK92], Pigale offers a heuristic to find symmetries in a
general simple graph (planar or not) [Fra99, FOAMO6] (see Figure 19.7). These symmetries

Figure 19.8 3D view of the graph displaying the symmetry.

may actually be viewed in the 3D drawing built from the spectral analysis of the graph (see
Figure 19.8).

Using spectral analysis, Babai proved in 1978 that the abstract automorphism group of
any multigraph G having s distinct eigenvalues with respective multiplicities mi, ma, ..., ms
is a subgroup of w(m) ® w(ms) & ... ® w(ms), where w(m) denotes the real orthogonal
group of dimension m [BabT78]. As a consequence, if all the eigenvalues of G are simple, the
only automorphisms of G are involutions.

Some years before, Mani proved that every triconnected planar graph G can be realized
as the 1-skeleton of a convex polytope P in IR? such that all automorphisms of G are
induced by isometries of P [Man71]. One non trivial consequence of this result is that
the automorphism group Aut(G) of a triconnected planar graph G has a chain of normal
subgroups Aut(G) = Go> Gy > ...> Gy, = 1, where each quotient G;/G;_1 is either cyclic,
or isomorphic to a symmetric group or As.

The result of Mani may be expressed in a weaker form: any triconnected planar graph
has an embedding f into IR3, such that Aut(G) is the group of isometries of IR globally
preserving the point set P = f(V(G)), that we shall denote by w(3, P).

These two results are generalized in [FOdMO06], where it is proved that every twin-free
loopless multigraph G has some regular embedding, that is, some embedding f : V(G) — IRk
such that Aut(G) is isomorphic to the group w(k, f(V(QG))) of isometries of IR¥ globally pre-
serving f(V(G)), and that this group might be expressed as a subgroup of a group sum
relying on spectral considerations. This result is proved using techniques similar to those
used in the symmetry detection heuristic presented in [Fra99]. The problem of finding
regular embeddings is reduced to the one of finding metrics on the vertex set of the multi-
graph that define Fuclidean, reconstructing, and commuting distance matrices, which may
be built from particular symmetric real matrices with 0 on the diagonal (the commuting
reconstructing predistances).

Several such distances have been implemented in Pigale (see Table 19.2 and Figure 19.9).

608 CHAPTER 19. PIGALE

Figure 19.9 Embedding a cube in IR*~! using different distances (from left to right):
Czekanovski-Dice, translated adjacency, and Laplacian.

R . Y N(@) N N(j)|
Czekanovski-Dice distance dist®(4,5) = 1 — |7
IN ()| + NG
: : 205 N-@ONN-() IN"(@) N N*()]
Oriented distance dist? i,5)=1— | - ~— — ; -
G = @ IO IV G+ IV O)

0, ifi=joriand j are adjacent

Adjacency distance (not dist? (4,5) = { 1 otherwise

Euclidean)
0, ifi=j
Translated adjacency dist®(i,j) =< 1— 2 ifi and j are adjacent
distance 1, otherwise
0, ifi=jy
Bisection distance dist®(4,5) =< 1— m, if 4 and j are adjacent
1, otherwise
IR? distance dist*(i,) = (2(3) — 2(7))° + ((0) — y(3))?
0, ifi=j
Laplacian distance dist®(i,5) = { 2n —d(i) — d(j), if 4 and j are adjacent
2n —d(i) — d(j) + 2, otherwise
0, ifi=j
Q distance dist2 (i,§) = 1,) if ¢ and.j are non adjacent
~ Taodn otherwise

Table 19.2 Choice of distances for the spectral analysis/embedding in Pigale; N (i) (resp.
N~(i), N*(i)) denotes the set of the neighbors (resp. in-neighbors, out-neighbors) of vertex
i and d(i) = |N(i)| denotes the degree of vertex i.

19.4. RANDOM MAP GENERATORS 609

19.4 Random Map Generators

Several polynomial-time random planar map uniform generators have been implemented by
Gilles Schaeffer in Pigale [Sch99]:

e planar maps (connected, 2-connected, or 3-connected),

planar cubic maps (2-connected, 2-connected bipartite, 3-connected, 3-connected
bipartite, or dual-4-connected),

planar 4-regular maps (2-connected, 3-connected, or bipartite),
e planar bipartite maps.

Also, linear-time uniform generators of outerplanar maps have been implemented by
Nicolas Bonichon [BGHO03].

The implementation of these algorithms in Pigale uses the uniform pseudo-random num-
ber generator of Matsumoto and Nishimura [MN98]. This pseudo-random number generator
is also used to generate random graphs where edges are independently included with fixed
probabilities (Erdés-Rényi model).

19.5 Graph Drawing Algorithms

This section is devoted to the graph drawing algorithms provided by Pigale.

19.5.1 Planar Straight-Line Grid Drawings

Figure 19.10 Fraysseix Pach Pollack (with edge augmentation) and Schnyder (using
vertex augmentation).

Pigale includes several linear-time planar straight-line drawing algorithms for simple
planar graphs, including the Fraysseix-Pach-Pollack algorithm [FPP88, FPP90] and Schny-
der’s algorithm [Sch89, Sch90] (see Figure 19.10). Some bounds and conjectures on the size
of straight-line drawings may be found in [FOdMO01c].

A linear-time compact convex drawing algorithm for 3-connected planar graphs [BFM04],
as well as a compact polyline drawing for simple planar graphs [BLSMO02], have been added
by Nicolas Bonichon (see Figure 19.11).

610 CHAPTER 19. PIGALE

Figure 19.11 Compact convex drawing and compact polyline drawing.

19.5.2 Spring Embedders

Figure 19.12 Tutte drawing and a drawing with curved edges based on a spring embedder
initialized with Tutte drawing.

The Tutte drawing of a 3-connected planar graph [Tut60, Tut63] is implemented in Pigale
and usually represents a good starting drawing for a spring embedder drawing algorithm (see
Figure 19.12). Our spring embedder has the particularity to preserve an initial geometric
map (relative positions and crossings) of a (nonplanar) graph.

19.5.3 Visibility Drawing and Variants

Visibility and rectilinear drawings [RT86, TT86] have received much attention because of
their good readability (see Figure 19.13). All the algorithms mentioned in this section are
linear-time algorithms. With the exception of the Polrec algorithm, all the representations
described in this section concern simple planar graphs. The area of the drawing may be
further reduced by allowing horizontal and vertical visibility, as in an algorithm proposed
by de Fraysseix, Pach, and Pollack (see Figure 19.14).

19.5. GRAPH DRAWING ALGORITHMS 611

’ﬁ‘r'_l ‘ 100]
‘ 09 ‘
[e J [] — i
_14 I III
[o5 J[08] S0 IIi

— e Tl
C = ‘
C o ‘ | = ‘

Figure 19.13 Visibility drawings. The drawing on the right is within a 10 x 10 grid.

\ 02 |

[Jle] o]
16 05 H os | 07
12 10

o o]

Figure 19.14 Rectilinear drawing constructed by an algorithm by de Fraysseix, Pach,
and Pollack.

C_o— 7
D-T-EX1014 D-T-EX1014

Figure 19.15 Polrec drawings based on a DFS-tree and a BFS-tree, respectively.

The Polrec algorithm produces a drawing where vertices are represented by boxes, a
tree is represented using straight-line vertical segments and cotree-edges are represented by
U-shaped polylines (see Figure 19.15). Such a representation can be used for non-simple
nonplanar graphs with loops (see Figure 19.16).

612 CHAPTER 19. PIGALE

==

]
L i

% ﬁ 1 09

[i [02 [z 5 oq|[o7 T 18] EF 16 8
% [LTI [

[12 I 14] [19 [17 |

= [[[[

[] [05]

Random_1 Random_t

Figure 19.16 DFS-based and BFS-based Polrec representations of a nonplanar graph.

19.5.4 Contact Drawings

An emerging representation of graphs concerns contact and intersection representations.
All the algorithms mentioned in this section are linear-time algorithms and concern simple
planar graphs.

U]
8
B —
i
—l—
21} B .
22}
o
] B mom B2 =]
1o
i
i

=]

Figure 19.17 Representation of a bipartite planar graph by contact of segments.

Pigale offers a representation of bipartite planar graphs as contact graphs of horizontal
and vertical straight line segments [FOdMP91, FOdAMP95] (see Figure 19.17), as well as a
representation of planar graphs by contacts of T-shaped vertices or by contacts of trian-
gles [FOAMR94, FOAMRO7] (see Figure 19.18). The generalization of the representation
of planar graphs by contact of triangles to linear hypergraphs [FOdMRO0S8] has not been
implemented yet.

19.5.5 Spectral Drawings in IR®

As mentioned in Section 19.3.5, spectral analysis may be used to generate 3D visualizations
of (nonplanar) graphs in polynomial time (see Figure 19.19). The time complexity of the
algorithm derives from the complexity of the computation of the eigenvalues of an n x n
matrix, where n is the number of vertices of the represented graph.

19.6. IMPLEMENTATION 613

S vy
e sy
Kl OCRITF
RS WAN WY
RS 2= e
DR/ Savaval
m‘“’wﬁ;‘%&\ ""&\\'&fﬁﬁsﬂi

A

PSS SN
N2 t5 9
DN ran 1P %

n 3
B5} o)

Figure 19.19 3D embedding of a nonplanar graph with 3D symmetries.

19.6 Implementation

19.6.1 User Interface

Pigale provides a graph editor that allows the user to load, save or generate graphs, to edit
them, to check the properties of the graph (automatically displayed by the program), to
perform several transformations (augmentations, orientations, computation of duals, etc.),
and to compute representations of the graph.

While mouse-editing a graph, a user can add, delete, contract, bisect, orient, reorient,
unorient, and color edges, and can set their width; the user can also add, move, delete, and
color vertices, and can put numerical labels on them.

19.6.2 File Storage

We use a general proprietary format, called TGF. A TGF file contains records, here corre-
sponding to graphs. Each record consisting of a variable number of fields. One of its main
advantage is that we can write and read any complex data structure. But it is dependent
of the processor type (e.g., big-endian or little-endian).

614 CHAPTER 19. PIGALE

X O ota pigale Editor: 1.3.12

Figure 19.20 Pigale editing window.

We have partially implemented the GRAPHML file format (cf. [BEHT02] and the web
site http://graphml.graphdrawing.org/), which is now the only way to add text labels
to the vertices.

We use a very simple ASCII file structure to store graphs. For example, the following
file defines a graph, called Triangle, with three vertices, labeled 10, 20, 30, and three edges.
The first 0 on the last line indicates the end of the list of edges. The second zero indicates
the end of the graph data.

PIG:0 Triangle
10 20

20 30

30 10

00

19.6.3 Macro Recording

One can record any number of functions from the menus into macros, which can be saved
as text files.

A macro can be repeated any number of times (possibly until the user will press the ESC
key). If the first record of the macro is not a call to a graph generator, the macro will start
loading the next graph of the current file.

Macros can be used to develop and benchmark algorithms and to test conjectures.

19.6.4 Multi-Threaded Server

The Pigale editor may be put in server mode, which allows the editor to be controlled
by a client application. A simple program client is provided as an example of how to
communicate with the server. The client reads its instructions from stdin so that it should

19.7. INTERFACING WITH PIGALE 615

not be difficult for applications to communicate with the server. However, it is not difficult
to write, for instance, a web server that acts as a front end to Pigale.

19.7 Interfacing with PIGALE

As mentioned in its name, Pigale is not only an editor, but also a library. Nearly all the
algorithms in Pigale may be run in a non-graphic context through a library call.

An example of a simple C++ program using Pigale library is given below.

#include <Pigale.h>

int main ()

{

GraphContainer GC; // defined in TAXI/graph.h

// GC is the object that will contain all the information of a graph.
int n = 4; // n = number of vertices [1,n]

int m = 5; // m = number of edges [1,m]

GC.setsize(n,m); // defines the size of the container

/*

- a tvertex v is an integer v(): 1 <= v() <= n = GC.nv()

- a tedge e is an integer e(): 1 <= e() <= m = GC.ne()

- a tedge e is composed of 2 tbrin bO,bl equal to e() and -e()
tvertex, tedge, tbrin behave like integers in many respects

*/

Prop<tvertex> vin(GC.Set (tbrin()),PROP_VIN);
// vin is an array of tbrin whose values are tvertex.

// Create the edges: each edge (tedge) is incident to 2 vertices (tvertex)

vin[1] = 1; vin[-1] = 2; // edge 1 is incident to vertices 1 and 2
vin[2] = 1; vin[-2] = 3;
vin[3] = 2; vin[-3] = 3;
vin[4] = 3; vin[-4] = 4;
vin[5] = 2; vin[-5] = 4;

// create a topological graph access
TopologicalGraph G(GC); // defined in TAXI/graphs.h

// print the number of vertices and edges
cout << "Nodes: " << G.nv() << "\tEdges: " << G.ne()<< endl;

// print the edges (if e is a tedge, e() is the int that represents it)
cout << "Edges:" << endl;
for(tedge e = 1; e <= G.ne();e++)

cout << e() << " = [" << G.vin[e] << "," << G.vin[-e] << "]" <<endl;

// For planarity test, graphs should be LOOPLESS. You can remove loops:
// int nloops = RemoveLoops();

// Compute a planar embedding or return -1
if (G.Planarity() == 0)
{cout << "not planar" << endl; return -1;}

616 CHAPTER 19.

// At each vertex v there is a tbrin G.pbrin[v] incident to it:
// G.vin[G.pbrin[v]] = v;
// So we can print the planar map, that is the cirular order of
// half edges around each vertex.
cout << "Map (half edges):"<<endl;
for(tvertex v = 1; v <= G.nv() ; v++)
{cout << v() <" > ";
tbrin first = G.pbrin([v];
tbrin b = first;
do
{cout << b() << " ",
}
while((b = G.cir[b]) != first);
cout << endl;
}
// Or you could print the circular order of vertices aroud each vertex
cout << "Map (vertices):"<<endl;
for(tvertex v = 1; v <= G.nv() ; v++)
{cout << v() <" > ";
tbrin first = G.pbrin([v];
tbrin b = first;
do
{cout << G.vin[-b] () << " ";
}
while((b = G.cir[b]) != first);
cout << endl;
}
return O;

}

PIGALE

REFERENCES 617

References

[Bab78] L. Babai. Automorphism group and category of cospectral graphs. Acta
Math. Acad. Sci. Hung., 31:295-306, 1978.

[BCPDO4] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop
minding your P’s and Q’s: implementing fast and simple DFS-based
planarity and embedding algorithm. In Graph Drawing, volume 2912
of Lecture Notes in Computer Science, pages 25-36. Springer, 2004.

[BEH02] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Mar-
shall. GraphML progress report: Structural layer proposal. In Springer-
Verlag, editor, Proc. 9th Intl. Symp. Graph Drawing (GD ’01), volume
2265, pages 501-512, 2002.

[BFMO04] N. Bonichon, S. Felsner, and M. Mosbah. Convex drawings of 3-
connected planar graphs (extended abstract). In J. Pach, editor, Graph
Drawing 2004, volume 3383 of Lecture Notes in Computer Science,
pages 60-70. Springer Verlag, 2004.

[BGHO3] N. Bonichon, C. Gavoille, and N. Hanusse. Canonical decomposition of
outerplanar maps and application to enumeration, coding and genera-
tion. In Springer-Verlag, editor, 29th International Workshop, Graph-
Theoretic Concepts in Computer Science (WG), volume 2880 of Lecture
Notes in Computer Science, pages 81-92, 2003.

[BLSMO02] N. Bonichon, B. Le Saéc, and M. Mosbah. Optimal area algorithm for
planar polyline drawings. In Springer-Verlag, editor, 28th International
Workshop, Graph-Theoretic Concepts in Computer Science (WG), vol-
ume 2573 of Lecture Notes in Computer Science, pages 35-46, 2002.

[CE91] M. Chrobak and D. Eppstein. Planar orientations with low out-degree
and compaction of adjacency matrices. Theoret. Comput. Sci., 86:243—
266, 1991.

[ET76] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J.
Comput., 5:653-665, 1976.

[FK92] H. de Fraysseix and P. Kuntz. Pagination of large scale networks. Al-

gorithms review, 2(3):105-112, 1992.

[FMOdMR95] H. de Fraysseix, T. Matsumoto, P. Ossona de Mendez, and P. Rosen-
stiehl. Regular Orientations and Graph Drawing. In Third Slovenian
International Conference in Graph Theory, pages 1213, 1995. abstract.

[FOdM94a] H. de Fraysseix and P. Ossona de Mendez. On regular orientations. In
Prague Midsummer Combinatorial Workshop, pages 9-13, 1994. Ab-
stract.

[FOdM94b] H. de Fraysseix and P. Ossona de Mendez. Some augmentation prob-
lems. In Effiziente Algorithmen, volume 34/1994, page 11, 1994. Ab-
stract.

[FOdM95] H. de Fraysseix and P. Ossona de Mendez. Regular orientations, arboric-
ity and augmentation. In DIMACS International Workshop, Graph
Drawing 94, volume 894 of Lecture Notes in Computer Science, pages
111-118, 1995.

[FOdMO1la] H. de Fraysseix and P. Ossona de Mendez. An algorithm to find a Kura-
towski subdivision in DFS cotree critical graphs. In Edy Try Baskoro,

618 CHAPTER 19. PIGALE

editor, Proceedings of the Twelfth Australasian Workshop on Combi-
natorial Algorithms (AWOCA 2000), pages 98-105, Indonesia, 2001.
Institut Teknologi Bandung.

[FOdMO1b] H. de Fraysseix and P. Ossona de Mendez. Connectivity of planar
graphs. Journal of Graph Algorithms and Applications, 5(5):93-105,
2001.

[FOdMO1lc] H. de Fraysseix and P. Ossona de Mendez. Lower bounds on sets sup-
porting Fary drawings. In O. Pangrac, editor, Graph Theory Day V,
volume 2001-539 of KAM Series, pages 35-37, 2001.

[FOdAMO1d] H. de Fraysseix and P. Ossona de Mendez. On topological aspects of
orientations. Discrete Mathematics, 229(1-3):57-72, 2001.

[FOdMO2] H. de Fraysseix and P. Ossona de Mendez. A characterization of DFS
cotree critical graphs. In Graph Drawing, volume 2265 of Lecture notes
in Computer Science, pages 84-95, 2002.

[FOdMO3] H. de Fraysseix and P. Ossona de Mendez. On cotree-critical and DFS
cotree-critical graphs. Journal of Graph Algorithms and Applications,
7(4):411-427, 2003.

[FOdMO4] H. de Fraysseix and P. Ossona de Mendez. Connectivity of planar
graphs. In Graphs Algorithms and Applications 2. World Scientific,
2004.

[FOdMO6] H. de Fraysseix and P. Ossona de Mendez. Regular embeddings of multi-
graphs. In M. Klazar, J. Kratochvil, M. Loebl, J. Matousek, R. Thomas,
and P. Valtr, editors, Topics in Discrete Mathematics, volume 26 of
Algorithms and Combinatorics, pages 553-563. Springer-Verlag, 2006.
Dedicated to Jarik Nesetfil on the occasion of his 60th birthday.

[FOdM12] H. de Fraysseix and P. Ossona de Mendez. Planarity and Trémaux
trees. Furopean Journal of Combinatorics, 33(3):279-293, 2012.

[FOAMP91] H. de Fraysseix, P. Ossona de Mendez, and J. Pach. Representation of
planar graphs by segments. Intuitive Geometry, 63:109-117, 1991.

[FOAMP95] H. de Fraysseix, P. Ossona de Mendez, and J. Pach. A left-first search
algorithm for planar graphs. Discrete Computational Geometry, 13:459—
468, 1995.

[FOAMR94] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability and Computing, 3:233-246,
1994.

[FOAMR95] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Bipolar
orientations revisited. Discrete Applied Mathematics, 56:157-179, 1995.

[FOAMRO7] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle
contact graphs. In Combinatorics, Geometry and Probability: A Tribute
to Paul Erdds, pages 165-178. Cambridge University Press, 1997.

[FOAMRO6] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Depth-first
search and planarity. International Journal of Foundations of Computer
Science, 17(5):1017-1029, 2006. Special Issue on Graph Drawing.

[FOAMRO8] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Represen-
tation of planar hypergraphs by contacts of triangles. In Proceedings of
Graph Drawing 2007, volume 4875/2008 of Lecture Notes in Computer
Science, pages 125-136. Springer, 2008.

REFERENCES 619

[FPP83| H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary
embeddings of planar graphs. In Twentieth Annual ACM Symposium
on Theory of Computing, pages 426-433, 1988.

[FPPI0] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph
on a grid. Combinatorica, 10:41-51, 1990.

[FR82] H. de Fraysseix and P. Rosenstiehl. A depth-first search characterization
of planarity. Annals of Discrete Mathematics, 13:75-80, 1982.

[FR83a] H. de Fraysseix and P. Rosenstiehl. A discriminatory theorem of Kura-

towski subgraphs. In J. W. Kennedy, M. Borowiecki, and M. M. Systo,
editors, Graph Theory, Lagow 1981, volume 1018 of Lecture Notes in
Mathematics, pages 214-222. Springer-Verlag, 1983. Conference dedi-
cated to the memory of Kazimierz Kuratowski.

[FR&3Db] H. de Fraysseix and P. Rosenstiehl. Systeme de référence de Trémaux

d’une représentation plane d’un graphe planaire. Annals of Discrete
Mathematics, 17:293-302, 1983.

[FR85] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs
by Trémaux orders. Combinatorica, 5(2):127-135, 1985.
[Fra99] H. de Fraysseix. An heuristic for graph symmetry detection. In J.

Kratochvil, editor, Graph Drawing, volume 1731 of Lecture Notes in
Computer Science, pages 276-285. Springer, 1999.

[Fra08] H. de Fraysseix. Trémaux trees and planarity. In P. Ossona de Mendez,
M. Pocchiola, D. Poulalhon, J.L. Ramirez Alfonsin, and G. Schaeffer,
editors, The International Conference on Topological and Geometric
Graph Theory, volume 31 of Electronic Notes in Discrete Mathematics,
pages 169-180. Elsevier, 2008.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected com-
ponents. STAM J. Comput., 2(3):135-158, 1973.

[Kan93] G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Dept.
Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.

[ManT71] P. Mani. Automorphismen von polyedrischen Graphen. Mathematische
Annalen, 192:279-303, 1971.

[MN9Sg] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-

dimensionally equidistributed uniform pseudo-random number genera-
tor. ACM Transactions on Modeling and Computer Simulation, 8(1):3—
30, 1998.

[OdM94] P. Ossona de Mendez. Orientations bipolaires. PhD thesis, Ecole des
Hautes Etudes en Sciences Sociales, Paris, 1994.
[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layout and bipolar

orientation of planar graphs. Discrete and Computational Geometry,
1:343-353, 1986.

[Sch89] W. Schnyder. Planar graphs and poset dimension. Order, 5:323-343,
1989.

[Sch90] W. Schnyder. Embedding planar graphs in the grid. In First ACM-
SIAM Symposium on Discrete Algorithms, pages 138-147, 1990.

[Sch99] G. Schaeffer. Random sampling of large planar maps and convex polyhe-

dra. In ACM, editor, Annual ACM Symposium on Theory of Computing
(Atlanta, GA, 1999), pages 760-769 (electronic), New-York, 1999.

620

[Tar74)

[TTS6]

[Tut60]

[Tut63]

CHAPTER 19. PIGALE

R. E. Tarjan. Testing graph connectivity. In Conference Record of Sixth
Annual ACM Symposium on Theory of Computing (Seattle, Washing-
ton), pages 185-193, 1974.

R. Tamassia and I. G. Tollis. A unified approach to visibility repre-
sentations of planar graphs. Discrete Comput. Geom., 1(4):321-341,
1986.

W. T. Tutte. Convex representations of graphs. In Proc. London Math.
Society, volume 10, pages 304—-320, 1960.

W. T. Tutte. How to draw a graph. In Proc. London Math. Society,
volume 13, pages 743-768, 1963.

