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16.1 Introduction

Graph drawing tools, like all other tools dealing with relational data, need to store and
exchange graphs and associated data. Despite several earlier attempts to define a standard,
no agreed-upon format is widely accepted and, indeed, many tools support only a limited
number of custom formats which are typically restricted in their expressibility and specific
to an area of application.

Motivated by the goals of tool interoperability, access to benchmark data sets, and data
exchange over the Web, the Steering Committee of the Graph Drawing Symposium started
a new initiative with an informal workshop held in conjunction with the 8th Symposium
on Graph Drawing (GD 2000) [BMNO1]. As a consequence, an informal task group was
formed to propose a modern graph exchange format suitable in particular for data transfer
between graph drawing tools and other applications.

Thanks to its XML syntax, GraphML can be used in combination with other XML based
formats. On the one hand, its own extension mechanism allows to attach <data> labels
with complex content (possibly required to comply with other XML content models) to
GraphML elements. Examples of such complex data labels are Scalable Vector Graph-
ics [W3Ca] describing the appearance of the nodes and edges in a drawing. On the other
hand, GraphML can be integrated into other applications, e.g., in SOAP messages [W3Cb].

A modern graph exchange format cannot be defined in a monolithic way, since graph
drawing services are used as components in larger systems and Web-based services are
emerging. Graph data may need to be exchanged between such services, or stages of a
service, and between graph drawing services and systems specific to areas of applications.

The typical usage scenarios that we envision for the format are centered around systems
designed for arbitrary applications dealing with graphs and other data associated with
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518 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

them. Such systems will contain or call graph drawing services that add or modify layout
and graphics information. Moreover, such services may compute only partial information
or intermediate representations, for instance because they instantiate only part of a staged
layout approach such as the topology-shape-metrics or Sugiyama frameworks [DBETT99,
STT81]. We hence aimed to satisfy the following key goal.

The graph exchange format should be able to represent arbitrary graphs with
arbitrary additional data, including layout and graphics information. The addi-
tional data should be stored in a format appropriate for the specific application,
but should not complicate or interfere with the representation of data from other
applications.

GraphML is designed with this and the following more pragmatic goals in mind:

o Simplicity: The format should be easy to parse and interpret for both humans
and machines. As a general principle, there should be no ambiguities and thus a
single well-defined interpretation for each valid GraphML document.

e Generality: There should be no limitation with respect to the graph model, i.e.,
hypergraphs, hierarchical graphs, etc. should be expressible within the same basic
format.

e Extensibility: It should be possible to extend the format in a well-defined way to
represent additional data required by arbitrary applications or more sophisticated
use (e.g., sending a layout algorithm together with the graph).

e Robustness: Systems not capable of handling the full range of graph models or
added information should be able to easily recognize and extract the subset they
can handle.

16.1.1 Related Formats

Besides GraphML there is a multitude of file formats for serializing graphs. Among the
simplest ones are direct ASCII-based codings of tables (matrices) or lists, such as tab-
separated value files. Specific instances of these include UCINET’s .41 files [BEF99] and
Pajek’s * .net files [DMBO05]. XML-based formats to represent graphs include GXL [Win02],
and DyNetML [TRCO03].

16.2 Basic Concepts

In this section, we describe how graphs and simple graph data are represented in GraphML.
The graph model used in this section is a labeled mixed multigraph, i.e., a tuple

G=(V.E,D),

where V' is a set of nodes, E a multi-set containing directed and undirected edges, and D a set
of data labels that are partial functions from {G}UV UFE into some specified range of values.
The data labels can encode, e. g., properties of nodes and edges such as graphical variables
or, if nodes correspond to social actors, demographic characteristics such as gender or age.
Thus, our graph model includes graphs that can contain both directed and undirected edges,
loops, and multi-edges. This graph model will be extended in Section 16.3, where advanced
concepts for the graph topology, like nested graphs, hypergraphs, and ports, are introduced.
As an example, consider the document fragment and the graph it describes in Figure 16.1.
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<graphml>
<graph edgedefault="directed">
<node id="vi1"/>
<node id="v2"/>
<node id="v3"/>
<node id="v4"/>

<edge source="v1" target="v2"/>
<edge source="v1" target="v3"/>
<edge source="v2" target="v4"/>
<edge source="v2" target="v4" directed="false"/>
</graph>
</graphml>

Figure 16.1 A graph and its representation in GraphML.

16.2.1 Header

The document fragment shown in Figure 16.1 is not yet a valid XML document. Valid
XML documents must declare in their header either a DTD (document type definition) or
an XML schema. Both DTDs or schemas define a subset of all XML documents that forms a
certain language. The GraphML language has been defined by a schema. Although a DTD
is provided to support parsers that cannot handle schema definitions, the only normative
specification is the GraphML schema located at

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd

The document shown in Figure 16.2 is minimal to be a GraphML document that can be
validated against the above schema. Actually, it defines an empty set of graphs. Areas
starting with <!-- and ending with --> are comments.

<?xml version="1.0" encoding="UTF-8"7>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">
<!--Content: List of graphs and data-->

</graphml>

Figure 16.2 A minimal valid GraphML document.

The first line of the GraphML document in Figure 16.2 is an XML process instruction
which defines that the document adheres to the XML 1.0 standard and that the encoding
of the document is UTF-8, the standard encoding for XML documents. Of course other
encodings can be chosen for GraphML documents.

The second line contains the root-elementXS of a GraphML document: the <graphml> el-
ement. The <graphml> element, like all other GraphML elements, belongs to the namespace
http://graphml .graphdrawing.org/xmlns. For this reason we define this namespace as
the default namespace in the document by adding the XML Attribute

xmlns="http://graphml.graphdrawing.org/xmlns"
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to it. The next two XML Attributes declare which XML Schema is used for validation of
this document. The attribute

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
defines xsi as the namespace prefix for the XML Schema namespace. The attribute,

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd"

defines the XML Schema location for the GraphML namespace. It provides the information
that all elements in the GraphML namespace are validated against the file graphml.xsd
located at the given URL. Of course, validation is not necessarily performed using this file.
Local copies of graphml.xsd can also be specified as schema locations. (Generally, the
value of the schemaLocation attribute is a list of pairs, where the first element of each pair
denotes a namespace and the second points to a file where elements of this namespace are
defined.)

The XML Schema reference provides means to validate the document and is therefore
strongly recommended. If validation is not considered necessary, the schema location decla-
ration can be omitted. A minimal GraphML document without Schema reference is shown
in Figure 16.3. Note that this file is not a valid document according to the XML specifica-

<?7xml version="1.0" encoding="UTF-8"7>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns" >
<!--Content: List of graphs and data-->

</graphml>

Figure 16.3 A minimal GraphML document without a schema reference.

tion.

16.2.2 Topology

In this section, we describe how the basic graph-topology (nodes and edges) are represented
in GraphML.

Remind the document fragment shown in Figure 16.1. A graph is represented in GraphML
by a <graph> element. The <graphml> element can contain any number of <graph>s. The
nodes of a graph are represented by a list of <node> elements. Each node must have an
id attribute. The edge set is represented by a list of <edge> elements. Edges and nodes
may be ordered arbitrarily and it is not required that all nodes are listed before all edges.
Clearly, the space requirement for storing a graph with n nodes and m edges in GraphML
is in O(n + m).

Edges point to source- and target-nodes by the values of their attributes source and
target, respectively. It is ensured in the GraphML Schema specification that node-ids are
unique within the enclosing <graph> and that the attribute values of the source and target
attributes match the id of some <node> within the enclosing <graph>. The possibility of
enforcing this constraint already in the definition of the GraphML language is one of the
advantages of using XML schema instead of a DTD.

The edgedefault attribute of <graph> declares whether edges are understood as directed
or undirected per default. Individual <edge>s can overwrite this default by setting the value
of their directed attribute to true or false, respectively.
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<?xml version="1.0" encoding="UTF-8"7>
<graphml>
<key i1d="d0" for="node"
attr.name="color" attr.type="string">
<default>yellow</default>
</key>
<key id="d1" for="edge"
attr.name="weight" attr.type="double"/>
<graph id="G" edgedefault="undirected">
<node id="n0">
<data key="d0">green</data>
</node>
<node id="n1"/>
<node id="n2">
<data key="d0">blue</data>
</node>
<node id="n3">
<data key="d0">red</data>
</node>
<node id="n4"/>
<node id="nb5">
<data key="d0">turquoise</data>
</node>
<edge id="e0" source="n0" target="n2">
<data key="d1">1.0</data>
</edge>
<edge id="el" source="n0" target="nl">
<data key="d1">1.0</data>
</edge>
<edge id="e2" source="nl" target="n3">
<data key="d1">2.0</data>
</edge>
<edge id="e3" source="n3" target="n2"/>
<edge id="e4" source="n2" target="n4"/>
<edge id="eb" source="n3" target="n5"/>
<edge id="e6" source="nb" target="n4">
<data key="d1">1.1</data>
</edge>
</graph>
</graphml>

Figure 16.4 Graph with attributes. Edges have weights and nodes have colors. (For
readability, the namespace declarations and schema location information has been left out.)
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16.2.3 Attributes

In the previous section we discussed how to describe the topology of a graph in GraphML.
While pure topological information may be sufficient for some applications of GraphML,
for most of the time additional information is needed. With the help of the extension
GraphML-Attributes one can specify additional information of simple type for the elements
of the graph. Simple type means that the information is restricted to scalar values, e.g.,
numerical values and strings. The GraphML-Attributes extension is already included in the
file

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd

thus the header of the following example file may look like the one in Section 16.2.1.
GraphML-Attributes must not be confused with XML-attributes which are a different con-
cept (putting it in a simple way, GraphML-Attributes add information to graphs, sets of
graphs, or parts of graphs and XML-attributes add information to XML elements).

In most cases, additional information can and should be attached to GraphML elements
by usage of GraphML-Attributes as described in this section. This ensures readability for
other GraphML parsers. If a custom data-format is necessary, then the GraphML language
can be extended to include arbitrary data in well-defined places. How extensions can be
defined is described in Section 16.4.

GraphML-Attributes are considered to be partial functions that assign values to elements
of the graph (which often but not necessarily have the same type). For example edges
weights can be viewed as a function from the set of edges F to the real numbers.

weight: £ — R.

As a different example, node colors can be represented by a function from the set of nodes
V' to strings over a certain alphabet 2.

color: V — X%,

To add data functions to graph elements, the GraphML key/data mechanism has to be
used. A <key> element, at the beginning of the document, declares a new data function;
more precisely, the <key> element specifies the function’s id, name, domain, and range of
values. The values of the function are defined by <data> elements.

The declaration of all data functions right at the beginning of the document has the
benefit that parsers can build up appropriate data structures at the beginning of the parsing
process. Likewise, parsers can recognize if some required data is missing. The GraphML
document shown in Figure 16.4 is an example illustrating the key/data mechanism. The
weight function is declared in the line

<key id="d1" for="edge" attr.name="weight" attr.type="double"/>

A <key> has an XML attribute called for that specifies the domain of the data function.
The attribute for may assume values like graph, node, edge, graphml and names of other
graph element types introduced later in Section 16.3. The XML attribute for may also
assume the value all having the meaning that these data labels can be attached to all
graph elements. The attribute for as well as a unique id are mandatory for <key> elements.
The GraphML-Attributes extension provides two more attributes for <key>: the attribute
attr.name, which defines the name of the data function and is used by parsers to recognize
“their” data, and the attribute attr.type, which specifies the range of the data values.
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Possible values for attr.type are boolean, int, long, float, double, and string having
the obvious meaning.

A parser that handles edge weights will typically, after parsing the above line, initialize
some internal data structure that stores doubles for each edge. Conversely, a parser that
does not know or does not need a function for edges with the name “weight” will simply
ignore the associated <data> elements. Values for the data functions are defined in <data>
elements. For example, the code fragment

<edge id="e0" source="n0" target="n2">
<data key="d1">1.0</data>
</edge>

defines a value of 1.0 as weight for the enclosing <edge>. The <data> elements point to
<key>s by their key attribute. It is ensured in the GraphML schema that the value of the
key attribute must match the id of some <key> element within the same document.

Since in general data labels are only partial functions, <data> elements need not be
present for all edges. For example the edge

<edge id="e3" source="n3" target="n2"/>

does not define a value for the weight function. However, <key>s can define default values
for the associated data function. For example

<key i1d="d0" for="node" attr.name="color" attr.type="string">
<default>yellow</default>
</key>

declares a function named color on the set of nodes and defines yellow as the default node
color. Thus, the node

<node id="n4"/>

is understood as being colored yellow. Nodes can overwrite the default by their <data>
element. For instance, the node

<node id="nO">
<data key="d0">green</data>
</node>

is colored green. The default mechanism serves to save space if many elements assume the
same value.

16.2.4 Parseinfo

There is one more extension, called GraphML-Parseinfo, to the core structural part of
GraphML. GraphML-Parseinfo makes it possible to write simple parsers that rely on ad-
ditional information in the GraphML files. The GraphML-Parseinfo extension is already
included in the file

http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd

thus the header of the example file in Figure 16.5 may look like the one in Section 16.2.1.
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<?xml version="1.0" encoding="UTF-8"7>
<graphml>
<graph id="G" edgedefault="directed"
parse.nodes="11" parse.edges="12"
parse.maxindegree="2"
parse.maxoutdegree="3"
parse.nodeids="canonical"
parse.edgeids="free"
parse.order="nodesfirst">
<node id="n0" parse.indegree="0" parse.outdegree="1"/>
<node id="nl" parse.indegree="0" parse.outdegree="1"/>
<node id="n2" parse.indegree="2" parse.outdegree="1"/>
<node id="n3" parse.indegree="1" parse.outdegree="2"/>
<node id="n4" parse.indegree="1" parse.outdegree="1"/>
<node id="nb" parse.indegree="2" parse.outdegree="1"/>
<node i1d="n6" parse.indegree="1" parse.outdegree="2"/>
<node id="n7" parse.indegree="2" parse.outdegree="0"/>
<node id="n8" parse.indegree="1" parse.outdegree="3"/>
<node id="n9" parse.indegree="1" parse.outdegree="0"/>
<node id="n10" parse.indegree="1" parse.outdegree="0"/>
<edge id="edge0001" source="n0" target="n2"/>
<edge id="edge0002" source="nl" target="n2"/>
<edge id="edge0003" source="n2" target="n3"/>
<edge id="edge0004" source="n3" target="n5"/>
<edge id="edge0005" source="n3" target="n4"/>
<edge id="edge0006" source="n4" target="n6"/>
<edge id="edge0007" source="n6" target="n5"/>
<edge id="edge0008" source="n5" target="n7"/>
<edge id="edge0009" source="n6" target="n8"/>
<edge id="edge0010" source="n8" target="n7"/>
<edge id="edge0011" source="n8" target="n9"/>
<edge id="edge0012" source="n8" target="nl0"/>
</graph>
</graphml>

Figure 16.5 Example demonstrating the use of GraphML-Parseinfo meta data.
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To make it possible to implement optimized parsers for GraphML documents, meta-data
can be attached as XML-attributes to some GraphML elements. There are two kinds of
meta-data intended for parsers: information about the number of elements and information
about how specific data is encoded in the document. For instance, a parser that stores
nodes and incident edges in (non-extensible) arrays can profit from information about the
number of nodes in the graph and the nodes’ degrees, respectively. All XML-attributes
denoting meta-data for parsers are prefixed with parse.

For the first kind, information about the number of elements, the following XML-attributes
for the <graph> element are defined. The value of the attribute parse.nodes gives the
number of <node>s in the <graph>. Likewise, the value of parse.edges gives the num-
ber of <edge>s, parse.maxindegree is for the maximum indegree of the all <node>s in
the <graph>, and parse.maxoutdegree for the maximum outdegree. For <node> elements
the value of the attribute parse.indegree gives the indegree and parse.outdegree the
outdegree of <node>s, respectively.

For the second kind, information about element encoding, the following XML-attributes
for the <graph> element are defined. If the attribute parse.nodeids has the value canonical,
all <node>s have identifiers following the pattern nX, where X denotes the number of occur-
rences of <node> elements before the current element. Otherwise the value of parse.nodeids
equals free. The same holds for <edge>s for which the corresponding XML-attribute
parse.edgeids is defined, with the only difference that the identifiers of <edge>s follow
the pattern eX. The XML-attribute parse.order of <graph> gives information about the
order in which <node> and <edge> elements occur in the <graph>. If parse.order as-
sumes the value nodesfirst, all <node> elements appear the first occurrence of an <edge>.
If parse.order assumes the value adjacencylist, the declaration of a <node> is followed
by the declaration of its adjacent <edge>s. If parse.order assumes the value free, no order
is imposed. The example in Figure 16.5 demonstrates the use of parse info meta-data.

16.3 Advanced Concepts

In this section we discuss advanced topological features for graphs. The graph model from
Section 16.2 is extended to include a mesting hierarchy, hyperedges and ports. Since many
graph applications do not support these extended graph models, we describe at the end of
each subsection the specified fall-back behavior.

The GraphML elements that are introduced in this section can be specified as the domain
of data-functions, i.e., as the value of the for attributes of <key>s (compare Section 16.2.3).

16.3.1 Nested Graphs

GraphML supports nested graphs, i.e., graphs in which the nodes are hierarchically ordered.
The hierarchy tree is encoded in the GraphML document tree. A <node> in a GraphML
document may contain a <graph> element which itself contains the <node>s which are in
the hierarchy below this <node>.

Figure 16.6 is an example of a document describing a nested graph. Note that in the
drawing of the graph the hierarchy is expressed by containment, i.e., a node u is below a
node v in the hierarchy if and only if the graphical representation of u is entirely inside the
graphical representation of v.

The edges between two nodes in a nested graph have to be declared in a graph that is an
ancestor of both nodes in the hierarchy. Note that this is true for our example. Declaring
the edge between node n3 and node n2 inside graph G1 would be wrong while declaring it



526 CHAPTER 16. GRAPH MARKUP LANGUAGE (GRAPHML)

<graphml>
<graph id="GO" edgedefault="undirected">
<node id="n1">
<graph id="G1" edgedefault="undirected">
<node id="n3"/>
<node id="n4"/>
<node id="n5"/>
<edge source="n3" target="n4"/>
<edge source="n4" target="nb"/>
</graph>
</node>
<node id="n2">
<graph id="G2" edgedefault="undirected">
<node id="n6"/>
</graph>
</node>
<edge source="nl" target="n2"/>
<edge source="n3" target="n2"/>
<edge source="n3" target="n6"/>
</graph>
</graphml>

Figure 16.6 A nested graph.

in graph GO is correct. A good policy is to place the edges at the least common ancestor of
the nodes in the hierarchy.

The GraphML language includes an element called <locator> which makes it possible
to define some of the document content in another file. More specifically, the elements
<graph> and <node> can contain a <locator> element whose attribute xlink:href points
to a file in which the content of this <graph>, respectively <node> is defined. If a particular
<graph> or <node> element contains a <locator>, then this <graph>, respectively <node>
does not contain any other element. For instance, the document fragment

<graph id="GO" edgedefault="undirected">
<node id="n1">
<graph id="G1" edgedefault="undirected">
<locator xlink:href="content_of_G1.graphml"/>
</graph>
</node>

</graph>

(which is a modified version of the document in Figure 16.6) tells the parser that the content
of the <graph> with id="G1" is defined in the file content_of_G1.graphml. Likewise, the
content of <node>s can be outsourced to another file with the help of <locator> elements.

For applications that cannot handle nested graphs, the fall-back behavior is to ignore
nodes that are not contained in the top-level graph and to ignore edges that do not have
both endpoints in the top-level graph.
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16.3.2 Hypergraphs

Hyperedges are a generalization of edges in the sense that they do not only relate two
endpoints to each other but rather express a relation between an arbitrary number of
endpoints. Hyperedges are declared by a <hyperedge> element in GraphML. For each
endpoint of the hyperedge, this <hyperedge> element contains an <endpoint> element.
The <endpoint> element must have an XML-attribute node, which contains the id of a
<node> in the document. The example in Figure 16.7 contains two hyperedges and two
edges. The hyperedges are illustrated by joining arcs, the edges by straight lines.

<?7xml version="1.0" encoding="UTF-8"7>
<graphml>
<graph id="G" edgedefault="undirected">
<node id="n0"/>
<node id="n1"/>
<node id="n2"/>
<node id="n3"/>
<node id="n4"/>
<node id="nb5"/>
<node id="n6"/>
<hyperedge>
<endpoint node="n0"/>
<endpoint node="nl"/>
<endpoint node="n2"/>
</hyperedge>
<hyperedge>
<endpoint node="n3"/>
<endpoint node="n4"/>
<endpoint node="n5"/>
<endpoint node="n6"/>
</hyperedge>
<hyperedge>
<endpoint node="nl"/>
<endpoint node="n3"/>
</hyperedge>
<edge source="nO" target="n4"/>
</graph>
</graphml>

Figure 16.7 A hypergraph.

Note that edges can be either specified by an <edge> element or by a <hyperedge>
element containing exactly two <endpoint> elements. Obviously, the latter option is only
recommendable for applications that can handle hyperedges. The <endpoint> elements
have an optional attribute called type which may assume the values in, out, and undir
and is set to undir by default. The fall-back behavior for applications that cannot handle
hyperedges is simply to ignore them.
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16.3.3 Ports

A node may specify different logical locations for edges and hyperedges to connect. The
logical locations are called ports. As an analogy, think of the graph as a motherboard,
the nodes as integrated circuits and the edges as connecting wires. Then the pins on the
integrated circuits correspond to ports of a node.

The ports of a node are declared by <port> elements as children of the corresponding
<node> element. <port> elements may be nested, i.e., they may contain <port> elements
themselves. Each <port> element must have an XML-attribute name, which is an identifier
for this port. Port names are unique only within the enclosing <node> (see the exam-
ple in Figure 16.8). The <edge> element has optional XML-attributes sourceport and
targetport with which an edge may specify the port on the source, resp. target, node.
Correspondingly, the <endpoint> element has an optional XML-attribute port. An exam-
ple of a GraphML document with ports is shown in Figure 16.8. The fall-back behavior for
applications that can not handle ports is simply to ignore them.

<?xml version="1.0" encoding="UTF-8"7>
<graphml>
<graph id="G" edgedefault="directed">
<node id="n0">
<port name="North"/>
<port name="South"/>
<port name="East"/>
<port name="West"/>
</node>
<node id="n1">
<port name="North"/>
<port name="South"/>
<port name="East"/>
<port name="West"/>
</node>
<node id="n2">
<port name="NorthWest"/>
<port name="SouthEast"/>
</node>
<node id="n3">
<port name="NorthEast"/>
<port name="SouthWest"/>
</node>
<edge source="n0" target="n3"
sourceport="North" targetport="NorthEast"/>
<hyperedge>
<endpoint node="n0" port="North"/>
<endpoint node="nl" port="East"/>
<endpoint node="n2" port="SouthEast"/>
</hyperedge>
</graph>
</graphml>

Figure 16.8 Document of a graph with ports.
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16.4 Extending GraphML

GraphML is designed to be easily extensible. With GraphML the topology of a graph
and simple attributes of graph elements (see Section 16.2.3) can be serialized. To store
more complex application data one has to extend GraphML which will be discussed in this
section.

GraphML can be extended in two different ways: adding additional attributes to GraphML
elements (discussed in Section 16.4.1) and extending the content of the <data> elements by
allowing them to contain elements from other XML languages (discussed in Section 16.4.2).

Extensions of GraphML should be defined by an XML Schema (the other possibility,
extending the DTD, is not described here). The Schema which defines the extension can
be derived from the GraphML Schema documents by using a standard mechanism similar
to the one used by XHTML.

<?xml version="1.0" encoding="UTF-8"7>

<xs:schema
targetNamespace="http://graphml.graphdrawing.org/xmlns"
xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xlink="http://www.w3.0org/1999/x1link"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import namespace="http://www.w3.org/1999/x1link"
schemalocation="x1link.xsd"/>

<xs:redefine
schemalocation="http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">
<xs:attributeGroup name="node.extra.attrib">
<xs:attributeGroup ref="node.extra.attrib"/>
<xs:attribute ref="xlink:href" use="optional"/>
</xs:attributeGroup>
</xs:redefine>

</xs:schema>

Figure 16.9 File graphml+xlink.xsd : an XML Schema Definition that extends the
GraphML language by adding attribute xlink:href to element <node>.

16.4.1 Adding XML-Attributes

In most cases, additional information can and should be attached to GraphML elements
by usage of GraphML-Attributes (see Section 16.2.3). This assures readability for other
GraphML parsers. However, sometimes it might be more convenient to use specific XML
attributes. Suppose a graph whose nodes model WWW pages should be stored in GraphML.
A node could then point to the associated page by storing the URL in an xlink:href
attribute within the <node> element:
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<node id="nO0" xlink:href="http://graphml.graphdrawing.org"/>

The string http://graphml.graphdrawing.org could as well be stored within a <data>
element contained in the node n0. However, when storing this string as the value of the
xlink:href attribute, then its semantic (being a URL) becomes more obvious.

The element <node> as written above would not be valid for the core GraphML, since
there is no xlink:href attribute defined for <node>. To add XML attributes to GraphML
elements one has to extend GraphML. This extension can be defined by an XML Schema.
The document in Figure 16.9 is an XML Schema Definition that extends the GraphML
language by adding the xlink:href attribute to <node>.

The document in Figure 16.9 has a <schema> element as its root element (every XML
Schema Definition does so). The element <schema> has a couple of attributes:

targetNamespace="http://graphml.graphdrawing.org/xmlns"

specifies that the language defined by this document is GraphML. The next three lines spec-
ify the default namespace (identified by the GraphML URL) and the namespace prefixes for
XLink and XMLSchema. The attributes elementFormDefault and attributeFormDefault
are of no importance for this example.

The import instruction

<xs:import namespace="http://www.w3.org/1999/x1link"
schemaLocation="x1link.xsd"/>

gives access to the XLink namespace (assumed that the Schema Definition for XLink is
located at the file x1ink.xsd).
The extension is done in the <redefine> element. The attribute

schemalocation="http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd"
of <redefine> specifies the file (part of) which is being redefined. The document fragment

<xs:attributeGroup name="node.extra.attrib">
<xs:attributeGroup ref="node.extra.attrib"/>
<xs:attribute ref="xlink:href" use="optional"/>
</xs:attributeGroup>

extends the attribute group called node.extra.attrib which (by the core GraphML spec-
ification) is an empty set, but included in the attribute-list of the element <node>. Af-
ter redefinition, this attribute group has its old content plus one more attribute, namely
xlink:href. This attribute is declared as being optional for <node>. It is a good policy to
always add the old content to the newly defined attribute groups, as there might be more
than one Schema definitions extending the same attribute group.

As there is the attribute group node.extra.attrib for the element <node>, there are
corresponding attribute groups for all GraphML elements. These attribute groups are empty
in the core GraphML definition but can be extended as illustrated above.

The schema graphml+xlink.xsd can be used to validate the document shown in Fig-
ure 16.10.

Storing additional information directly in the attributes of GraphML elements, as illus-
trated in this section, may seem to be preferable to storing them within a <data> element,
as explained in Section 16.2.3 (at least it can be observed that less characters are neces-
sary). However, such a user-specified extension comes at a price: since these non-standard
attributes are not declared by <key> elements, GraphML parsers might not be able to
handle them.
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<?xml version="1.0" encoding="UTF-8"7>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xlink="http://www.w3.org/1999/x1link"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://graphml.graphdrawing.org/xmlns
graphml+xlink.xsd">
<graph edgedefault="directed">
<node id="nO0" xlink:href="http://graphml.graphdrawing.org"/>
<node id="n1" />
<edge source="n0O" target="nl"/>
</graph>
</graphml>

Figure 16.10 A document that can be validated with the XSD shown in Figure 16.9. Note
that the schemalocation attribute of <graphml> points to the file graphml+xlink.xsd.

16.4.2 Adding Structured Content

In some cases it might be convenient to use other XML languages to represent data in
GraphML. For example a user wants to store images for nodes, written in SVG, as in the
following document fragment.

xmlns:svg="http://www.w3.0rg/2000/svg"

<node id="n0" >
<data key="k0">
<svg:svg width="4cm" height="8cm" version="1.1">
<svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="1cm" />
</svg:svg>
</data>
</node>

The attributes of <svg> and <ellipse> could also be stored in data functions as described
in Section 16.2.3. However, the representation above is much more convenient, since appli-
cations can use existing parsers or viewers for SVG images.

GraphML can be extended to validate such a document. Arbitrary elements can be
added to the content of <data>—but only to <data>—while the core GraphML cannot be
changed. This decision has been made to ensure that parsers can understand at least the
structural part and ignore possibly unknown content of <data>.

Figure 16.11 shows the XML Schema Definition that adds SVG elements to the content
of <data>.

The schema in Figure 16.11 is similar to the one in Figure 16.9. First the namespace dec-
larations are made. Then the SVG namespace is imported. As before, the extension is done
in the <redefine> element. Within this element the complex type data-extension.type
is extended by the SVG element <svg>. data-extension.type is the base-type for the
content of the elements <data> and <default>. This type has empty content in the core
GraphML definition, but can be extended by arbitrary XML elements.

Documents that are validated against the Schema in Figure 16.11 can thus have <data>
elements that contain <svg>. An example is shown in Figure 16.12. The node with id
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<?xml version="1.0" encoding="UTF-8"7>

<xs:schema
targetNamespace="http://graphml.graphdrawing.org/xmlns"
xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:svg="http://www.w3.0rg/2000/svg"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"

<xs:import namespace="http://www.w3.org/2000/svg"
schemaLocation="svg.xsd"/>

<xs:redefine
schemalocation="http://graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">
<xs:complexType name="data-extension.type">
<xs:complexContent>
<xs:extension base='"data-extension.type">
<xs:sequence>
<xs:element ref="svg:svg"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:redefine>

</xs:schema>

Figure 16.11 File graphml+svg.xsd : an XML Schema Definition that extends the
GraphML language by adding element <svg:svg> to the content of <data>.
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<?7xml version="1.0" encoding="UTF-8"7>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://graphml.graphdrawing.org/xmlns
graphml+svg.xsd">
<key id="kO0" for="node">
<default>
<svg:svg width="5cm" height="4cm" version="1.1">
<svg:desc>Default graphical representation for nodes
</svg:desc>
<svg:rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>
</svg:svg>
</default>
</key>
<key id="k1" for="edge">
<desc>Graphical representation for edges
</desc>
</key>
<graph edgedefault="directed">
<node id="n0">
<data key="k0">
<svg:svg width="4cm" height="8cm" version="1.1">
<svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="1cm" />
</svg:svg>
</data>
</node>
<node id="n1" />
<edge source="n0" target="nl">
<data key="k1">
<svg:svg width="12cm" height="4cm" viewBox="0 0 1200 400">
<svg:line x1="100" y1="300" x2="300" y2="100"
stroke-width="5" />
</svg:svg>
</data>
</edge>
</graph>
</graphml>

Figure 16.12 A document that can be validated with the XSD shown in Figure 16.11.
Note that the schemaLocation attribute of <graphml> points to graphml+svg.xsd.
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nl admits the default graphical representation given within key k0. The above example
shows also the usefulness of XML Namespaces. There are two different <desc> elements,
one in the GraphML namespace and one in the SVG namespace. Possible conflicts, due to
elements from different XML languages that happen to have identical names, are resolved
by different namespaces.

We note that it is not only possible to use other XML languages (like SVG) within
GraphML. GraphML can also be used to represent graph data within extensible XML
languages like SVG or XHTML. The possibility to combine modularly built XML languages
ensures the reusability of parsers and other software. For example, SVG viewers could call
graphdrawing software to layout graphs that are stored in GraphML within an SVG file.

16.5 Transforming GraphML

It is straightforward to provide access to graphs represented in GraphML by adding input
and output filters to an existing software application. However, we find that Fxtensible
Stylesheet Language Transformations (XSLT) [W3Cc| offer a more natural way of exploiting
XML data, in particular when the resulting format of a computation is again based on XML.
The mappings that transform input GraphML documents to output documents are defined
in XSLT style sheets and can be used stand-alone, as components of larger systems, or in,
say, web services [BP04].

Basically, the transformations are defined in style sheets (sometimes also called transfor-
mation sheets), which specify how an input XML document gets transformed into an output
XML document in a recursive pattern matching process. The underlying data model for
XML documents is the Document Object Model (DOM), a tree of DOM nodes representing
the elements, attributes, text etc., which is held completely in memory. Figure 16.13 shows
the basic workflow of a transformation.

A

Stylesheet

Input » i ) Output
Document Parser XSLT TranSformatlon Serlalizer Document

Figure 16.13 Workflow of an XSLT transformation. First, XML data is converted to a
tree representation, which is then used to build the result tree as specified in the style sheet.
Eventually, the result tree is serialized as XML. Taken from [BP04].

DOM trees can be navigated with the XPath language, a sublanguage of XSLT: It ex-
presses paths in the document tree seen from a particular context node (similar to a directory
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tree of a file system) and serves to address sets of its nodes that satisfy given conditions.
For example, if the context node is a <graph> element, all node identifiers can be addressed
by child::node/attribute::id, or node/@id as shorthand. Predicates can be used to
specify more precisely which parts of the DOM tree to select; for example, the XPath ex-
pression edge [@source=’n0’]/data selects only those <data> children of <edge>s starting
from the <node> with the given identifier.

The transformation process can be roughly described as follows: A style sheet consists of
a list of templates, each having an associated pattern and a template body containing the
actions to be executed and the content to be written to the output. Beginning with the root,
the processor performs a depth-first traversal (in document order) through the DOM tree.
For each DOM node it encounters, it checks whether there is a template whose pattern it
satisfies; if so, it selects one of the templates and executes the actions given in that template
body (potentially with further recursive pattern matching for the subtrees), and does not
do any further depth-first traversal for the DOM subtree rooted at that DOM node; else,
it automatically continues the depth-first traversal recursively at each of its children. See
Figure 16.14 for an example of an XSLT transformation sheet.

16.5.1 Means of Transformation

The expressivity and usefulness of XSLT transformations goes beyond their original pur-
pose of adding some style to the input. The following is an overview of some important
basic concepts of XSLT and how these concepts can particularly be employed in order to
formulate advanced GraphML transformations that also take into account the underlying
combinatorial structure of the graph instead of only the DOM tree.

16.5.2 Transformation Types

Since GraphML is designed as a general format not bound to a particular area of application,
an abundance of XSLT use cases exist. However, we found that transformations can be filed
into three major categories, depending on the actual purpose of transformation. Note that
there may of course be transformations that belong to more than one of these categories.

Internal While one of GraphML’s design goals is to require a well-defined inter-
pretation for all GraphML files, there is no uniqueness the other way round, i.e., there
are various GraphML representations for a graph; for example, its <node>s and <edge>s
may appear in arbitrary order. However, applications may require their GraphML input to
satisfy certain preconditions, such as the appearance of all <node>s before any <edge> in
order to set up a graph in memory on-the-fly while reading the input stream.

Generally, some frequently arising transformations include

e pre- and postprocessing the GraphML file to make it satisfy given conditions,
such as rearranging the markup elements or generating unique identifiers,

e inserting default values where there is no explicit entry, e.g., edge directions or
default values for <data> tags,

e resolving XLink references in distributed graphs,
e filtering out unneeded <data> tags that are not relevant for further processing
and can be dropped to reduce communication or memory cost, and

e converting between graph classes, for example eliminating hyperedges, expanding
nested graphs, or removing multiedges.
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<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:template match="datal|desc|key|default"/> <!-- empty template-->

<xsl:template match="/graphml">
<graphml>
<xsl:copy-of select="key|desc|@x"/>
<xsl:apply-templates match="graph"/> <!-- process graph(s) -->
</graphml>
</xsl:template>

<xsl:template match="graph"> <!-- override template -->
<graph>
<xsl:copy-of select="keyl|desc|@*"/>
<xsl:copy-of select="node"/> <!-- nodes first -->
<xsl:copy-of select="edge"/> <!-- then edges -->
</graph>

</xsl:template>
</xsl:stylesheet>

Figure 16.14 Example of an XSLT transformation sheet removing the elements <data>,
<desc>, <key>, and <default> from the document and reorders nodes and edges such that
all <node> elements appear before any <edge> element.

Format Conversion Although in recent years, GraphML and similar formats like
GXL [Win02] and GML [GML] have become increasingly used in various areas of interest,
there are still many applications and services not (yet) capable of processing them. To be
compatible, formats need to be translatable to each other, preserving as much information
as possible.

In doing so, it is essential to take into account possible structural mismatch in terms of
both the graph models and concepts that can be expressed by the involved formats, and
their support for additional data. Of course, the closer the conceptual relatedness between
source and target format is, the simpler the style sheets typically are.

While conversion will be necessary in various settings, two use cases appear to be of
particular importance:

o Conversion into another graph format: We expect GraphML to be used in many
applications to archive attributed graph data and in Web services to transmit
aspects of a graph. While it is easy to output GraphML, style sheets can be used
to convert GraphML into other graph formats [BLP05] and can thus be used in
translation services like GraphEx [Bri04].

e Ezxport to some graphics format: Of course, graph-based tools in general and
graph drawing tools in particular will have to export graphs in graphics formats
for visualization purposes.

The transformation need not be applied to a filed document, but can also be carried out in
memory by applications that ought to be able to export in some target format. Note that,
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even though XSLT is typically used for mapping between XML documents, it can also be
utilized to generate non-XML output.

Algorithmic Algorithmic style sheets appear in transformations which create
fragments in the output document that do not directly correspond to fragments in the
input document, i.e., when there is structure in the source document that is not explicit in
the markup. This is typical for GraphML data: For example, it is not possible to determine
whether a given <graph> contains cycles by just looking at the markup; some algorithm
has to be applied to the represented graph.

To get a feel for the potential of algorithmic style sheets, we implemented some basic
graph algorithms using XSLT, and with recursive templates, it proved powerful enough
to formulate even more advanced algorithms. For example, a style sheet can be used to
compute the distances from a single source to all other nodes or execute a layout algorithm,
and then attach the results to <node>s in <data> labels.

16.5.3 Language Binding

We found that pure XSLT functionality is expressive enough to solve even more advanced
GraphML related problems. However, it suffers from some general drawbacks:

e With growing problem complexity, the style sheets tend to become dispropor-
tionately verbose.

e Algorithms must be reformulated in terms of recursive templates, and there is
no way to use existing implementations.

e Computations may perform poorly, especially for large input. This is often due to
excessive DOM tree traversal and overhead generated by template instantiation
internal to the XSLT processor.

e There is no direct way of accessing system services, such as date functions or
database connectivity.

Therefore, most XSLT processors allow the integration of extension functions implemented
in XSLT or some other programming language. Usually, they support at least their native
language. For example, Saxon [Sax| can access and use external Java classes since itself
is written entirely in Java. In this case, extension functions are methods of Java classes
available on the class path when the transformation is being executed, and get invoked
within XPath expressions. Usually, they are static methods, thus staying compliant with
XSLT’s design idea of declarative style and freeness of side effects. However, XSLT allows
to create objects and to call their instance-level methods by binding the created objects to
XPath variables.

The architecture shown in Figure 16.15 consists of three layers:

e The style sheet that instantiates the wrapper and communicates with it

e A wrapper class (the actual XSLT extension) that converts GraphML markup to
a wrapped graph object, and provides computation results

e Java classes for graph data structures and algorithms

Thus, the wrapper acts as a mediator between the graph object and the style sheet. The
wrapper instantiates a graph object corresponding to the GraphML markup, and, for in-
stance, applies a graph drawing algorithm to it. In turn, it provides the resulting coordi-
nates and other layout data in order for the style sheet to insert it into the XML (probably
GraphML) result of the transformation, or to do further computations.
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Figure 16.15 Using extension functions in XSLT. Taken from [BP04].

The approach presented here is only one of many ways of mapping an external graph de-
scription file to an internal graph representation. A stand-alone application could integrate
a GraphML parser, build up its graph representation in memory apart from XSLT, execute
a transformation, and serialize the result as GraphML output. However, the intrinsic ad-
vantage of using XSLT is that it generates output in a natural and embedded way, and that
the output generation process can be customized easily.

XSL transformations are a simple, lightweight approach to processing graphs represented
in GraphML. They have proven to be useful in various areas of application, when the target
format of a transformation is GraphML again, or another format with a similar purpose,
and the output structure does not vary too much from input.

They are even powerful enough to specify advanced transformations that go beyond map-
ping XML elements directly to other XML elements or other simple text units. However,
advanced transformations may result in long-winded style sheets that are intricate to main-
tain, and most likely to be inefficient. Extension functions appear to be the natural way
out of such difficulties.

We found that, as rule-of-thumb, XSLT should be used primarily to do the structural
parts of a transformation, such as creating new elements or attributes, whereas specialized
extensions are better for complex computations that are difficult to express or inefficient to
run using pure XSLT.
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16.6 Using GraphML

The easiest way to read and write GraphML files is to use a graph-processing software that
can handle this format. GraphML is the principal I/O format of visone [BBBT02] and of the
graph editor yEd from yVVorks.1 Besides these there are several software tools or libraries
that can either import or export (or both) GraphML, including Pajek [DMBO05], ORA
[CRO4], and JUNG [OFS*05]. If a customary GraphML reader has to be implemented it is
convenient to make use of one of many available XML parsers and adapt it to the purpose
at hand.

Ihttp://wuw.yworks.com/
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